1
|
Titon Junior B, Barsotti AMG, Titon SCM, Vaz RI, de Figueiredo AC, Vasconcelos-Teixeira R, Navas CA, Gomes FR. Baseline and stress-induced steroid plasma levels and immune function vary annually and are associated with vocal activity in male toads (Rhinella icterica). Gen Comp Endocrinol 2024; 354:114517. [PMID: 38615755 DOI: 10.1016/j.ygcen.2024.114517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/19/2024] [Accepted: 04/06/2024] [Indexed: 04/16/2024]
Abstract
Theoretical models predict that elevated androgen and glucocorticoid levels in males during the reproductive season promote immunosuppression. However, some studies report decreased stress response during this season. This study investigated annual variation in plasma corticosterone and testosterone levels, plasma bacterial killing ability (BKA), and neutrophil to lymphocyte ratio (NLR) in free-living male toads (Rhinella icterica). Toads were sampled in the field (baseline) and 1 h-post restraint over five months, and we considered the occurrence of vocal activity. Baseline corticosterone, testosterone, and BKA showed higher values during the reproductive period, specifically in calling male toads. The NLR was similar throughout the year, but higher values were observed in calling toads. Moreover, baseline NLR and BKA were positively correlated with both testosterone and corticosterone, suggesting higher steroid levels during reproduction are associated with enhanced cellular and humoral immunity. Despite fluctuation of baseline values, post-restraint corticosterone levels remained uniform over the year, indicating that toads reached similar maximum values throughout the year. Testosterone levels decreased following restraint before one specific reproductive period but increased in response to restraint during and after this period. Meanwhile, BKA decreased due to restraint only after the reproductive period, indicating immune protection and resilience to immunosuppression by stressors associated with steroid hormones during reproduction. Our results show that baseline and stress-induced hormonal and immune regulation varies throughout the year and are associated with vocal activity in R. icterica males, indicating a possible compromise between steroids and immune function in anuran males.
Collapse
Affiliation(s)
- Braz Titon Junior
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brasil.
| | | | | | - Renata Ibelli Vaz
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brasil
| | - Aymam Cobo de Figueiredo
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brasil
| | | | - Carlos A Navas
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brasil
| | - Fernando Ribeiro Gomes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brasil
| |
Collapse
|
2
|
McNew SM, Taff CC, Vitousek MN. Manipulation of a social signal affects DNA methylation of a stress-related gene in a free-living bird. J Exp Biol 2024; 227:jeb246819. [PMID: 39022893 PMCID: PMC11418189 DOI: 10.1242/jeb.246819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
Social status directly affects the health of humans and other animals. Low status individuals receive more antagonistic encounters, have fewer supportive relationships and have worse health outcomes. However, the physiological and cellular processes that mediate the relationship between the social environment and health are incompletely known. Epigenetic regulation of the hypothalamic-pituitary-adrenal (HPA) axis, the neuroendocrine pathway that activates in response to stressors, may be one process that is sensitive to the social environment. Here, we experimentally manipulated plumage, a key social signal in female tree swallows (Tachycineta bicolor) and quantified methylation of four genes in the HPA axis before and after treatment. We found that dulling the white breast plumage affected methylation in one gene, CRHR1; however, the effect depended on the original brightness of the bird. Methylation in this gene was correlated with baseline corticosterone levels, suggesting that DNA methylation of CRHR1 helps regulate glucocorticoid production in this species. Methylation in two other genes, FKBP5 and GR, changed over the course of the experiment, independent of treatment. These results show that methylation of these genes is labile into adulthood and suggest that epigenetic regulation of the HPA axis could help birds respond to current environmental conditions.
Collapse
Affiliation(s)
- Sabrina M. McNew
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
- Cornell Lab of Ornithology, Cornell University, Ithaca, NY 14850, USA
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, AZ 85719, USA
| | - Conor C. Taff
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
- Cornell Lab of Ornithology, Cornell University, Ithaca, NY 14850, USA
- Department of Biology, Colby College, Waterville, ME 04901, USA
| | - Maren N. Vitousek
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
- Cornell Lab of Ornithology, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
3
|
Zhang Q, Li M, Yin Y, Ge S, Li D, Ahmad IM, Nabi G, Sun Y, Luo X, Li D. Physiological but not morphological adjustments along latitudinal gradients in a human commensal species, the Eurasian tree sparrow. Integr Zool 2023; 18:891-905. [PMID: 36880561 DOI: 10.1111/1749-4877.12709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Human commensal species take advantage of anthropogenic conditions that are less likely to be challenged by the selective pressures of natural environments. Their morphological and physiological phenotypes can therefore dissociate from habitat characteristics. Understanding how these species adjust their morphological and physiological traits across latitudinal gradients is fundamental to uncovering the eco-physiological strategies underlying coping mechanisms. Here, we studied morphological traits in breeding Eurasian tree sparrows (ETSs; Passer montanus) among low-latitude (Yunnan and Hunan) and middle-latitude (Hebei) localities in China. We then compared body mass; lengths of bill, tarsometatarsus, wing, total body, and tail feather; and baseline and capture stress-induced levels of plasma corticosterone (CORT) and the metabolites including glucose (Glu), total triglyceride (TG), free fatty acid (FFA), total protein, and uric acid (UA). None of the measured morphological parameters varied with latitude except in the Hunan population, which demonstrated longer bills than those in other populations. Stress-induced CORT levels significantly exceeded baseline levels and decreased with increasing latitude, but total integrated CORT levels did not vary with latitude. Capture stress-induced significantly increased Glu levels and decreased TG levels, independent of site. However, the Hunan population had significantly higher baseline CORT, baseline and stress-induced FFA levels, but lower UA levels, which differed from other populations. Our results suggest that rather than morphological adjustments, physiological adjustments are mainly involved in coping mechanisms for middle-latitude adaptation in ETSs. It is worth investigating whether other avian species also exhibit such dissociation from external morphological designs while depending on physiological adjustments.
Collapse
Affiliation(s)
- Qian Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang, China
| | - Mo Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang, China
| | - Yuan Yin
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang, China
| | - Shiyong Ge
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang, China
| | - Danjie Li
- Key Laboratory for Conserving Wildlife with Small Populations in Yunnan, Faculty of Biodiversity and Conservation, Southwest Forestry University, Kunming, China
| | - Ibrahim M Ahmad
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang, China
| | - Ghulam Nabi
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang, China
| | - Yanfeng Sun
- Ocean College, Hebei Agricultural University, Qinhuangdao, China
| | - Xu Luo
- Key Laboratory for Conserving Wildlife with Small Populations in Yunnan, Faculty of Biodiversity and Conservation, Southwest Forestry University, Kunming, China
| | - Dongming Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
4
|
Xiong Y, Tobler M, Hegemann A, Hasselquist DL. Assessment of avian health status: suitability and constraints of the Zoetis VetScan VS2 blood analyser for ecological and evolutionary studies. Biol Open 2023; 12:bio060009. [PMID: 37485865 PMCID: PMC10399204 DOI: 10.1242/bio.060009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
Biochemical analyses of blood can decipher physiological conditions of living animals and unravel mechanistic underpinnings of life-history strategies and trade-offs. Yet, researchers in ecology and evolution often face constraints in which methods to apply, not least due to blood volume restrictions or field settings. Here, we test the suitability of a portable biochemical analyser (Zoetis VetScan VS2) for ecological and evolutionary studies that may help solve those problems. Using as little as 80 µl of whole-bird blood from free-living Jackdaws (Corvus monedula) and captive Zebra Finches (Taeniopygia guttata), we show that eight (out of 10) blood analytes show high repeatability after short-term storage (approximately 2 h) and six after 12 h storage time. Handling stress had a clear impact on all except two analytes by 16 min after catching. Finally, six analytes showed consistency within individuals over a period of 30 days, and three even showed individual consistency over a year. Taken together, we conclude that the VetScan VS2 captures biologically relevant variation in blood analytes using just 80 µl of whole blood and, thus, provides valuable physiological measurements of (small) birds sampled in semi-field and field conditions.
Collapse
Affiliation(s)
- Ye Xiong
- Department of Biology, Lund University, Ecology Building, SE-223 62 Lund, Sweden
| | - Michael Tobler
- Department of Biology, Lund University, Ecology Building, SE-223 62 Lund, Sweden
| | - Arne Hegemann
- Department of Biology, Lund University, Ecology Building, SE-223 62 Lund, Sweden
| | - Dennis L Hasselquist
- Department of Biology, Lund University, Ecology Building, SE-223 62 Lund, Sweden
| |
Collapse
|
5
|
Beattie UK, Fefferman N, Romero LM. Varying intensities of chronic stress induce inconsistent responses in weight and plasma metabolites in house sparrows ( Passer domesticus). PeerJ 2023; 11:e15661. [PMID: 37456877 PMCID: PMC10340100 DOI: 10.7717/peerj.15661] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/07/2023] [Indexed: 07/18/2023] Open
Abstract
One of the biggest unanswered questions in the field of stress physiology is whether variation in chronic stress intensity will produce proportional (a gradient or graded) physiological response. We were specifically interested in the timing of the entrance into homeostatic overload, or the start of chronic stress symptoms. To attempt to fill this knowledge gap we split 40 captive house sparrows (Passer domesticus) into four groups (high stress, medium stress, low stress, and a captivity-only control) and subjected them to six bouts of chronic stress over a 6-month period. We varied the number of stressors/day and the length of each individual bout with the goal of producing groups that would experience different magnitudes of wear-and-tear. To evaluate the impact of chronic stress, at the start and end of each stress bout we measured body weight and three plasma metabolites (glucose, ketones, and uric acid) in both a fasted and fed state. All metrics showed significant differences across treatment groups, with the high stress group most frequently showing the greatest changes. However, the changes did not produce a consistent profile that matched the different chronic stress intensities. We also took samples after a prolonged recovery period of 6 weeks after the chronic stressors ended. The only group difference that persisted after 6 weeks was weight-all differences across groups in metabolites recovered. The results indicate that common blood metabolites are sensitive to stressors and may show signs of wear-and-tear, but are not reliable indicators of the intensity of long-term chronic stress. Furthermore, regulatory mechanisms are robust enough to recover within 6 weeks post-stress.
Collapse
Affiliation(s)
- Ursula K. Beattie
- Department of Biology, Tufts University, Medford, Massachusetts, United States
| | - Nina Fefferman
- Departments of Ecology and Evolution, University of Tennessee—Knoxville, Knoxville, Tennessee, United States
| | - L. Michael Romero
- Department of Biology, Tufts University, Medford, Massachusetts, United States
| |
Collapse
|
6
|
Dantzer B, Newman AEM. Expanding the frame around social dynamics and glucocorticoids: From hierarchies within the nest to competitive interactions among species. Horm Behav 2022; 144:105204. [PMID: 35689971 DOI: 10.1016/j.yhbeh.2022.105204] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/10/2022] [Accepted: 05/18/2022] [Indexed: 11/25/2022]
Abstract
The effect of the social environment on individual state or condition has largely focused on glucocorticoid levels (GCs). As metabolic hormones whose production can be influenced by nutritional, physical, or psychosocial stressors, GCs are a valuable (though singular) measure that may reflect the degree of "stress" experienced by an individual. Most work to date has focused on how social rank influences GCs in group-living species or how predation risk influences GCs in prey. This work has been revealing, but a more comprehensive assessment of the social environment is needed to fully understand how different features of the social environment influence GCs in both group living and non-group living species and across life history stages. Just as there can be intense within-group competition among adult conspecifics, it bears appreciating there can also be competition among siblings from the same brood, among adult conspecifics that do not live in groups, or among heterospecifics. In these situations, dominance hierarchies typically emerge, albeit, do dominants or subordinate individuals or species have higher GCs? We examine the degree of support for hypotheses derived from group-living species about whether differential GCs between dominants and subordinates reflect the "stress of subordination" or "costs of dominance" in these other social contexts. By doing so, we aim to test the generality of these two hypotheses and propose new research directions to broaden the lens that focuses on social hierarchies and GCs.
Collapse
Affiliation(s)
- Ben Dantzer
- Department of Psychology, University of Michigan, 48109 Ann Arbor, MI, USA; Department of Ecology and Evolutionary Biology, University of Michigan, 48109, Ann Arbor, MI, USA.
| | - Amy E M Newman
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G2W1, Canada
| |
Collapse
|
7
|
McCallie KL, Klukowski M. Corticosterone in three species of free-ranging watersnakes: Testing for reproductive suppression and an association with body condition. Comp Biochem Physiol A Mol Integr Physiol 2022; 269:111214. [PMID: 35427765 DOI: 10.1016/j.cbpa.2022.111214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
Abstract
The potentially suppressive effects of the hypothalamic-pituitary-adrenal (HPA) axis on the hypothalamic-pituitary-gonadal (HPG) axis revolve around the central role that glucocorticoids play in mobilizing energy. As an individual's energy balance becomes negative, the HPA axis helps mobilize energy and shifts energy expenditure away from reproduction toward maintenance and survival. While there is evidence in support of these relationships, substantial species variability exists. Studies in a greater diversity of species promise to enhance our understanding of the interactions between these axes. In this field study we tested for relationships among body condition, corticosterone, and sex steroid concentrations in three species of closely related watersnakes: the common watersnake (Nerodia sipedon), the diamondback watersnake (Nerodia rhombifer) and the queen snake (Regina septemvittata). Snakes were sampled before and after a 30 min acute confinement stressor and body condition was estimated using the scaled mass index. All three species exhibited robust elevations of corticosterone in response to acute stress, but only plasma progesterone was elevated by the acute stressor in queen snakes. There was no evidence for a suppression of sex steroid concentrations in any of the species. Body condition was negatively associated with baseline corticosterone in queen snakes and with post-stressor corticosterone in both queen and common watersnakes. Overall we found fairly strong support for the proposed link between corticosterone and energetics in two of the three watersnake species, but no support for the hypothesis that acute stressors are associated with reproductive suppression, at least as measured by steroid concentrations.
Collapse
Affiliation(s)
- K Louise McCallie
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA; Natural Resources Institute, Texas A&M University, College Station, TX 77843, USA
| | - Matthew Klukowski
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA.
| |
Collapse
|
8
|
Bauer C, Oranges M, Firempong G, Romero LM. Corticosterone alters body weight, but not metabolites, during chronic stress. Physiol Biochem Zool 2022; 95:465-473. [DOI: 10.1086/721297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Bentz AB, Empson TA, George EM, Rusch DB, Buechlein A, Rosvall KA. How experimental competition changes ovarian gene activity in free-living birds: Implications for steroidogenesis, maternal effects, and beyond. Horm Behav 2022; 142:105171. [PMID: 35381449 DOI: 10.1016/j.yhbeh.2022.105171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/11/2022] [Accepted: 03/23/2022] [Indexed: 11/04/2022]
Abstract
The ovary plays an important role in mediating both a female's response to her social environment and communicating it to her developing offspring via maternal effects. Past work has focused on how ovarian hormones respond to competition, but we know little about how the broader ovarian transcriptomic landscape changes, either during or after competition, giving us a narrow perspective on how socially induced phenotypes arise. Here, we experimentally generated social competition among wild, cavity-nesting female birds (tree swallows, Tachycineta bicolor), a species in which females lack a socially induced rise in circulating testosterone but they nevertheless increase allocation to eggs. After territory settlement, we reduced availability of nesting cavities, generating heightened competition; within 24 h we reversed the manipulation, causing aggressive interactions to subside. We measured ovarian transcriptomic responses at the peak of competition and 48 h later, along with date-matched controls. Network analyses indicated that competing females experienced an immediate and temporary decrease in the expression of genes involved in the early stages of steroidogenesis, and this was moderately correlated with plasma testosterone; however, two days after competition had ended, there was a marked increase in the expression of genes involved in the final stages of steroidogenesis, including HSD17B1. Gene networks related to the cell cycle, muscle performance, and extracellular matrix organization also displayed altered activity. Although the functional consequences of these findings are unclear, they shed light on socially responsive ovarian genomic mechanisms that could potentially exert lasting effects on behavior, reproduction, and maternal effects.
Collapse
Affiliation(s)
- Alexandra B Bentz
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; Department of Biology, University of Oklahoma, Norman, OK 73019, USA.
| | - Tara A Empson
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
| | - Elizabeth M George
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, USA
| | - Aaron Buechlein
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, USA
| | | |
Collapse
|
10
|
Crino OL, Falk S, Katsis AC, Kraft FLOH, Buchanan KL. Mitochondria as the powerhouses of sexual selection: Testing mechanistic links between development, cellular respiration, and bird song. Horm Behav 2022; 142:105184. [PMID: 35596967 DOI: 10.1016/j.yhbeh.2022.105184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/04/2022]
Abstract
The developmental environment can affect the expression of sexually selected traits in adulthood. The physiological mechanisms that modulate such effects remain a matter of intense debate. Here, we test the role of the developmental environment in shaping adult mitochondrial function and link mitochondrial function to expression of a sexually selected trait in males (bird song). We exposed male zebra finches (Taeniopygia guttata) to corticosterone (CORT) treatment during development. After males reached adulthood, we quantified mitochondrial function from whole red blood cells and measured baseline CORT and testosterone levels, body condition/composition, and song structure. CORT-treated males had mitochondria that were less efficient (FCRL/R) and used a lower proportion of maximum capacity (FCRR/ETS) than control males. Additionally, CORT-treated males had higher baseline levels of CORT as adults compared to control males. Using structural equation modelling, we found that the effects of CORT treatment during development on adult mitochondrial function were indirect and modulated by baseline CORT levels, which are programmed by CORT treatment during development. Developmental treatment also had an indirect effect on song peak frequency. Males treated with CORT during development sang songs with higher peak frequency than control males, but this effect was modulated through increased CORT levels and by a decrease in FCRR/ETS. CORT-treated males had smaller tarsi compared to control males; however, there were no associations between body size and measures of song frequency. Here, we provide the first evidence supporting links between the developmental environment, mitochondrial function, and the expression of a sexually selected trait (bird song).
Collapse
Affiliation(s)
- Ondi L Crino
- Research School of Biology, Australian National University, Canberra, ACT, Australia; Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia.
| | - Steph Falk
- School of Biological Science Monash University, Melbourne, VIC, Australia; Institute of Immunology and Epigenetics, Max Planck Institute, Baden-Württemberg, Germany
| | - Andrew C Katsis
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia; College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Fanny-Linn O H Kraft
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia; Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Katherine L Buchanan
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
11
|
Rimbach R, Hartman KJ, Currin C, Schradin C, Pillay N. Females of solitary- and group-living sister species of African striped mice show a similar social structure following experimentally imposed group-living. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03144-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
George EM, Wolf SE, Bentz AB, Rosvall KA. Testing hormonal responses to real and simulated social challenges in a competitive female bird. Behav Ecol 2022; 33:233-244. [PMID: 35210941 PMCID: PMC8857935 DOI: 10.1093/beheco/arab129] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/14/2021] [Accepted: 10/18/2021] [Indexed: 08/25/2024] Open
Abstract
Competitive interactions often occur in series; therefore animals may respond to social challenges in ways that prepare them for success in future conflict. Changes in the production of the steroid hormone testosterone (T) are thought to mediate phenotypic responses to competition, but research over the past few decades has yielded mixed results, leading to several potential explanations as to why T does not always elevate following a social challenge. Here, we measured T levels in tree swallows (Tachycineta bicolor), a system in which females compete for limited nesting cavities and female aggression is at least partially mediated by T. We experimentally induced social challenges in two ways: (1) using decoys to simulate territorial intrusions and (2) removing subsets of nesting cavities to increase competition among displaced and territory-holding females. Critically, these experiments occurred pre-laying, when females are physiologically capable of rapidly increasing circulating T levels. However, despite marked aggression in both experiments, T did not elevate following real or simulated social challenges, and in some cases, socially challenged females had lower T levels than controls. Likewise, the degree of aggression was negatively correlated with T levels following a simulated territorial intrusion. Though not in line with the idea that social challenges prompt T elevation in preparation for future challenges, these patterns nevertheless connect T to territorial aggression in females. Coupled with past work showing that T promotes aggression, these results suggest that T may act rapidly to allow animals to adaptively respond to the urgent demands of a competitive event.
Collapse
Affiliation(s)
- Elizabeth M George
- Department of Biology, Indiana University Bloomington, Bloomington, IN, USA
| | - Sarah E Wolf
- Department of Biology, Indiana University Bloomington, Bloomington, IN, USA
| | - Alexandra B Bentz
- Department of Biology, Indiana University Bloomington, Bloomington, IN, USA
| | - Kimberly A Rosvall
- Department of Biology, Indiana University Bloomington, Bloomington, IN, USA
| |
Collapse
|
13
|
Kelley S, Farrell TM, Lind CM. Validating the Use of a Quick-Read Glucometer to Assess the Glycemic Response to Short-Term Capture Stress in Two Species of Snake, Nerodia sipedon and Sistrurus miliarius. ICHTHYOLOGY & HERPETOLOGY 2021. [DOI: 10.1643/h2020102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Shannon Kelley
- Department of Natural Sciences and Mathematics, Stockton University, 101 Vera King Farris Drive, Galloway, New Jersey 08205; (SK) ; and (CML) . Send reprint requests to CML
| | - Terence M. Farrell
- Department of Biology, Stetson University, 421 North Woodland Boulevard, DeLand, Florida 32723;
| | - Craig M. Lind
- Department of Natural Sciences and Mathematics, Stockton University, 101 Vera King Farris Drive, Galloway, New Jersey 08205; (SK) ; and (CML) . Send reprint requests to CML
| |
Collapse
|
14
|
Pain EL, Koenig A, Di Fiore A, Lu A. Behavioral and physiological responses to instability in group membership in wild male woolly monkeys (Lagothrix lagotricha poeppigii). Am J Primatol 2021; 83:e23240. [PMID: 33555611 DOI: 10.1002/ajp.23240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 01/11/2021] [Accepted: 01/24/2021] [Indexed: 11/08/2022]
Abstract
In group-living species, integrating into a new social group after dispersal is an important life history milestone associated with physical and social challenges. Generally, this process seems to be accompanied by heightened glucocorticoid (GC) concentrations; however, most studies of physiological responses to group transfer have been conducted on species with despotic social relationships, where integrating individuals are often targets of frequent aggression. Here we present data on fecal glucocorticoid (fGC) concentrations during periods of unstable group membership for male woolly monkeys (Lagothrix lagotricha poeppigii), a species with extremely low rates of male-male aggression and generally tolerant male-male associations. We collected data on males in four study groups at the Tiputini Biodiversity Station, Ecuador, and observed three attempted transfer events, involving a total of four adult males, in one study group. We observed only three instances of overt aggression (chases) between males across the entire study period, though male display behaviors were more frequent. We tested whether rates of displays were higher during periods of unstable group membership using a generalized linear mixed model (LMM). We also examined whether male status, group stability, and the occurrence of intergroup encounters affected fGC concentrations using LMMs. Contrary to our predictions, rates of display behaviors were not higher during periods of unstable group membership. However, both transient/integrating males and those who were already group members showed elevated fGC concentrations during these unstable periods. Our results suggest that even in species with tolerant male-male relationships, the integration of unfamiliar individuals can provoke an increase in GCs.
Collapse
Affiliation(s)
- Evelyn L Pain
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Andreas Koenig
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, New York, USA.,Department of Anthropology, Stony Brook University, Stony Brook, New York, USA
| | - Anthony Di Fiore
- Department of Anthropology and Primate Molecular Ecology and Evolution Laboratory, University of Texas at Austin, Austin, Texas, USA.,College of Biological and Environmental Sciences, Universidad San Francisco de Quito, Cumbayá, Ecuador
| | - Amy Lu
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, New York, USA.,Department of Anthropology, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
15
|
Li M, Nabi G, Sun Y, Wang Y, Wang L, Jiang C, Cao P, Wu Y, Li D. The effect of air pollution on immunological, antioxidative and hematological parameters, and body condition of Eurasian tree sparrows. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111755. [PMID: 33396078 DOI: 10.1016/j.ecoenv.2020.111755] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 05/04/2023]
Abstract
Air pollution constitutes potential threats to wildlife and human health; therefore, it must be monitored accurately. However, little attention has been given to understanding the toxicological effects induced by air pollution and the suitability of bird species as bioindicators. The Eurasian tree sparrow (Passer montanus), a human commensal species, was used as a study model to examine toxic metal accumulation, retention of particulate matter (PM), immunological and antioxidant capacities, and hematological parameters in birds inhabiting those areas with relatively higher (Shijiazhuang city) or lower (Chengde city) levels of PM2.5 and PM10 in China. Our results showed that Shijiazhuang birds had significantly more particle retention in the lungs and toxic metal (including aluminum, arsenic, cadmium, iron, manganese, and lead) accumulation in the feathers relative to Chengde birds. They also had lower superoxide dismutase, albumin, immunoglobulin M concentrations in the lung lavage fluid, and total antioxidant capacity (T-AOC) in the lungs and hearts. Furthermore, although they had higher proportions of microcytes, hypochromia, and polychromatic erythrocytes in the peripheral blood (a symptom of anemia), both populations exhibited comparable body conditions, white cell counts, heterophil and lymphocyte ratios, and plasma T-AOC and corticosterone levels. Therefore, our results not only confirmed that Shijiazhuang birds experienced a greater burden from environmental PM and toxic metals but also identified a suite of adverse effects of environmental pollution on immunological, antioxidative, and hematological parameters in multiple tissues. These findings contribute to our understanding of the physiological health consequences induced by PM exposure in wild animals. They suggest that free-living birds inhabiting urban areas could be used as bioindicators for evaluating the adverse effects induced by environmental pollution.
Collapse
Affiliation(s)
- Mo Li
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China; Life Sciences College of Cangzhou Normal University, Cangzhou, China
| | - Ghulam Nabi
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yanfeng Sun
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China; Ocean College of Hebei Agricultural University, Qinhuangdao, China
| | - Yang Wang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Limin Wang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Chuan Jiang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Pengxiu Cao
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yuefeng Wu
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China.
| | - Dongming Li
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China.
| |
Collapse
|
16
|
Gormally BMG, Estrada R, McVey M, Romero LM. Beyond corticosterone: The acute stress response increases DNA damage in house sparrows. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:595-606. [PMID: 32798291 DOI: 10.1002/jez.2405] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 08/02/2020] [Indexed: 12/22/2022]
Abstract
Although corticosterone (Cort) has been the predominant metric used to assess acute stress in birds, it does not always accurately reflect how an animal copes with a stressor. Downstream measurements may be more reliable. In the current study, we tested the hypothesis that acute increases in DNA damage could be used to assess stressor exposure. Studies have shown DNA damage increases in response to stress-related hormones in vitro; however, this has not yet been thoroughly applied in wild animals. We exposed house sparrows (Passer domesticus) to a 30- or 120-min restraint stressor and took blood samples at 0, 30, 60, and 120 min to measure Cort, DNA damage, and uric acid. Both treatments increased DNA damage and Cort, and decreased uric acid. It thus appears that DNA damage can reflect acute stressor exposure. To improve the usability of DNA damage as a metric for stress, we also tested the impacts of sample storage on DNA damage. Leaving red blood cells on ice for up to 24 hr, only slightly influenced DNA damage. Freezing blood samples for 1-4 weeks substantially increased DNA damage. These findings emphasize the importance of reducing variation between samples by assaying them together whenever possible. Overall, these results indicate that assessing DNA damage is a valid method of assessing acute stressor exposure that is suitable for both laboratory- and field-based studies; however, additional research is needed on the molecular dynamics of nucleated red blood cells, including whether and how their DNA is repaired.
Collapse
Affiliation(s)
| | - Rodolfo Estrada
- Department of Biology, Tufts University, Medford, Massachusetts
| | - Mitch McVey
- Department of Biology, Tufts University, Medford, Massachusetts
| | | |
Collapse
|
17
|
Cooper CE, Hurley LL, Deviche P, Griffith SC. Physiological responses of wild zebra finches ( Taeniopygia guttata) to heatwaves. J Exp Biol 2020; 223:jeb225524. [PMID: 32376711 DOI: 10.1242/jeb.225524] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 04/30/2020] [Indexed: 12/17/2022]
Abstract
Desert birds inhabit hot, dry environments that are becoming hotter and drier as a consequence of climate change. Extreme weather such as heatwaves can cause mass-mortality events that may significantly impact populations and species. There are currently insufficient data concerning physiological plasticity to inform models of species' response to extreme events and develop mitigation strategies. Consequently, we examine here the physiological plasticity of a small desert bird in response to hot (mean maximum ambient temperature=42.7°C) and cooler (mean maximum ambient temperature=31.4°C) periods during a single Austral summer. We measured body mass, metabolic rate, evaporative water loss and body temperature, along with blood parameters (corticosterone, glucose and uric acid) of wild zebra finches (Taeniopygia guttata) to assess their physiological state and determine the mechanisms by which they respond to heatwaves. Hot days were not significant stressors; they did not result in modification of baseline blood parameters or an inability to maintain body mass, provided drinking water was available. During heatwaves, finches shifted their thermoneutral zone to higher temperatures. They reduced metabolic heat production, evaporative water loss and wet thermal conductance, and increased hyperthermia, especially when exposed to high ambient temperature. A consideration of the significant physiological plasticity that we have demonstrated to achieve more favourable heat and water balance is essential for effectively modelling and planning for the impacts of climate change on biodiversity.
Collapse
Affiliation(s)
- Christine Elizabeth Cooper
- School of Molecular and Life Sciences, Curtin University, Perth, Western Australia 3102, Australia
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Laura Leilani Hurley
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Pierre Deviche
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Simon Charles Griffith
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
18
|
Wilsterman K, Alonge MM, Bao X, Conner KA, Bentley GE. Food access modifies GnIH, but not CRH, cell number in the hypothalamus in a female songbird. Gen Comp Endocrinol 2020; 292:113438. [PMID: 32060003 DOI: 10.1016/j.ygcen.2020.113438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 11/23/2022]
Abstract
Food deprivation or restriction causes animals to mount a stereotypical behavioral and physiological response that involves overall increases in activity, elevated glucocorticoid production, and (often) inhibition of the reproductive system. Although there is increasing evidence that these responses can differ in their degree or covariation between the sexes, most studies to-date on food restriction/deprivation have focused on male songbirds. We therefore aimed to characterize the behavioral, physiological, and neuroendocrine response to acute food deprivation in a female songbird using a nomadic species, the zebra finch. We quantified behavior during a 6.5 h food deprivation and then measured physiological and neuroendocrine responses of female birds at the 6.5 h timepoint. Within 1 h of acute food deprivation, female zebra finches increased foraging behaviors, and after 6.5 h of food deprivation, females lost 5% of their body mass, on average. Change in body mass was positively associated with elevated corticosterone and (contrary to findings in male zebra finches) negatively related to the number of gonadotropin inhibitory hormone-immunoreactive cells in the hypothalamus. However, there was no effect of food deprivation on corticotropin releasing hormone-immunoreactive cells in the hypothalamus. There was also no relationship between corticotropin releasing hormone-immunoreactive cell number and circulating corticosterone. Our results are consistent with the hypothesis that neuroendocrine responses to food deprivation differ between male and female songbirds. Future studies should work to incorporate sex comparisons to evaluate sex-specific neuroendocrine responses to acute stress.
Collapse
Affiliation(s)
| | - Mattina M Alonge
- Integrative Biology, Univ. of California - Berkeley, Berkeley, CA, USA
| | - Xinmiao Bao
- Integrative Biology, Univ. of California - Berkeley, Berkeley, CA, USA
| | - Kristin A Conner
- Integrative Biology, Univ. of California - Berkeley, Berkeley, CA, USA
| | - George E Bentley
- Integrative Biology, Univ. of California - Berkeley, Berkeley, CA, USA; Helen Wills Neuroscience Institute, Univ. of California - Berkeley, Berkeley, CA, USA
| |
Collapse
|
19
|
Grant AR, Baldan D, Kimball MG, Malisch JL, Ouyang JQ. Across time and space: Hormonal variation across temporal and spatial scales in relation to nesting success. Gen Comp Endocrinol 2020; 292:113462. [PMID: 32171744 PMCID: PMC7187986 DOI: 10.1016/j.ygcen.2020.113462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 02/16/2020] [Accepted: 03/10/2020] [Indexed: 12/30/2022]
Abstract
There is a renewed interest in investigating individual variation in hormone levels in relation to fitness metrics, as hormones act as mediators of life-history trade-offs. Hormone concentrations, however, are labile, responding to both internal and external stimuli, so the relationship between hormones and fitness can be non-consistent. One explanation of this inconsistent relationship is that a single hormone sample may not be representative of individual phenotypes in a free-living species. We addressed this issue by repeatedly sampling a free-living population of mountain white-crowned sparrows, Zonotrichia leucophrys oriantha, for baseline and stress-induced corticosterone (cort) and testosterone (T) across different stages of the breeding season. We measured (co)variation using three different methods, taking into account inter- and intra-individual variances, to determine whether hormone levels and the stress response are repeatable. We documented the temporal (over 3 months) and spatial (home-range) variation of individual hormone phenotypes and investigated how these components related to nesting success. At the population level, we found significant repeatability in male stress-induced cort concentrations but no repeatability in male or female baseline cort or male T concentrations. Using a new metric of intra-individual variance focusing on the stress response (profile repeatability), we found a wide range of variance scores, with most individuals showing high variation in their stress response. Similarly, we found a low level of repeatability of the reaction norm intercept and slope for the stress response across different life-history stages. Males with higher concentrations of stress-induced cort had more central home-ranges. Males with higher body condition had larger home-ranges; however, home-range size did not relate to male hormone concentrations or nesting success. We also did not find any significant relationship between variation in hormone levels and nesting success. We recommend that future studies combine both physiological and environmental components to better understand the relationship between hormones and fitness.
Collapse
Affiliation(s)
- Avery R Grant
- Department of Biology, University of Nevada, Reno, Reno, NV, USA.
| | - Davide Baldan
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
| | - Melanie G Kimball
- Department of Biology, St. Mary's College of Maryland, St. Marys City, MD, USA
| | - Jessica L Malisch
- Department of Biology, St. Mary's College of Maryland, St. Marys City, MD, USA
| | - Jenny Q Ouyang
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
| |
Collapse
|
20
|
Lind CM, Moore IT, Vernasco BJ, Latney LV, DiGeronimo PM, Farrell TM. The relationship between steroid hormones and seasonal reproductive events in free-living female Pygmy Rattlesnakes, Sistrurus miliarius. Gen Comp Endocrinol 2020; 290:113416. [PMID: 32006531 DOI: 10.1016/j.ygcen.2020.113416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Craig M Lind
- Department of Natural Science and Mathematics, Stockton University, Galloway, NJ, United States.
| | - Ignacio T Moore
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Ben J Vernasco
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | | | | | - Terence M Farrell
- Department of Biology, Stetson University, DeLand, FL, United States
| |
Collapse
|
21
|
Will A, Wynne‐Edwards K, Zhou R, Kitaysky A. Of 11 candidate steroids, corticosterone concentration standardized for mass is the most reliable steroid biomarker of nutritional stress across different feather types. Ecol Evol 2019; 9:11930-11943. [PMID: 31695898 PMCID: PMC6822065 DOI: 10.1002/ece3.5701] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/28/2019] [Accepted: 09/04/2019] [Indexed: 11/17/2022] Open
Abstract
Measuring corticosterone in feathers has become an informative tool in avian ecology, enabling researchers to investigate carry-over effects and responses to environmental variability. Few studies have, however, explored whether corticosterone is the only hormone expressed in feathers and is the most indicative of environmental stress. Essential questions remain as to how to compare hormone concentrations across different types of feathers and whether preening adds steroids, applied after feather growth.We used liquid chromatography coupled to tandem mass spectrometry to quantify a suite of 11 steroid hormones in back, breast, tail, and primary feathers naturally grown at overlapping time intervals by rhinoceros auklet Cerorhinca monocerata captive-reared fledglings and wild-caught juveniles. The captive-reared birds were raised on either a restricted or control diet. Measured steroids included intermediates in the adrenal steroidogenesis pathway to glucocorticoids and the sex steroids pathway to androgens and estrogens.Corticosterone was detected in the majority of feathers of each type. We also detected cortisone in back feathers, androstenedione in breast feathers, and testosterone in primary feathers. Captive fledglings raised on a restricted diet had higher concentrations of corticosterone in all four feather types than captive fledglings raised on a control diet. Corticosterone concentrations were reliably repeatable across feather types when standardized for feather mass, but not for feather length. Of the seven hormones looked for in uropygial gland secretions, only corticosterone was detected in one out of 23 samples.We conclude that corticosterone is the best feather-steroid biomarker for detection of developmental nutritional stress, as it was the only hormone to manifest a signal of nutritional stress, and that exposure to stress can be compared among different feather types when corticosterone concentrations are standardized by feather mass.
Collapse
Affiliation(s)
- Alexis Will
- Institute of Arctic BiologyUniversity of Alaska FairbanksFairbanksAlaska
| | | | - Ruokun Zhou
- Veterinary Medicine & Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlberta
| | - Alexander Kitaysky
- Institute of Arctic BiologyUniversity of Alaska FairbanksFairbanksAlaska
| |
Collapse
|
22
|
Goymann W, Moore IT, Oliveira RF. Challenge Hypothesis 2.0: A Fresh Look at an Established Idea. Bioscience 2019. [DOI: 10.1093/biosci/biz041] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Wolfgang Goymann
- Abteilung für Verhaltensneurobiologie, at the Max-Planck-Institut für Ornithologie, in Seewiesen, Germany
| | - Ignacio T Moore
- Department of Biological Sciences at Virginia Tech, in Blacksburg, Virginia
| | - Rui F Oliveira
- Instituto Superior de Psicologia Aplicada's Instituto Universitário, in Lisboa, Portugal; with the Integrative Behavioural Biology Lab, at the Instituto Gulbenkian de Ciência, in Oeiras, Portugal; and with the Champalimaud Neuroscience Programme, at the Champalimaud Center for the Unknown, Neurosciences, also in Lisboa
| |
Collapse
|
23
|
Watson DM, Znidersic E, Craig MD. Ethical birding call playback and conservation. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2019; 33:469-471. [PMID: 30054953 DOI: 10.1111/cobi.13199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 06/08/2023]
Affiliation(s)
- David M Watson
- Institute for Land, Water and Society, Charles Sturt University, P.O. Box 789, Albury, 2640, Australia
| | - Elizabeth Znidersic
- Institute for Land, Water and Society, Charles Sturt University, P.O. Box 789, Albury, 2640, Australia
| | - Michael D Craig
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, 6009, Australia
- School of Veterinary and Life Sciences, Murdoch University, 90 South Street, Perth Western, 6150, Australia
| |
Collapse
|
24
|
Assis VR, Titon SCM, Gomes FR. Acute stress, steroid plasma levels, and innate immunity in Brazilian toads. Gen Comp Endocrinol 2019; 273:86-97. [PMID: 29750968 DOI: 10.1016/j.ygcen.2018.05.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/20/2018] [Accepted: 05/07/2018] [Indexed: 10/17/2022]
Abstract
Stress from habitat fragmentation has been shown to impact amphibian declines. Studies from a variety of vertebrates indicate that stressed animals exhibit an acute increase in circulating plasma glucocorticoid (GC) levels and consequent immunomodulation. To further explore the relationship between GCs and immunity, we subjected three species of newly captured Brazilian toads, Rhinella ornata, R. icterica and R. schneideri to restraint with or without movement restriction (maintenance in a moistened cloth bag vs. maintenance in a bin) for 24 h. We compared various parameters from baseline (field conditions) with values after restraint, including those associated with stress (corticosterone [CORT] plasma levels), and the neutrophil/lymphocyte ratio [N:L ratio]), potential reproduction (testosterone [T] plasma levels), and innate immunity (bacterial killing ability [BKA]). General responses to the restraint challenge (baseline vs. restraint) included increased CORT levels and N:L ratio, and decreased T levels and BKA. Additionally, CORT levels and N:L ratio tended to increase more from restraint with movement restriction than to restraint without movement restriction, indicating toads showed increased stress response to the more intense stressor. All variables showed interspecific variation at baseline conditions: R. ornata had higher CORT levels when compared to the other two species, while R. icterica had the highest BKA values. After restraint (with or without movement restriction), R. ornata displayed higher values for T and N:L ratio, and showed higher CORT values after restraint without movement restriction; however, the CORT values were similar among species after restraint with movement restriction. In terms of immunity, in response to restraint, BKA was different among species only after restraint with movement restriction, with R. schneideri showing the lowest BKA values. Our results show that restraint increases common markers of the stress response, and could reduce potential reproduction and innate immune responses in toads from all studied species. Our results also showed variation at the interspecific level, with the amplitude of change in the studied variables being consistent and more pronounced following restraint with movement restriction for the three-studied species.
Collapse
Affiliation(s)
- Vania Regina Assis
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, 05508-900, São Paulo, SP, Brazil.
| | - Stefanny Christie Monteiro Titon
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, 05508-900, São Paulo, SP, Brazil
| | - Fernando Ribeiro Gomes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, 05508-900, São Paulo, SP, Brazil
| |
Collapse
|
25
|
Vernasco BJ, Horton BM, Ryder TB, Moore IT. Sampling baseline androgens in free-living passerines: Methodological considerations and solutions. Gen Comp Endocrinol 2019; 273:202-208. [PMID: 30056137 DOI: 10.1016/j.ygcen.2018.07.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/18/2018] [Accepted: 07/25/2018] [Indexed: 12/28/2022]
Abstract
Obtaining baseline hormone samples can be challenging because circulating hormone levels often change rapidly due to the acute stress of capture. Although field protocols are established for accurately sampling baseline glucocorticoid concentrations, fewer studies have examined how common sampling techniques affect androgens levels. Indeed, many studies focused on understanding the functional significance of baseline androgen levels use sampling methods known to activate the endocrine responses to stress. To understand how different field sampling protocols affect plasma androgen levels, we measured the androgen response to two types of capture stressors in a free-living tropical bird, the wire-tailed manakin (Pipra filicauda). First, we subjected males to a standardized capture and restraint protocol lasting either 15 or 30 min. Second, males were passively captured in nets that were filmed (to establish exact duration of time between capture and blood sampling) and checked every 30 min. The first study showed that circulating plasma androgen levels decreased significantly following both 15 and 30 min of restraint in a cloth bag, with a trend for the 30 min samples to be lower than the 15 min samples. Further, the change in androgen levels was dependent on an individual's initial androgen levels, with the individuals with the highest initial levels registering the largest declines. The results of the second study suggest that hanging in a mist net for extended periods of time also leads to a decrease in circulating androgen levels, but this effect was weaker than that of capture and restraint in a cloth bag. Our findings demonstrate that, overall, circulating androgen levels decrease in response to common sampling techniques; a finding that has important implications for studies measuring baseline androgen levels in free-living birds. Future studies should prioritize sampling individuals immediately upon removal from the mist net, as handling and restraint have a strong negative effect on circulating androgen levels. When constant monitoring of the mist net is not possible, investigators should use video cameras to record the amount of time an individual spends in the net prior to blood sampling and then statistically control for the effect of this variable in analyses.
Collapse
Affiliation(s)
- Ben J Vernasco
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Brent M Horton
- Department of Biology, Millersville University, Millersville, PA 17551, USA
| | - T Brandt Ryder
- Migratory Bird Center, Smithsonian Conservation Biology Institute, Washington, DC, USA
| | - Ignacio T Moore
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
26
|
Needham KB, Bergeon Burns C, Graham JL, Bauer CM, Kittilson JD, Ketterson ED, Hahn T, Greives TJ. Changes in processes downstream of the hypothalamus are associated with seasonal follicle development in a songbird, the dark-eyed junco (Junco hyemalis). Gen Comp Endocrinol 2019; 270:103-112. [PMID: 30339809 DOI: 10.1016/j.ygcen.2018.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 10/04/2018] [Accepted: 10/15/2018] [Indexed: 02/07/2023]
Abstract
Mechanisms related to seasonal reproductive timing in vertebrates have received far more study in males than in females, despite the fact that female timing decisions dictate when rearing of offspring will occur. Production and release of gonadotropin-releasing hormone (GnRH) by the hypothalamus stimulates the pituitary to secrete gonadotropins, initiating the beginning stages of gonadal recrudescence and production of the sex steroids, testosterone and estradiol, which are necessary to prime the liver for secretion of yolk precursors in breeding female birds. While stimulation by the hypothalamus can occur during the pre-breeding period, egg development itself is likely regulated downstream of the hypothalamus. We used GnRH challenges to examine variation in breeding-stage-specific patterns of pituitary and ovarian responsiveness in free-living female dark-eyed juncos (Junco hyemalis) and also examined the ovary and liver for variation in mRNA expression of candidate genes. Baseline LH levels increased during the transition from pre-breeding to egg-development, however no significant difference was observed in post-GnRH injection levels for LH or sex steroids (testosterone and estradiol). Interestingly, a stage by time-point interaction was observed, with post-GnRH LH levels increasing over baseline during the pre-breeding stage, but not during the egg-development stage. We observed a decrease in liver mRNA expression of estradiol receptor-alpha, and glucocorticoid and mineralocorticoid receptors and a decrease in glucocorticoid receptor expression levels in the ovary. A decline in FSH receptor expression across stages was also observed in the ovary. Combined, our data suggest seasonal variation in female's sensitivity to signals of HPG activity and energetic or stress signals. These data provide additional insight into the physiological mechanisms regulating onset of clutch initiation.
Collapse
Affiliation(s)
- Katie B Needham
- Department of Biological Sciences, North Dakota State University, Fargo, ND, USA; Environmental and Conservation Sciences Program, North Dakota State University, Fargo, ND, USA
| | | | - Jessica L Graham
- Department of Biological Sciences, North Dakota State University, Fargo, ND, USA; Environmental and Conservation Sciences Program, North Dakota State University, Fargo, ND, USA
| | - Carolyn M Bauer
- Department of Biological Sciences, North Dakota State University, Fargo, ND, USA; Department of Biology, Adelphi University, Garden City, NY, USA
| | - Jeffrey D Kittilson
- Department of Biological Sciences, North Dakota State University, Fargo, ND, USA
| | | | - Thomas Hahn
- College of Biological Sciences, UC Davis, Davis, CA, USA
| | - Timothy J Greives
- Department of Biological Sciences, North Dakota State University, Fargo, ND, USA; Environmental and Conservation Sciences Program, North Dakota State University, Fargo, ND, USA
| |
Collapse
|
27
|
Titon SCM, Titon Junior B, Assis VR, Kinker GS, Fernandes PACM, Gomes FR. Interplay among steroids, body condition and immunity in response to long-term captivity in toads. Sci Rep 2018; 8:17168. [PMID: 30464319 PMCID: PMC6249311 DOI: 10.1038/s41598-018-35495-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 11/02/2018] [Indexed: 12/13/2022] Open
Abstract
Stressful experiences can promote harmful effects on physiology and fitness. However, stress-mediated hormonal and immune changes are complex and may be highly dependent on body condition. Here, we investigated captivity-associated stress effects, over 7, 30, 60, and 90 days on plasma corticosterone (CORT) and testosterone (T) levels, body index, and innate immunity (bacterial killing ability and phagocytosis of peritoneal cells) in toads (Rhinella icterica). Toads in captivity exhibited elevated CORT and decreased T and immunity, without changes in body index. The inter-relationships between these variables were additionally contrasted with those obtained previously for R. schneideri, a related species that exhibited extreme loss of body mass under the same captive conditions. While T and phagocytosis were positively associated in both species, the relationship between CORT and bacterial killing ability was dependent on body index alterations. While CORT and bacterial killing ability were positively associated for toads that maintained body index, CORT was negatively associated with body index in toads that lost body mass over time in captivity. In these same toads, body index was positively associated with bacterial killing ability. These results demonstrate that steroids-immunity inter-relationships arising from prolonged exposure to a stressor in toads are highly dependent on body condition.
Collapse
Affiliation(s)
| | - Braz Titon Junior
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Sao Paulo, Brazil
| | - Vania Regina Assis
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Sao Paulo, Brazil
| | - Gabriela Sarti Kinker
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Sao Paulo, Brazil
| | | | - Fernando Ribeiro Gomes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Sao Paulo, Brazil
| |
Collapse
|
28
|
Malisch JL, Bennett DJ, Davidson BA, Wenker EE, Suzich RN, Johnson EE. Stress-Induced Hyperglycemia in White-Throated and White-Crowned Sparrows: A New Technique for Rapid Glucose Measurement in the Field. Physiol Biochem Zool 2018; 91:943-949. [PMID: 29847208 DOI: 10.1086/698536] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Organisms experience stressors, and the physiological response to these stressors is highly conserved. Acute stress activates both the sympathetic nervous system and the hypothalamic-pituitary-adrenal axis, increasing epinephrine, norepinephrine, and glucocorticoids, collectively promoting glucose mobilization. While this is well characterized in mammals, the hyperglycemic response to stress in avian and nonavian reptiles has received less attention. A number of factors, ranging from time of day to blood loss, are reported to influence the extent to which acute stress leads to hyperglycemia in birds. Here we characterized the glycemic response to acute handling stress in two species of free-living sparrows: white-throated sparrows (WTSPs: Zonotrichia albicollis) in St. Mary's County, Maryland, and white-crowned sparrows (WCSPs: Zonotrichia leucophrys) in Tioga Pass Meadow, California. We validated a novel technique for rapid field measurement of glucose using a human blood glucose meter, FreeStyle Lite. As expected, acute handling stress elevated blood glucose at both 15 and 30 min postcapture as compared to baseline for both WTSPs and WCSPs. In addition, handling for 30 min without bleeding had the same hyperglycemic effect as handling with serial bleeds in WCSPs. Finally, body condition that was measured as abdominal fat score predicted stress-induced blood glucose in WTSPs but not in WCSPs. Our results are consistent with the mammalian literature on acute stress and energy mobilization, and we introduce a new field technique for avian field biologists.
Collapse
|
29
|
Rusch TW, Sears MW, Angilletta MJ. Lizards perceived abiotic and biotic stressors independently when competing for shade in terrestrial mesocosms. Horm Behav 2018; 106:44-51. [PMID: 30218647 DOI: 10.1016/j.yhbeh.2018.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 09/03/2018] [Accepted: 09/10/2018] [Indexed: 11/21/2022]
Abstract
Hormones such as glucocorticoids and androgens enable animals to respond adaptively to environmental stressors. For this reason, circulating glucocorticoids became a popular biomarker for estimating the quality of an environment, and circulating androgens are frequently used to indicate social dominance. Here, we show that access to thermal resources influence the hormones and behavior of male lizards (Sceloporus jarrovi). We exposed isolated and paired males to different thermal landscapes, ranging from one large patch of shade to sixteen smaller patches. Both the presence of a competitor and the patchiness of the thermal environment influenced hormone concentrations and movement patterns. When shade was concentrated in space, paired lizards competed more aggressively and circulated more corticosterone. Even without competitors, lizards circulated more corticosterone in landscapes with fewer patches of shade. Conversely, shifts in circulating testosterone depended only on the relative body size of a lizard; when paired, large males and small males circulated more and less testosterone, respectively. Furthermore, isolated males moved the farthest and covered the most area when shade was concentrated in a single patch, but paired males did the opposite. Because the total area of shade in each landscape was the same, these hormonal and behavioral responses of lizards reflect the ability to access shade. Thus, circulating glucocorticoids should reflect the thermal quality of an environment when researchers have controlled for other factors. Moreover, a theory of stress during thermoregulation would help ecologists anticipate physiological and behavioral responses to changing climates.
Collapse
Affiliation(s)
- Travis W Rusch
- Arizona State University, School of Life Sciences, Tempe, AZ, USA.
| | | | | |
Collapse
|
30
|
Gormally BMG, Fuller R, McVey M, Romero LM. DNA damage as an indicator of chronic stress: Correlations with corticosterone and uric acid. Comp Biochem Physiol A Mol Integr Physiol 2018; 227:116-122. [PMID: 30336278 DOI: 10.1016/j.cbpa.2018.10.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 10/05/2018] [Indexed: 01/05/2023]
Abstract
Corticosterone does not change in consistent ways across species and contexts, making it challenging to use as an indicator of chronic stress. We assessed DNA damage as a potential metric that could be a more integrative stress measurement with direct links to health. We captured free-living house sparrows, took an immediate blood sample, and transferred them to the laboratory, exposing them to the chronic stress of captivity. Biweekly blood and weight samples were then taken for 4 weeks. We immediately assessed DNA damage in red blood cells using the comet assay and later quantified corticosterone. Uric acid was analyzed in a separate group of birds. We found that birds initially lost, but began to regain weight over the course of captivity. DNA damage peaked within the first 10 days of captivity, and mostly remained elevated. However, the cellular distribution of damage changed considerably over time; most cells showed low levels of damage early, a bimodal distribution of high and low DNA damage during the peak of damage, and a wide unimodal distribution of damage at the end of the 4 weeks. Furthermore, corticosterone increased and remained elevated and uric acid decreased and remained depleted over the same period. Although both a molecular (DNA damage) and an endocrine (corticosterone) marker showed similar response profiles over the 4 weeks, they were not correlated, suggesting they reflect different aspects of the underlying physiology. These data provide convincing preliminary evidence that DNA damage has potential to be an additional indicator of chronic stress.
Collapse
Affiliation(s)
| | - Rory Fuller
- Department of Biology, Tufts University, Medford 02155, MA, USA
| | - Mitch McVey
- Department of Biology, Tufts University, Medford 02155, MA, USA
| | | |
Collapse
|
31
|
Duckworth BM, Jawor JM. Corticosterone profiles in northern cardinals (Cardinalis cardinalis): Do levels vary through life history stages? Gen Comp Endocrinol 2018; 263:1-6. [PMID: 29678726 DOI: 10.1016/j.ygcen.2018.04.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 11/24/2022]
Abstract
As animals move through life history stages, energy requirements for each stage will vary. Both daily and annual variation in the glucocoriticoid hormones (specifically corticosterone, or CORT, in birds) helps provide the variable energy needed through life history stages. In many bird species, CORT is higher in the breeding season when energy demands can be quite high and is often lower in the non-breeding season. Additionally, CORT has a role to play in the response to stressful stimuli and the level to which CORT is elevated following stressful events can vary through the annual cycle as well. Here we report on baseline and stress-induced CORT levels in both sexes of northern cardinals, Cardinalis cardinalis, a non-migrating, year-round territorial species across life history stages. Corticosterone is overall higher in the non-breeding season than the breeding season in both sexes. Males tend to have higher levels of stress-induced CORT than females, although the observed patterns are complex. Our findings differ from one of the more common profile reported in songbirds where breeding season CORT tends to be higher than non-breeding levels. A strong influence may be the prolonged breeding season seen in cardinals; lower levels of CORT during breeding may guard against adverse maternal effects, interruptions in breeding behaviors, or egg production. Additional investigation of species with similar ecologies to northern cardinals, and more populations of cardinals, may show that annual glucocorticoid profiles are more labile than previously appreciated.
Collapse
Affiliation(s)
- Benjamin M Duckworth
- Department of Biological Sciences, University of Southern Mississippi, 118 College Drive Box 5018, Hattiesburg, MS 39406, United States
| | - Jodie M Jawor
- Department of Biological Sciences, University of Southern Mississippi, 118 College Drive Box 5018, Hattiesburg, MS 39406, United States.
| |
Collapse
|
32
|
Deviche P, Bittner S, Gao S, Valle S. Roles and Mechanistic Bases of Glucocorticoid Regulation of Avian Reproduction. Integr Comp Biol 2018; 57:1184-1193. [PMID: 28985390 DOI: 10.1093/icb/icx112] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To maximize fitness, organisms must invest energetic and nutritional resources into developing, activating, and maintaining reproductive physiology and behavior. Corticosterone (CORT), the primary avian glucocorticoid, regulates energetic reserves to meet metabolic demands. At low (baseline) plasma levels, CORT activates avian mineralocorticoid receptors and may stimulate lipid mobilization, foraging activity, and feeding behavior. During stress in birds, elevated plasma CORT also stimulates glucocorticoid receptors and may promote glycemia, lipolysis, and proteolysis. Furthermore, CORT orchestrates physiological and behavioral adjustments to perceived threats. While many avian studies demonstrate effects of CORT on reproduction, few studies have elucidated the mechanisms, including receptor activation and site(s) of action, which underlie these effects. Even fewer studies have investigated how low and elevated plasma CORT regulates energetic reserves to meet the metabolic demands of reproduction. Here, we propose several hypotheses to clarify the direct and indirect effects of CORT on avian reproductive physiology and behavior. In addition, we emphasize the need for new manipulative studies involving alterations of endogenous plasma CORT levels and/or food availability to elucidate how CORT regulates the energetic demands of reproduction.
Collapse
Affiliation(s)
- Pierre Deviche
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Stephanie Bittner
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Sisi Gao
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Shelley Valle
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| |
Collapse
|
33
|
Vitousek MN, Taff CC, Hallinger KK, Zimmer C, Winkler DW. Hormones and Fitness: Evidence for Trade-Offs in Glucocorticoid Regulation Across Contexts. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00042] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
34
|
de Almeida AC, Palme R, Moreira N. How environmental enrichment affects behavioral and glucocorticoid responses in captive blue-and-yellow macaws ( Ara ararauna ). Appl Anim Behav Sci 2018. [DOI: 10.1016/j.applanim.2017.12.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Ullah R, Batool A, Wazir M, Naz R, Rahman TU, Wahab F, Shahab M, Fu J. Gonadotropin inhibitory hormone and RF9 stimulate hypothalamic-pituitary-adrenal axis in adult male rhesus monkeys. Neuropeptides 2017; 66:1-7. [PMID: 28757099 DOI: 10.1016/j.npep.2017.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 07/19/2017] [Accepted: 07/23/2017] [Indexed: 12/17/2022]
Abstract
Stress activates gonadotropin inhibitory hormone (GnIH), hypothalamic-pituitary-adrenal axis (HPA-axis) and represses hypothalamic-pituitary-gonadal axis (HPG-axis) but RF9 administration relieves stress-induced repression of the HPG-axis. Importantly, it was not known whether GnIH signaling and RF9 synthetic peptide modulate the HPA axis. To assess this, mammalian orthologs of GnIH (RFRP-1 and RFRP-3) and RF9 were administered to intact adult male rhesus monkeys. RFRP-1 (125μg/animal), RFRP-3 (250μg/animal) and RF9 (0.1mg/kg BW) were intravenously (iv) injected into normal fed (n=4) monkeys. Additionally, a single bolus iv injection of RF9 (0.1mg/kg BW) was also administered to 48h fasted monkeys (n=4) to check the effects of RF9 signaling on an activated HPA-axis. Serial blood samples were collected, centrifuged and the obtained plasma was used for the analysis of cortisol by specific enzyme immunoassay. RFRP-1 treatment significantly increased cortisol levels while RFRP-3 increased the plasma cortisol, but the effect was non-significant. RF9 treatment significantly increased cortisol levels in normal fed animals. In contrast, RF9 injection did not significantly alter circulating cortisol in fasted monkeys. In conclusion, our results suggest stimulatory action of RFRPs and RF9 on the HPA axis in the adult male monkeys. However, the mechanism and site of action of RFRP-1 and RF9 along the HPA-axis is still unknown. Therefore, further studies are needed to decipher the mechanism and site of action of RFRPs and RF9 on the HPA axis in primates.
Collapse
Affiliation(s)
- Rahim Ullah
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou 310051, China; Laboratory of Reproductive Neuroendocrinology, Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Aalia Batool
- Laboratory of Reproductive Neuroendocrinology, Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; The State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Madiha Wazir
- Laboratory of Reproductive Neuroendocrinology, Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Rabia Naz
- Laboratory of Reproductive Neuroendocrinology, Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Tanzil Ur Rahman
- Laboratory of Reproductive Neuroendocrinology, Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Department of Pathology and Pathophysiology, Key Laboratory of Reproductive Genetics, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Fazal Wahab
- Platform Degenerative Diseases, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, D-37077 Göttingen, Germany
| | - Muhammad Shahab
- Laboratory of Reproductive Neuroendocrinology, Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Junfen Fu
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou 310051, China.
| |
Collapse
|
36
|
Haskins JW, Spizzoucco FA, Walker BG. Seasonal variation and correlation between corticosterone and the antioxidant uric acid during stress in the Northern Cardinal (Cardinalis cardinalis). JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2017; 327:358-365. [DOI: 10.1002/jez.2095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/28/2017] [Accepted: 08/01/2017] [Indexed: 11/11/2022]
Affiliation(s)
| | - Frank A. Spizzoucco
- Department of Biology; Fairfield University; Fairfield Connecticut
- BNY Mellon; Orlando Florida
| | - Brian G. Walker
- Department of Biology; Fairfield University; Fairfield Connecticut
| |
Collapse
|
37
|
Deviche P, Desaivre S, Giraudeau M. Experimental Manipulation of Corticosterone Does Not Influence the Clearance Rate of Plasma Testosterone in Birds. Physiol Biochem Zool 2017; 90:575-582. [DOI: 10.1086/693043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
38
|
Scheiber IBR, de Jong ME, Komdeur J, Pschernig E, Loonen MJJE, Millesi E, Weiß BM. Diel pattern of corticosterone metabolites in Arctic barnacle goslings (Branta leucopsis) under continuous natural light. PLoS One 2017; 12:e0182861. [PMID: 28787012 PMCID: PMC5546627 DOI: 10.1371/journal.pone.0182861] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/25/2017] [Indexed: 12/18/2022] Open
Abstract
Here we describe the excretion pattern of corticosterone metabolites collected from droppings in barnacle goslings (Branta leucopsis) raised under 24 hours of continuous natural light in the Arctic. In lower latitudes, circulating corticosterone peaks around waking and shows a nadir between midnight and 4:00, whereas the peak and nadir are time-delayed slightly when measuring corticosterone metabolites from droppings. Photoperiod, along with other environmental factors, helps to entrain an animal's endogenous rhythm to that of the natural world. North of the Arctic Circle, photoperiod may not be a reliable cue as light is continuously absent during the winter and continuously present during the summer. Here, for the first time, we used droppings to describe a 24-hour excretion pattern of corticosterone metabolites (CORTm). By applying circular statistics for dependent data, we found a diel rhythmic pattern even under continuous natural light. We discuss potential alternative 'Zeitgeber' that may function even in the polar regions, focusing on melatonin. We propose a line of research to measure melatonin non-invasively from droppings. We also provide a validation of the adopted enzyme immunoassay (EIA) that was originally developed for greylag geese.
Collapse
Affiliation(s)
- Isabella B. R. Scheiber
- Behavioural and Physiological Ecology, Groningen Institute for Evolutionary Life Sciences, The University of Groningen, Groningen, The Netherlands
| | - Margje E. de Jong
- Arctic Centre, The University of Groningen, Groningen, The Netherlands
| | - Jan Komdeur
- Behavioural and Physiological Ecology, Groningen Institute for Evolutionary Life Sciences, The University of Groningen, Groningen, The Netherlands
| | | | | | - Eva Millesi
- Department of Behavioural Biology, University of Vienna, Vienna, Austria
| | - Brigitte M. Weiß
- Behavioural and Physiological Ecology, Groningen Institute for Evolutionary Life Sciences, The University of Groningen, Groningen, The Netherlands
- Behavioural Ecology Research Group, University of Leipzig, Germany
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
39
|
Fudickar AM, Greives TJ, Abolins-Abols M, Atwell JW, Meddle SL, Friis G, Stricker CA, Ketterson ED. Mechanisms Associated with an Advance in the Timing of Seasonal Reproduction in an Urban Songbird. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00085] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
40
|
Moser-Purdy C, MacDougall-Shackleton SA, Bonier F, Graham BA, Boyer AC, Mennill DJ. Male song sparrows have elevated testosterone in response to neighbors versus strangers. Horm Behav 2017; 93:47-52. [PMID: 28434901 DOI: 10.1016/j.yhbeh.2017.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 04/17/2017] [Accepted: 04/19/2017] [Indexed: 11/16/2022]
Abstract
Upon hearing a conspecific signal, animals must assess their relationship with the signaller and respond appropriately. Territorial animals usually respond more aggressively to strangers than neighbors in a phenomenon known as the "dear enemy effect". This phenomenon likely evolved because strangers represent a threat to an animal's territory tenure and parentage, whereas neighbors only represent a threat to an animal's parentage because they already possess a territory (providing territory boundaries are established and stable). Although the dear enemy effect has been widely documented using behavioral response variables, little research has been conducted on the physiological responses of animals to neighbors versus strangers. We sought to investigate whether the dear enemy effect is observed physiologically by exposing territorial male song sparrows (Melospiza melodia) to playback simulating a neighbor or a stranger, and then collecting blood samples to measure plasma testosterone levels. We predicted that song sparrows would exhibit increased testosterone levels after exposure to stranger playback compared to neighbor playback, due to the role testosterone plays in regulating aggression. Contrary to our prediction, we found that song sparrows had higher testosterone levels after exposure to neighbor playback compared to stranger playback. We discuss several explanations for our result, notably that corticosterone may regulate the dear enemy effect in male song sparrows and this may inhibit plasma testosterone. Future studies will benefit from examining corticosterone in addition to testosterone, to better understand the hormonal underpinnings of the dear enemy effect.
Collapse
Affiliation(s)
| | | | - Frances Bonier
- Biology Department, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Brendan A Graham
- Department of Biological Sciences, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Andrea C Boyer
- Department of Biology, Western University, London, ON N6G 1G9, Canada
| | - Daniel J Mennill
- Department of Biological Sciences, University of Windsor, Windsor, ON N9B 3P4, Canada.
| |
Collapse
|
41
|
Yewers MSC, Jessop TS, Stuart-Fox D. Endocrine differences among colour morphs in a lizard with alternative behavioural strategies. Horm Behav 2017; 93:118-127. [PMID: 28478216 DOI: 10.1016/j.yhbeh.2017.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 03/18/2017] [Accepted: 05/02/2017] [Indexed: 11/16/2022]
Abstract
Alternative behavioural strategies of colour morphs are expected to associate with endocrine differences and to correspond to differences in physical performance (e.g. movement speed, bite force in lizards); yet the nature of correlated physiological and performance traits in colour polymorphic species varies widely. Colour morphs of male tawny dragon lizards Ctenophorus decresii have previously been found to differ in aggressive and anti-predator behaviours. We tested whether known behavioural differences correspond to differences in circulating baseline and post-capture stress levels of androgen and corticosterone, as well as bite force (an indicator of aggressive performance) and field body temperature. Immediately after capture, the aggressive orange morph had higher circulating androgen than the grey morph or the yellow morph. Furthermore, the orange morph maintained high androgen following acute stress (30min of capture); whereas androgen increased in the grey and yellow morphs. This may reflect the previously defined behavioural differences among morphs as the aggressive response of the yellow morph is conditional on the colour of the competitor and the grey morph shows consistently low aggression. In contrast, all morphs showed an increase in corticosterone concentration after capture stress and morphs did not differ in levels of corticosterone stress magnitude (CSM). Morphs did not differ in size- and temperature-corrected bite force but did in body temperature at capture. Differences in circulating androgen and body temperature are consistent with morph-specific behavioural strategies in C. decresii but our results indicate a complex relationship between hormones, behaviour, temperature and bite force within and between colour morphs.
Collapse
Affiliation(s)
| | - Tim S Jessop
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Australia
| | - Devi Stuart-Fox
- School of BioSciences, The University of Melbourne, Australia
| |
Collapse
|
42
|
Titon SCM, Assis VR, Titon Junior B, Cassettari BDO, Fernandes PACM, Gomes FR. Captivity effects on immune response and steroid plasma levels of a Brazilian toad (Rhinella schneideri). JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2017; 327:127-138. [DOI: 10.1002/jez.2078] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/30/2017] [Accepted: 06/11/2017] [Indexed: 02/05/2023]
Affiliation(s)
- Stefanny Christie Monteiro Titon
- Laboratório de Comportamento e Fisiologia Evolutiva; Departamento de Fisiologia, Instituto de Biociências; Universidade de São Paulo; São Paulo Brazil
| | - Vania Regina Assis
- Laboratório de Comportamento e Fisiologia Evolutiva; Departamento de Fisiologia, Instituto de Biociências; Universidade de São Paulo; São Paulo Brazil
| | - Braz Titon Junior
- Laboratório de Comportamento e Fisiologia Evolutiva; Departamento de Fisiologia, Instituto de Biociências; Universidade de São Paulo; São Paulo Brazil
| | - Bruna de Oliveira Cassettari
- Laboratório de Comportamento e Fisiologia Evolutiva; Departamento de Fisiologia, Instituto de Biociências; Universidade de São Paulo; São Paulo Brazil
| | - Pedro Augusto Carlos Magno Fernandes
- Laboratório de Comportamento e Fisiologia Evolutiva; Departamento de Fisiologia, Instituto de Biociências; Universidade de São Paulo; São Paulo Brazil
| | - Fernando Ribeiro Gomes
- Laboratório de Comportamento e Fisiologia Evolutiva; Departamento de Fisiologia, Instituto de Biociências; Universidade de São Paulo; São Paulo Brazil
| |
Collapse
|
43
|
Small TW, Bebus SE, Bridge ES, Elderbrock EK, Ferguson SM, Jones BC, Schoech SJ. Stress-responsiveness influences baseline glucocorticoid levels: Revisiting the under 3min sampling rule. Gen Comp Endocrinol 2017; 247:152-165. [PMID: 28189590 DOI: 10.1016/j.ygcen.2017.01.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 11/29/2016] [Accepted: 01/28/2017] [Indexed: 12/15/2022]
Abstract
Plasma glucocorticoid (CORT) levels collected within 3min of capture are commonly believed to reflect pre-stressor, baseline CORT levels. Differences in these "baseline" values are often interpreted as reflecting differences in health, or the amount of social and environmental stress recently experienced by an individual. When interpreting "baseline" values it is generally assumed that any effect of capture-and-handling during the initial sampling period is small enough and consistent enough among individuals to not obscure pre-capture differences in CORT levels. However, plasma CORT increases in less than 3min post-capture in many free-living, endothermic species in which timing has been assessed. In addition, the rate of CORT secretion and the maximum level attained (i.e., the degree of stress-responsiveness) during a severe stressor often differs among individuals of the same species. In Florida scrub-jays (Aphelocoma coerulescens), an individual's stress-responsiveness during a 30min post-capture stressor is correlated with CORT levels in samples collected within 1.5min of capture, suggesting there is an intrinsic connection between stress-responsiveness and pre-capture CORT levels. Although differences in stress-responsiveness accounted for just 11% of the variance in these samples, on average, higher stress-responsive jays (top third of individuals) had baseline values twice that of lower stress-responsive jays (bottom third). Further, plasma CORT levels begin to increase around 2min post-capture in this species, but the rate of increase between 2 and 3min differs markedly with CORT increasing more rapidly in jays with higher stress-responsiveness. Together, these data indicate that baseline CORT values can be influenced by an individual's stress response phenotype and the differences due to stress-responsiveness can be exaggerated during sample collection. In some cases, the effects of differences in stress-responsiveness and the increase in CORT during sample collection could obscure, or supersede, differences in pre-capture plasma CORT levels that are caused by extrinsic factors.
Collapse
Affiliation(s)
- Thomas W Small
- Department of Biological Sciences, University of Memphis, United States.
| | - Sara E Bebus
- Department of Biological Sciences, University of Memphis, United States
| | - Eli S Bridge
- Oklahoma Biological Survey, University of Oklahoma, United States
| | | | | | - Blake C Jones
- Department of Biological Sciences, University of Memphis, United States
| | - Stephan J Schoech
- Department of Biological Sciences, University of Memphis, United States
| |
Collapse
|
44
|
Apfelbeck B, Helm B, Illera JC, Mortega KG, Smiddy P, Evans NP. Baseline and stress-induced levels of corticosterone in male and female Afrotropical and European temperate stonechats during breeding. BMC Evol Biol 2017; 17:114. [PMID: 28532466 PMCID: PMC5441054 DOI: 10.1186/s12862-017-0960-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 05/08/2017] [Indexed: 11/18/2022] Open
Abstract
Background Latitudinal variation in avian life histories falls along a slow-fast pace of life continuum: tropical species produce small clutches, but have a high survival probability, while in temperate species the opposite pattern is found. This study investigated whether differential investment into reproduction and survival of tropical and temperate species is paralleled by differences in the secretion of the vertebrate hormone corticosterone (CORT). Depending on circulating concentrations, CORT can both act as a metabolic (low to medium levels) and a stress hormone (high levels) and, thereby, influence reproductive decisions. Baseline and stress-induced CORT was measured across sequential stages of the breeding season in males and females of closely related taxa of stonechats (Saxicola spp) from a wide distribution area. We compared stonechats from 13 sites, representing Canary Islands, European temperate and East African tropical areas. Stonechats are highly seasonal breeders at all these sites, but vary between tropical and temperate regions with regard to reproductive investment and presumably also survival. Results In accordance with life-history theory, during parental stages, post-capture (baseline) CORT was overall lower in tropical than in temperate stonechats. However, during mating stages, tropical males had elevated post-capture (baseline) CORT concentrations, which did not differ from those of temperate males. Female and male mates of a pair showed correlated levels of post-capture CORT when sampled after simulated territorial intrusions. In contrast to the hypothesis that species with low reproduction and high annual survival should be more risk-sensitive, tropical stonechats had lower stress-induced CORT concentrations than temperate stonechats. We also found relatively high post-capture (baseline) and stress-induced CORT concentrations, in slow-paced Canary Islands stonechats. Conclusions Our data support and refine the view that baseline CORT facilitates energetically demanding activities in males and females and reflects investment into reproduction. Low parental workload was associated with lower post-capture (baseline) CORT as expected for a slow pace of life in tropical species. On a finer resolution, however, this tropical-temperate contrast did not generally hold. Post-capture (baseline) CORT was higher during mating stages in particular in tropical males, possibly to support the energetic needs of mate-guarding. Counter to predictions based on life history theory, our data do not confirm the hypothesis that long-lived tropical populations have higher stress-induced CORT concentrations than short-lived temperate populations. Instead, in the predator-rich tropical environments of African stonechats, a dampened stress response during parental stages may increase survival probabilities of young. Overall our data further support an association between life history and baseline CORT, but challenge the role of stress-induced CORT as a mediator of tropical-temperate variation in life history. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-0960-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Beate Apfelbeck
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland, G12 8QQ, UK. .,Terrestrial Ecology Research Group, Department of Ecology and Ecosystemmanagement, Technische Universität München, School of Life Sciences Weihenstephan, D-85354, Freising, Germany.
| | - Barbara Helm
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland, G12 8QQ, UK
| | - Juan Carlos Illera
- Research Unit of Biodiversity (UO-CSIC-PA), Oviedo University, Campus of Mieres, 33600, Mieres, Spain
| | - Kim G Mortega
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland, G12 8QQ, UK.,Department of Migration and Immunoecology, Max-Planck-Institut für Ornithologie, D-78315, Radolfzell, Germany
| | - Patrick Smiddy
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, T12 YN60, Ireland
| | - Neil P Evans
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland, G12 8QQ, UK
| |
Collapse
|
45
|
Xie S, Romero LM, Htut ZW, McWhorter TJ. Stress Responses to Heat Exposure in Three Species of Australian Desert Birds. Physiol Biochem Zool 2017; 90:348-358. [DOI: 10.1086/690484] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
46
|
Li Y, Sun Y, Krause JS, Li M, Liu X, Zhu W, Yao Y, Wu Y, Li D. Dynamic interactions between corticosterone, corticosteroid binding globulin and testosterone in response to capture stress in male breeding Eurasian tree sparrows. Comp Biochem Physiol A Mol Integr Physiol 2017; 205:41-47. [DOI: 10.1016/j.cbpa.2016.12.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 12/13/2016] [Accepted: 12/15/2016] [Indexed: 12/19/2022]
|
47
|
Jimeno B, Hau M, Verhulst S. Strong association between corticosterone and temperature dependent metabolic rate in individual zebra finches. J Exp Biol 2017; 220:4426-4431. [DOI: 10.1242/jeb.166124] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/26/2017] [Indexed: 12/22/2022]
Abstract
Glucocorticoid hormones (GCs) are often assumed to be indicators of stress. At the same time, one of their fundamental roles is to facilitate metabolic processes to accommodate changes in energetic demands. While the metabolic function of GCs is thought to be ubiquitous across vertebrates, we are not aware of experiments which tested this directly, i.e., in which metabolic rate was manipulated and measured together with GCs. We therefore tested for a relationship between plasma corticosterone (CORT, ln transformed) and metabolic rate (MR, measured using indirect calorimetry) in a between- and within-individual design in captive zebra finches (Taeniopygia guttata) of both sexes. In each individual, CORT and MR were measured at two different temperature levels: ‘warm’ (22°C) and ‘cold’ (12 °C). CORT and MR were both increased in colder compared to warmer conditions, within individuals, but also across individuals. At the between-individual level, we found a positive relationship between CORT and MR, with an accelerating slope towards higher MR and CORT values. In contrast, the within individual changes in CORT and MR in response to colder conditions were linearly correlated between individuals. The CORT-MR relationship did not differ between the sexes. Our results illustrate the importance of including variation at different levels to better understand physiological modulation. Furthermore, our findings support the interpretation of CORT variation as indicator of metabolic needs.
Collapse
Affiliation(s)
- Blanca Jimeno
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
- Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Michaela Hau
- Max Planck Institute for Ornithology, Seewiesen, Germany
- University of Konstanz, Germany
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| |
Collapse
|
48
|
Wright S, Fokidis HB. Sources of variation in plasma corticosterone and dehydroepiandrosterone in the male northern cardinal (Cardinalis cardinalis): II. Effects of urbanization, food supplementation and social stress. Gen Comp Endocrinol 2016; 235:201-209. [PMID: 27255367 DOI: 10.1016/j.ygcen.2016.05.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 05/19/2016] [Accepted: 05/20/2016] [Indexed: 02/06/2023]
Abstract
Perturbations in an organism's environment can induce significant shifts in hormone secretory patterns. In this context, the glucocorticoid (GC) steroids secreted by the adrenal cortex have received much attention from ecologists and behaviorists due to their role in the vertebrate stress response. Adrenal GCs, such as corticosterone (CORT), are highly responsive to instability in environmental and social conditions. However, little is understood about how adrenal dehydroepiandrosterone (DHEA) is influenced by changing conditions. We conducted field experiments to determine how circulating CORT and DHEA vary during restraint stress in the male northern cardinals (Cardinalis cardinalis). Specifically, we examined how four different changes in the physical (urbanization and food availability) and social (territorial conflict, distress of a mate) environment affect CORT and DHEA levels. The majority of cardinals responded to restraint stress by increasing and decreasing CORT and DHEA, respectively, however this depended on sampling context. Cardinals sampled from urban habitats had both lower initial and restraint stress CORT concentrations, but a comparable DHEA pattern to those sampled from a forest. Supplementing food to territorial males did not alter circulating initial DHEA or CORT concentrations nor did it change the response to restraint stress when compared to unsupplemented controls. Exposing cardinals to varying durations of song playback, which mimics a territorial intrusion, did not affect CORT levels, but did attenuate the DHEA response to restraint stress. Examining a larger dataset of males captured before, after or at the same time as their female mate, allowed us to address how the stress of a captured mate affected the male's CORT and DHEA response. Males showed elevated initial and restraint CORT and DHEA when their female mate was captured first. Taken together, these data demonstrate that both CORT and DHEA secretion patterns depends on environmental, and particularly current social conditions.
Collapse
Affiliation(s)
- Sarah Wright
- Department of Biology, Rollins College, Winter Park, FL 37289, USA
| | - H Bobby Fokidis
- Department of Biology, Rollins College, Winter Park, FL 37289, USA.
| |
Collapse
|
49
|
Deviche P, Valle S, Gao S, Davies S, Bittner S, Carpentier E. The seasonal glucocorticoid response of male Rufous-winged Sparrows to acute stress correlates with changes in plasma uric acid, but neither glucose nor testosterone. Gen Comp Endocrinol 2016; 235:78-88. [PMID: 27292791 DOI: 10.1016/j.ygcen.2016.06.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 05/09/2016] [Accepted: 06/08/2016] [Indexed: 10/21/2022]
Abstract
We sought to clarify functional relationships between baseline and acute stress-induced changes in plasma levels of the stress hormone corticosterone (CORT) and the reproductive hormone testosterone (T), and those of two main metabolites, uric acid (UA) and glucose (GLU). Acute stress in vertebrates generally stimulates the secretion of glucocorticoids, which in birds is primarily CORT. This stimulation is thought to promote behavioral and metabolic changes, including increased glycemia. However, limited information in free-ranging birds supports the view that acutely elevated plasma CORT stimulates glycemia. Acute stress also often decreases the secretion of reproductive hormones (e.g., T in males), but the role of CORT in this decrease and the contribution of T to the regulation of plasma GLU remain poorly understood. We measured initial (pre-stress) and acute stress-induced plasma CORT and T as well as GLU in adult male Rufous-winged Sparrows, Peucaea carpalis, sampled during the pre-breeding, breeding, post-breeding molt, and non-breeding stages. Stress increased plasma CORT and the magnitude of this increase did not differ across life history stages. The stress-induced elevation of plasma CORT was consistently associated with decreased plasma UA, suggesting a role for CORT in the regulation of plasma UA during stress. During stress plasma GLU either increased (pre-breeding), did not change (breeding), or decreased (molt and non-breeding), and plasma T either decreased (pre-breeding and breeding) or did not change (molt and non-breeding). These data provide only partial support to the hypothesis that CORT secretion during acute stress exerts a hyperglycemic action or is responsible for the observed decrease in plasma T taking place at certain life history stages. They also do not support the hypothesis that rapid changes in plasma T influence glycemia.
Collapse
Affiliation(s)
- Pierre Deviche
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA.
| | - Shelley Valle
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Sisi Gao
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Scott Davies
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA; Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Stephanie Bittner
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Elodie Carpentier
- Universite de Poitiers, Faculte des Sciences Fondamentales et Appliquees, Poitiers F-86022, France
| |
Collapse
|
50
|
Deviche P, Bittner S, Davies S, Valle S, Gao S, Carpentier E. Endocrine, metabolic, and behavioral effects of and recovery from acute stress in a free-ranging bird. Gen Comp Endocrinol 2016; 234:95-102. [PMID: 27311790 DOI: 10.1016/j.ygcen.2016.06.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 06/09/2016] [Accepted: 06/11/2016] [Indexed: 11/18/2022]
Abstract
Acute stress in vertebrates generally stimulates the hypothalamo-pituitary-adrenal axis and is often associated with multiple metabolic changes, such as increased gluconeogenesis, and with behavioral alterations. Little information is available, especially in free-ranging organisms, on the duration of these reversible effects once animals are no longer exposed to the stressor. To investigate this question, we exposed free-ranging adult male Rufous-winged Sparrows, Peucaea carpalis, in breeding condition to a standard protocol consisting of a social challenge (conspecific song playback) followed with capture and restraint for 30min, after which birds were released on site. Capture and restraint increased plasma corticosterone (CORT) and decreased plasma testosterone (T), glucose (GLU), and uric acid (UA). In birds that we recaptured the next day after exposure to conspecific song playback, plasma CORT and UA levels no longer differed from levels immediately after capture the preceding day. However, plasma T was similar to that measured after stress exposure the preceding day, and plasma GLU was markedly elevated. Thus, exposure to social challenge and acute stress resulted in persistent (⩾24h) parameter-specific effects. In recaptured sparrows, the territorial aggressive response to conspecific song playback, as measured by song rate and the number of flights over the song-broadcasting speakers, did not, however, differ between the first capture and the recapture, suggesting no proximate functional association between plasma T and conspecific territorial aggression. The study is the first in free-ranging birds to report the endocrine, metabolic, and behavioral recovery from the effects of combined social challenge and acute stress.
Collapse
Affiliation(s)
- Pierre Deviche
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA.
| | - Stephanie Bittner
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Scott Davies
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Shelley Valle
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Sisi Gao
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Elodie Carpentier
- Universite de Poitiers, Faculte des Sciences Fondamentales et Appliquees, Poitiers F-86022, France
| |
Collapse
|