1
|
Cao L, Ma J, Lu Y, Chen P, Hou X, Yang N, Huang H. Combining full-length transcriptome sequencing and next generation sequencing to provide insight into the growth superiority of the hybrid grouper (Cromileptes altivelas (♀) × Epinephelus lanceolatus (♂)). PLoS One 2024; 19:e0308802. [PMID: 39383135 PMCID: PMC11463768 DOI: 10.1371/journal.pone.0308802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/31/2024] [Indexed: 10/11/2024] Open
Abstract
The hybrid grouper (Cromileptes altivelas, ♀ × Epinephelus lanceolatus, ♂) is an economically important aquaculture species that exhibits certain growth advantages compared to its female parent, Cromileptes altivelas. However, the current understanding of the molecular mechanisms underlying the growth of hybrid groupers is lacking. Herein, we performed full-length transcriptome sequencing and next-generation sequencing on the hybrid grouper and its parents to identify growth-related genes and comprehensively analyze the regulatory mechanism of growth heterosis in the hybrid grouper. Approximately 44.70, 40.44, and 45.32 Gb of single-molecule real-time sequencing data were generated in C. altivelas (Cal), E. lanceolatus (Ela), and the hybrid (Hyb), which were combined into 204,322 non-redundant isoforms using the PacBio sequencing platform. Differentially expressed genes (DEGs) were identified between Hyb and Cal (3,494, 2,125, and 1,487 in brain, liver, and muscle tissues, respectively) and Hyb and Ela (3,415, 2,351, and 1,675 in brain, liver, and muscle tissues, respectively). Then, 27 DEGs (13 in the brain and 14 in the muscle) related to growth traits were identified using cluster and correlation network analysis. Quantitative RT-PCR validated 15 DEGs consistent with transcriptome sequencing (RNA-seq) trends. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that these 15 genes were mainly involved in regulating the actin cytoskeleton, suggesting that this pathway plays an essential role in fish growth. In addition, we found that the phosphatase and tensin homologue (PTEN) is a key regulator of growth heterosis in Hyb. These results shed light on the regulatory mechanism of growth in the Hyb, which is important for marker-assisted selection programs to improve the growth quality of groupers.
Collapse
Affiliation(s)
- Liu Cao
- Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya, China
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Hainan Tropical Ocean University, Sanya, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Hainan Tropical Ocean University, Sanya, China
- College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, China
| | - Jun Ma
- Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya, China
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Hainan Tropical Ocean University, Sanya, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Hainan Tropical Ocean University, Sanya, China
- College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, China
| | - Yan Lu
- College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, China
| | - Pan Chen
- Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya, China
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Hainan Tropical Ocean University, Sanya, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Hainan Tropical Ocean University, Sanya, China
- College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, China
| | - Xingrong Hou
- Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya, China
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Hainan Tropical Ocean University, Sanya, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Hainan Tropical Ocean University, Sanya, China
- College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, China
| | - Ning Yang
- Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya, China
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Hainan Tropical Ocean University, Sanya, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Hainan Tropical Ocean University, Sanya, China
- College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, China
| | - Hai Huang
- Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya, China
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Hainan Tropical Ocean University, Sanya, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Hainan Tropical Ocean University, Sanya, China
- College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, China
| |
Collapse
|
2
|
Boan AF, Delgadin TH, Canosa LF, Fernandino JI. Loss of function in somatostatin receptor 5 has no impact on the growth of medaka fish due to compensation by the other paralogs. Gen Comp Endocrinol 2024; 351:114478. [PMID: 38412943 DOI: 10.1016/j.ygcen.2024.114478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 02/29/2024]
Abstract
Somatic growth in vertebrates is regulated endocrinologically by the somatotropic axis, headed by the growth hormone (GH) and the insulin growth factor-I (IGF-I). Somatostatin (Sst), a peptide hormone synthesized in the hypothalamus, modulates GH actions through its receptors (Sstr). Four Sstr subtypes (Sstr 1-3 and 5) have been identified in teleosts. However, little is known about whether they have a specific function or tissue expression. The aim of this study was to determine the role of sstr2 and sstr5 in the growth of the medaka (Oryzias latipes). The assessed expression pattern across diverse tissues highlighted greater prevalence of sstr1 and sstr3 in brain, intestine and muscle than in pituitary or liver. The expression of sstr2 was high in all the tissues tested, while sstr5 was predominantly expressed in the pituitary gland. A CRISPR/Cas9 sstr5 mutant with loss of function (sstr5-/-) was produced. Assessment of sstr5-/- indicated no significant difference with the wild type regarding growth parameters such as standard length, body depth, or peduncle depth. Furthermore, the functional loss of sstr5 had no impact on the response to a nutritional challenge. The fact that several sstr subtypes were upregulated in different tissues in sstr5-/- medaka suggests that in the mutant fish, there may be a compensatory effect on the different tissues, predominantly by sstr1 in the liver, brain and pituitary, with sstr2 being upregulated in pituitary and liver, and sstr3 only presenting differential expression in the brain. Analysis of the sstr subtype and the sstr5-/- fish showed that sstr5 was not the only somatostatin receptor responsible for Sst-mediated Gh regulation.
Collapse
Affiliation(s)
- A F Boan
- Instituto Tecnológico de Chascomús, INTECH (CONICET-UNSAM), Chascomús, Argentina; Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| | - T H Delgadin
- Universidad Nacional del Santa, Nuevo Chimbote, Ancash, Perú
| | - L F Canosa
- Instituto Tecnológico de Chascomús, INTECH (CONICET-UNSAM), Chascomús, Argentina; Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| | - J I Fernandino
- Instituto Tecnológico de Chascomús, INTECH (CONICET-UNSAM), Chascomús, Argentina; Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina.
| |
Collapse
|
3
|
Zhang X, Niu Y, Gao C, Kong L, Yang Z, Chang L, Kong X, Bao Z, Hu X. Somatostatin Receptor Gene Functions in Growth Regulation in Bivalve Scallop and Clam. Int J Mol Sci 2024; 25:4813. [PMID: 38732036 PMCID: PMC11083992 DOI: 10.3390/ijms25094813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Bivalves hold an important role in marine aquaculture and the identification of growth-related genes in bivalves could contribute to a better understanding of the mechanism governing their growth, which may benefit high-yielding bivalve breeding. Somatostatin receptor (SSTR) is a conserved negative regulator of growth in vertebrates. Although SSTR genes have been identified in invertebrates, their involvement in growth regulation remains unclear. Here, we identified seven SSTRs (PySSTRs) in the Yesso scallop, Patinopecten yessoensis, which is an economically important bivalve cultured in East Asia. Among the three PySSTRs (PySSTR-1, -2, and -3) expressed in adult tissues, PySSTR-1 showed significantly lower expression in fast-growing scallops than in slow-growing scallops. Then, the function of this gene in growth regulation was evaluated in dwarf surf clams (Mulinia lateralis), a potential model bivalve cultured in the lab, via RNA interference (RNAi) through feeding the clams Escherichia coli containing plasmids expressing double-stranded RNAs (dsRNAs) targeting MlSSTR-1. Suppressing the expression of MlSSTR-1, the homolog of PySSTR-1 in M. lateralis, resulted in a significant increase in shell length, shell width, shell height, soft tissue weight, and muscle weight by 20%, 22%, 20%, 79%, and 92%, respectively. A transcriptome analysis indicated that the up-regulated genes after MlSSTR-1 expression inhibition were significantly enriched in the fat digestion and absorption pathway and the insulin pathway. In summary, we systemically identified the SSTR genes in P. yessoensis and revealed the growth-inhibitory role of SSTR-1 in bivalves. This study indicates the conserved function of somatostatin signaling in growth regulation, and ingesting dsRNA-expressing bacteria is a useful way to verify gene function in bivalves. SSTR-1 is a candidate target for gene editing in bivalves to promote growth and could be used in the breeding of fast-growing bivalves.
Collapse
Affiliation(s)
- Xiangchao Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (X.Z.); (Y.N.); (C.G.); (L.K.); (Z.Y.); (L.C.); (X.K.); (Z.B.)
| | - Yuli Niu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (X.Z.); (Y.N.); (C.G.); (L.K.); (Z.Y.); (L.C.); (X.K.); (Z.B.)
| | - Can Gao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (X.Z.); (Y.N.); (C.G.); (L.K.); (Z.Y.); (L.C.); (X.K.); (Z.B.)
| | - Lingling Kong
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (X.Z.); (Y.N.); (C.G.); (L.K.); (Z.Y.); (L.C.); (X.K.); (Z.B.)
| | - Zujing Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (X.Z.); (Y.N.); (C.G.); (L.K.); (Z.Y.); (L.C.); (X.K.); (Z.B.)
| | - Lirong Chang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (X.Z.); (Y.N.); (C.G.); (L.K.); (Z.Y.); (L.C.); (X.K.); (Z.B.)
| | - Xiangfu Kong
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (X.Z.); (Y.N.); (C.G.); (L.K.); (Z.Y.); (L.C.); (X.K.); (Z.B.)
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (X.Z.); (Y.N.); (C.G.); (L.K.); (Z.Y.); (L.C.); (X.K.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Xiaoli Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (X.Z.); (Y.N.); (C.G.); (L.K.); (Z.Y.); (L.C.); (X.K.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
4
|
Chen J, Zhou T, Lu W, Zhu Q, Li J, Cheng J. Comparative survey of coordinated regulation of hypothalamic-pituitary-somatotropic axis in golden pompano (Trachinotus ovatus) and humpback grouper (Cromileptes altivelis). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101170. [PMID: 38081109 DOI: 10.1016/j.cbd.2023.101170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/13/2023] [Accepted: 11/30/2023] [Indexed: 02/15/2024]
Abstract
Hypothalamic-Pituitary-Somatotropic (HPS) axis is the essential endocrine system playing important roles in animal growth. Here, the HPS axis were characterized in golden pompano (Trachinotus ovatus) and humpback grouper (Cromileptes altivelis), two marine cultured tropical teleosts representing fast and slow growth patterns, respectively. Through genomic and transcriptomic survey, 32 and 35 HPS genes were characterized in T. ovatus and C. altivelis. Functional domain and phylogeny revealed their conserved function among teleost lineages, with more ssts and igfbps identified and actively expressed in C. altivelis than in T. ovatus. The regulation of HPS genes responding to external stimuli revealed that T. ovatus HPS genes, including gh, igf1/2, igfbp1a/b, igfbp2b and igfbp5b, were differentially expressed under temperature or starvation challenges, while C. altivelis HPS genes were sensitive to salinity change with sst1.2, ghrhrb, igf1, igf2r, igfbp1a and igfbp5a regulated in brains. Strong interactive connectivity of igfbps was found in both T. ovatus and C. altivelis. Moreover, HPS genes evolved differently between T. ovatus and C. altivelis, and positively selected sites were detected in more C. altivelis HPS genes, like in functional domains of igf1ra and igf1rb. The igf1ra evolved faster than igf1rb in teleosts, which may contribute to their functional divergence. In conclusion, this study represented different regulatory and evolutionary patterns of HPS axis between T. ovatus and C. altivelis, which are vital in regulating their growth and will provide comprehensive insights into the cultivation of T. ovatus and C. altivelis in aquaculture.
Collapse
Affiliation(s)
- Junyu Chen
- MOE Key Laboratory of Marine Genetics and Breeding (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution (Sanya 572024), Ocean University of China, China
| | - Tianyu Zhou
- MOE Key Laboratory of Marine Genetics and Breeding (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution (Sanya 572024), Ocean University of China, China
| | - Wei Lu
- MOE Key Laboratory of Marine Genetics and Breeding (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution (Sanya 572024), Ocean University of China, China
| | - Qing Zhu
- MOE Key Laboratory of Marine Genetics and Breeding (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution (Sanya 572024), Ocean University of China, China
| | - Juyan Li
- MOE Key Laboratory of Marine Genetics and Breeding (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution (Sanya 572024), Ocean University of China, China
| | - Jie Cheng
- MOE Key Laboratory of Marine Genetics and Breeding (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution (Sanya 572024), Ocean University of China, China; Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| |
Collapse
|
5
|
Zhong H, Ren B, Lou C, Zhou Y, Luo Y, Xiao J. Nonadditive and allele-specific expression of ghrelin in hybrid tilapia. Front Endocrinol (Lausanne) 2023; 14:1292730. [PMID: 38152137 PMCID: PMC10751329 DOI: 10.3389/fendo.2023.1292730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/07/2023] [Indexed: 12/29/2023] Open
Abstract
Background Interspecies hybridization is an important breeding method to generate fishes with heterosis in aquaculture. Using this method, hybrid Nile tilapia (Oreochromis niloticus, ♀) × blue tilapia (Oreochromis aureus, ♂) has been produced and widely farmed due to its growth and appetite superiorities. However, the genetic mechanism of these advanced traits is still not well understood. Ghrelin is a crucial gene that regulates growth and appetite in fishes. In the present study, we focused on the expression characteristics and its regulation of ghrelin in the hybrid. Results The tissue distribution analysis showed that ghrelin was predominantly expressed in the stomach in the hybrid. Ghrelin was more highly expressed in the stomach in the hybrid and Nile tilapia, compared to blue tilapia, showing a nonadditive pattern. Two single-nucleotide polymorphism (SNP) sites were identified including T/C and C/G from the second exon in the ghrelin gene from Nile tilapia and blue tilapia. By pyrosequencing based on the SNP sites, the allele-specific expression (ASE) of ghrelin in the hybrid was assayed. The result indicated that ghrelin in the hybrid showed higher maternal allelic transcript ratios. Fasting significantly increased ghrelin overall expression at 4, 8, 12, 24, and 48 h. In addition, higher maternal allelic transcript ratios were not changed in the fasting hybrids at 48 h. The cis and trans effects were determined by evaluating the overall expression and ASE values in the hybrid. The expression of ghrelin was mediated by compensating cis and trans effects in hybrid. Conclusion In summary, the present lines of evidence showed the nonadditive expression of ghrelin in the hybrid tilapia and its regulation by subgenomes, offering new insight into gene expression characteristics in hybrids.
Collapse
Affiliation(s)
- Huan Zhong
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Bingxin Ren
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Chenyi Lou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yi Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yongju Luo
- Tilapia Genetics and Breeding Center, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Jun Xiao
- Tilapia Genetics and Breeding Center, Guangxi Academy of Fishery Sciences, Nanning, China
| |
Collapse
|
6
|
Li P, Chen X, Hou D, Chen B, Peng K, Huang W, Cao J, Zhao H. Positive effects of dietary Clostridium butyricum supplementation on growth performance, antioxidant capacity, immunity and viability against hypoxic stress in largemouth bass. Front Immunol 2023; 14:1190592. [PMID: 37711631 PMCID: PMC10498469 DOI: 10.3389/fimmu.2023.1190592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/16/2023] [Indexed: 09/16/2023] Open
Abstract
The effects of dietary supplementation of Clostridium butyricum (CB) on growth performance, serum biochemistry, antioxidant activity, mRNA levels of immune-related genes and resistance to hypoxia stress were studied in largemouth bass. Feed with CB0 (control, 0 CFU/kg), CB1 (4.3×108 CFU/kg), CB2 (7.5×108 CFU/kg), CB3 (1.5×109 CFU/kg) and CB4 (3.2×109 CFU/kg) CB for 56 days, and then a 3 h hypoxic stress experiment was performed. The results showed that dietary CB significantly increased the WGR (weight gain rate), SGR (specific growth rate), PDR (protein deposition rate) and ISI (Intestosomatic index) of largemouth bass (P<0.05). Hepatic GH (growth hormone)/IGF-1 (insulin-like growth factor-1) gene expression was significantly upregulated in the CB3 and CB4 groups compared with the CB0 group (P<0.05), while the FC (feed conversion) was significantly decreased (P<0.05). Serum TP (total protein) and GLU (glucose) levels were significantly higher in the CB4 group than in the CB0 group (P<0.05), while the contents of serum AST (aspartate transaminase), ALT (alanine transaminase), AKP (alkline phosphatase) and UN (urea nitrogen) in CB4 were significantly lower than those in CB0 (P<0.05). T-AOC (total antioxidant capacity), SOD (superoxide dismutase), CAT (catalase), POD (peroxidase) and GSH-Px (glutathione peroxidase) activities were significantly higher in CB3 and CB4 groups than in CB0 group (P<0. 05). The liver MDA (malondialdehyde) content of CB1, CB2, CB3 and CB4 groups was significantly higher than that of CB0 group (P<0. 05). The relative expressions of IL-1β (interleukin 1β), TNF-α (tumor necrosis factor α) and TLR22 (toll-like receptor-22) genes in CB2, CB3 and CB4 groups were significantly lower than those in CB0 group (P<0.05). The relative expression of IL-8 (malondialdehyde) and MyD88 (Myeloid differentiation factor 88) genes in the CB4 group was significantly lower than that in the CB0 group (P<0.05). The liver LZM (lysozyme) content of CB2, CB3 and CB4 groups was significantly higher than that of CB0 group (P<0. 05). The relative expression of IL-10 (interleukin 10) and TGF-β (transforming growth factor β) genes in the CB4 group was significantly higher than that in the CB0 group (P<0.05). Under hypoxic stress for 3 h, the CMR of CB0 group was significantly higher than that of CB1, CB2, CB3 and CB4 groups (P<0.05). Dietary CB can improve the growth performance and resistance to hypoxic stress of largemouth bass by regulating the expression of GH/IGF-1 gene and inflammatory factors and inhibiting TLR22/MyD88 signaling pathway.
Collapse
Affiliation(s)
- Peijia Li
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Collaborative Innovation Center of Aquatic Sciences, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Xiaoying Chen
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Collaborative Innovation Center of Aquatic Sciences, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Dongqiang Hou
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Collaborative Innovation Center of Aquatic Sciences, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Bing Chen
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Collaborative Innovation Center of Aquatic Sciences, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Kai Peng
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Collaborative Innovation Center of Aquatic Sciences, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Wen Huang
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Collaborative Innovation Center of Aquatic Sciences, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Junming Cao
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Collaborative Innovation Center of Aquatic Sciences, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hongxia Zhao
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Collaborative Innovation Center of Aquatic Sciences, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
7
|
Sánchez-Moya A, Balbuena-Pecino S, Vélez EJ, Perelló-Amorós M, García-Meilán I, Fontanillas R, Calduch-Giner JÀ, Pérez-Sánchez J, Fernández-Borràs J, Blasco J, Gutiérrez J. Cysteamine improves growth and the GH/IGF axis in gilthead sea bream ( Sparus aurata): in vivo and in vitro approaches. Front Endocrinol (Lausanne) 2023; 14:1211470. [PMID: 37547324 PMCID: PMC10400459 DOI: 10.3389/fendo.2023.1211470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/09/2023] [Indexed: 08/08/2023] Open
Abstract
Aquaculture is the fastest-growing food production sector and nowadays provides more food than extractive fishing. Studies focused on the understanding of how teleost growth is regulated are essential to improve fish production. Cysteamine (CSH) is a novel feed additive that can improve growth through the modulation of the GH/IGF axis; however, the underlying mechanisms and the interaction between tissues are not well understood. This study aimed to investigate the effects of CSH inclusion in diets at 1.65 g/kg of feed for 9 weeks and 1.65 g/kg or 3.3 g/kg for 9 weeks more, on growth performance and the GH/IGF-1 axis in plasma, liver, stomach, and white muscle in gilthead sea bream (Sparus aurata) fingerlings (1.8 ± 0.03 g) and juveniles (14.46 ± 0.68 g). Additionally, the effects of CSH stimulation in primary cultured muscle cells for 4 days on cell viability and GH/IGF axis relative gene expression were evaluated. Results showed that CSH-1.65 improved growth performance by 16% and 26.7% after 9 and 18 weeks, respectively, while CSH-3.3 improved 32.3% after 18 weeks compared to control diet (0 g/kg). However, no significant differences were found between both experimental doses. CSH reduced the plasma levels of GH after 18 weeks and increased the IGF-1 ones after 9 and 18 weeks. Gene expression analysis revealed a significant upregulation of the ghr-1, different igf-1 splice variants, igf-2 and the downregulation of the igf-1ra and b, depending on the tissue and dose. Myocytes stimulated with 200 µM of CSH showed higher cell viability and mRNA levels of ghr1, igf-1b, igf-2 and igf-1rb compared to control (0 µM) in a similar way to white muscle. Overall, CSH improves growth and modulates the GH/IGF-1 axis in vivo and in vitro toward an anabolic status through different synergic ways, revealing CSH as a feasible candidate to be included in fish feed.
Collapse
Affiliation(s)
- Albert Sánchez-Moya
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Sara Balbuena-Pecino
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Emilio J. Vélez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Miquel Perelló-Amorós
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Irene García-Meilán
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | | | - Josep Àlvar Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS, Spanish National Research Council (CSIC)), Castellón, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS, Spanish National Research Council (CSIC)), Castellón, Spain
| | - Jaume Fernández-Borràs
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Josefina Blasco
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Joaquin Gutiérrez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Marcionetti A, Salamin N. Insights into the Genomics of Clownfish Adaptive Radiation: The Genomic Substrate of the Diversification. Genome Biol Evol 2023; 15:evad088. [PMID: 37226990 PMCID: PMC10349533 DOI: 10.1093/gbe/evad088] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/01/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023] Open
Abstract
Clownfishes are an iconic group of coral reef fishes that evolved a mutualistic interaction with sea anemones, which triggered the rapid diversification of the group. Following the emergence of this mutualism, clownfishes diversified into different ecological niches and developed convergent phenotypes associated with their host use. The genetic basis of the initial acquisition of the mutualism with host anemones has been described, but the genomic architecture underlying clownfish diversification once the mutualism was established and the extent to which clownfish phenotypic convergence originated through shared genetic mechanisms are still unknown. Here, we investigated these questions by performing comparative genomic analyses on the available genomic data of five pairs of closely related but ecologically divergent clownfish species. We found that clownfish diversification was characterized by bursts of transposable elements, an overall accelerated coding evolution, incomplete lineage sorting, and ancestral hybridization events. Additionally, we detected a signature of positive selection in 5.4% of the clownfish genes. Among them, five presented functions associated with social behavior and ecology, and they represent candidate genes involved in the evolution of the size-based hierarchical social structure so particular to clownfishes. Finally, we found genes with patterns of either relaxation or intensification of purifying selection and signals of positive selection linked with clownfish ecological divergence, suggesting some level of parallel evolution during the diversification of the group. Altogether, this work provides the first insights into the genomic substrate of clownfish adaptive radiation and integrates the growing collection of studies investigating the genomic mechanisms governing species diversification.
Collapse
Affiliation(s)
- Anna Marcionetti
- Department of Computational Biology, Genopode, University of Lausanne, 1015 Lausanne, Switzerland
| | - Nicolas Salamin
- Department of Computational Biology, Genopode, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
9
|
Martinez-Silva MA, Dupont-Prinet A, Houle C, Vagner M, Garant D, Bernatchez L, Audet C. Growth regulation in brook charr Salvelinus fontinalis. Gen Comp Endocrinol 2023; 331:114160. [PMID: 36356646 DOI: 10.1016/j.ygcen.2022.114160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 09/12/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
Fish growth can be modulated through genetic selection. However, it is not known whether growth regulatory mechanisms modulated by genetic selection can provide information about phenotypic growth variations among families or populations. Following a five-generation breeding program that selected for the absence of early sexual maturity and increased growth in brook charr we aimed to understand how the genetic selection process modifies the growth regulatory pathway of brook charr at the molecular level. To achieve this, we studied the regulation of growth traits at three different levels: 1) between lines-one under selection, the other not, 2) among-families expressing differences in average growth phenotypes, which we termed family performance, and 3) among individuals within families that expressed extreme growth phenotypes, which we termed slow- and fast-growing. At age 1+, individuals from four of the highest performing and four of the lowest performing families in terms of growth were sampled in both the control and selected lines. The gene expression levels of three reference and ten target genes were analyzed by real-time PCR. Results showed that better growth performance (in terms of weight and length at age) in the selected line was associated with an upregulation in the expression of genes involved in the growth hormone (GH)/insulin growth factor-1 (IGF-1) axis, including the igf-1 receptor in pituitary; the gh-1 receptor and igf-1 in liver; and ghr and igf-1r in white muscle. When looking at gene expression within families, family performance and individual phenotypes were associated with upregulations of the leptin receptor and neuropeptid Y-genes related to appetite regulation-in the slower-growing phenotypes. However, other genes related to appetite (ghrelin, somatostatin) or involved in muscle growth (myosin heavy chain, myogenin) were not differentially expressed. This study highlights how transcriptomics may improve our understanding of the roles of different key endocrine steps that regulate physiological performance. Large variations in growth still exist in the selected line, indicating that the full genetic selection potential has not been reached.
Collapse
Affiliation(s)
| | - Aurélie Dupont-Prinet
- Institut des Sciences de la mer de Rimouski, Université du Québec à Rimouski, Rimouski, QC G5L 3A1, Canada
| | - Carolyne Houle
- Département de Biologie, Université du Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Marie Vagner
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 (CNRS/Univ Brest/IRD/Ifremer), Plouzané 29280, France
| | - Dany Garant
- Département de Biologie, Université du Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Département de Biologie, Université du Laval, Québec, QC G1V 0A6, Canada
| | - Céline Audet
- Institut des Sciences de la mer de Rimouski, Université du Québec à Rimouski, Rimouski, QC G5L 3A1, Canada
| |
Collapse
|
10
|
Xiang K, Yang Q, Liu M, Yang X, Li J, Hou Z, Wen H. Crosstalk between Growth and Osmoregulation of GHRH-SST-GH-IGF Axis in Triploid Rainbow Trout ( Oncorhynchus mykiss). Int J Mol Sci 2022; 23:ijms23158691. [PMID: 35955823 PMCID: PMC9369269 DOI: 10.3390/ijms23158691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 12/04/2022] Open
Abstract
Smolting is an important development stage of salmonid, and an energy trade-off occurs between osmotic regulation and growth during smolting in rainbow trout (Oncorhynchus mykiss). Growth hormone releasing hormone, somatostatin, growth hormone and insulin-like growth factor (GHRH-SST-GH-IGF) axis exhibit pleiotropic effects in regulating growth and osmotic adaptation. Due to salmonid specific genome duplication, increased paralogs are identified in the ghrh-sst-gh-igf axis, however, their physiology in modulating osmoregulation has yet to be investigated. In this study, seven sst genes (sst1a, sst1b, sst2, sst3a, sst3b, sst5, sst6) were identified in trout. We further investigated the ghrh-sst-gh-igf axis of diploid and triploid trout in response to seawater challenge. Kidney sst (sst1b, sst2, sst5) and sstr (sstr1b1, sstr5a, sstr5b) expressions were changed (more than 2-fold increase (except for sstr5a with 1.99-fold increase) or less than 0.5-fold decrease) due to osmoregulation, suggesting a pleiotropic physiology of SSTs in modulating growth and smoltification. Triploid trout showed significantly down-regulated brain sstr1b1 and igfbp2a1 (p < 0.05), while diploid trout showed up-regulated brain igfbp1a1 (~2.61-fold, p = 0.057) and igfbp2a subtypes (~1.38-fold, p < 0.05), suggesting triploid trout exhibited a better acclimation to the seawater environment. The triploid trout showed up-regulated kidney igfbp5a subtypes (~6.62 and 7.25-fold, p = 0.099 and 0.078) and significantly down-regulated igfbp5b2 (~0.37-fold, p < 0.05), showing a conserved physiology of teleost IGFBP5a in regulating osmoregulation. The IGFBP6 subtypes are involved in energy and nutritional regulation. Distinctive igfbp6 subtypes patterns (p < 0.05) potentially indicated trout triggered energy redistribution in brain and kidney during osmoregulatory regulation. In conclusion, we showed that the GHRH-SST-GH-IGF axis exhibited pleiotropic effects in regulating growth and osmoregulatory regulation during trout smolting, which might provide new insights into seawater aquaculture of salmonid species.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhishuai Hou
- Correspondence: (Z.H.); (H.W.); Tel.: +86-133-4524-7715 (Z.H.); +86-532-8203-1825 (H.W.)
| | - Haishen Wen
- Correspondence: (Z.H.); (H.W.); Tel.: +86-133-4524-7715 (Z.H.); +86-532-8203-1825 (H.W.)
| |
Collapse
|
11
|
Transcriptomes of testis and pituitary from male Nile tilapia (O. niloticus L.) in the context of social status. PLoS One 2022; 17:e0268140. [PMID: 35544481 PMCID: PMC9094562 DOI: 10.1371/journal.pone.0268140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/22/2022] [Indexed: 11/19/2022] Open
Abstract
African cichlids are well established models for studying social hierarchies in teleosts and elucidating the effects social dominance has on gene expression. Ascension in the social hierarchy has been found to increase plasma levels of steroid hormones, follicle stimulating hormone (Fsh) and luteinizing hormone (Lh) as well as gonadosomatic index (GSI). Furthermore, the expression of genes related to gonadotropins and steroidogenesis and signaling along the brain-pituitary-gonad axis (BPG-axis) is affected by changes of an animal’s social status. In this study, we use RNA-sequencing to obtain an in-depth look at the transcriptomes of testes and pituitaries from dominant and subordinate male Nile tilapia living in long-term stable social hierarchies. This allows us to draw conclusions about factors along the brain-pituitary-gonad axis that are involved in maintaining dominance over weeks or even months. We identify a number of genes that are differentially regulated between dominant and subordinate males and show that in high-ranking fish this subset of genes is generally upregulated. Genes differentially expressed between the two social groups comprise growth factors, related binding proteins and receptors, components of Wnt-, Tgfβ- and retinoic acid-signaling pathway, gonadotropin signaling and steroidogenesis pathways. The latter is backed up by elevated levels of 11-ketotestosterone, testosterone and estradiol in dominant males. Luteinizing hormone (Lh) is found in higher concentration in the plasma of long-term dominant males than in subordinate animals. Our results both strengthen the existing models and propose new candidates for functional studies to expand our understanding of social phenomena in teleost fish.
Collapse
|
12
|
Sheridan MA. Coordinate regulation of feeding, metabolism, and growth: Perspectives from studies in fish. Gen Comp Endocrinol 2021; 312:113873. [PMID: 34329604 DOI: 10.1016/j.ygcen.2021.113873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/21/2021] [Accepted: 07/25/2021] [Indexed: 01/15/2023]
Abstract
This paper develops a model for coordinate regulation of feeding, metabolism, and growth based on studies in fish. Many factors involved with the control of feeding [e.g., cholecystokinin (CCK) and ghrelin (GRLN)], energy metabolism [e.g., insulin (INS), glucagon (GLU), glucagon-like peptide (GLP), and somatostatins (SS), produced in the endocrine pancreas; and leptin (LEP) produced broadly], and growth [e.g., GRLN, growth hormone (GH), insulin-like growth factors (IGFs), GH receptors (GHR), IGF receptors (IGFR)] interact at various levels. Many such interactions serve to coordinate these systems to favor anabolic processes (i.e., lipid and protein synthesis, glycogenesis) and growth, including GH promotion of feeding and stimulation of INS production/secretion and the upregulation of GHR and IGFR by GRLN. As nutrient and stored energy status change, various feedbacks serve to curtail feeding and transition the animal from an anabolic/growth state to a catabolic state. Many factors, including LEP and IGF, promote satiety, whereas SS downregulates INS signaling as well as IGF production and GHR and IGFR abundance. As INS and IGF levels fall, GH becomes disconnected from growth as a result of altered linkage of GHR to cell signaling pathways. As a result, the catabolic actions of GH, GLU, GLP, LEP, and SS prevail, mobilizing stored energy reserves. Coordinate regulation involves relative abundances of blood-borne hormones as well as the ability to adjust responsiveness to hormones (via receptor and post-receptor events) in a cell-/tissue-specific manner that results from genetic and epigenetic programming and modulation by the local milieu of hormones, nutrients, and autocrine/paracrine interactions. The proposed model of coordinate regulation demonstrates how feeding, metabolism, and growth are integrated with each other and with other processes, such as reproduction, and how adaptive adjustments can be made to energy allocation during an animal's life history and/or in response to changes in environmental conditions.
Collapse
Affiliation(s)
- Mark A Sheridan
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
13
|
Chen H, Liang X, Gu X, Zeng Q, Mao Z, Martyniuk CJ. Environmentally relevant concentrations of sertraline disrupts behavior and the brain and liver transcriptome of juvenile yellow catfish (Tachysurus fulvidraco): Implications for the feeding and growth axis. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124974. [PMID: 33450510 DOI: 10.1016/j.jhazmat.2020.124974] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/10/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Sertraline (SER) is one of the most prevalent antidepressants detected in aquatic environments, but its impact on fish behavior and growth remain poorly understood. As such, behavior and growth were assessed in yellow catfish (Tachysurus fulvidraco) following SER exposure. SER induced shoaling, reduced food consumption and growth, and increased cannibalism at environmentally relevant concentrations. To ascertain toxicity mechanisms, acetylcholinesterase (AChE) activity and transcripts related to growth and feeding were measured. AChE activity was increased in fish exposed to 10 and 100 μg/L SER. Transcript levels of neuropeptide Y, somatostatin, growth hormone, and insulin growth factor 1 were reduced in the brain following SER exposure. RNA-seq conducted in brain and liver revealed that gene networks associated with feeding and growth (i.e. leptin expression networks in the brain and insulin signaling pathways in the liver) were altered, proposed to be associated with the decreased food intake and growth. The brain also accumulated SER, which may relate to neurobehavioral responses. Lastly, the main metabolite of SER, norsertraline, was detected in the liver, and may also relate to toxicity. This study uncovers mechanisms and key events proposed to lead to impaired behavior and growth after exposure to some antidepressants.
Collapse
Affiliation(s)
- Huihui Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Xuefang Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Xiaohong Gu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China.
| | - Qingfei Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhigang Mao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
14
|
Vélez EJ, Unniappan S. A Comparative Update on the Neuroendocrine Regulation of Growth Hormone in Vertebrates. Front Endocrinol (Lausanne) 2020; 11:614981. [PMID: 33708174 PMCID: PMC7940767 DOI: 10.3389/fendo.2020.614981] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/31/2020] [Indexed: 12/22/2022] Open
Abstract
Growth hormone (GH), mainly produced from the pituitary somatotrophs is a key endocrine regulator of somatic growth. GH, a pleiotropic hormone, is also involved in regulating vital processes, including nutrition, reproduction, physical activity, neuroprotection, immunity, and osmotic pressure in vertebrates. The dysregulation of the pituitary GH and hepatic insulin-like growth factors (IGFs) affects many cellular processes associated with growth promotion, including protein synthesis, cell proliferation and metabolism, leading to growth disorders. The metabolic and growth effects of GH have interesting applications in different fields, including the livestock industry and aquaculture. The latest discoveries on new regulators of pituitary GH synthesis and secretion deserve our attention. These novel regulators include the stimulators adropin, klotho, and the fibroblast growth factors, as well as the inhibitors, nucleobindin-encoded peptides (nesfatin-1 and nesfatin-1-like peptide) and irisin. This review aims for a comparative analysis of our current understanding of the endocrine regulation of GH from the pituitary of vertebrates. In addition, we will consider useful pharmacological molecules (i.e. stimulators and inhibitors of the GH signaling pathways) that are important in studying GH and somatotroph biology. The main goal of this review is to provide an overview and update on GH regulators in 2020. While an extensive review of each of the GH regulators and an in-depth analysis of specifics are beyond its scope, we have compiled information on the main endogenous and pharmacological regulators to facilitate an easy access. Overall, this review aims to serve as a resource on GH endocrinology for a beginner to intermediate level knowledge seeker on this topic.
Collapse
|
15
|
Somatostatin 4 regulates growth and modulates gametogenesis in zebrafish. AQUACULTURE AND FISHERIES 2019. [DOI: 10.1016/j.aaf.2019.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Hack NL, Strobel JS, Journey ML, Beckman BR, Lema SC. Response of the insulin-like growth factor-1 (Igf1) system to nutritional status and growth rate variation in olive rockfish (Sebastes serranoides). Comp Biochem Physiol A Mol Integr Physiol 2018; 224:42-52. [DOI: 10.1016/j.cbpa.2018.05.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 12/20/2022]
|
17
|
Dong H, Wei Y, Xie C, Zhu X, Sun C, Fu Q, Pan L, Wu M, Guo Y, Sun J, Shen H, Ye J. Structural and functional analysis of two novel somatostatin receptors identified from topmouth culter (Erythroculter ilishaeformis). Comp Biochem Physiol C Toxicol Pharmacol 2018; 210:18-29. [PMID: 29698686 DOI: 10.1016/j.cbpc.2018.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 12/14/2022]
Abstract
In the present study, we cloned and characterized two somatostatin (SS) receptors (SSTRs) from topmouth culter (Erythroculter ilishaeformis) designated as EISSTR6 and EISSTR7. Analysis of EISSTR6 and EISSTR7 signature motifs, 3D structures, and homology with the known members of the SSTR family indicated that the novel receptors had high similarity to the SSTRs of other vertebrates. EISSTR6 and EISSTR7 mRNA expression was detected in 17 topmouth culter tissues, and the highest level was observed in the pituitary. Luciferase reporter assay revealed that SS14 significantly inhibited forskolin-stimulated pCRE-luc promoter activity in HEK293 cells transiently expressing EISSTR6 and EISSTR7, indicating that the receptors can be activated by SS14. We also identified phosphorylation sites important for the functional activity of EISSTR6 and EISSTR7 by mutating Ser23, 43, 107, 196, 311 and Ser7, 29, 61, 222, 225 residues, respectively, to Ala, which significantly reduced the inhibitory effects of SS14 on the CRE promoter mediated by EISSTR6 and EISSTR7. Furthermore, treatment of juvenile topmouth culters with microcystin-LR or 17β-estradiol significantly affected EISSTR6 and EISSTR7 transcription in the brain, liver and spleen, suggesting that these receptors may be involved in the pathogenic mechanisms induced by endocrine disruptors. Our findings should contribute to the understanding of the structure-function relationship and evolution of the SSTR family.
Collapse
Affiliation(s)
- Haiyan Dong
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, Zhejiang 313000, PR China; National-local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition of Chinese Academy of Fishery Sciences, 759 Erhuan East Road, Huzhou, Zhejiang 313000, PR China.
| | - Yunhai Wei
- Department of Gastrointestinal Surgery, the Central Hospital of Huzhou, 198 Hongqi Road, Huzhou, Zhejiang 313000, PR China
| | - Chao Xie
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, Zhejiang 313000, PR China
| | - Xiaoxuan Zhu
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, Zhejiang 313000, PR China
| | - Chao Sun
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, Zhejiang 313000, PR China
| | - Qianwen Fu
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, Zhejiang 313000, PR China
| | - Lei Pan
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, Zhejiang 313000, PR China
| | - Mengting Wu
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, Zhejiang 313000, PR China
| | - Yinghan Guo
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, Zhejiang 313000, PR China
| | - Jianwei Sun
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, Zhejiang 313000, PR China
| | - Hong Shen
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, Zhejiang 313000, PR China
| | - Jinyun Ye
- National-local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition of Chinese Academy of Fishery Sciences, 759 Erhuan East Road, Huzhou, Zhejiang 313000, PR China.
| |
Collapse
|
18
|
Ohga H, Selvaraj S, Matsuyama M. The Roles of Kisspeptin System in the Reproductive Physiology of Fish With Special Reference to Chub Mackerel Studies as Main Axis. Front Endocrinol (Lausanne) 2018; 9:147. [PMID: 29670580 PMCID: PMC5894438 DOI: 10.3389/fendo.2018.00147] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/19/2018] [Indexed: 12/27/2022] Open
Abstract
Kisspeptin, a novel neuropeptide product of the Kiss1 gene, activates the G protein-coupled membrane receptor G protein-coupled receptor 54 (now termed Kiss1r). Over the last 15 years, the importance of the kisspeptin system has been the subject of much debate in the mammalian research field. At the heart of the debate is whether kisspeptin is an absolute upstream regulator of gonadotropin-releasing hormone secretion, as it has been proposed to be the master molecule in reproductive events and plays a special role not only during puberty but also in adulthood. The teleostean kisspeptin system was first documented in 2004. Although there have been a number of kisspeptin studies in various fish species, the role of kisspeptin in reproduction remains a subject of controversy and has not been widely recognized. There is an extensive literature on the physiological and endocrinological bases of gametogenesis in fish, largely derived from studying small, model fish species, and reports on non-model species are limited. The reason for this discrepancy is the technical difficulty inherent in developing rigorous experimental systems in many farmed fish species. We have already established methods for the full life-cycle breeding of a commercially important marine fish, the chub mackerel (cm), and are interested in understanding the reproductive function of kisspeptins from various perspectives. Based on a series of experiments clarifying the role of the brain-pituitary-gonad axis in modulating reproduction in cm, we theorize that the kisspeptin system plays an important role in the reproduction of this scombroid species. In this review article, we provide an overview of kisspeptin studies in cm, which substantially aids in elucidating the role of kisspeptins in fish reproduction.
Collapse
|
19
|
He M, Wang K, Liang X, Fang J, Geng Y, Chen Z, Pu H, Hu Y, Li X, Liu L. Effects of dietary vitamin E on growth performance as well as intestinal structure and function of channel catfish ( Ictalurus punctatus, Rafinesque 1818). Exp Ther Med 2017; 14:5703-5710. [PMID: 29285112 PMCID: PMC5740713 DOI: 10.3892/etm.2017.5295] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 02/24/2017] [Indexed: 12/14/2022] Open
Abstract
To evaluate the impact of dietary vitamin E supplementation on growth performance, the intestinal structure and function of channel catfish (Ictalurus punctatus, Rafinesque 1818) was investigated. A total of 900 healthy channel catfish (weight, 5.20±0.15 g) were divided into four groups, which received experimental diets with different vitamin E content (0, 50, 100 or 1,000 mg/kg). At the end of the feeding trial (after 15 weeks), the growth and gut performance of the animals was determined. The digestive enzyme activity in hepatopancreas and gut was also detected. In addition, the height of intestinal fold, the thickness of the mucous membrane and the number of somatostatin-positive cells was examined by histological analysis. Dietary vitamin E supplementation at 50 and 100 mg/kg significantly improved the growth and gut performance, which also increased the activity of several digestive enzymes compared to that in animals without vitamin E supplementation (P<0.05). In addition, vitamin E supplementation also significantly increased the height of intestinal fold and the thickness of the mucous membrane (P<0.05). Fish with dietary vitamin E supplementation at appropriate doses also had more somatostatin-positive cells in than those without vitamin E supplementation (P<0.05). In conclusion, dietary vitamin E supplementation at 50 and 100 mg/kg was shown to improve the growth performance as well as intestinal structure and function of channel catfish.
Collapse
Affiliation(s)
- Min He
- Key Laboratory of Animal Disease and Human Health of Sichuan, Animal's Medical College, Sichuan Agricultural University, Chengdu, Sichuan 625014, P.R. China
| | - Kaiyu Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan, Animal's Medical College, Sichuan Agricultural University, Chengdu, Sichuan 625014, P.R. China
| | - Xiaoxia Liang
- Key Laboratory of Animal Disease and Human Health of Sichuan, Animal's Medical College, Sichuan Agricultural University, Chengdu, Sichuan 625014, P.R. China
| | - Jing Fang
- Key Laboratory of Animal Disease and Human Health of Sichuan, Animal's Medical College, Sichuan Agricultural University, Chengdu, Sichuan 625014, P.R. China
| | - Yi Geng
- Key Laboratory of Animal Disease and Human Health of Sichuan, Animal's Medical College, Sichuan Agricultural University, Chengdu, Sichuan 625014, P.R. China
| | - Zhengli Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan, Animal's Medical College, Sichuan Agricultural University, Chengdu, Sichuan 625014, P.R. China
| | - Haibo Pu
- Key Laboratory of Animal Disease and Human Health of Sichuan, Animal's Medical College, Sichuan Agricultural University, Chengdu, Sichuan 625014, P.R. China
| | - Yaodong Hu
- Key Laboratory of Animal Disease and Human Health of Sichuan, Animal's Medical College, Sichuan Agricultural University, Chengdu, Sichuan 625014, P.R. China
| | - Xue Li
- Key Laboratory of Animal Disease and Human Health of Sichuan, Animal's Medical College, Sichuan Agricultural University, Chengdu, Sichuan 625014, P.R. China
| | - Ling Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan, Animal's Medical College, Sichuan Agricultural University, Chengdu, Sichuan 625014, P.R. China
| |
Collapse
|
20
|
Dong H, Chen W, Sun C, Sun J, Wang Y, Xie C, Fu Q, Zhu J, Ye J. Identification, characterization of selenoprotein W and its mRNA expression patterns in response to somatostatin 14, cysteamine hydrochloride, 17β-estradiol and a binary mixture of 17β-estradiol and cysteamine hydrochloride in topmouth culter (Erythroculter ilishaeformis). FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:115-126. [PMID: 27506211 DOI: 10.1007/s10695-016-0272-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 08/01/2016] [Indexed: 06/06/2023]
Abstract
In this study, a selenoprotein W cDNA was cloned from topmouth culter (Erythroculter ilishaeformis), and it was designated as EISelW. The EISelW open reading frame was composed of 261 base pairs (bp), encoding 86-amino-acid protein. The 5' untranslated region (UTR) consisted of 104 bp, and the 3'-UTR was composed of 365 bp. A selenocysteine insertion sequence (SECIS) element was found in the 3'-UTR of EISelW mRNA. The SECIS element was classified as form II because of a small additional apical loop presented in SECIS element of EISelW mRNA. Bioinformatic approaches showed that the secondary structure of EISelW was a β1-α1-β2-β3-β4-α2 pattern from amino-terminal to carboxy-terminal. Real-time PCR analysis of EISelW mRNAs expression in 17 tissues showed that the EISelW mRNA was predominantly expressed in liver, ovary, pituitary, various regions of the brain, spinal cord and head kidney. Study of intraperitoneal injection showed that the levels of EISelW mRNA in brain, liver, ovary and spleen were regulated by somatostatin 14 (SS14), 17β-estradiol (E2), cysteamine hydrochloride (CSH) and a binary mixture of E2 and CSH, dependent on the dosage. These results suggest that E2, SS14 and CSH status may affect tissues of selenium metabolism by regulating the expression of SelW mRNA, as SelW plays a central role in selenium metabolism.
Collapse
Affiliation(s)
- Haiyan Dong
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, 313000, Zhejiang, People's Republic of China.
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition of Chinese Academy of Fishery Sciences, 759 Erhuan East Road, Huzhou, 313000, Zhejiang, People's Republic of China.
| | - Wenbo Chen
- Department of Biology, Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454000, Henan, People's Republic of China
| | - Chao Sun
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, 313000, Zhejiang, People's Republic of China
| | - Jianwei Sun
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, 313000, Zhejiang, People's Republic of China
| | - Yanlin Wang
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, 313000, Zhejiang, People's Republic of China
| | - Chao Xie
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, 313000, Zhejiang, People's Republic of China
| | - Qianwen Fu
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, 313000, Zhejiang, People's Republic of China
| | - Junjie Zhu
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition of Chinese Academy of Fishery Sciences, 759 Erhuan East Road, Huzhou, 313000, Zhejiang, People's Republic of China
| | - Jinyun Ye
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition of Chinese Academy of Fishery Sciences, 759 Erhuan East Road, Huzhou, 313000, Zhejiang, People's Republic of China.
| |
Collapse
|
21
|
RNA-seq reveals differential gene expression in the brains of juvenile resident and migratory smolt rainbow trout (Oncorhynchus mykiss). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2016; 20:136-150. [DOI: 10.1016/j.cbd.2016.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 07/21/2016] [Accepted: 07/28/2016] [Indexed: 11/20/2022]
|
22
|
Wang B, Jia J, Yang G, Qin J, Zhang C, Zhang Q, Sun C, Li W. In vitro effects of somatostatin on the growth hormone-insulin-like growth factor axis in orange-spotted grouper (Epinephelus coioides). Gen Comp Endocrinol 2016; 237:1-9. [PMID: 26526981 DOI: 10.1016/j.ygcen.2015.10.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 10/16/2015] [Accepted: 10/21/2015] [Indexed: 10/22/2022]
Abstract
Growth in vertebrates is mainly mediated by the growth hormone (GH)-insulin-like growth factor (IGF) axis, and somatostatin (SRIF) inhibits growth by decreasing GH release at the pituitary level and antagonizing the release and action of GHRH in the hypothalamus. However, the effects of SRIF on the regulation of growth at levels other than GH release from the pituitary gland are less well known. In the present study, we comprehensively examined the pituitary and peripheral actions of SRIF on the GH-IGF axis in grouper using a primary pituitary and hepatocyte cell culture system. Our results showed that SRIF inhibited GH release at the pituitary level, but had no influence on GH mRNA expression. Basal hepatic GH receptor 1 (GHR1), IGF-I and IGF-II mRNA levels declined over time, whereas GHR2 mRNA levels remained stable throughout the culture period. GH stimulated the hepatic expression of GHR and IGF mRNAs in a dose-dependent manner, while SRIF suppressed both basal and GH-stimulated expression of GHR and IGF mRNAs in primary cultured hepatocytes. The inhibition of GHR and IGF mRNA levels by SRIF was not attributed to the rate of mRNA degradation. To the best of our knowledge, we demonstrated the effects of SRIF on basal and GH-stimulated IGF-II mRNA levels in teleosts for the first time. These results indicate that SRIF regulates growth at the level of the pituitary and peripheral liver.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jirong Jia
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Guokun Yang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jingkai Qin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Cong Zhang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Qiuping Zhang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Caiyun Sun
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wensheng Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
23
|
Tostivint H, Dettaï A, Quan FB, Ravi V, Tay BH, Rodicio MC, Mazan S, Venkatesh B, Kenigfest NB. Identification of three somatostatin genes in lampreys. Gen Comp Endocrinol 2016; 237:89-97. [PMID: 27524287 DOI: 10.1016/j.ygcen.2016.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/29/2016] [Accepted: 08/11/2016] [Indexed: 12/17/2022]
Abstract
Somatostatins (SSs) are a structurally diverse family of neuropeptides that play important roles in the regulation of growth, development and metabolism in vertebrates. It has been recently proposed that the common ancestor of gnathostomes possessed three SS genes, namely SS1, SS2 and SS5. SS1 and SS2 are still present in most extant gnathostome species investigated so far while SS5 primarily occurs in chondrichthyes, actinopterygians and actinistia but not in tetrapods. Very little is known about the repertoire of SSs in cyclostomes, which are extant jawless vertebrates. In the present study, we report the cloning of the cDNAs encoding three distinct lamprey SS variants that we call SSa, SSb and SSc. SSa and SSb correspond to the two SS variants previously characterized in lamprey, while SSc appears to be a totally novel one. SSa exhibits the same sequence as gnathostome SS1. SSb differs from SSa by only one substitution (Thr12→Ser). SSc exhibits a totally unique structure (ANCRMFYWKTMAAC) that shares only 50% identity with SSa and SSb. SSa, SSb and SSc precursors do not exhibit any appreciable sequence similarity outside the C-terminal region containing the SS sequence. Phylogenetic analyses failed to clearly assign orthology relationships between lamprey and gnathostome SS genes. Synteny analysis suggests that the SSc gene arose before the split of the three gnathostome genes SS1, SS2 and SS5.
Collapse
Affiliation(s)
- Hervé Tostivint
- Evolution des Régulations Endocriniennes, UMR 7221 CNRS, Muséum National d'Histoire Naturelle, Sorbonne Université, Paris, France.
| | - Agnès Dettaï
- Institut de systématique et Evolution, UMR 7205 CNRS, UMPC, EPHE, Muséum National d'Histoire Naturelle, Sorbonne Université, Paris, France
| | - Feng B Quan
- Evolution des Régulations Endocriniennes, UMR 7221 CNRS, Muséum National d'Histoire Naturelle, Sorbonne Université, Paris, France
| | - Vydianathan Ravi
- Institute of Molecular and Cell Biology, A(∗)STAR, Biopolis, Singapore
| | - Boon-Hui Tay
- Institute of Molecular and Cell Biology, A(∗)STAR, Biopolis, Singapore
| | - Maria Celina Rodicio
- Department of Cell Biology and Ecology, CIBUS, Faculty of Biology, University of Santiago de Compostela, Spain
| | - Sylvie Mazan
- Biologie Intégrative des Organismes Marins, UMR 7232 CNRS, Observatoire Océanologique, Université Pierre et Marie Curie, Sorbonne Université, Banyuls-sur-Mer, France
| | - Byrappa Venkatesh
- Institute of Molecular and Cell Biology, A(∗)STAR, Biopolis, Singapore
| | - Natalia B Kenigfest
- Evolution des Régulations Endocriniennes, UMR 7221 CNRS, Muséum National d'Histoire Naturelle, Sorbonne Université, Paris, France; Laboratory of Molecular Mechanisms of Neuronal Interactions, Sechenov Insitute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
24
|
|
25
|
Kim JH, Leggatt RA, Chan M, Volkoff H, Devlin RH. Effects of chronic growth hormone overexpression on appetite-regulating brain gene expression in coho salmon. Mol Cell Endocrinol 2015; 413:178-88. [PMID: 26123591 DOI: 10.1016/j.mce.2015.06.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 06/22/2015] [Indexed: 10/23/2022]
Abstract
Organisms must carefully regulate energy intake and expenditure to balance growth and trade-offs with other physiological processes. This regulation is influenced by key pathways controlling appetite, feeding behaviour and energy homeostasis. Growth hormone (GH) transgenesis provides a model where food intake can be elevated, and is associated with dramatic modifications of growth, metabolism, and feeding behaviour, particularly in fish. RNA-Seq and qPCR analyses were used to compare the expression of multiple genes important in appetite regulation within brain regions and the pituitary gland (PIT) of GH transgenic (fed fully to satiation or restricted to a wild-type ration throughout their lifetime) and wild-type coho salmon (Oncorhynchus kisutch). RNA-Seq results showed that differences in both genotype and ration levels resulted in differentially expressed genes associated with appetite regulation in transgenic fish, including elevated Agrp1 in hypothalamus (HYP) and reduced Mch in PIT. Altered mRNA levels for Agrp1, Npy, Gh, Ghr, Igf1, Mch and Pomc were also assessed using qPCR analysis. Levels of mRNA for Agrp1, Gh, and Ghr were higher in transgenic than wild-type fish in HYP and in the preoptic area (POA), with Agrp1 more than 7-fold higher in POA and 12-fold higher in HYP of transgenic salmon compared to wild-type fish. These data are consistent with the known roles of orexigenic factors on foraging behaviour acting via GH and through MC4R receptor-mediated signalling. Igf1 mRNA was elevated in fully-fed transgenic fish in HYP and POA, but not in ration-restricted fish, yet both of these types of transgenic animals have very pronounced feeding behaviour relative to wild-type fish, suggesting IGF1 is not playing a direct role in appetite stimulation acting via paracrine or autocrine mechanisms. The present findings provide new insights on mechanisms ruling altered appetite regulation in response to chronically elevated GH, and on potential pathways by which elevated feeding response is controlled, independently of food availability and growth.
Collapse
Affiliation(s)
- Jin-Hyoung Kim
- Fisheries and Oceans Canada, Centre for Aquaculture and Environmental Research, 4160 Marine Drive, West Vancouver, BC V7V 1N6 Canada
| | - Rosalind A Leggatt
- Fisheries and Oceans Canada, Centre for Aquaculture and Environmental Research, 4160 Marine Drive, West Vancouver, BC V7V 1N6 Canada
| | - Michelle Chan
- Fisheries and Oceans Canada, Centre for Aquaculture and Environmental Research, 4160 Marine Drive, West Vancouver, BC V7V 1N6 Canada
| | - Hélène Volkoff
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9 Canada; Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9 Canada
| | - Robert H Devlin
- Fisheries and Oceans Canada, Centre for Aquaculture and Environmental Research, 4160 Marine Drive, West Vancouver, BC V7V 1N6 Canada.
| |
Collapse
|
26
|
Neuroendocrine regulation of somatic growth in fishes. SCIENCE CHINA-LIFE SCIENCES 2015; 58:137-47. [DOI: 10.1007/s11427-015-4805-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 09/19/2014] [Indexed: 10/24/2022]
|
27
|
Feng X, Yu X, Pang M, Liu H, Tong J. Molecular characterization and expression of three preprosomatostatin genes and their association with growth in common carp (Cyprinus carpio). Comp Biochem Physiol B Biochem Mol Biol 2014; 182:37-46. [PMID: 25536408 DOI: 10.1016/j.cbpb.2014.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 12/12/2014] [Accepted: 12/13/2014] [Indexed: 12/21/2022]
Abstract
Somatostatins (SSs) are a structurally diverse family of peptides that play important roles in the regulation of growth, development and metabolism in vertebrates. In this study, three preprosomatostatin genes (PSSs) in the common carp, Cyprinus carpio (Cc) were identified and characterized. Based on cloned sequences and genome BLAST, six isoforms of the PSS gene in C. carpio (CcPSS) were identified and included CcPSS1a and CcPSS1b, CcPSS2a and CcPSS2b, and finally, CcPSS3a and CcPSS3b. The open reading frames (ORF) of CcPSS1a, CcPSS2a and CcPSS3a consist of 345, 336 and 363 nucleotides. During embryonic development, the expressions of CcPSS2 and CcPSS3 were first observed at the stage of optic vesicle, and CcPSS1 mRNA was initially detected at the stage of muscular effect. The highest mRNA levels of CcPSS1, CcPSS2 and CcPSS3 were observed at 1-day post-hatch (dph), 2-dph and the stage of heart beating, respectively. In the adult brain, the distributions of three CcPSS mRNAs were differential but overlapping in the hypothalamus, telencephalon and medulla oblongata. For peripheral tissues, all three CcPSS mRNAs were detected in the mid-intestine, and CcPSS1 and CcPSS3 mRNAs were also expressed in the liver. Owing to the importance of somatostatins on regulating growth, functional mutations of CcPSSs were identified in a C. carpio population. A total of 23 polymorphic sites were detected in CcPSS1a and CcPSS3a. Of them, two SNPs (CcPSS1a-g.922C>T, and CcPSS3a-g.1125C>A) were significantly associated with growth traits, indicating their potential applications in gene (marker)-assisted selective breeding in C. carpio.
Collapse
Affiliation(s)
- Xiu Feng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomu Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, China
| | - Meixia Pang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiyang Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingou Tong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
28
|
Caruso MA, Sheridan MA. Differential regulation of the multiple insulin and insulin receptor mRNAs by somatostatin. Mol Cell Endocrinol 2014; 384:126-33. [PMID: 24486191 DOI: 10.1016/j.mce.2014.01.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 12/02/2013] [Accepted: 01/22/2014] [Indexed: 12/11/2022]
Abstract
We used rainbow trout as a model to study the regulation of the multiple and distinct insulin (INS) and insulin receptor (IR) mRNAs by somatostatin (SS). Implantation of SS reduced growth of animals without affecting food intake. SS decreased INS1 and INS2 expression in Brockmann bodies, but increased INS1 and INS2 expression in adipose and INS1 expression in brain. SS reduced mRNA levels of IR 2 and IR 3 in adipose tissue; of IR1 and IR 4 in Brockmann bodies; of IR1, IR2, IR3, and IR4 in cardiac muscle; of IR2 and IR4 in liver; of IR 3 and IR 4 in gill; and of IR4 in skeletal muscle. The direct effects of SS were examined in Brockmann bodies and liver in vitro. SS decreased INS and IR mRNAs in both tissues in a concentration-, time-, and isoform/subtype-dependent manner. These results indicate that SS regulates the expression of INS- and IR-encoding mRNAs and that independent mechanisms may serve to regulate the various INS isoforms and IR subtypes.
Collapse
Affiliation(s)
- Michael A Caruso
- Department of Biological Sciences, North Dakota State University, Stevens Hall, Fargo, ND 58105, USA
| | - Mark A Sheridan
- Department of Biological Sciences, North Dakota State University, Stevens Hall, Fargo, ND 58105, USA.
| |
Collapse
|
29
|
Sun C, Duan D, Li B, Qin C, Jia J, Wang B, Dong H, Li W. UII and UT in grouper: cloning and effects on the transcription of hormones related to growth control. J Endocrinol 2014; 220:35-48. [PMID: 24169050 DOI: 10.1530/joe-13-0282] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Urotensin II (UII) is a cyclic peptide that was originally extracted from the caudal neurosecretory system (CNSS) of fish. UII is well known to exhibit cardiovascular, ventilatory, and motor effects in vertebrates. Studies have reported that UII exerts mitogenic effects and can act as an autocrine/paracrine growth factor in mammals. However, similar information in fish is limited. In this study, the full-length cDNAs of UII and its receptor (UT) were cloned and characterized in the orange-spotted grouper. UII and UT were expressed ubiquitously in various tissues in grouper, and particularly high levels were observed in the CNSS, CNS, and ovary. A functional study showed that UT was coupled with intracellular Ca2+ mobilization in HEK293 cells. Studies carried out using i.p. injections of UII in grouper showed the following: i) in the hypothalamus, UII can significantly stimulate the mRNA expression of ghrh and simultaneously inhibit the mRNA expression of somatostatin 1 (ss1) and ss2 3 h after injection; ii) in the pituitary, UII also significantly induced the mRNA expression of gh 6 and 12 h after injection; and iii) in the liver, the mRNA expression levels of ghr1/ghr2 and igf1/igf2 were markedly increased 12 and 3 h after the i.p. injection of UII respectively. These results collectively indicate that the UII/UT system may play a role in the promotion of the growth of the orange-spotted grouper.
Collapse
Affiliation(s)
- Caiyun Sun
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, No. 135, XinGang West Road, Guangzhou 510275, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Escobar S, Servili A, Espigares F, Gueguen MM, Brocal I, Felip A, Gómez A, Carrillo M, Zanuy S, Kah O. Expression of kisspeptins and kiss receptors suggests a large range of functions for kisspeptin systems in the brain of the European sea bass. PLoS One 2013; 8:e70177. [PMID: 23894610 PMCID: PMC3720930 DOI: 10.1371/journal.pone.0070177] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/16/2013] [Indexed: 02/07/2023] Open
Abstract
This study, conducted in the brain of a perciform fish, the European sea bass, aimed at raising antibodies against the precursor of the kisspeptins in order to map the kiss systems and to correlate the expression of kisspeptins, kiss1 and kiss2, with that of kisspeptin receptors (kiss-R1 and kiss-R2). Specific antibodies could be raised against the preprokiss2, but not the preoprokiss1. The data indicate that kiss2 neurons are mainly located in the hypothalamus and project widely to the subpallium and pallium, the preoptic region, the thalamus, the pretectal area, the optic tectum, the torus semicircularis, the mediobasal medial and caudal hypothalamus, and the neurohypophysis. These results were compared to the expression of kiss-R1 and kiss-R2 messengers, indicating a very good correlation between the wide distribution of Kiss2-positive fibers and that of kiss-R2 expressing cells. The expression of kiss-R1 messengers was more limited to the habenula, the ventral telencephalon and the proximal pars distalis of the pituitary. Attempts to characterize the phenotype of the numerous cells expressing kiss-R2 showed that neurons expressing tyrosine hydroxylase, neuropeptide Y and neuronal nitric oxide synthase are targets for kisspeptins, while GnRH1 neurons did not appear to express kiss-R1 or kiss-R2 messengers. In addition, a striking result was that all somatostatin-positive neurons expressed-kissR2. These data show that kisspeptins are likely to regulate a wide range of neuronal systems in the brain of teleosts.
Collapse
Affiliation(s)
- Sebastián Escobar
- Instituto de Acuicultura de Torre de la Sal, CSIC, Torre de la Sal, s/n, Ribera de Cabanes, Castellón, Spain
| | - Arianna Servili
- Research Institute in Health, Environment and Occupation, INSERM U1085, Université de Rennes 1, Campus de Beaulieu, Rennes, France
| | - Felipe Espigares
- Instituto de Acuicultura de Torre de la Sal, CSIC, Torre de la Sal, s/n, Ribera de Cabanes, Castellón, Spain
| | - Marie-Madeleine Gueguen
- Research Institute in Health, Environment and Occupation, INSERM U1085, Université de Rennes 1, Campus de Beaulieu, Rennes, France
| | - Isabel Brocal
- Instituto de Acuicultura de Torre de la Sal, CSIC, Torre de la Sal, s/n, Ribera de Cabanes, Castellón, Spain
| | - Alicia Felip
- Instituto de Acuicultura de Torre de la Sal, CSIC, Torre de la Sal, s/n, Ribera de Cabanes, Castellón, Spain
| | - Ana Gómez
- Instituto de Acuicultura de Torre de la Sal, CSIC, Torre de la Sal, s/n, Ribera de Cabanes, Castellón, Spain
| | - Manuel Carrillo
- Instituto de Acuicultura de Torre de la Sal, CSIC, Torre de la Sal, s/n, Ribera de Cabanes, Castellón, Spain
| | - Silvia Zanuy
- Instituto de Acuicultura de Torre de la Sal, CSIC, Torre de la Sal, s/n, Ribera de Cabanes, Castellón, Spain
| | - Olivier Kah
- Research Institute in Health, Environment and Occupation, INSERM U1085, Université de Rennes 1, Campus de Beaulieu, Rennes, France
| |
Collapse
|
31
|
Malik N, Moaeen-ud-Din M, Zhao R. Ontogeny of mRNA expression of somatostatin and its receptors in chicken embryos in association with methylation status of their promoters. Comp Biochem Physiol B Biochem Mol Biol 2013; 165:260-70. [PMID: 23727427 DOI: 10.1016/j.cbpb.2013.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 05/07/2013] [Accepted: 05/21/2013] [Indexed: 12/01/2022]
Abstract
The present study was designed to investigate the ontogeny and tissue distribution of somatostatin and its five receptor subtypes (SSTR1-5) mRNA expression in embryonic chicken (Gallus gallus). Brain, gonads (male), intestine, kidney, liver, muscle, stomach and yolk sac membrane (YSM) of chicken embryos on the embryonic (E) ages of 10, 16 and 21days (right before hatch) were investigated. Bisulfite sequencing PCR (BSP) was performed to determine the methylation status of the promoter region of all the six genes in the liver. Somatostatin (SST) was predominately expressed in intestine, brain and gonads (male) with different ontogenic patterns. The highest expression in intestine was detected at E10. There was ontogenic shift from intestine to brain as development progressed. Expression pattern of SSTRs in brain, intestine and kidney was similar to human embryonic expression. In liver, the ontogenic expression pattern of SST and its receptors was associated to methylation status of the respective promoters. Methylation of site Sp1 determines expression level of SST, SSTR1, SSTR2 and SSTR3 while site a is important in governing the expression of SSTR4 and SSTR5. The results show that ontogenic expression profile of chicken SST and SSTRs is time and tissue specific.
Collapse
Affiliation(s)
- Nosheen Malik
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China
| | | | | |
Collapse
|
32
|
Reindl KM, Sheridan MA. Peripheral regulation of the growth hormone-insulin-like growth factor system in fish and other vertebrates. Comp Biochem Physiol A Mol Integr Physiol 2012; 163:231-45. [DOI: 10.1016/j.cbpa.2012.08.003] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Revised: 08/03/2012] [Accepted: 08/07/2012] [Indexed: 10/28/2022]
|
33
|
Shimomura T, Nakajima T, Horikoshi M, Iijima A, Urabe H, Mizuno S, Hiramatsu N, Hara A, Shimizu M. Relationships between gill Na⁺,K⁺-ATPase activity and endocrine and local insulin-like growth factor-I levels during smoltification of masu salmon (Oncorhynchus masou). Gen Comp Endocrinol 2012; 178:427-35. [PMID: 22749841 DOI: 10.1016/j.ygcen.2012.06.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 04/17/2012] [Accepted: 06/12/2012] [Indexed: 01/28/2023]
Abstract
We established profiles of insulin-like growth factor (IGF)-I mRNA in the liver, gill and white muscle and circulating IGF-I during smoltification of hatchery-reared masu salmon, and compared with that of gill Na(+),K(+)-ATPase (NKA) activity. Gill NKA activity peaked in May and dropped in June. Liver igf1 mRNA was high in March and decreased to low levels thereafter. Gill igf1 increased from March, maintained its high levels during April and May and decreased in June. Muscle igf1 mRNA levels were relatively high during January and April when water temperature was low. Serum IGF-I continuously increased from March through June. Serum IGF-I during March and May showed a positive correlation with NKA activity, although both were also related to fish size. These parameters were standardized with fork length and re-analyzed. As a result, serum IGF-I and gill igf1 were correlated with NKA activity. On the other hand, samples from desmoltification period (June) that had high serum IGF-I levels and low NKA activity disrupted the relationship. Expression of two IGF-I receptor (igf1r) subtypes in the gill decreased in June, which could account for the disruption by preventing circulating IGF-I from acting on the gill and retaining it in the blood. The present study suggests that the increase in gill NKA activity in the course of smoltification of masu salmon was supported by both endocrine and local IGF-I, and the decrease during desmoltification in freshwater was due at least in part to the down-regulation of gill IGF-I receptors.
Collapse
Affiliation(s)
- Takahiro Shimomura
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Glucose and lipid metabolism in the pancreas of rainbow trout is regulated at the molecular level by nutritional status and carbohydrate intake. J Comp Physiol B 2011; 182:507-16. [PMID: 22203338 DOI: 10.1007/s00360-011-0636-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Revised: 12/08/2011] [Accepted: 12/09/2011] [Indexed: 10/14/2022]
Abstract
Glucose and lipid metabolism in pancreatic islet organs is poorly characterized. In the present study, using as a model the carnivorous rainbow trout, a glucose-intolerant fish, we assessed mRNA expression levels of several genes involved in glucose and lipid metabolism (including ATP-citrate lyase; carnitine palmitoyltransferase-1 isoforms, CPT; the mitochondrial isoform of the phosphoenolpyrutave carboxykinase, mPEPCK and pyruvate kinase, PK) and glucosensing (glucose transporter type 2, Glut2; glucokinase, GK and the potassium channel, K(ATP)) in Brockmann bodies. We evaluated the response of these parameters to changes in feeding status (food deprived vs. fed fish) as well as to changes in the amount of carbohydrate (dextrin) in the diet. A general inhibition of the glycolytic (including the glucosensing marker GK) and β-oxidation pathways was found when comparing fed versus food-deprived fish. When comparing fish feeding on either low- or high-carbohydrate diets, we found that some genes related to lipid metabolism were more controlled by the feeding status than by the carbohydrate content (fatty acid synthase, CPTs). Findings are discussed in the context of pancreatic regulation of glucose and lipid metabolism in fish, and show that while trout pancreatic metabolism can partially adapt to a high-carbohydrate diet, some of the molecular actors studied seem to be poorly regulated (K(ATP)) and may contribute to the glucose intolerance observed in this species when fed high-carbohydrate diets.
Collapse
|
35
|
Caruso MA, Sheridan MA. New insights into the signaling system and function of insulin in fish. Gen Comp Endocrinol 2011; 173:227-47. [PMID: 21726560 DOI: 10.1016/j.ygcen.2011.06.014] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 06/08/2011] [Accepted: 06/14/2011] [Indexed: 12/11/2022]
Abstract
Fish have provided essential information about the structure, biosynthesis, evolution, and function of insulin (INS) as well as about the structure, evolution, and mechanism of action of insulin receptors (IR). INS, insulin-like growth factor (IGF)-1, and IGF-2 share a common ancestor; INS and a single IGF occur in Agnathans, whereas INS and distinct IGF-1 and IGF-2s appear in Chondrichthyes. Some but not all teleost fish possess multiple INS genes, but it is not clear if they arose from a common gene duplication event or from multiple separate gene duplications. INS is produced by the endocrine pancreas of fish as well as by several other tissues, including brain, pituitary, gastrointestinal tract, and adipose tissue. INS regulates various aspects of feeding, growth, development, and intermediary metabolism in fish. The actions of INS are mediated through the insulin receptor (IR), a member of the receptor tyrosine kinase family. IRs are widely distributed in peripheral tissues of fish, and multiple IR subtypes that derive from distinct mRNAs have been described. The IRs of fish link to several cellular effector systems, including the ERK and IRS-PI3k-Akt pathways. The diverse effects of INS can be modulated by altering the production and release of INS as well as by adjusting the production/surface expression of IR. The diverse actions of INS in fish as well as the diverse nature of the neural, hormonal, and environmental factors known to affect the INS signaling system reflects the various life history patterns that have evolved to enable fish to occupy a wide range of aquatic habitats.
Collapse
Affiliation(s)
- Michael A Caruso
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108, USA
| | | |
Collapse
|
36
|
Isolation, characterization, and distribution of somatostatin receptor subtype 2 (SSTR 2) mRNA in rainbow trout (Oncorhynchus mykiss), and regulation of its expression by glucose. Comp Biochem Physiol A Mol Integr Physiol 2011; 160:237-44. [PMID: 21693197 DOI: 10.1016/j.cbpa.2011.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 06/06/2011] [Accepted: 06/08/2011] [Indexed: 11/23/2022]
Abstract
In this study, cDNA for a somatostatin receptor variant (somatostatin receptor subtype 2, SSTR 2) was isolated, cloned, and sequenced from rainbow trout. A 1821-nt cDNA was isolated and found to contain a single initiation site 387-nt from the most 5' end, an open reading frame of 1116-nt, and a single putative polyadenylation site 189-nt from the most 3' end. The encoded protein contains 372 amino acids and contains seven membrane-spanning domains. Based on structural analysis, the protein was identified as a subtype 2 SSTR. These data support the emergence of a multigenic SSTR family early in the course of vertebrate evolution, concomitant with or perhaps prior to the divergence of boney fish. The distribution of SSTR 2 mRNA in tissues was determined by quantitative real time-PCR (QRT-PCR). SSTR 2 was most abundant in the brain (where it was detected in the telencephalon, optic tectum, and hypothalamus), skeletal muscle, and liver, but it also was present in the endocrine pancreas (Brockmann body) and various regions of the gastrointestinal tract (esophagus, stomach, intestine). SSTR 2 mRNA was most abundant in the brain, muscle, and liver. In vitro the Brockmann body and liver with increasing concentrations of glucose (1, 4, 10mM) resulted in increased expression of SSTR 2 mRNA. These findings contribute to the understanding of the evolution of the SSTR family and provide insight into the roles of SSTR 2 in fish.
Collapse
|