1
|
Dahake A, Persaud SG, Jones MN, Goyret J, Davidowitz G, Raguso RA. Dying of thirst: Osmoregulation by a hawkmoth pollinator in response to variability in ambient humidity and nectar availability. JOURNAL OF INSECT PHYSIOLOGY 2024; 159:104700. [PMID: 39255897 DOI: 10.1016/j.jinsphys.2024.104700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/23/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024]
Abstract
Climate-induced shifts in flowering phenology can disrupt pollinator-floral resource synchrony, especially in desert ecosystems where rainfall dictates both. However, baseline metrics to gauge pollinator health in the wild amidst rapid climate change are lacking. Our laboratory-based study establishes a baseline for pollinator physiological state by exploring how osmotic conditions influence survivorship in a desert hawkmoth pollinator, Manduca sexta. We sampled hemolymph osmolality from over 1000 lab-grown moths at 20 %, 50 %, and 80 % ambient humidity levels. Starved moths maintained healthy osmolality of 350-400 mmol/kg for 1-3 days after eclosion regardless of ambient humidity, but it sharply rose to 550 mmol/kg after 4-5 days in low and moderate humidity, and after 5 days in high humidity. Starved moths in low humidity conditions perished within 5 days, while those in high humidity survived twice as long. Moths fed synthetic Datura wrightii nectar, synthetic Agave palmeri nectar, or water, maintained osmolality within a healthy range of 350-400mmol/kg. The same was true for moths fed authentic floral nectars from Datura and Agave plants, although moths consumed more synthetic than authentic nectars, possibly due to non-sugar constituents. Simulating a 4-day mismatch between pollinator emergence and nectar availability, a single nectar meal osmotically rescued moths under dry ambient conditions. Our findings highlight hemolymph osmolality as a rapid and accurate biomarker distinguishing dehydrated from hydrated states in insect pollinators.
Collapse
Affiliation(s)
- Ajinkya Dahake
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14850, USA.
| | - Steven G Persaud
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14850, USA
| | - Marnesha N Jones
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Joaquín Goyret
- Department of Biology, University of Tennessee, Martin, TN 38237, USA
| | - Goggy Davidowitz
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Robert A Raguso
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
2
|
Price BE, Jang HS, Parks RK, Choi MY. Functional expression and characterization of CAPA receptor in the digestive tract and life stages of Drosophila suzukii, and differential activities with insect PRXamide peptides. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 116:e22080. [PMID: 39148444 DOI: 10.1002/arch.22080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 08/17/2024]
Abstract
Spotted-wing drosophila, Drosophila suzukii (Matsumura), is an invasive vinegar fly that is a major threat to the small fruits industries globally. Insect capa genes encode multiple neuropeptides, including CAPA-periviscerokinin (CAPA-PVK) peptides, that are specifically known to cause diuresis or anti-diuresis in various organisms. Here we identified and characterized a corresponding G protein-coupled receptor (GPCR) of the D. suzukii CAPA-PVK peptides: CAPA receptor (CAPA-R). To better characterize the behavior of D. suzukii CAPA-R, we used insect cell-based functional expression assays to evaluate responses of CAPA-R against D. suzukii CAPA-PVKs, CAPA-PVKs from five species in Insecta, one species from Mollusca, modified CAPA-PVK peptides, and some PRXamide family peptides: pyrokinin (PK), diapause hormone (DH), and ecdysis-triggering hormone (ETH). Functional studies revealed that the D. suzukii CAPA-R is strongly activated by both of its own natural D. suzukii CAPA-PVKs, and interestingly, it was strongly activated by other CAPA-PVK peptides from Frankliniella occidentallis (Thysanoptera), Solenopsis invicta (Hymenoptera), Helicoverpa zea (Lepidoptera) and Plutella xylostella (Lepidoptera). However, D. suzukii CAPA-R was not activated by Mollusca CAPA-PVK or the other PRXamide peptides. Gene expression analyses showed that the CAPA-R was highly expressed in the Malpighian tubules and moderately in hindgut compared to other digestive organs or the rest of body, supporting diuretic/antidiuretic functionality. When compared across life stages of D. suzukii, expression of CAPA-R was approximately 1.5x greater in the third instar than the other stages and minimally detected in the eggs, 4-day old pupae and 3-day old adults. Our results functionally characterized the D. suzukii CAPA-R and a few short peptides were identified as potential biological targets to exploit the CAPA-R for D. suzukii management.
Collapse
Affiliation(s)
- Briana E Price
- USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, Corvallis, Oregon, USA
| | - Hyo Sang Jang
- USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, Corvallis, Oregon, USA
- Department of Horticulture, Oregon State University, Corvallis, Oregon, USA
| | - Ryssa K Parks
- USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, Corvallis, Oregon, USA
- Department of Horticulture, Oregon State University, Corvallis, Oregon, USA
| | - Man-Yeon Choi
- USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, Corvallis, Oregon, USA
| |
Collapse
|
3
|
Thakur S, Park Y, Jindal V. The functional assay identified authentic interactions between CAPA peptides and the CAPA receptor isoforms in Bemisia tabaci (Gennadius). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 200:105840. [PMID: 38582602 DOI: 10.1016/j.pestbp.2024.105840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 04/08/2024]
Abstract
CAPA neuropeptides regulate the diuresis/ antidiuresis process in insects by activating specific cognate receptor, CAPAr. In this study, we characterized the CAPAr gene (BtabCAPAr) in the whitefly, Bemisia tabaci Asia II 1. The two alternatively spliced isoforms of BtabCAPAr gene, BtabCAPAr-1 and BtabCAPAr-2, having six and five exons, respectively, were identified. The BtabCAPAr gene expression was highest in adult whitefly as compared to gene expression in egg, nymphal and pupal stages. Among the three putative CAPA peptides, CAPA-PVK1 and CAPA-PVK2 strongly activated the BtabCAPAr-1 with very low EC50 values of 0.067 nM and 0.053 nM, respectively, in heterologous calcium mobilization assays. None of the peptide activated the alternatively spliced isoform BtabCAPAr-2 that has lost the transmembrane segments 3 and 4. Significant levels of mortality were observed when whiteflies were fed with CAPA-PVK1 at 1.0 μM (50.0%), CAPA-PVK2 at 100.0 nM (43.8%) and CAPA-tryptoPK 1.0 μM (40.0%) at the 96 h after the treatment. This study provides valuable information to design biostable peptides to develop a class of insecticides.
Collapse
Affiliation(s)
- Sudeshna Thakur
- Insect Molecular Biology Laboratory, Punjab Agricultural University, Department of Entomology, Ludhiana, India
| | - Yoonseong Park
- Arthropod Molecular Physiology Laboratory, Department of Entomology, Kansas State University, Manhattan, KS, USA
| | - Vikas Jindal
- Insect Molecular Biology Laboratory, Punjab Agricultural University, Department of Entomology, Ludhiana, India.
| |
Collapse
|
4
|
Jeong S. Function and regulation of nitric oxide signaling in Drosophila. Mol Cells 2024; 47:100006. [PMID: 38218653 PMCID: PMC10880079 DOI: 10.1016/j.mocell.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/15/2024] Open
Abstract
Nitric oxide (NO) serves as an evolutionarily conserved signaling molecule that plays an important role in a wide variety of cellular processes. Extensive studies in Drosophila melanogaster have revealed that NO signaling is required for development, physiology, and stress responses in many different types of cells. In neuronal cells, multiple NO signaling pathways appear to operate in different combinations to regulate learning and memory formation, synaptic transmission, selective synaptic connections, axon degeneration, and axon regrowth. During organ development, elevated NO signaling suppresses cell cycle progression, whereas downregulated NO leads to an increase in larval body size via modulation of hormone signaling. The most striking feature of the Drosophila NO synthase is that various stressors, such as neuropeptides, aberrant proteins, hypoxia, bacterial infection, and mechanical injury, can activate Drosophila NO synthase, initially regulating cellular physiology to enable cells to survive. However, under severe stress or pathophysiological conditions, high levels of NO promote regulated cell death and the development of neurodegenerative diseases. In this review, I highlight and discuss the current understanding of molecular mechanisms by which NO signaling regulates distinct cellular functions and behaviors.
Collapse
Affiliation(s)
- Sangyun Jeong
- Department of Molecular Biology, Department of Bioactive Material Sciences, and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Jeollabukdo 54896, Republic of Korea.
| |
Collapse
|
5
|
Sajadi F, Vergara-Martínez MF, Paluzzi JPV. The V-type H +-ATPase is targeted in antidiuretic hormone control of the Malpighian "renal" tubules. Proc Natl Acad Sci U S A 2023; 120:e2308602120. [PMID: 38096413 PMCID: PMC10743368 DOI: 10.1073/pnas.2308602120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/01/2023] [Indexed: 12/18/2023] Open
Abstract
Like other insects, secretion by mosquito Malpighian tubules (MTs) is driven by the V-type H+-ATPase (VA) localized in the apical membrane of principal cells. In Aedes aegypti, the antidiuretic neurohormone CAPA inhibits secretion by MTs stimulated by select diuretic hormones; however, the cellular effectors of this inhibitory signaling cascade remain unclear. Herein, we demonstrate that the VA inhibitor bafilomycin selectively inhibits serotonin (5HT)- and calcitonin-related diuretic hormone (DH31)-stimulated secretion. VA activity increases in DH31-treated MTs, whereas CAPA abolishes this increase through a NOS/cGMP/PKG signaling pathway. A critical feature of VA activation involves the reversible association of the cytosolic (V1) and membrane (Vo) complexes. Indeed, higher V1 protein abundance was found in membrane fractions of DH31-treated MTs, whereas CAPA significantly decreased V1 abundance in membrane fractions while increasing it in cytosolic fractions. V1 immunolocalization was observed strictly in the apical membrane of DH31-treated MTs, whereas immunoreactivity was dispersed following CAPA treatment. VA complexes colocalized apically in female MTs shortly after a blood meal consistent with the peak and postpeak phases of diuresis. Comparatively, V1 immunoreactivity in MTs was more dispersed and did not colocalize with the Vo complex in the apical membrane at 3 h post blood meal, representing a time point after the late phase of diuresis has concluded. Therefore, CAPA inhibition of MTs involves reducing VA activity and promotes complex dissociation hindering secretion. Collectively, these findings reveal a key target in hormone-mediated inhibition of MTs countering diuresis that provides a deeper understanding of this critical physiological process necessary for hydromineral balance.
Collapse
Affiliation(s)
- Farwa Sajadi
- Department of Biology, York University, Toronto, ONM3J 1P3, Canada
| | - María Fernanda Vergara-Martínez
- Department of Biology, York University, Toronto, ONM3J 1P3, Canada
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, 04510, México
| | | |
Collapse
|
6
|
Dou X, Jurenka R. Pheromone biosynthesis activating neuropeptide family in insects: a review. Front Endocrinol (Lausanne) 2023; 14:1274750. [PMID: 38161974 PMCID: PMC10755894 DOI: 10.3389/fendo.2023.1274750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
Neuropeptides are involved in almost all physiological activities of insects. Their classification is based on physiological function and the primary amino acid sequence. The pyrokinin (PK)/pheromone biosynthesis activating neuropeptides (PBAN) are one of the largest neuropeptide families in insects, with a conserved C-terminal domain of FXPRLamide. The peptide family is divided into two groups, PK1/diapause hormone (DH) with a WFGPRLa C-terminal ending and PK2/PBAN with FXPRLamide C-terminal ending. Since the development of cutting-edge technology, an increasing number of peptides have been sequenced primarily through genomic, transcriptomics, and proteomics, and their functions discovered using gene editing tools. In this review, we discussed newly discovered functions, and analyzed the distribution of genes encoding these peptides throughout different insect orders. In addition, the location of the peptides that were confirmed by PCR or immunocytochemistry is also described. A phylogenetic tree was constructed according to the sequences of the receptors of most insect orders. This review offers an understanding of the significance of this conserved peptide family in insects.
Collapse
Affiliation(s)
- Xiaoyi Dou
- Department of Entomology, University of Georgia, Athens, GA, United States
| | - Russell Jurenka
- Department of Plant Pathology, Entomology, Microbiology Iowa State University, Ames, IA, United States
| |
Collapse
|
7
|
Li Y, Gao H, Zhang H, Yu R, Feng F, Tang J, Li B. Characterization and expression profiling of G protein-coupled receptors (GPCRs) in Spodoptera litura (Lepidoptera: Noctuidae). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 44:101018. [PMID: 35994891 DOI: 10.1016/j.cbd.2022.101018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 01/27/2023]
Abstract
Spodoptera litura is a highly destructive omnivorous pest, and they caused serious damage to various crops. G protein-coupled receptors (GPCRs) mediate dozens of physiological processes including reproduction, development, life span and behaviors, but the information of these receptors has been lacking in S. litura. Here, we methodically identified 122 GPCRs in S. litura and made an assay of their expression patterns in different tissues. Comparing the identified GPCRs with homologous genes of other insects, it is obvious that the subfamily A2 (biogenic amine receptors) and the subfamily A3 (neuropeptide and protein hormone receptors) of S. litura have expanded to a certain extent, which may be related to the omnivorous nature and drought environment resistance of S. litura. Besides, the large Methuselah (Mth)/Methuselah-like (Mthl) subfamily of S. litura may be involved in many physiological functions such as longevity and stress response. Apart from duplicate receptors, the loss of parathyroid hormone receptor (PTHR) and the bride of sevenless (Boss) receptor in the lepidopteran insects may imply a new pattern of wing formation and energy metabolism in lepidopteran insects. In addition, the high expression level of GPCRs in different tissues reflects the functional diversity of GPCRs regulating. Systemic identification and initial characterization of GPCRs in S. litura provide a basis for further studies to reveal the functions of these receptors in regulating physiology and behavior.
Collapse
Affiliation(s)
- Yanxiao Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Han Gao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Hui Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Runnan Yu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Fan Feng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jing Tang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
8
|
O'Donnell MJ. A perspective on insect water balance. J Exp Biol 2022; 225:274935. [PMID: 35363855 DOI: 10.1242/jeb.242358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Insects have a large ratio of surface area to volume because of their small size; thus, they face the potential for desiccation in the terrestrial environment. Nonetheless, they constitute over half of identified species and their success on land can be attributed, in part, to adaptations that limit water loss and allow for effective gains of water from food, fluids or atmospheric water vapour. Reduction of water loss from the gut involves sophisticated mechanisms of ion recycling and water recovery by epithelia of the Malpighian tubules and hindgut. Water loss across the body surface is greatly reduced by the evolution of very thin but highly impermeable lipid-rich layers in the epicuticle. Respiratory water loss can be reduced through effective spiracular control mechanisms and by mechanisms for convective rather than diffusive gas exchange. In addition to extracting water from food sources, some insects are capable of absorption of atmospheric water vapour through processes that have evolved independently in multiple groups.
Collapse
Affiliation(s)
- Michael J O'Donnell
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, CanadaL8S 4K1
| |
Collapse
|
9
|
Shi Y, Nachman RJ, Gui SH, Piot N, Kaczmarek K, Zabrocki J, Dow JAT, Davies SA, Smagghe G. Efficacy and biosafety assessment of neuropeptide CAPA analogues against the peach-potato aphid (Myzus persicae). INSECT SCIENCE 2022; 29:521-530. [PMID: 34263534 DOI: 10.1111/1744-7917.12951] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/26/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Insect CAPA neuropeptidesare considered to affect water and ion balance by mediating the physiological metabolism activities of the Malpighian tubules. In previous studies, the CAPA-PK analogue 1895 (2Abf-Suc-FGPRLamide) was reported to decrease aphid fitness when administered through microinjection or via topical application. However, a further statistically significant decrease in the fitness of aphids and an increased mortality could not be established with pairwise combinations of 1895 with other CAPA analogue. In this study, we assessed the topical application of new combinations of 1895 with five CAPA-PVK analogues on the fitness of aphids. We found that 1895 and CAPA-PVK analogue 2315 (ASG-[β3 L]-VAFPRVamide) was statistically the most effective combination to control the peach potato aphid Myzus persicae nymphs via topical application, leading to 72% mortality. Additionally, the combination (1895+2315) was evaluated against a selection of beneficial insects, that is, a pollinator (Bombus terrestris) and three natural enemies (Chrysoperla carnea, Nasonia vitripennis, and Adalia bipunctata). We found no significant influence on food intake, weight increase, and survival for the pollinator and the three representative natural enemies. These results could facilitate to further establish and generate CAPA analogues as alternatives to broad spectrum and less friendly insecticides.
Collapse
Affiliation(s)
- Yan Shi
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Ronald J Nachman
- U.S. Department of Agriculture, Insect Neuropeptide Laboratory, Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, College Station, Austin, Texas, USA
| | - Shun-Hua Gui
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
| | - Niels Piot
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Krzysztof Kaczmarek
- U.S. Department of Agriculture, Insect Neuropeptide Laboratory, Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, College Station, Austin, Texas, USA
- Institute of Organic Chemistry, Lodz University of Technology, Lodz, 90-924, Poland
| | - Janusz Zabrocki
- U.S. Department of Agriculture, Insect Neuropeptide Laboratory, Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, College Station, Austin, Texas, USA
- Institute of Organic Chemistry, Lodz University of Technology, Lodz, 90-924, Poland
| | - Julian A T Dow
- College of Medical, Veterinary and Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Shireen-A Davies
- College of Medical, Veterinary and Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
10
|
Veenstra JA. Identification of cells expressing Calcitonins A and B, PDF and ACP in Locusta migratoria using cross-reacting antisera and in situ hybridization. Peptides 2021; 146:170667. [PMID: 34600039 DOI: 10.1016/j.peptides.2021.170667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/07/2021] [Accepted: 09/27/2021] [Indexed: 12/26/2022]
Abstract
This work was initiated because an old publication suggested that electrocoagulation of four paraldehyde fuchsin positive cells in the brain of Locusta migratoria might produce a diuretic hormone, the identity of which remains unknown, since none of the antisera to the various putative Locusta diuretic hormones recognizes these cells. The paraldehyde fuchsin positive staining suggests a peptide with a disulfide bridge and the recently identified Locusta calcitonins have both a disulfide bridge and are structurally similar to calcitonin-like diuretic hormone. In situ hybridization and antisera raised to calcitonin-A and -B were used to show where these peptides are expressed in Locusta. Calcitonin-A is produced by neurons and neuroendocrine cells that were previously shown to be immunoreactive to an antiserum to pigment dispersing factor (PDF). The apparent PDF-immunoreactivity in these neurons and neuroendocrine cells is due to crossreactivity with the calcitonin-A precursor. As confirmed by both an PDF-precursor specific antiserum and in situ hybridisation, those calcitonin-A expressing cells do not express PDF. Calcitonin B is expressed by numerous enteroendocrine cells in the midgut as well as the midgut caeca. A guinea pig antiserum to calcitonin A seemed quite specific as it recognized only the calcitonin A expressing cells. However, rabbit antisera to calcitonin-A and-B both crossreacted with neuroendocrine cells in the brain that produce ACP (AKH/corazonin-related peptide), this is almost certainly due to the common C-terminal dipeptide SPamide that is shared between Locusta calcitonin-A, calcitonin-B and ACP.
Collapse
Affiliation(s)
- Jan A Veenstra
- INCIA UMR 5287 CNRS, Université de Bordeaux, allée Geoffroy St Hillaire, CS 50023, 33 615 Pessac Cedex, France.
| |
Collapse
|
11
|
Liu N, Wang Y, Li T, Feng X. G-Protein Coupled Receptors (GPCRs): Signaling Pathways, Characterization, and Functions in Insect Physiology and Toxicology. Int J Mol Sci 2021; 22:ijms22105260. [PMID: 34067660 PMCID: PMC8156084 DOI: 10.3390/ijms22105260] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) are known to play central roles in the physiology of many organisms. Members of this seven α-helical transmembrane protein family transduce the extracellular signals and regulate intracellular second messengers through coupling to heterotrimeric G-proteins, adenylate cyclase, cAMPs, and protein kinases. As a result of the critical function of GPCRs in cell physiology and biochemistry, they not only play important roles in cell biology and the medicines used to treat a wide range of human diseases but also in insects’ physiological functions. Recent studies have revealed the expression and function of GPCRs in insecticide resistance, improving our understanding of the molecular complexes governing the development of insecticide resistance. This article focuses on the review of G-protein coupled receptor (GPCR) signaling pathways in insect physiology, including insects’ reproduction, growth and development, stress responses, feeding, behaviors, and other physiological processes. Hormones and polypeptides that are involved in insect GPCR regulatory pathways are reviewed. The review also gives a brief introduction of GPCR pathways in organisms in general. At the end of the review, it provides the recent studies on the function of GPCRs in the development of insecticide resistance, focusing in particular on our current knowledge of the expression and function of GPCRs and their downstream regulation pathways and their roles in insecticide resistance and the regulation of resistance P450 gene expression. The latest insights into the exciting technological advances and new techniques for gene expression and functional characterization of the GPCRs in insects are provided.
Collapse
Affiliation(s)
- Nannan Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (Y.W.); (T.L.)
- Correspondence: ; Tel.: +1-334-844-5076
| | - Yifan Wang
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (Y.W.); (T.L.)
| | - Ting Li
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (Y.W.); (T.L.)
| | - Xuechun Feng
- Department of Biology Sciences, University of California, San Diego, CA 92093, USA;
| |
Collapse
|
12
|
Zandawala M, Nguyen T, Balanyà Segura M, Johard HAD, Amcoff M, Wegener C, Paluzzi JP, Nässel DR. A neuroendocrine pathway modulating osmotic stress in Drosophila. PLoS Genet 2021; 17:e1009425. [PMID: 33684132 PMCID: PMC7971876 DOI: 10.1371/journal.pgen.1009425] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 03/18/2021] [Accepted: 02/15/2021] [Indexed: 12/19/2022] Open
Abstract
Environmental factors challenge the physiological homeostasis in animals, thereby evoking stress responses. Various mechanisms have evolved to counter stress at the organism level, including regulation by neuropeptides. In recent years, much progress has been made on the mechanisms and neuropeptides that regulate responses to metabolic/nutritional stress, as well as those involved in countering osmotic and ionic stresses. Here, we identified a peptidergic pathway that links these types of regulatory functions. We uncover the neuropeptide Corazonin (Crz), previously implicated in responses to metabolic stress, as a neuroendocrine factor that inhibits the release of a diuretic hormone, CAPA, and thereby modulates the tolerance to osmotic and ionic stress. Both knockdown of Crz and acute injections of Crz peptide impact desiccation tolerance and recovery from chill-coma. Mapping of the Crz receptor (CrzR) expression identified three pairs of Capa-expressing neurons (Va neurons) in the ventral nerve cord that mediate these effects of Crz. We show that Crz acts to restore water/ion homeostasis by inhibiting release of CAPA neuropeptides via inhibition of cAMP production in Va neurons. Knockdown of CrzR in Va neurons affects CAPA signaling, and consequently increases tolerance for desiccation, ionic stress and starvation, but delays chill-coma recovery. Optogenetic activation of Va neurons stimulates excretion and simultaneous activation of Crz and CAPA-expressing neurons reduces this response, supporting the inhibitory action of Crz. Thus, Crz inhibits Va neurons to maintain osmotic and ionic homeostasis, which in turn affects stress tolerance. Earlier work demonstrated that systemic Crz signaling restores nutrient levels by promoting food search and feeding. Here we additionally propose that Crz signaling also ensures osmotic homeostasis by inhibiting release of CAPA neuropeptides and suppressing diuresis. Thus, Crz ameliorates stress-associated physiology through systemic modulation of both peptidergic neurosecretory cells and the fat body in Drosophila.
Collapse
Affiliation(s)
- Meet Zandawala
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Thomas Nguyen
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Marta Balanyà Segura
- Neurobiology and Genetics, Würzburg Insect Research (WIR), Theodor-Boveri-Institute, Biocenter, University of Würzburg, Germany
| | | | - Mirjam Amcoff
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Christian Wegener
- Neurobiology and Genetics, Würzburg Insect Research (WIR), Theodor-Boveri-Institute, Biocenter, University of Würzburg, Germany
| | | | - Dick R Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
13
|
Gui SH, Taning CN, De Schutter K, Yang Q, Chen P, Hamshou M, Nachman RJ, Pandit AA, Dow JA, Davies S, Smagghe G. Assessment of insecticidal effects and selectivity of CAPA-PK peptide analogues against the peach-potato aphid and four beneficial insects following topical exposure. PEST MANAGEMENT SCIENCE 2020; 76:3451-3458. [PMID: 32583901 DOI: 10.1002/ps.5971] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 06/12/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Insect Capability neuropeptides (CAP2b/CAPA-PKs) play a critical role in modulating different physiologies and behavior in insects. In a previous proof-of-concept study, the CAP2b analogues 1895 (2Abf-Suc-FGPRLamide) and 2129 (2Abf-Suc-ATPRIamide) were reported to reduce aphid fitness when administered by injection. In the current study, the insecticidal efficacy of 1895 and 2129 on the peach potato aphid Myzus persicae was analyzed by topical application, simulating a spray application scenario in the field. Additionally, the selectivity of the tested analogues was evaluated against a selection of beneficial insects, namely three natural enemies (Adalia bipunctata, Chrysoperla carnea and Nasonia vitripennis) and a pollinator (Bombus terrestris). RESULTS Within 3-5 days post topical exposure of aphids to 1895, higher mortality (33%) was observed, as was the case for the treatment with 2129 (17%) and the mixture of 1895 + 2129 (47%) compared to the control (3%). 1895 and the mix 1895 + 2129 showed the strongest and comparable insecticidal effects. Additionally, surviving aphids treated with 1895 showed a reduction in total lifetime reproduction (GRR) of 30%, 19% with 2129 and 39% with the mix 1895 + 2129. Of interest from a biosafety perspective is that by using the same delivery method and dose, no significant effects on survival, weight increase and food intake was observed for the representative natural enemies and the pollinator. CONCLUSION This study highlights the potential of exploiting CAP2b analogues such as 1895 (core structure FGPRL) as aphicides. Additionally, the CAP2b analogues used in this study were selective as they showed no effects when applied on four representative beneficial insects.
Collapse
Affiliation(s)
- Shun-Hua Gui
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Clauvis Nt Taning
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Kristof De Schutter
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Qun Yang
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Pengyu Chen
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Mohamad Hamshou
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Ronald J Nachman
- U.S. Department of Agriculture, College Station, Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, TX, USA
| | - Aniruddha A Pandit
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Julian At Dow
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Shireen Davies
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Ghent, Belgium
| |
Collapse
|
14
|
Lubawy J, Urbański A, Colinet H, Pflüger HJ, Marciniak P. Role of the Insect Neuroendocrine System in the Response to Cold Stress. Front Physiol 2020; 11:376. [PMID: 32390871 PMCID: PMC7190868 DOI: 10.3389/fphys.2020.00376] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/30/2020] [Indexed: 12/25/2022] Open
Abstract
Insects are the largest group of animals. They are capable of surviving in virtually all environments from arid deserts to the freezing permafrost of polar regions. This success is due to their great capacity to tolerate a range of environmental stresses, such as low temperature. Cold/freezing stress affects many physiological processes in insects, causing changes in main metabolic pathways, cellular dehydration, loss of neuromuscular function, and imbalance in water and ion homeostasis. The neuroendocrine system and its related signaling mediators, such as neuropeptides and biogenic amines, play central roles in the regulation of the various physiological and behavioral processes of insects and hence can also potentially impact thermal tolerance. In response to cold stress, various chemical signals are released either via direct intercellular contact or systemically. These are signals which regulate osmoregulation - capability peptides (CAPA), inotocin (ITC)-like peptides, ion transport peptide (ITP), diuretic hormones and calcitonin (CAL), substances related to the general response to various stress factors - tachykinin-related peptides (TRPs) or peptides responsible for the mobilization of body reserves. All these processes are potentially important in cold tolerance mechanisms. This review summarizes the current knowledge on the involvement of the neuroendocrine system in the cold stress response and the possible contributions of various signaling molecules in this process.
Collapse
Affiliation(s)
- Jan Lubawy
- Department of Animal Physiology and Development, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University Poznań, Poznań, Poland
| | - Arkadiusz Urbański
- Department of Animal Physiology and Development, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University Poznań, Poznań, Poland
- HiProMine S.A., Robakowo, Poland
| | - Hervé Colinet
- ECOBIO – UMR 6553, Université de Rennes 1, CNRS, Rennes, France
| | | | - Paweł Marciniak
- Department of Animal Physiology and Development, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University Poznań, Poznań, Poland
| |
Collapse
|
15
|
Sajadi F, Uyuklu A, Paputsis C, Lajevardi A, Wahedi A, Ber LT, Matei A, Paluzzi JPV. CAPA neuropeptides and their receptor form an anti-diuretic hormone signaling system in the human disease vector, Aedes aegypti. Sci Rep 2020; 10:1755. [PMID: 32020001 PMCID: PMC7000730 DOI: 10.1038/s41598-020-58731-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/20/2020] [Indexed: 01/07/2023] Open
Abstract
Insect CAPA neuropeptides are homologs of mammalian neuromedin U and are known to influence ion and water balance by regulating the activity of the Malpighian 'renal' tubules (MTs). Several diuretic hormones are known to increase primary fluid and ion secretion by insect MTs and, in adult female mosquitoes, a calcitonin-related peptide (DH31) called mosquito natriuretic peptide, increases sodium secretion to compensate for the excess salt load acquired during blood-feeding. An endogenous mosquito anti-diuretic hormone was recently described, having potent inhibitory activity against select diuretic hormones, including DH31. Herein, we functionally deorphanized, both in vitro and in vivo, a mosquito anti-diuretic hormone receptor (AedaeADHr) with expression analysis indicating highest enrichment in the MTs where it is localized within principal cells. Characterization using a heterologous in vitro system demonstrated the receptor was highly sensitive to mosquito CAPA neuropeptides while in vivo, AedaeADHr knockdown abolished CAPA-induced anti-diuretic control of DH31-stimulated MTs. CAPA neuropeptides are produced within a pair of neurosecretory cells in each of the abdominal ganglia, whose axonal projections innervate the abdominal neurohaemal organs, where these neurohormones are released into circulation. Lastly, pharmacological inhibition of nitric oxide synthase (NOS) and protein kinase G (PKG) signaling eliminated anti-diuretic activity of CAPA, highlighting the role of the second messenger cGMP and NOS/PKG in this anti-diuretic signaling pathway.
Collapse
Affiliation(s)
- Farwa Sajadi
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Ali Uyuklu
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Christine Paputsis
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Aryan Lajevardi
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Azizia Wahedi
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Lindsay Taylor Ber
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Andreea Matei
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Jean-Paul V Paluzzi
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada.
| |
Collapse
|
16
|
Cohen E, Sawyer JK, Peterson NG, Dow JAT, Fox DT. Physiology, Development, and Disease Modeling in the Drosophila Excretory System. Genetics 2020; 214:235-264. [PMID: 32029579 PMCID: PMC7017010 DOI: 10.1534/genetics.119.302289] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
The insect excretory system contains two organ systems acting in concert: the Malpighian tubules and the hindgut perform essential roles in excretion and ionic and osmotic homeostasis. For over 350 years, these two organs have fascinated biologists as a model of organ structure and function. As part of a recent surge in interest, research on the Malpighian tubules and hindgut of Drosophila have uncovered important paradigms of organ physiology and development. Further, many human disease processes can be modeled in these organs. Here, focusing on discoveries in the past 10 years, we provide an overview of the anatomy and physiology of the Drosophila excretory system. We describe the major developmental events that build these organs during embryogenesis, remodel them during metamorphosis, and repair them following injury. Finally, we highlight the use of the Malpighian tubules and hindgut as accessible models of human disease biology. The Malpighian tubule is a particularly excellent model to study rapid fluid transport, neuroendocrine control of renal function, and modeling of numerous human renal conditions such as kidney stones, while the hindgut provides an outstanding model for processes such as the role of cell chirality in development, nonstem cell-based injury repair, cancer-promoting processes, and communication between the intestine and nervous system.
Collapse
Affiliation(s)
| | - Jessica K Sawyer
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, and
| | | | - Julian A T Dow
- Institute of Molecular, Cell, and Systems Biology, University of Glasgow, G12 8QQ, United Kingdom
| | - Donald T Fox
- Department of Cell Biology and
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, and
| |
Collapse
|
17
|
Alford L, Marley R, Dornan A, Pierre J, Dow JAT, Nachman RJ, Davies SA. Assessment of neuropeptide binding sites and the impact of biostable kinin and CAP2b analogue treatment on aphid (Myzus persicae and Macrosiphum rosae) stress tolerance. PEST MANAGEMENT SCIENCE 2019; 75:1750-1759. [PMID: 30734498 PMCID: PMC6593983 DOI: 10.1002/ps.5372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 12/05/2018] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Neuropeptides are regulators of critical life processes in insects and, due to their high specificity, represent potential targets in the development of greener insecticidal agents. Fundamental to this drive is understanding neuroendocrine pathways that control key physiological processes in pest insects and the screening of potential analogues. The current study investigated neuropeptide binding sites of kinin and CAPA (CAPA-1) in the aphids Myzus persicae and Macrosiphum rosae and the effect of biostable analogues on aphid fitness under conditions of desiccation, starvation and thermal (cold) stress. RESULTS M. persicae and M. rosae displayed identical patterns of neuropeptide receptor mapping along the gut, with the gut musculature representing the main target for kinin and CAPA-1 action. While kinin receptor binding was observed in the brain and VNC of M. persicae, this was not observed in M. rosae. Furthermore, no CAPA-1 receptor binding was observed in the brain and VNC of either species. CAP2b/PK analogues (with CAPA receptor cross-activity) were most effective in reducing aphid fitness under conditions of desiccation and starvation stress, particularly analogues 1895 (2Abf-Suc-FGPRLa) and 2129 (2Abf-Suc-ATPRIa), which expedited aphid mortality. All analogues, with the exception of 2139-Ac, were efficient at reducing aphid survival under cold stress, although were equivalent in the strength of their effect. CONCLUSION In demonstrating the effects of analogues belonging to the CAP2b neuropeptide family and key analogue structures that reduce aphid fitness under stress conditions, this research will feed into the development of second generation analogues and ultimately the development of neuropeptidomimetic-based insecticidal agents. © 2019 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Lucy Alford
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Richard Marley
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Anthony Dornan
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Jean‐Sébastien Pierre
- UMR 6553 ECOBIO, Centre National de la Recherche ScientifiqueUniversité de Rennes IRennes CedexFrance
| | - Julian AT Dow
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Ronald J Nachman
- Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research CenterU.S. Department of AgricultureCollege StationTexasUSA
| | - Shireen A Davies
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| |
Collapse
|
18
|
Thorat L, Nath BB. Insects With Survival Kits for Desiccation Tolerance Under Extreme Water Deficits. Front Physiol 2018; 9:1843. [PMID: 30622480 PMCID: PMC6308239 DOI: 10.3389/fphys.2018.01843] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/06/2018] [Indexed: 12/31/2022] Open
Abstract
The year 2002 marked the tercentenary of Antonie van Leeuwenhoek's discovery of desiccation tolerance in animals. This remarkable phenomenon to sustain 'life' in the absence of water can be revived upon return of hydrating conditions. Today, coping with climate change-related factors, especially temperature-humidity imbalance, is a global challenge. Under such adverse circumstances, desiccation tolerance remains a prime mechanism of several plants and a few animals to escape the hostile consequences of fluctuating hydroperiodicity patterns in their habitats. Among small animals, insects have demonstrated impressive resilience to dehydration and thrive under physiological water deficits without compromising on revival and survival upon rehydration. The focus of this review is to compile research insights on insect desiccation tolerance, gathered over the past several decades from numerous laboratories worldwide working on different insect groups. We provide a comparative overview of species-specific behavioral changes, adjustments in physiological biochemistry and cellular and molecular mechanisms as few of the noteworthy desiccation-responsive survival kits in insects. Finally, we highlight the role of insects as potential mechanistic models in tracking global warming which will form the basis for translational research to mitigate periods of climatic uncertainty predicted for the future.
Collapse
Affiliation(s)
- Leena Thorat
- Stress Biology Research Laboratory, Department of Zoology, Savitribai Phule Pune University, Pune, India
| | - Bimalendu B Nath
- Stress Biology Research Laboratory, Department of Zoology, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
19
|
MacMillan HA, Nazal B, Wali S, Yerushalmi GY, Misyura L, Donini A, Paluzzi JP. Anti-diuretic activity of a CAPA neuropeptide can compromise Drosophila chill tolerance. ACTA ACUST UNITED AC 2018; 221:jeb.185884. [PMID: 30104306 DOI: 10.1242/jeb.185884] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/03/2018] [Indexed: 01/07/2023]
Abstract
For insects, chilling injuries that occur in the absence of freezing are often related to a systemic loss of ion and water balance that leads to extracellular hyperkalemia, cell depolarization and the triggering of apoptotic signalling cascades. The ability of insect ionoregulatory organs (e.g. the Malpighian tubules) to maintain ion balance in the cold has been linked to improved chill tolerance, and many neuroendocrine factors are known to influence ion transport rates of these organs. Injection of micromolar doses of CAPA (an insect neuropeptide) have been previously demonstrated to improve Drosophila cold tolerance, but the mechanisms through which it impacts chill tolerance are unclear, and low doses of CAPA have been previously demonstrated to cause anti-diuresis in insects, including dipterans. Here, we provide evidence that low (femtomolar) and high (micromolar) doses of CAPA impair and improve chill tolerance, respectively, via two different effects on Malpighian tubule ion and water transport. While low doses of CAPA are anti-diuretic, reduce tubule K+ clearance rates and reduce chill tolerance, high doses facilitate K+ clearance from the haemolymph and increase chill tolerance. By quantifying CAPA peptide levels in the central nervous system, we estimated the maximum achievable hormonal titres of CAPA and found further evidence that CAPA may function as an anti-diuretic hormone in Drosophila melanogaster We provide the first evidence of a neuropeptide that can negatively affect cold tolerance in an insect and further evidence of CAPA functioning as an anti-diuretic peptide in this ubiquitous insect model.
Collapse
Affiliation(s)
| | - Basma Nazal
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | - Sahr Wali
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | - Gil Y Yerushalmi
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | - Lidiya Misyura
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | - Andrew Donini
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | | |
Collapse
|
20
|
Gáliková M, Dircksen H, Nässel DR. The thirsty fly: Ion transport peptide (ITP) is a novel endocrine regulator of water homeostasis in Drosophila. PLoS Genet 2018; 14:e1007618. [PMID: 30138334 PMCID: PMC6124785 DOI: 10.1371/journal.pgen.1007618] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/05/2018] [Accepted: 08/09/2018] [Indexed: 01/07/2023] Open
Abstract
Animals need to continuously adjust their water metabolism to the internal and external conditions. Homeostasis of body fluids thus requires tight regulation of water intake and excretion, and a balance between ingestion of water and solid food. Here, we investigated how these processes are coordinated in Drosophila melanogaster. We identified the first thirst-promoting and anti-diuretic hormone of Drosophila, encoded by the gene Ion transport peptide (ITP). This endocrine regulator belongs to the CHH (crustacean hyperglycemic hormone) family of peptide hormones. Using genetic gain- and loss-of-function experiments, we show that ITP signaling acts analogous to the human vasopressin and renin-angiotensin systems; expression of ITP is elevated by dehydration of the fly, and the peptide increases thirst while repressing excretion, promoting thus conservation of water resources. ITP responds to both osmotic and desiccation stress, and dysregulation of ITP signaling compromises the fly's ability to cope with these stressors. In addition to the regulation of thirst and excretion, ITP also suppresses food intake. Altogether, our work identifies ITP as an important endocrine regulator of thirst and excretion, which integrates water homeostasis with feeding of Drosophila.
Collapse
Affiliation(s)
| | | | - Dick R. Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
21
|
Sajadi F, Curcuruto C, Al Dhaheri A, Paluzzi JPV. Anti-diuretic action of a CAPA neuropeptide against a subset of diuretic hormones in the disease vector Aedes aegypti. ACTA ACUST UNITED AC 2018; 221:jeb.177089. [PMID: 29496779 DOI: 10.1242/jeb.177089] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 02/21/2018] [Indexed: 01/21/2023]
Abstract
The mosquito Aedes aegypti is a vector responsible for transmitting various pathogens to humans, and their prominence as chief vectors of human disease is largely due to their anthropophilic blood feeding behaviour. Larval stage mosquitoes must deal with the potential dilution of their haemolymph in freshwater, whereas the haematophagus A. aegypti female faces the challenge of excess ion and water intake after a blood meal. The excretory system, composed of the Malpighian tubules (MTs) and hindgut, is strictly controlled by neuroendocrine factors, responsible for the regulation of diuresis across all developmental stages. The highly studied insect MTs are influenced by a variety of diuretic hormones and, in some insects, anti-diuretic factors. In the present study, we investigated the effects of AedaeCAPA-1 neuropeptide on larval and adult female A. aegypti MTs stimulated with various diuretic factors including serotonin (5-HT), a corticotropin-related factor (CRF) diuretic peptide, a calcitonin-related diuretic hormone (DH31) and a kinin-related diuretic peptide. Overall, our findings establish that AedaeCAPA-1 specifically inhibits secretion of larval and adult MTs stimulated by 5-HT and DH31, whilst having no activity on MTs stimulated by other diuretic factors. Furthermore, although AedaeCAPA-1 acts as an anti-diuretic, it does not influence the relative proportions of cations transported by adult MTs, thus maintaining the kaliuretic activity of 5-HT and natriuretic activity of DH31 In addition, we tested the effects of the second messenger cGMP in adult MTs. We established that cGMP has similar effects to AedaeCAPA-1, strongly inhibiting 5-HT- and DH31-stimulated fluid secretion, but with only minor effects on CRF-stimulated diuresis. Interestingly, although AedaeCAPA-1 has no inhibitory activity on kinin-stimulated fluid secretion, cGMP strongly inhibited fluid secretion by this diuretic hormone, which targets stellate cells specifically. Collectively, these results support that AedaeCAPA-1 inhibits select diuretic factors acting on the principal cells and this probably involves cGMP as a second messenger. Kinin-stimulated diuresis, which targets stellate cells, is also inhibited by cGMP, suggesting that another anti-diuretic factor in addition to AedaeCAPA-1 exists and may utilize cGMP as a second messenger.
Collapse
Affiliation(s)
- Farwa Sajadi
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Carmela Curcuruto
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Afra Al Dhaheri
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Jean-Paul V Paluzzi
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| |
Collapse
|
22
|
Dow JA. The essential roles of metal ions in insect homeostasis and physiology. CURRENT OPINION IN INSECT SCIENCE 2017; 23:43-50. [PMID: 29129281 DOI: 10.1016/j.cois.2017.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/03/2017] [Accepted: 07/06/2017] [Indexed: 06/07/2023]
Abstract
Metal ions play distinct roles in living organisms, including insects. Some, like sodium and potassium, are central players in osmoregulation and 'blood and guts' transport physiology, and have been implicated in cold adaptation. Calcium is a key player as a second messenger, and as a structural element. Other metals, particularly those with multiple redox states, can be cofactors in many metalloenzymes, but can contribute to toxic oxidative stress on the organism in excess. This short review selects some examples where classical knowledge has been supplemented with recent advances, in order to emphasize the importance of metals as essential nutrients for insect survival.
Collapse
Affiliation(s)
- Julian At Dow
- Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
23
|
MacMillan HA, Yerushalmi GY, Jonusaite S, Kelly SP, Donini A. Thermal acclimation mitigates cold-induced paracellular leak from the Drosophila gut. Sci Rep 2017; 7:8807. [PMID: 28821771 PMCID: PMC5562827 DOI: 10.1038/s41598-017-08926-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/17/2017] [Indexed: 12/14/2022] Open
Abstract
Chill susceptible insects suffer tissue damage and die at low temperatures. The mechanisms that cause chilling injury are not well understood but a growing body of evidence suggests that a cold-induced loss of ion and water homeostasis leads to hemolymph hyperkalemia that depolarizes cells, leading to cell death. The apparent root of this cascade is the net leak of osmolytes down their concentration gradients in the cold. Many insects, however, are capable of adjusting their thermal physiology, and cold-acclimated Drosophila can maintain homeostasis and avoid injury better than warm-acclimated flies. Here, we test whether chilling causes a loss of epithelial barrier function in female adult Drosophila, and provide the first evidence of cold-induced epithelial barrier failure in an invertebrate. Flies had increased rates of paracellular leak through the gut epithelia at 0 °C, but cold acclimation reduced paracellular permeability and improved cold tolerance. Improved barrier function was associated with changes in the abundance of select septate junction proteins and the appearance of a tortuous ultrastructure in subapical intercellular regions of contact between adjacent midgut epithelial cells. Thus, cold causes paracellular leak in a chill susceptible insect and cold acclimation can mitigate this effect through changes in the composition and structure of transepithelial barriers.
Collapse
Affiliation(s)
- Heath A MacMillan
- Department of Biology, York University, Toronto, M3J 1P3, Canada. .,Department of Biology, Carleton University, Ottawa, K1S 5B6, Canada.
| | - Gil Y Yerushalmi
- Department of Biology, York University, Toronto, M3J 1P3, Canada
| | - Sima Jonusaite
- Department of Biology, York University, Toronto, M3J 1P3, Canada
| | - Scott P Kelly
- Department of Biology, York University, Toronto, M3J 1P3, Canada
| | - Andrew Donini
- Department of Biology, York University, Toronto, M3J 1P3, Canada
| |
Collapse
|
24
|
Ragionieri L, Özbagci B, Neupert S, Salts Y, Davidovitch M, Altstein M, Predel R. Identification of mature peptides from pban and capa genes of the moths Heliothis peltigera and Spodoptera littoralis. Peptides 2017; 94:1-9. [PMID: 28502715 DOI: 10.1016/j.peptides.2017.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/05/2017] [Accepted: 05/06/2017] [Indexed: 11/18/2022]
Abstract
By transcriptome analysis, we identified PBAN and CAPA precursors in the moths Spodoptera littoralis and Heliothis peltigera which are among the most damaging pests of agriculture in tropical and subtropical Africa as well as in Mediterranean countries. A combination of mass spectrometry and immunocytochemistry was used to identify mature peptides processed from these precursors and to reveal their spatial distribution in the CNS. We found that the sites of expression of pban genes, the structure of PBAN precursors and the processed neuropeptides are very similar in noctuid moths. The sequence of the diapause hormone (DH; tryptopyrokinin following the signal peptide), however, contains two N-terminal amino acids more than expected from comparison with already published sequences of related species. Capa genes of S. littoralis and H. peltigera encode, in addition to periviscerokinins, a tryptopyrokinin showing sequence similarity with DH, which is the tryptopyrokinin of the pban gene. CAPA peptides, which were not known from any noctuid moth so far, are produced in cells of abdominal ganglia. The shape of the release sites of these hormones in H. peltigera represents an exceptionally derived trait state and does not resemble the well-structured abdominal perisympathetic organs which are known from many other insects. Instead, axons of CAPA cells extensively ramify within the ventral diaphragm. The novel information regarding the sequences of all mature peptides derived from pban and capa genes of H. peltigera and S. littoralis now enables a detailed analysis of the bioactivity and species-specificity of the native peptides, especially those from the hitherto unknown capa genes, and to explore their interactions with PBAN/DH receptors.
Collapse
Affiliation(s)
- Lapo Ragionieri
- Department of Biology, Institute for Zoology, Functional Peptidomics Group, University of Cologne, D-50674 Cologne, Germany.
| | - Burak Özbagci
- Department of Biology, Institute for Zoology, Functional Peptidomics Group, University of Cologne, D-50674 Cologne, Germany
| | - Susanne Neupert
- Department of Biology, Institute for Zoology, Functional Peptidomics Group, University of Cologne, D-50674 Cologne, Germany
| | - Yuval Salts
- Department of Entomology, The Volcani Center, Bet Dagan 50250, Israel
| | | | - Miriam Altstein
- Department of Entomology, The Volcani Center, Bet Dagan 50250, Israel
| | - Reinhard Predel
- Department of Biology, Institute for Zoology, Functional Peptidomics Group, University of Cologne, D-50674 Cologne, Germany
| |
Collapse
|
25
|
Choi MY, Ahn SJ, Kim AY, Koh Y. Identification and characterization of pyrokinin and CAPA peptides, and corresponding GPCRs from spotted wing drosophila, Drosophila suzukii. Gen Comp Endocrinol 2017; 246:354-362. [PMID: 28069423 DOI: 10.1016/j.ygcen.2017.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 11/29/2022]
Abstract
The family of FXPRLamide peptides serves as a major insect hormone. It is characterized by a core active amino acid sequence conserved at the C-terminal ends, and provides various physiological roles across the Insecta. In this study we identified and characterized pyrokinin (PK) and CAPA cDNAs encoding two FXPRLamide peptides, pyrokinin and CAPA-DH (diapause hormone), and two corresponding G protein-coupled receptors (GPCRs) from spotted wing drosophila (SWD), Drosophila suzukii. Expressions of PK and CAPA mRNAs were differentially observed during all life stages except the embryo, and the detection of CAPA transcription was relatively strong compared with the PK gene in SWD. Both D. suzukii pyrokinin receptor (DrosuPKr) and CAPA-DH receptor (DrosuCAPA-DHr) were functionally expressed and confirmed through binding to PK and DH peptides. Differential expression of two GPCRs occurred during all life stages; a strong transcription of DrosuPKr was observed in the 3rd instar. DrosuCAPA-DHr was clearly expressed from the embryo to the larva, but not detected in the adult. Gene regulation during the life stages was not synchronized between ligand and receptor. For example, SWD CAPA mRNA has been up-regulated in the adult while CAPA-DHr was down-regulated. The difference could be from the CAPA mRNA translating multiple peptides including CAPA-DH and two CAPA-PVK (periviscerokinin) peptides to act on different receptors. Comparing the genes of SWD PK, CAPA, PKr and CAPA-DHr to four corresponding genes of D. melanogaster, SWD CAPA and the receptor are more similar to D. melanogaster than PK and the receptor. These data suggest that the CAPA gene could be evolutionally more conserved to have a common biological role in insects. In addition, the effect of Kozak sequences was investigated by the expression of the GPCRs with or without Kozak sequences in Sf9 insect cells. The Kozak sequenced PK receptor was significantly less active than the original (= no Kozak sequenced) receptor. Our results provide a knowledge for potential biological function(s) of PK and CAPA-DH peptides in SWD, and possibly offer a novel control method for this pest insect in the future.
Collapse
Affiliation(s)
- Man-Yeon Choi
- USDA-ARS, Horticultural Crops Research Laboratory, 3420 NW Orchard Avenue, Corvallis, OR 97330, USA.
| | - Seung-Joon Ahn
- USDA-ARS, Horticultural Crops Research Laboratory, 3420 NW Orchard Avenue, Corvallis, OR 97330, USA; Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331, USA
| | - A Young Kim
- Department of Bio-medical Gerontology, Ilsong Institute of Life Sciences, Hallym University, Anyang, Gyeonggi-do, Republic of Korea
| | - Youngho Koh
- Department of Bio-medical Gerontology, Ilsong Institute of Life Sciences, Hallym University, Anyang, Gyeonggi-do, Republic of Korea
| |
Collapse
|
26
|
Yerushalmi GY, Misyura L, Donini A, MacMillan HA. Chronic dietary salt stress mitigates hyperkalemia and facilitates chill coma recovery in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2016; 95:89-97. [PMID: 27642001 DOI: 10.1016/j.jinsphys.2016.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 06/06/2023]
Abstract
Chill susceptible insects like Drosophila lose the ability to regulate water and ion homeostasis at low temperatures. This loss of hemolymph ion and water balance drives a hyperkalemic state that depolarizes cells, causing cellular injury and death. The ability to maintain ion homeostasis at low temperatures and/or recover ion homeostasis upon rewarming is closely related to insect cold tolerance. We thus hypothesized that changes to organismal ion balance, which can be achieved in Drosophila through dietary salt loading, could alter whole animal cold tolerance phenotypes. We put Drosophila melanogaster in the presence of diets highly enriched in NaCl, KCl, xylitol (an osmotic control) or sucrose (a dietary supplement known to impact cold tolerance) for 24h and confirmed that they consumed the novel food. Independently of their osmotic effects, NaCl, KCl, and sucrose supplementation all improved the ability of flies to maintain K+ balance in the cold, which allowed for faster recovery from chill coma after 6h at 0°C. These supplements, however, also slightly increased the CTmin and had little impact on survival rates following chronic cold stress (24h at 0°C), suggesting that the effect of diet on cold tolerance depends on the measure of cold tolerance assessed. In contrast to prolonged salt stress, brief feeding (1.5h) on diets high in salt slowed coma recovery, suggesting that the long-term effects of NaCl and KCl on chilling tolerance result from phenotypic plasticity, induced in response to a salty diet, rather than simply the presence of the diet in the gut lumen.
Collapse
Affiliation(s)
- Gil Y Yerushalmi
- Department of Biology, York University, 4700 Keele St., Toronto M3J 1P3, Canada
| | - Lidiya Misyura
- Department of Biology, York University, 4700 Keele St., Toronto M3J 1P3, Canada
| | - Andrew Donini
- Department of Biology, York University, 4700 Keele St., Toronto M3J 1P3, Canada
| | - Heath A MacMillan
- Department of Biology, York University, 4700 Keele St., Toronto M3J 1P3, Canada.
| |
Collapse
|
27
|
Derst C, Dircksen H, Meusemann K, Zhou X, Liu S, Predel R. Evolution of neuropeptides in non-pterygote hexapods. BMC Evol Biol 2016; 16:51. [PMID: 26923142 PMCID: PMC4770511 DOI: 10.1186/s12862-016-0621-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/15/2016] [Indexed: 01/29/2023] Open
Abstract
Background Neuropeptides are key players in information transfer and act as important regulators of development, growth, metabolism, and reproduction within multi-cellular animal organisms (Metazoa). These short protein-like substances show a high degree of structural variability and are recognized as the most diverse group of messenger molecules. We used transcriptome sequences from the 1KITE (1K Insect Transcriptome Evolution) project to search for neuropeptide coding sequences in 24 species from the non-pterygote hexapod lineages Protura (coneheads), Collembola (springtails), Diplura (two-pronged bristletails), Archaeognatha (jumping bristletails), and Zygentoma (silverfish and firebrats), which are often referred to as “basal” hexapods. Phylogenetically, Protura, Collembola, Diplura, and Archaeognatha are currently placed between Remipedia and Pterygota (winged insects); Zygentoma is the sistergroup of Pterygota. The Remipedia are assumed to be among the closest relatives of all hexapods and belong to the crustaceans. Results We identified neuropeptide precursor sequences within whole-body transcriptome data from these five hexapod groups and complemented this dataset with homologous sequences from three crustaceans (including Daphnia pulex), three myriapods, and the fruit fly Drosophila melanogaster. Our results indicate that the reported loss of several neuropeptide genes in a number of winged insects, particularly holometabolous insects, is a trend that has occurred within Pterygota. The neuropeptide precursor sequences of the non-pterygote hexapods show numerous amino acid substitutions, gene duplications, variants following alternative splicing, and numbers of paracopies. Nevertheless, most of these features fall within the range of variation known from pterygote insects. However, the capa/pyrokinin genes of non-pterygote hexapods provide an interesting example of rapid evolution, including duplication of a neuropeptide gene encoding different ligands. Conclusions Our findings delineate a basic pattern of neuropeptide sequences that existed before lineage-specific developments occurred during the evolution of pterygote insects. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0621-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christian Derst
- Institute for Zoology, Functional Peptidomics Group, University of Cologne, D-50674, Cologne, Germany.
| | - Heinrich Dircksen
- Department of Zoology, Stockholm University, S-10691, Stockholm, Sweden.
| | - Karen Meusemann
- Center for Molecular Biodiversity Research, Zoological Research Museum A. Koenig, D-53113, Bonn, Germany. .,Australian National Insect Collection, CSIRO National Research Collections Australia, Acton, ACT, 2601, Canberra, Australia.
| | - Xin Zhou
- China National GeneBank, BGI-Shenzhen, Shenzhen, Guangdong Province, 518083, China.
| | - Shanlin Liu
- China National GeneBank, BGI-Shenzhen, Shenzhen, Guangdong Province, 518083, China.
| | - Reinhard Predel
- Institute for Zoology, Functional Peptidomics Group, University of Cologne, D-50674, Cologne, Germany.
| |
Collapse
|
28
|
Telonis-Scott M, Sgrò CM, Hoffmann AA, Griffin PC. Cross-Study Comparison Reveals Common Genomic, Network, and Functional Signatures of Desiccation Resistance in Drosophila melanogaster. Mol Biol Evol 2016; 33:1053-67. [PMID: 26733490 PMCID: PMC4776712 DOI: 10.1093/molbev/msv349] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Repeated attempts to map the genomic basis of complex traits often yield different outcomes because of the influence of genetic background, gene-by-environment interactions, and/or statistical limitations. However, where repeatability is low at the level of individual genes, overlap often occurs in gene ontology categories, genetic pathways, and interaction networks. Here we report on the genomic overlap for natural desiccation resistance from a Pool-genome-wide association study experiment and a selection experiment in flies collected from the same region in southeastern Australia in different years. We identified over 600 single nucleotide polymorphisms associated with desiccation resistance in flies derived from almost 1,000 wild-caught genotypes, a similar number of loci to that observed in our previous genomic study of selected lines, demonstrating the genetic complexity of this ecologically important trait. By harnessing the power of cross-study comparison, we narrowed the candidates from almost 400 genes in each study to a core set of 45 genes, enriched for stimulus, stress, and defense responses. In addition to gene-level overlap, there was higher order congruence at the network and functional levels, suggesting genetic redundancy in key stress sensing, stress response, immunity, signaling, and gene expression pathways. We also identified variants linked to different molecular aspects of desiccation physiology previously verified from functional experiments. Our approach provides insight into the genomic basis of a complex and ecologically important trait and predicts candidate genetic pathways to explore in multiple genetic backgrounds and related species within a functional framework.
Collapse
Affiliation(s)
- Marina Telonis-Scott
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC, Australia
| | - Carla M Sgrò
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC, Australia
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Melbourne, VIC, Australia
| | - Philippa C Griffin
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Melbourne, VIC, Australia
| |
Collapse
|
29
|
Caers J, Boonen K, Van Den Abbeele J, Van Rompay L, Schoofs L, Van Hiel MB. Peptidomics of Neuropeptidergic Tissues of the Tsetse Fly Glossina morsitans morsitans. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:2024-2038. [PMID: 26463237 DOI: 10.1007/s13361-015-1248-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 06/05/2023]
Abstract
Neuropeptides and peptide hormones are essential signaling molecules that regulate nearly all physiological processes. The recent release of the tsetse fly genome allowed the construction of a detailed in silico neuropeptide database (International Glossina Genome Consortium, Science 344, 380-386 (2014)), as well as an in-depth mass spectrometric analysis of the most important neuropeptidergic tissues of this medically and economically important insect species. Mass spectrometric confirmation of predicted peptides is a vital step in the functional characterization of neuropeptides, as in vivo peptides can be modified, cleaved, or even mispredicted. Using a nanoscale reversed phase liquid chromatography coupled to a Q Exactive Orbitrap mass spectrometer, we detected 51 putative bioactive neuropeptides encoded by 19 precursors: adipokinetic hormone (AKH) I and II, allatostatin A and B, capability/pyrokinin (capa/PK), corazonin, calcitonin-like diuretic hormone (CT/DH), FMRFamide, hugin, leucokinin, myosuppressin, natalisin, neuropeptide-like precursor (NPLP) 1, orcokinin, pigment dispersing factor (PDF), RYamide, SIFamide, short neuropeptide F (sNPF) and tachykinin. In addition, propeptides, truncated and spacer peptides derived from seven additional precursors were found, and include the precursors of allatostatin C, crustacean cardioactive peptide, corticotropin releasing factor-like diuretic hormone (CRF/DH), ecdysis triggering hormone (ETH), ion transport peptide (ITP), neuropeptide F, and proctolin, respectively. The majority of the identified neuropeptides are present in the central nervous system, with only a limited number of peptides in the corpora cardiaca-corpora allata and midgut. Owing to the large number of identified peptides, this study can be used as a reference for comparative studies in other insects. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Jelle Caers
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Kurt Boonen
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Jan Van Den Abbeele
- Unit of Veterinary Protozoology, Department of Biomedical Sciences, Institute of Tropical Medicine, 2000, Antwerp, Belgium
- Laboratory of Zoophysiology, Department of Physiology, University of Ghent, 9000, Ghent, Belgium
| | - Liesbeth Van Rompay
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Liliane Schoofs
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, 3000, Leuven, Belgium.
| | - Matthias B Van Hiel
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| |
Collapse
|
30
|
Abstract
The success of insects is linked to their impressive tolerance to environmental stress, but little is known about how such responses are mediated by the neuroendocrine system. Here we show that the capability (capa) neuropeptide gene is a desiccation- and cold stress-responsive gene in diverse dipteran species. Using targeted in vivo gene silencing, physiological manipulations, stress-tolerance assays, and rationally designed neuropeptide analogs, we demonstrate that the Drosophila melanogaster capa neuropeptide gene and its encoded peptides alter desiccation and cold tolerance. Knockdown of the capa gene increases desiccation tolerance but lengthens chill coma recovery time, and injection of capa peptide analogs can reverse both phenotypes. Immunohistochemical staining suggests that capa accumulates in the capa-expressing Va neurons during desiccation and nonlethal cold stress but is not released until recovery from each stress. Our results also suggest that regulation of cellular ion and water homeostasis mediated by capa peptide signaling in the insect Malpighian (renal) tubules is a key physiological mechanism during recovery from desiccation and cold stress. This work augments our understanding of how stress tolerance is mediated by neuroendocrine signaling and illustrates the use of rationally designed peptide analogs as agents for disrupting protective stress tolerance.
Collapse
|
31
|
Davies SA, Cabrero P, Overend G, Aitchison L, Sebastian S, Terhzaz S, Dow JAT. Cell signalling mechanisms for insect stress tolerance. ACTA ACUST UNITED AC 2014; 217:119-28. [PMID: 24353211 DOI: 10.1242/jeb.090571] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Insects successfully occupy most environmental niches and this success depends on surviving a broad range of environmental stressors including temperature, desiccation, xenobiotic, osmotic and infection stress. Epithelial tissues play key roles as barriers between the external and internal environments and therefore maintain homeostasis and organismal tolerance to multiple stressors. As such, the crucial role of epithelia in organismal stress tolerance cannot be underestimated. At a molecular level, multiple cell-specific signalling pathways including cyclic cAMP, cyclic cGMP and calcium modulate tissue, and hence, organismal responses to stress. Thus, epithelial cell-specific signal transduction can be usefully studied to determine the molecular mechanisms of organismal stress tolerance in vivo. This review will explore cell signalling modulation of stress tolerance in insects by focusing on cell signalling in a fluid transporting epithelium--the Malpighian tubule. Manipulation of specific genes and signalling pathways in only defined tubule cell types can influence the survival outcome in response to multiple environmental stressors including desiccation, immune, salt (ionic) and oxidative stress, suggesting that studies in the genetic model Drosophila melanogaster may reveal novel pathways required for stress tolerance.
Collapse
Affiliation(s)
- Shireen A Davies
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | | | | | | | |
Collapse
|
32
|
Sturm S, Predel R. Serine phosphorylation of CAPA pyrokinin in cockroaches-a taxon-specific posttranslational modification. Peptides 2014; 57:52-8. [PMID: 24793144 DOI: 10.1016/j.peptides.2014.04.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/16/2014] [Accepted: 04/16/2014] [Indexed: 10/25/2022]
Abstract
In insects, posttranslational modifications of neuropeptides are largely restricted to C- and N-terminal amino acids. The most common modifications, N-terminal pyroglutamate formation and C-terminal α-amidation, may prevent a fast degradation of these messenger molecules. This is particularly important for peptide hormones. Other common posttranslational modifications of proteins such as glycosylation and phosphorylation seem to be very rare in insect neuropeptides. To check this assumption, we used a computer algorithm to search an extensive data set of MALDI-TOF mass spectra from cockroach tissues for ion signal patterns indicating peptide phosphorylation. The results verify that phosphorylation is indeed very rare. However, a candidate was found and experimentally verified as phosphorylated CAPA pyrokinin (GGGGpSGETSGMWFGPRL-NH2) in the cockroach Lamproblatta albipalpus (Blattidae, Lamproblattinae). Tandem mass spectrometry revealed the phosphorylation site as Ser(5). Phosphorylated CAPA pyrokinin was then also detected in most other cockroach lineages (e.g. Blaberidae, Polyphagidae) but not in closely related blattid species such as Periplaneta americana. This is remarkable since the sequence of CAPA pyrokinin is identical in Lamproblatta and Periplaneta. A consensus sequence of CAPA pyrokinins of cockroaches revealed a conserved motif that suggests phosphorylation by a Four-jointed/FAM20C related kinase.
Collapse
Affiliation(s)
- Sebastian Sturm
- Cologne Biocenter, University of Cologne, Zuelpicher Str. 47b, 50674 Cologne, Germany
| | - Reinhard Predel
- Cologne Biocenter, University of Cologne, Zuelpicher Str. 47b, 50674 Cologne, Germany.
| |
Collapse
|
33
|
Identification of two capa cDNA transcripts and detailed peptidomic characterization of their peptide products in Periplaneta americana. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Choi MY, Köhler R, Vander Meer RK, Neupert S, Predel R. Identification and expression of capa gene in the fire ant, Solenopsis invicta. PLoS One 2014; 9:e94274. [PMID: 24718032 PMCID: PMC3981796 DOI: 10.1371/journal.pone.0094274] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 03/14/2014] [Indexed: 11/18/2022] Open
Abstract
Recent genome analyses suggested the absence of a number of neuropeptide genes in ants. One of the apparently missing genes was the capa gene. Capa gene expression in insects is typically associated with the neuroendocrine system of abdominal ganglia; mature CAPA peptides are known to regulate diuresis and visceral muscle contraction. The apparent absence of the capa gene raised questions about possible compensation of these functions. In this study, we re-examined this controversial issue and searched for a potentially unrecognized capa gene in the fire ant, Solenopsis invicta. We employed a combination of data mining and a traditional PCR-based strategy using degenerate primers designed from conserved amino acid sequences of insect capa genes. Our findings demonstrate that ants possess and express a capa gene. As shown by MALDI-TOF mass spectrometry, processed products of the S. invicta capa gene include three CAPA periviscerokinins and low amounts of a pyrokinin which does not have the C-terminal WFGPRLa motif typical of CAPA pyrokinins in other insects. The capa gene was found with two alternative transcripts in the CNS. Within the ventral nerve cord, two capa neurons were immunostained in abdominal neuromeres 2–5, respectively, and projected into ventrally located abdominal perisympathetic organs (PSOs), which are the major hormone release sites of abdominal ganglia. The ventral location of these PSOs is a characteristic feature and was also found in another ant, Atta sexdens.
Collapse
Affiliation(s)
- Man-Yeon Choi
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Center of Medical, Agricultural and Veterinary Entomology (CMAVE), Gainesville, Florida, United States of America
- * E-mail: (MYC); (RP)
| | - Rene Köhler
- Zoological Institute, Biocenter University of Cologne, Cologne, Germany
| | - Robert K. Vander Meer
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Center of Medical, Agricultural and Veterinary Entomology (CMAVE), Gainesville, Florida, United States of America
| | - Susanne Neupert
- Zoological Institute, Biocenter University of Cologne, Cologne, Germany
| | - Reinhard Predel
- Zoological Institute, Biocenter University of Cologne, Cologne, Germany
- * E-mail: (MYC); (RP)
| |
Collapse
|
35
|
Terhzaz S, Overend G, Sebastian S, Dow JAT, Davies SA. The D. melanogaster capa-1 neuropeptide activates renal NF-kB signaling. Peptides 2014; 53:218-24. [PMID: 23954477 DOI: 10.1016/j.peptides.2013.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/01/2013] [Accepted: 08/01/2013] [Indexed: 01/20/2023]
Abstract
The capa peptide family exists in a very wide range of insects including species of medical, veterinary and agricultural importance. Capa peptides act via a cognate G-protein coupled receptor (capaR) and have a diuretic action on the Malpighian tubules of Dipteran and Lepidopteran species. Capa signaling is critical for fluid homeostasis and has been associated with desiccation tolerance in the fly, Drosophila melanogaster. The mode of capa signaling is highly complex, affecting calcium, nitric oxide and cyclic GMP pathways. Such complex physiological regulation by cell signaling pathways may occur ultimately for optimal organismal stress tolerance to multiple stressors. Here we show that D. melanogaster capa-1 (Drome-capa-1) acts via the Nuclear Factor kappa B (NF-kB) stress signaling network. Human PCR gene arrays of capaR-transfected Human Embryonic Kidney (HEK) 293 cells showed that Drome-capa-1 increases expression of NF-kB, NF-kB regulated genes including IL8, TNF and PTGS2, and NF-kB pathway-associated transcription factors i.e. EGR1, FOS, cJUN. Furthermore, desiccated HEK293 cells show increased EGR1, EGR3 and PTGS2 - but not IL8, expression. CapaR-transfected NF-kB reporter cells showed that Drome-capa-1 increased NF-kB promoter activity via increased calcium. In Malpighian tubules, both Drome-capa-1 stimulation and desiccation result in increased gene expression of the D. melanogaster NF-kB orthologue, Relish; as well as EGR-like stripe and klumpfuss. Drome-capa-1 also induces Relish translocation in tubule principal cells. Targeted knockdown of Relish in only tubule principal cells reduces desiccation stress tolerance of adult flies. Together, these data suggest that Drome-capa-1 acts in desiccation stress tolerance, by activating NF-kB signaling.
Collapse
Affiliation(s)
- Selim Terhzaz
- Institute of Molecular, Cell and Systems Biology, College of Medical, Life and Veterinary Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Gayle Overend
- Institute of Molecular, Cell and Systems Biology, College of Medical, Life and Veterinary Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Sujith Sebastian
- Institute of Molecular, Cell and Systems Biology, College of Medical, Life and Veterinary Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Julian A T Dow
- Institute of Molecular, Cell and Systems Biology, College of Medical, Life and Veterinary Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Shireen-A Davies
- Institute of Molecular, Cell and Systems Biology, College of Medical, Life and Veterinary Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
36
|
Vanderveken M, O'Donnell MJ. Effects of diuretic hormone 31, drosokinin, and allatostatin A on transepithelial K⁺ transport and contraction frequency in the midgut and hindgut of larval Drosophila melanogaster. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2014; 85:76-93. [PMID: 24408875 DOI: 10.1002/arch.21144] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Recent studies have identified paracrine and endocrine cells in the midgut of larval Drosophila melanogaster as well as midgut and hindgut receptors for multiple neuropeptides implicated in the control of fluid and ion balance. Although the effects of diuretic factors on fluid secretion by isolated Malpighian tubules of D. melanogaster have been examined extensively, relatively little is known about the effects of such factors on gut peristalsis or ion transport across the gut. We have measured the effects of diuretic hormone 31 (DH31), drosokinin and allatostatin A (AST-A) on both K(+) transport and muscle contraction frequency in the isolated gut of larval D. melanogaster. K(+) absorption across the gut was measured using K(+) -selective microelectrodes and the scanning ion-selective electrode technique. Allatostatin A (AST-A; 1 μM) increased K(+) absorption across the anterior midgut but reduced K(+) absorption across the copper cells and large flat cells of the middle midgut. AST-A strongly inhibited gut contractions in the anterior midgut but had no effect on contractions of the pyloric sphincter induced by proctolin. DH31 (1 μM) increased the contraction frequency in the anterior midgut, but had no effect on K(+) flux across the anterior, middle, or posterior midgut or across the ileum. Drosokinin (1 μM) did not affect either contraction frequency or K(+) flux across any of the gut regions examined. Possible functions of AST-A, DH31, and drosokinin in regulating midgut physiology are discussed.
Collapse
|