1
|
Hu M, Yan H, Chen J, Gao R, Li W, Zhou H, Wang J, Liu Q, Wang X, Hu P, Fu C. Comparative transcriptome analysis identified genes involved in ovarian development in Takifugu rubripes. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 54:101407. [PMID: 39736263 DOI: 10.1016/j.cbd.2024.101407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 01/01/2025]
Abstract
Ovarian development is a complex process involving multiple genes, but the molecular mechanisms underlying this process in Takifugu rubripes remain poorly understood. This study aimed to identify genes associated with ovarian development in T. rubripes and to investigate the regulatory mechanisms of oocyte maturation. Transcriptome data were compared across four different developmental stages (stage II to V) to identify differentially expressed genes (DEGs) and perform GO and KEGG enrichment analysis. The expression patterns of randomly selected genes were then validated by qPCR. The results yielded a total of 1,289,401,820 raw data from all libraries, with 16,929 DEGs identified across all comparison groups. The DEGs were predominantly enriched in ovarian steroidogenesis, estrogen-mediated signaling, and TGF-beta signaling pathways. The qPCR analysis showed that cyp17a1 was identified as being expressed at similar levels in stage II and III. Thereafter, cyp17a1 was observed to undergo a continuous increase in expression from stage III to V. cyp19a1, nanos1, foxl2 and ar were identified as being expressed at similar levels at stage II and III, then increase in expression from stage III to IV and subsequent downregulation from stage IV to V. hsd17b1 was identified as being expressed at similar levels at stage II and IV. This study represents a transcriptomic study of ovarian development in female T. rubripes. Several essential ovarian-related genes and sex-related biological pathways were identified. The results will improve our understanding of the molecular mechanisms underlying ovarian development in this species.
Collapse
Affiliation(s)
- Mingtao Hu
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, 116023, China; College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, 116023 Dalian, Liaoning, China
| | - Hongwei Yan
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, 116023, China; College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, 116023 Dalian, Liaoning, China
| | - Jinfeng Chen
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, 116023, China; College of Marine Science and Environment Engineering, Dalian Ocean University, 116023 Dalian, Liaoning, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, 116023 Dalian, Liaoning, China
| | - Rui Gao
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, 116023, China; College of Marine Science and Environment Engineering, Dalian Ocean University, 116023 Dalian, Liaoning, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, 116023 Dalian, Liaoning, China
| | - Weiyuan Li
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China
| | - Huiting Zhou
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, 116023, China; College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, 116023 Dalian, Liaoning, China
| | - Jia Wang
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, 116023, China; College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, 116023 Dalian, Liaoning, China
| | - Qi Liu
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, 116023, China; College of Marine Science and Environment Engineering, Dalian Ocean University, 116023 Dalian, Liaoning, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, 116023 Dalian, Liaoning, China.
| | - Xiuli Wang
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, 116023 Dalian, Liaoning, China
| | - Pengfei Hu
- Inner Mongolia Agriculture and Animal Husbandry Technology Promotion Center, Inner Mongolia 015199, China
| | - Chuang Fu
- Changhai County Marine and Fisheries Comprehensive Administrative LawEnforcement Team, Dalian, China
| |
Collapse
|
2
|
Monson C, Goetz G, Forsgren K, Swanson P, Young G. In vivo treatment with a non-aromatizable androgen rapidly alters the ovarian transcriptome of previtellogenic secondary growth coho salmon (Onchorhynchus kisutch). PLoS One 2024; 19:e0311628. [PMID: 39383164 PMCID: PMC11463792 DOI: 10.1371/journal.pone.0311628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/20/2024] [Indexed: 10/11/2024] Open
Abstract
Recent evidence suggests that androgens are a potent driver of growth during late the primary stage of ovarian follicle development in teleosts. We have previously shown that the non-aromatizable androgen, 11-ketotestosterone (11-KT), both advances ovarian follicle growth in vivo and dramatically alters the primary growth ovarian transcriptome in coho salmon. Many of the transcriptomic changes pointed towards 11-KT driving process associated with the transition to a secondary growth phenotype. In the current study, we implanted previtellogenic early secondary growth coho salmon with cholesterol pellets containing 11-KT and performed RNA-Seq on ovarian tissue after 3 days in order to identify alterations to the ovarian transcriptome in early secondary growth. We identified 8,707 contiguous sequences (contigs) that were differentially expressed (DE) between control and 11-KT implanted fish and were able to collapse those to 3,853 gene-level IDs, more than a 3-fold more DE contigs than at the primary growth stage we reported previously. These contigs included genes encoding proteins involved in steroidogenesis, vitellogenin and lipid uptake, follicle stimulating hormone signaling, growth factor signaling, and structural proteins, suggesting androgens continue to promote previtellogenic secondary growth.
Collapse
Affiliation(s)
- Christopher Monson
- School or Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, United States of America
| | - Giles Goetz
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanographic and Atmospheric Administration, Seattle, Washington, United States of America
| | - Kristy Forsgren
- Department of Biological Science, California State University, Fullerton, Fullerton, California, United States of America
| | - Penny Swanson
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanographic and Atmospheric Administration, Seattle, Washington, United States of America
- Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
| | - Graham Young
- School or Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, United States of America
- Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
3
|
Xu Q, Ye M, Su Y, Feng L, Zhou L, Xu J, Wang D. Hypogonadotropic hypogonadism in male tilapia lacking a functional rln3b gene. Int J Biol Macromol 2024; 270:132165. [PMID: 38729472 DOI: 10.1016/j.ijbiomac.2024.132165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/02/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Relaxin 3 is a neuropeptide that plays a crucial role in reproductive functions of mammals. Previous studies have confirmed that rln3a plays an important role in the male reproduction of tilapia. To further understand the significance of its paralogous gene rln3b in male fertility, we generated a homozygous mutant line of rln3b in Nile tilapia. Our findings indicated that rln3b mutation delayed spermatogenesis and led to abnormal testes structure. Knocking out rln3b gene resulted in a decrease in sperm count, sperm motility and male fish fertility. TUNEL detection revealed a small amount of apoptosis in the testes of rln3b-/- male fish at 390 days after hatching (dah). RT-qPCR analysis demonstrated that mutation of rln3b gene caused a significant downregulation of steroid synthesis-related genes such as cyp17a1, cyp11b2, germ cell marker gene, Vasa, and gonadal somatic cell marker genes of amh and amhr2. Furthermore, we found a significant down-regulation of hypothalamic-pituitary-gonadal (HPG) axis-related genes, while a significantly up-regulation of the dopamine synthetase gene in the rln3b-/- male fish. Taken together, our data strongly suggested that Rln3b played a crucial role in the fertility of XY tilapia by regulating HPG axis genes.
Collapse
Affiliation(s)
- Qinglei Xu
- Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Maolin Ye
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yun Su
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Li Feng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Linyan Zhou
- Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Beijing 100141, China.
| | - Jian Xu
- Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Beijing 100141, China.
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
4
|
Skjold V, Afanasyev S, Burgerhout E, Sveen L, Rørvik KA, Mota VFCN, Dessen JE, Krasnov A. Endocrine and Transcriptome Changes Associated with Testicular Growth and Differentiation in Atlantic Salmon ( Salmo salar L.). Curr Issues Mol Biol 2024; 46:5337-5351. [PMID: 38920991 PMCID: PMC11202266 DOI: 10.3390/cimb46060319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Sexual maturation of Atlantic salmon males is marked by dramatic endocrine changes and rapid growth of the testes, resulting in an increase in the gonad somatic index (GSI). We examined the association of gonadal growth with serum sex steroids, as well as pituitary and testicular gene expression levels, which were assessed with a DNA oligonucleotide microarray. The testes transcriptome was stable in males with a GSI < 0.08% despite the large difference between the smallest and the largest gonads. Fish with a GSI ≥ 0.23% had 7-17 times higher serum levels of five male steroids and a 2-fold increase in progesterone, without a change in cortisol and related steroids. The pituitary transcriptome showed an upregulation of the hormone-coding genes that control reproduction and behavior, and structural rearrangement was indicated by the genes involved in synaptic transmission and the differentiation of neurons. The observed changes in the abundance of testicular transcripts were caused by the regulation of transcription and/or disproportional growth, with a greater increase in the germinative compartment. As these factors could not be separated, the transcriptome results are presented as higher or lower specific activities (HSA and LSA). LSA was observed in 4268 genes, including many genes involved in various immune responses and developmental processes. LSA also included genes with roles in female reproduction, germinal cell maintenance and gonad development, responses to endocrine and neural regulation, and the biosynthesis of sex steroids. Two functional groups prevailed among HSA: structure and activity of the cilia (95 genes) and meiosis (34 genes). The puberty of A. salmon testis is marked by the predominance of spermatogenesis, which displaces other processes; masculinization; and the weakening of external regulation. Results confirmed the known roles of many genes involved in reproduction and pointed to uncharacterized genes that deserve attention as possible regulators of sexual maturation.
Collapse
Affiliation(s)
- Vetle Skjold
- The Norwegian Institute of Aquaculture, Nofima, 9291 Tromsø, Norway; (V.S.); (E.B.); (L.S.); (K.-A.R.); (J.-E.D.)
- Department of Mechanical Engineering and Technology Management, Norwegian University of Life Sciences, 1433 Ås, Norway;
| | - Sergey Afanasyev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, 194223 Saint Petersburg, Russia;
| | - Erik Burgerhout
- The Norwegian Institute of Aquaculture, Nofima, 9291 Tromsø, Norway; (V.S.); (E.B.); (L.S.); (K.-A.R.); (J.-E.D.)
| | - Lene Sveen
- The Norwegian Institute of Aquaculture, Nofima, 9291 Tromsø, Norway; (V.S.); (E.B.); (L.S.); (K.-A.R.); (J.-E.D.)
| | - Kjell-Arne Rørvik
- The Norwegian Institute of Aquaculture, Nofima, 9291 Tromsø, Norway; (V.S.); (E.B.); (L.S.); (K.-A.R.); (J.-E.D.)
- Department of Mechanical Engineering and Technology Management, Norwegian University of Life Sciences, 1433 Ås, Norway;
| | | | - Jens-Erik Dessen
- The Norwegian Institute of Aquaculture, Nofima, 9291 Tromsø, Norway; (V.S.); (E.B.); (L.S.); (K.-A.R.); (J.-E.D.)
| | - Aleksei Krasnov
- The Norwegian Institute of Aquaculture, Nofima, 9291 Tromsø, Norway; (V.S.); (E.B.); (L.S.); (K.-A.R.); (J.-E.D.)
| |
Collapse
|
5
|
Huang H, Liu Y, Wang Q, Dong C, Dong L, Zhang J, Yang Y, Hao X, Li W, Rosa IF, Doretto LB, Cao X, Shao C. Molecular and Physiological Effects of 17α-methyltestosterone on Sex Differentiation of Black Rockfish, Sebastes schlegelii. Genes (Basel) 2024; 15:605. [PMID: 38790234 PMCID: PMC11120931 DOI: 10.3390/genes15050605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
It is widely known that all-female fish production holds economic value for aquaculture. Sebastes schlegelii, a preeminent economic species, exhibits a sex dimorphism, with females surpassing males in growth. In this regard, achieving all-female black rockfish production could significantly enhance breeding profitability. In this study, we utilized the widely used male sex-regulating hormone, 17α-methyltestosterone (MT) at three different concentrations (20, 40, and 60 ppm), to produce pseudomales of S. schlegelii for subsequent all-female offspring breeding. Long-term MT administration severely inhibits the growth of S. schlegelii, while short term had no significant impact. Histological analysis confirmed sex reversal at all MT concentrations; however, both medium and higher MT concentrations impaired testis development. MT also influenced sex steroid hormone levels in pseudomales, suppressing E2 while increasing T and 11-KT levels. In addition, a transcriptome analysis revealed that MT down-regulated ovarian-related genes (cyp19a1a and foxl2) while up-regulating male-related genes (amh) in pseudomales. Furthermore, MT modulated the TGF-β signaling and steroid hormone biosynthesis pathways, indicating its crucial role in S. schlegelii sex differentiation. Therefore, the current study provides a method for achieving sexual reversal using MT in S. schlegelii and offers an initial insight into the underlying mechanism of sexual reversal in this species.
Collapse
Affiliation(s)
- Haijun Huang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China;
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (Q.W.); (C.D.); (L.D.); (J.Z.); (Y.Y.); (X.H.); (W.L.); (L.B.D.)
| | - Yuyan Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (Q.W.); (C.D.); (L.D.); (J.Z.); (Y.Y.); (X.H.); (W.L.); (L.B.D.)
| | - Qian Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (Q.W.); (C.D.); (L.D.); (J.Z.); (Y.Y.); (X.H.); (W.L.); (L.B.D.)
| | - Caichao Dong
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (Q.W.); (C.D.); (L.D.); (J.Z.); (Y.Y.); (X.H.); (W.L.); (L.B.D.)
| | - Le Dong
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (Q.W.); (C.D.); (L.D.); (J.Z.); (Y.Y.); (X.H.); (W.L.); (L.B.D.)
| | - Jingjing Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (Q.W.); (C.D.); (L.D.); (J.Z.); (Y.Y.); (X.H.); (W.L.); (L.B.D.)
| | - Yu Yang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (Q.W.); (C.D.); (L.D.); (J.Z.); (Y.Y.); (X.H.); (W.L.); (L.B.D.)
| | - Xiancai Hao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (Q.W.); (C.D.); (L.D.); (J.Z.); (Y.Y.); (X.H.); (W.L.); (L.B.D.)
| | - Weijing Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (Q.W.); (C.D.); (L.D.); (J.Z.); (Y.Y.); (X.H.); (W.L.); (L.B.D.)
| | - Ivana F. Rosa
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 01049-010, Brazil;
| | - Lucas B. Doretto
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (Q.W.); (C.D.); (L.D.); (J.Z.); (Y.Y.); (X.H.); (W.L.); (L.B.D.)
| | - Xuebin Cao
- School of Marine Sciences, Ningbo University, Ningbo 315211, China;
| | - Changwei Shao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (Q.W.); (C.D.); (L.D.); (J.Z.); (Y.Y.); (X.H.); (W.L.); (L.B.D.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
6
|
Huang GY, Fang GZ, Shi WJ, Li XP, Wang CS, Chen HX, Xie L, Ying GG. Interaction of 17α-ethinylestradiol and methyltestosterone in western mosquitofish (Gambusia affinis) across two generations. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 268:106854. [PMID: 38309221 DOI: 10.1016/j.aquatox.2024.106854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
The interactions between estrogen and androgen in aquatic animals remain largely unknown. In this study, two generations (F0 and F1) of western mosquitofish (Gambusia affinis) were continuously exposed to 17α-ethinylestradiol (EE2, 10 ng/L), methyltestosterone (MT, 10 ng/L (MTL); 50 ng/L (MTH)), and mixtures (EE2+MTL and EE2+MTH). Various endpoints, including sex ratio (phenotypic and genetic), secondary sex characteristics, gonadal histology, and transcriptional profile of genes, were examined. The results showed that G. affinis exposed to MTH and EE2+MTH had a > 89.7 % of phenotypic males in F1 generation, with 34.5 and 50.0 % of these males originated from genetic females, respectively. Moreover, females from F0 and F1 generations exposed to MTH and EE2+MTH exhibited masculinized anal fins and skeletons. The combined effect of MT and EE2 on most endpoints was dependent on MT. Furthermore, significant transcriptional alterations in certain target genes were observed in both the F0 and F1 generations by EE2 and MT alone and by mixtures, showing some degree of interactions. These findings that the effects of EE2+MTH were primarily on the phenotypic sex of G. affinis in offspring generation suggest that G. affinis under chronic exposure to the binary mixture contaminated water could have sex-biased populations.
Collapse
Affiliation(s)
- Guo-Yong Huang
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Gui-Zhen Fang
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Wen-Jun Shi
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xiao-Pei Li
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Chen-Si Wang
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Hong-Xing Chen
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Lingtian Xie
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|
7
|
Li Y, Tan Z, Zuo P, Li M, Hou L, Wang X. Gestodene causes masculinization of the western mosquitofish (Gambusia affinis): Insights from ovary metabolomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168693. [PMID: 38008334 DOI: 10.1016/j.scitotenv.2023.168693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/07/2023] [Accepted: 11/17/2023] [Indexed: 11/28/2023]
Abstract
Gestodene (GES) is a common synthetic progesterone frequently detected in aquatic environments. Chronic exposure to GES can cause masculinization of a variety of fish; however, whether metabolism is closely related to the masculinization has yet to be explored. Hence, the ovary metabolome of adult female western mosquitofish (Gambusia affinis) after exposing to GES (0.0, 5.0, 50.0, and 500.0 ng/L) for 40 days was analyzed by using high-performance liquid chromatography ionization with quadrupole time-of-flight tandem mass spectrometry (HPLC-QTOF-MS). The results showed that GES increased the levels of cysteine, taurine, ophthalmic acid and cAMP while decreased methionine, these metabolites changes may owing to the oxidative stress of the ovaries; while taurcholic acid and uric acid were decreased along with induced oocyte apopotosis. Steroids hormone metabolism was also significantly affected, with progesterone and cortisol being the most affected. Enzyme-linked immunoassay results showed that estradiol levels were decreased while testosterone levels were increased with GES exposure. In addition, correlation analysis showed that the differential metabolites of some amino acids (e.g. leucine) were strongly correlated with the levels of steroids hormones secreted by the pituitary gland. The results of this study suggest that GES affects ovarian metabolism via the hypothalamus-pituitary-gonad and hypothalamic-pituitary-adrenal axes, impair antioxidant capacity, induce apoptosis in the ovary of G. affinis, and finally caused masculinization.
Collapse
Affiliation(s)
- Yelin Li
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Zhiqing Tan
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; School of Life Sciences, Zhaoqing University, Zhaoqing 526000, China
| | - Peiyu Zuo
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Maorong Li
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Liping Hou
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
| | - Xiaolan Wang
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
8
|
Hulse L, Tomsett C, Roser A, Clark L, Meer H, Pyne M, Fenelon JC, Renfree MB, Johnston S. An evaluation of DNA sample source and molecular markers to determine gender in the short-beaked echidna (Tachyglossus aculeatus). Zoo Biol 2024; 43:92-99. [PMID: 37905691 DOI: 10.1002/zoo.21809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 08/16/2023] [Accepted: 10/21/2023] [Indexed: 11/02/2023]
Abstract
The short-beaked echidna is sexually monomorphic such that gender identification without veterinary intervention is challenging. The aim of this study was to evaluate and compare the most optimal noninvasive genetic source by extracting echidna genomic DNA (gDNA) from fecal scats, plucked hair, and quills to perform genetic sex testing using a range of molecular markers. Sex determination of 14 captive short-beaked echidnas was determined by amplifying isolated DNA from noninvasive samples, targeting two Y chromosome (male-specific) genes (mediator complex subunit 26 Y-gametologue [CRSPY] and anti-Müllerian hormone Y-gametologue [AMHY]), in addition to four confirmed sex-specific RADseq markers. Results of noninvasive samples were compared with blood samples and clinical records. Receiver operating characteristic curves were used to assess accuracy of sex determination of markers for each sample type. The gender of the echidnas was successfully identified on 75% of occasions using fecal samples, 90.6% occasions using hair, and 84.6% occasions with quills. Overall, the male-specific RADseq markers accurately identified the sex of echidnas with all sample types for 90% of animals; compared with 81.5% using CRSPY, and 82.0% using AMHY to identify sex. Collection of hair, quills, and feces provides a useful alternative to invasively collected samples, however, the accuracy of results depends on sample type and genetic marker selected. We found gender determination in the short-beaked echidna was most accurate using four male-specific RADseq markers on gDNA isolated from blood and hair. The noninvasive genetic sexing techniques documented here will inform and facilitate husbandry and genetic management of captive echidna populations.
Collapse
Affiliation(s)
- Lyndal Hulse
- School of Agriculture and Food Science, The University of Queensland, Gatton, Australia
| | - Caitlin Tomsett
- School of Agriculture and Food Science, The University of Queensland, Gatton, Australia
| | - Alice Roser
- Currumbin Wildlife Sanctuary, Currumbin, Australia
| | - Lauren Clark
- Currumbin Wildlife Sanctuary, Currumbin, Australia
| | - Haley Meer
- Currumbin Wildlife Sanctuary, Currumbin, Australia
| | - Michael Pyne
- Currumbin Wildlife Sanctuary, Currumbin, Australia
| | - Jane C Fenelon
- School of BioSciences, The University of Melbourne, Victoria, Australia
| | - Marilyn B Renfree
- School of BioSciences, The University of Melbourne, Victoria, Australia
| | - Stephen Johnston
- School of Agriculture and Food Science, The University of Queensland, Gatton, Australia
| |
Collapse
|
9
|
Liu S, Han C, Huang J, Li M, Yang J, Li G, Lin H, Li S, Zhang Y. Genome-wide identification, evolution and expression of TGF-β signaling pathway members in mandarin fish (Siniperca chuatsi). Int J Biol Macromol 2023; 253:126949. [PMID: 37722635 DOI: 10.1016/j.ijbiomac.2023.126949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/01/2023] [Accepted: 09/13/2023] [Indexed: 09/20/2023]
Abstract
Members of the transforming growth factor β (TGF-β) signaling pathway regulate diverse cellular biological processes in embryonic and tissue development. We took mandarin fish (Siniperca chuatsi) as the research object to identify all members of the TGF-β signaling pathway, measure their expression pattern in the key period post hatching, and further explore their possible role in the process of sex regulation. Herein, we identified eighty-three TGF-β signaling pathway members and located them on chromosomes based on the genome of mandarin fish. TGF-β signaling pathway members were highly conserved since each TGF-β subfamily clustered with orthologs from other species. Transcriptome analysis, qRT-PCR and in situ hybridization demonstrated that most mandarin fish TGF-β signaling pathway members presented stage-specific and/or sex-dimorphic expression during gonadal development, and different members of the TGF-β signaling pathway participated in different stages of gonadal development. Taken together, our results provide new insight into the role of TGF-β signaling pathway members in the sex regulation of mandarin fish.
Collapse
Affiliation(s)
- Shiyan Liu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266373, China
| | - Chong Han
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, China; School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Jingjun Huang
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, China
| | - Meihui Li
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jiayu Yang
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, China
| | - Guifeng Li
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, China
| | - Haoran Lin
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266373, China
| | - Shuisheng Li
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Yong Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266373, China.
| |
Collapse
|
10
|
Wang T, Wang X, Zhao N, Liu Q, Song Z, Li J. Developmental regulation of the male urogenital papilla in the male marine teleost black rockfish, Sebastes schlegelii (Hilgendorf, 1880)†. Biol Reprod 2023; 109:461-473. [PMID: 37552063 DOI: 10.1093/biolre/ioad086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/18/2023] [Accepted: 07/28/2023] [Indexed: 08/09/2023] Open
Abstract
The male external genitalia of the black rockfish (Sebastes schlegelii Hilgendorf, 1880) is a fleshy protrusion known as the urogenital papilla (UGP), which functions to deliver sperm into the female reproductive tract for internal fertilization. It is not known which genes regulate the development of the UGP. The aim of this study was to identify key genes that regulate the development of the UGP in black rockfish and to determine the distribution of androgen receptor gene (ar) in the UGP. A total of 26 adult males and 560 juvenile fish were used in the experiment, in which we divided all normally developing juveniles into normal development and androgen groups. We added methyltestosterone solution (100 μg/l) to the androgen group-treated fish tank, soaked for 2 h per day for 38 days, and sampled 5~10 samples each time every 5 days during the culture process. Gene expression changes related to UGP were analyzed with tissue specificity between control and androgen groups during sex differentiation, adult male maturation, and the copulation stage (September to December) using real-time quantitative polymerase chain reaction. The expression of ar was also localized by two-color in situ hybridization in the UGP region of juvenile fish. Androgen treatment enhanced ar expression levels and the ar signal was stronger in the UGP region of both adult breeding fish and androgen-treated juvenile fish. This study provides insights into the regulation of the external genitalia of black rockfish and presents vital information for the artificial breeding of viviparous fish.
Collapse
Affiliation(s)
- Tao Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xueying Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ning Zhao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qinghua Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zongcheng Song
- Weihai Shenghang Aquatic Product Science and Technology Co. Ltd., Weihai, China
| | - Jun Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
11
|
Lei DQ, Huang GY, Qiu SQ, Li XP, Wang CS, Fang GZ, Xie L, Ying GG. Exposure to estrone disrupts the endocrine system of western mosquitofish (Gambusia affinis). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 257:106457. [PMID: 36848693 DOI: 10.1016/j.aquatox.2023.106457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/17/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Estrone (E1) is one of the predominant natural estrogens detected in aquatic environments, yet little is known about its effects on the endocrine system in fish. In this study, the sex ratio, secondary sexual characteristics, gonadal histology, and transcriptional levels of genes closely related to sex differentiation and hypothalamic-pituitary-gonadal-liver (HPGL) axis were assessed in western mosquitofish (Gambusia affinis) after a full life-cycle exposure to E1 (0, 25.4, 143, 740, and 4300 ng/L) for 119 days. The results showed that exposure to 4300 ng/L of E1 resulted in 100% female and inhibited the growth of females. Exposure to environmentally relevant concentrations of E1 (143 and 740 ng/L) led to obvious feminization of skeletons and anal fins in males. Exposure to 740 and 4300 ng/L of E1 increased the proportion of mature spermatocytes in females, and exposure to 143 and 740 ng/L decreased the proportion of mature spermatocytes in males. Moreover, the transcripts of genes related to sex differentiation and HPGL axis were changed in the E1-exposed adult fish and embryos inside females. This study has provided valuable data on the endocrine disruption effects of E1 at environmentally relevant concentrations in G. affinis.
Collapse
Affiliation(s)
- Dong-Qiao Lei
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guo-Yong Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Shu-Qing Qiu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xiao-Pei Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Chen-Si Wang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Gui-Zhen Fang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|
12
|
Adolfi MC, Depincé A, Wen M, Pan Q, Herpin A. Development of Ovaries and Sex Change in Fish: Bringing Potential into Action. Sex Dev 2023; 17:84-98. [PMID: 36878204 DOI: 10.1159/000526008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 07/08/2022] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Encompassing about half of the 60,000 species of vertebrates, fish display the greatest diversity of sex determination mechanisms among metazoans. As such that phylum offers a unique playground to study the impressive variety of gonadal morphogenetic strategies, ranging from gonochorism, with either genetic or environmental sex determination, to unisexuality, with either simultaneous or consecutive hermaphroditism. SUMMARY From the two main types of gonads, the ovaries embrace the important role to produce the larger and non-motile gametes, which is the basis for the development of a future organism. The production of the egg cells is complex and involves the formation of follicular cells, which are necessary for the maturation of the oocytes and the production of feminine hormones. In this vein, our review focuses on the development of ovaries in fish with special emphasis on the germ cells, including those that transition from one sex to the other as part of their life cycle and those that are capable of transitioning to the opposite sex depending on environmental cues. KEY MESSAGES Clearly, establishing an individual as either a female or a male is not accomplished by the sole development of two types of gonads. In most cases, that dichotomy, be it final or transient, is accompanied by coordinated transformations across the entire organism, leading to changes in the physiological sex as a whole. These coordinated transformations require both molecular and neuroendocrine networks, but also anatomical and behavioural adjustments. Remarkably, fish managed to tame the ins and outs of sex reversal mechanisms to take the most advantages of changing sex as adaptive strategies in some situations.
Collapse
Affiliation(s)
- Mateus Contar Adolfi
- Developmental Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
| | | | - Ming Wen
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qiaowei Pan
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Amaury Herpin
- Fish Physiology and Genomics, INRAE, UR 1037, Rennes, France
| |
Collapse
|
13
|
Pan Q, Herpin A, Guiguen Y. Inactivation of the Anti-Müllerian Hormone Receptor Type 2 (amhrII) Gene in Northern Pike (Esox lucius) Results in Male-To-Female Sex Reversal. Sex Dev 2023; 16:289-294. [PMID: 35306491 DOI: 10.1159/000521003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/15/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The anti-müllerian hormone (Amh) pathway is crucial for sexual development in teleosts. A male-specific duplicate of anti-müllerian hormone (amhby) was previously identified as the northern pike (Esox lucius) master sex determination gene. However, the role of its putative cognate receptor, i.e., the anti-müllerian hormone receptor type 2 (amhrII) was unclear in this species. OBJECTIVE Here, we investigated the role of amhrII during sexual development of northern pike. METHOD We generated stable mutants with deletions in exon 9 of amhrII, inactivating the AmhrII protein using a CRISPR-Cas9-mediated gene knockout strategy. RESULT The inactivation of amhrII in northern pike results in a high level of male-to-female sex reversal. CONCLUSION This result demonstrates that amhrII is necessary for male sexual development in northern pike and supports the idea that AmhrII is a conserved regulator of the teleosts sex differentiation network.
Collapse
Affiliation(s)
- Qiaowei Pan
- INRAE, LPGP, Rennes, France.,Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
14
|
Valdivieso A, Anastasiadi D, Ribas L, Piferrer F. Development of epigenetic biomarkers for the identification of sex and thermal stress in fish using DNA methylation analysis and machine learning procedures. Mol Ecol Resour 2023; 23:453-470. [PMID: 36305237 PMCID: PMC10098837 DOI: 10.1111/1755-0998.13725] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/28/2022] [Accepted: 10/14/2022] [Indexed: 01/04/2023]
Abstract
The sex ratio is a key ecological demographic parameter crucial for population viability. However, the epigenetic mechanisms operating during gonadal development regulating gene expression and the sex ratio remain poorly understood. Moreover, there is interest in the development of epigenetic markers associated with a particular phenotype or as sentinels of environmental effects. Here, we profiled DNA methylation and gene expression of 10 key genes related to sex development and stress, including steroidogenic enzymes, and growth and transcription factors. We provide novel information on the sex-related differences and on the influence of elevated temperature on these genes in zebrafish, a species with mixed genetic and environmental influences on sex ratios. We identified both positive (e.g., amh, cyp11c and hsd11b2) and negative (e.g., cyp11a1 and dmrt1) correlations in unexposed males, and negative correlation (amh) in exposed females between DNA methylation and gene expression levels. Further, we combined DNA methylation analysis with machine learning procedures and found a series of informative CpGs capable not only of correctly identifying sex (based on cyp19a1a DNA methylation levels) but also of identifying whether males and females had been exposed to abnormally elevated temperature when young (based on amh and foxl2a DNA methylation levels, respectively). This was achieved in the absence of conspicuous morphological alterations of the gonads. These DNA methylation-based epigenetic biomarkers represent molecular resources that can correctly recapitulate past thermal history and pave the way for similar findings in other species to assess potential ecological effects of environmental disturbances in the context of climate change.
Collapse
Affiliation(s)
- Alejandro Valdivieso
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France
| | - Dafni Anastasiadi
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,The New Zealand Institute for Plant and Food Research Limited, Nelson, New Zealand
| | - Laia Ribas
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Francesc Piferrer
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| |
Collapse
|
15
|
Bedenk J, Režen T, Jančar N, Geršak K, Virant Klun I. Effect of In Vitro Maturation of Human Oocytes Obtained After Controlled Ovarian Hormonal Stimulation on the Expression of Development- and Zona Pellucida-Related Genes and Their Interactions. Reprod Sci 2023; 30:667-677. [PMID: 35915350 DOI: 10.1007/s43032-022-01047-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/18/2022] [Indexed: 11/26/2022]
Abstract
In an in vitro fertilization program, approximately 10-15% of oocytes obtained after controlled ovarian stimulation are immature, with germinal vesicles (GVs). These oocytes are usually discarded in clinical practice; however, an in vitro maturation (IVM) procedure can be applied to mature them. There are scarce data in the literature on the effect of IVM on the expression of important development- and zona pellucida (ZP)-related genes in human oocytes; therefore, we wanted to determine this. One hundred nine human oocytes were collected from patients enrolled in an intracytoplasmic sperm injection program. The expression of the BMP4, GDF9, ZP1, ZP2, ZP3, and ZP4 genes was analyzed using RT-qPCR in oocytes matured in vitro with different reproductive hormones in the IVM medium (AMH, FSH + hCG, FSH + hCG + AMH), in in vivo matured oocytes and in immature oocytes with GVs. No statistically significant differences in the expression of selected genes in oocytes were observed among groups with different reproductive hormones in IVM medium. However, several interesting significant correlations were found between BMP4 and GDF9, and ZP1 and ZP4; between GDF9 and ZP1, and ZP2 and ZP4; and between ZP1 and ZP3 and ZP4 in the in vitro matured oocytes, while no such correlations were present in other groups of oocytes. The type of reproductive hormone in the maturation medium does not affect the expression of the analyzed genes in oocytes during the maturation process. However, the in vitro maturation procedure itself generated correlations among analyzed genes that were otherwise not present in in vivo matured and immature oocytes.
Collapse
Affiliation(s)
- Jure Bedenk
- Clinical Research Centre, University Medical Centre Ljubljana, 1000, Ljubljana, Slovenia.
| | - Tadeja Režen
- Institute of Biochemistry and Molecular Genetics, Centre for Functional Genomics and Bio-Chips, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Nina Jančar
- Department of Gynaecology and Obstetrics, University Medical Centre Ljubljana, 1000, Ljubljana, Slovenia
| | - Ksenija Geršak
- Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Irma Virant Klun
- Clinical Research Centre, University Medical Centre Ljubljana, 1000, Ljubljana, Slovenia
| |
Collapse
|
16
|
Qiang J, Cao ZM, Zhu HJ, Tao YF, He J, Xu P. Knock-down of amh transcription by antisense RNA reduces FSH and increases follicular atresia in female Oreochromis niloticus. Gene 2022; 842:146792. [PMID: 35961433 DOI: 10.1016/j.gene.2022.146792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 07/25/2022] [Accepted: 08/05/2022] [Indexed: 11/28/2022]
Abstract
Anti-Müllerian hormone (Amh) plays an important role in regulating gonad development in teleosts. However, little is known about the effects of Amh on follicle development. In this study, we transfected the vector containing antisense RNA fragments of the amh gene to produce Nile tilapia, Oreochromis niloticus, with knocked-down Amh function in vivo. The results confirmed that the antisense RNA effectively inhibited amh transcription and Amh protein expression in female tilapia ovarian tissue. At 180 days of age, compared with control fish, female tilapia with knocked-down Amh function showed significantly increased growth and significantly decreased ovary weight and gonadosomatic index (P < 0.05). Female fish in the control group had ruddy-colored external genitalia, eggs extruded from the abdomen when gently squeezed, and most oocytes were developmental stage V. In contrast, the external genitalia of female fish with knocked-down Amh function did not have the ruddy color, no eggs extruded from the abdomen when squeezed, most oocytes were at developmental stages II and III, and considerable follicular atresia was apparent. At 180 days of age, the transcript levels of amhrII, cyp19a1a, foxl2 and sox9b in ovarian tissue, and the titers of luteinizing hormone, follicle stimulating hormone, and estradiol in the serum, were significantly lower in fish with knocked-down Amh function than in control fish (P < 0.05). We concluded that decreased serum hormone levels and an abnormal AMH signal delayed development and caused follicular degeneration in Nile tilapia with knocked-down Amh function. These findings show that antisense RNA is a feasible approach for gene silencing in fish, and represents an accurate and effective strategy to study gene function.
Collapse
Affiliation(s)
- Jun Qiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China.
| | - Zhe-Ming Cao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Hao-Jun Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Yi-Fan Tao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Jie He
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China.
| |
Collapse
|
17
|
Tveiten H, Karlsen K, Thesslund T, Johansson GS, Thiyagarajan DB, Andersen Ø. Impact of germ cell ablation on the activation of the brain-pituitary-gonadal axis in precocious Atlantic salmon (Salmo salar L.) males. Mol Reprod Dev 2022; 89:471-484. [PMID: 35830347 PMCID: PMC9796531 DOI: 10.1002/mrd.23635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/27/2022] [Accepted: 07/04/2022] [Indexed: 01/01/2023]
Abstract
The germ cells are essential for sexual reproduction by giving rise to the gametes, but the importance of germ cells for gonadal somatic functions varies among vertebrates. The RNA-binding dead end (Dnd) protein is necessary for the specification and migration of primordial germ cells to the future reproductive organs. Here, we ablated the gametes in Atlantic salmon males and females by microinjecting dnd antisense gapmer oligonucleotides at the zygotic stage. Precocious maturation was induced in above 50% of both germ cell-depleted and intact fertile males, but not in females, by exposure to an off-season photoperiod regime. Sterile and fertile males showed similar body growth, but maturing fish tended to be heavier than their immature counterparts. Pituitary fshβ messenger RNA levels strongly increased in maturing sterile and fertile males concomitant with the upregulated expression of Sertoli and Leydig cell markers. Plasma concentrations of 11-ketotestosterone and testosterone in maturing sterile males were significantly higher than the basal levels in immature fish, but lower than those in maturing fertile males. The study demonstrates that germ cells are not a prerequisite for the activation of the brain-pituitary-gonad axis and sex steroidogenesis in Atlantic salmon males, but may be important for the maintenance of gonadal somatic functions.
Collapse
Affiliation(s)
- Helge Tveiten
- Norwegian College of Fishery ScienceThe Arctic University of NorwayTromsøNorway
| | - Kristian Karlsen
- Norwegian College of Fishery ScienceThe Arctic University of NorwayTromsøNorway,Present address:
Lerøy Aurora AS, Stortorget 1N‐9267 TromsøNorway
| | | | | | | | - Øivind Andersen
- NofimaTromsøNorway,Department of Animal and Aquacultural SciencesNorwegian University of Life Sciences (NMBU)ÅsNorway
| |
Collapse
|
18
|
Goikoetxea A, Todd EV, Muncaster S, Lokman PM, Thomas JT, Robertson HA, De Farias e Moraes CE, Gemmell NJ. Effects of cortisol on female-to-male sex change in a wrasse. PLoS One 2022; 17:e0273779. [PMID: 36048785 PMCID: PMC9436091 DOI: 10.1371/journal.pone.0273779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/16/2022] [Indexed: 11/19/2022] Open
Abstract
Sex change occurs as a usual part of the life cycle for many teleost fish and the modifications involved (behavioural, gonadal, morphological) are well studied. However, the mechanism that transduces environmental cues into the molecular cascade that underlies this transformation remains unknown. Cortisol, the main stress hormone in fish, is hypothesised to be a key factor linking environmental stimuli with sex change by initiating gene expression changes that shift steroidogenesis from oestrogens to androgens but this notion remains to be rigorously tested. Therefore, this study aimed to experimentally test the role of cortisol as an initiator of sex change in a protogynous (female-to-male) hermaphrodite, the New Zealand spotty wrasse (Notolabrus celidotus). We also sought to identify potential key regulatory factors within the head kidney that may contribute to the initiation and progression of gonadal sex change. Cortisol pellets were implanted into female spotty wrasses under inhibitory conditions (presence of a male), and outside of the optimal season for natural sex change. Histological analysis of the gonads and sex hormone analyses found no evidence of sex change after 71 days of cortisol treatment. However, expression analyses of sex and stress-associated genes in gonad and head kidney suggested that cortisol administration did have a physiological effect. In the gonad, this included upregulation of amh, a potent masculinising factor, and nr3c1, a glucocorticoid receptor. In the head kidney, hsd11b2, which converts cortisol to inactive cortisone to maintain cortisol balance, was upregulated. Overall, our results suggest cortisol administration outside of the optimal sex change window is unable to initiate gonadal restructuring. However, our expression data imply key sex and stress genes are sensitive to cortisol. This includes genes expressed in both gonad and head kidney that have been previously implicated in early sex change in several sex-changing species.
Collapse
Affiliation(s)
- Alexander Goikoetxea
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- * E-mail:
| | - Erica V. Todd
- School of Life and Environmental Sciences, Deakin University, Geelong, Australia
| | - Simon Muncaster
- Environmental Management Group, Toi Ohomai Institute of Technology, Tauranga, New Zealand
- School of Science, University of Waikato, Tauranga, New Zealand
| | - P. Mark Lokman
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Jodi T. Thomas
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Holly A. Robertson
- Environmental Management Group, Toi Ohomai Institute of Technology, Tauranga, New Zealand
| | | | - Neil J. Gemmell
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
19
|
Wang H, Qu M, Tang W, Liu S, Ding S. Transcriptome Profiling and Expression Localization of Key Sex-Related Genes in a Socially-Controlled Hermaphroditic Clownfish, Amphiprion clarkii. Int J Mol Sci 2022; 23:ijms23169085. [PMID: 36012348 PMCID: PMC9409170 DOI: 10.3390/ijms23169085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022] Open
Abstract
Clownfish can be an excellent research model for investigating the socially-controlled sexual development of sequential hermaphrodite teleosts. However, the molecular cascades underlying the social cues that orchestrate the sexual development process remain poorly understood. Here, we performed a comparative transcriptomic analysis of gonads from females, males, and nonbreeders of Amphiprion clarkii, which constitute a complete social group, allowing us to investigate the molecular regulatory network under social control. Our analysis highlighted that the gonads of nonbreeders and males exhibited high similarities but were far from females, both in global transcriptomic profiles and histological characteristics, and identified numerous candidate genes involved in sexual development, some well-known and some novel. Significant upregulation of cyp19a1a, foxl2, nr5a1a, wnt4a, hsd3b7, and pgr in females provides strong evidence for the importance of steroidogenesis in ovarian development and maintenance, with cyp19a1a playing a central role. Amh and sox8 are two potential key factors that may regulate testicular tissue development in early and late stages, respectively, as they are expressed at higher levels in males than in females, but with slightly different expression timings. Unlike previous descriptions in other fishes, the unique expression pattern of dmrt1 in A. clarkii implied its potential function in both male and female gonads, and we speculated that it might play promoting roles in the early development of both testicular and ovarian tissues.
Collapse
Affiliation(s)
- Huan Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Meng Qu
- Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Southern Marine Science and Engineering Guangdong Laboratory (GML, Guangzhou), Guangzhou 511458, China
| | - Wei Tang
- Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Shufang Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Correspondence: (S.L.); (S.D.)
| | - Shaoxiong Ding
- Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
- Correspondence: (S.L.); (S.D.)
| |
Collapse
|
20
|
He X, Wu H, Ye Y, Gong X, Bao B. Transcriptome analysis revealed gene expression feminization of testis after exogenous tetrodotoxin administration in pufferfish Takifugu flavidus. BMC Genomics 2022; 23:553. [PMID: 35922761 PMCID: PMC9347094 DOI: 10.1186/s12864-022-08787-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 07/22/2022] [Indexed: 11/29/2022] Open
Abstract
Tetrodotoxin (TTX) is a deadly neurotoxin and usually accumulates in large amounts in the ovaries but is non-toxic or low toxic in the testis of pufferfish. The molecular mechanism underlying sexual dimorphism accumulation of TTX in ovary and testis, and the relationship between TTX accumulation with sex related genes expression remain largely unknown. The present study investigated the effects of exogenous TTX treatment on Takifugu flavidus. The results demonstrated that exogenous TTX administration significantly incresed level of TTX concentration in kidney, cholecyst, skin, liver, heart, muscle, ovary and testis of the treatment group (TG) than that of the control group (CG). Transcriptome sequencing and analysis were performed to study differential expression profiles of mRNA and piRNA after TTX administration of the ovary and testis. The results showed that compared with female control group (FCG) and male control group (MCG), TTX administration resulted in 80 and 23 piRNAs, 126 and 223 genes up and down regulated expression in female TTX-treated group (FTG), meanwhile, 286 and 223 piRNAs, 2 and 443 genes up and down regulated expression in male TTX-treated group (MTG). The female dominant genes cyp19a1, gdf9 and foxl2 were found to be up-regulated in MTG. The cyp19a1, whose corresponding target piRNA uniq_554482 was identified as down-regulated in the MTG, indicating the gene expression feminization in testis after exogenous TTX administration. The KEGG enrichment analysis revealed that differentially expressed genes (DEGs) and piRNAs (DEpiRNAs) in MTG vs MCG group were more enriched in metabolism pathways, indicating that the testis produced more metabolic pathways in response to exogenous TTX, which might be a reason for the sexual dimorphism of TTX distribution in gonads. In addition, TdT-mediated dUTP-biotin nick end labeling staining showed that significant apoptosis was detected in the MTG testis, and the role of the cell apoptotic pathways was further confirmed. Overall, our research revealed that the response of the ovary and testis to TTX administration was largely different, the ovary is more tolerant whereas the testis is more sensitive to TTX. These data will deepen our understanding on the accumulation of TTX sexual dimorphism in Takifugu.
Collapse
Affiliation(s)
- Xue He
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Hexing Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yaping Ye
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaolin Gong
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Baolong Bao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
21
|
Xiao H, Xu Z, Zhu X, Wang J, Zheng Q, Zhang Q, Xu C, Tao W, Wang D. Cortisol safeguards oogenesis by promoting follicular cell survival. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1563-1577. [PMID: 35167018 DOI: 10.1007/s11427-021-2051-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
The role of glucocorticoids in oogenesis remains to be elucidated. cyp11c1 encodes the key enzyme involved in the synthesis of cortisol, the major glucocorticoid in teleosts. In our previous study, we mutated cyp11c1 in tilapia and analyzed its role in spermatogenesis. In this study, we analyzed its role in oogenesis. cyp11c1+/- XX tilapia showed normal ovarian morphology but poor egg quality, as indicated by the mortality of embryos before 3 d post fertilization, which could be partially rescued by the supplement of exogenous cortisol to the mother fish. Transcriptome analyses revealed reduced expression of maternal genes in the eggs of the cyp11c1+/- XX fish. The cyp11c1-/- females showed impaired vitellogenesis and arrested oogenesis due to significantly decreased serum cortisol. Further analyses revealed decreased serum E2 level and expression of amh, an important regulator of follicular cell development, and increased follicular cell apoptosis in the ovaries of cyp11c1-/- XX fish, which could be rescued by supplement of either exogenous cortisol or E2. Luciferase assays revealed a direct regulation of cortisol and E2 on amh transcription via GRs or ESRs. Taken together, our results demonstrate that cortisol safeguards oogenesis by promoting follicular cell survival probably via Amh signaling.
Collapse
Affiliation(s)
- Hesheng Xiao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Zhen Xu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Xi Zhu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jingrong Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Qiaoyuan Zheng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Qingqing Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Chunmei Xu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
22
|
Feng K, Su J, Wu Z, Su S, Yao W. Molecular Cloning and Expression Analysis of Thyrotropin-Releasing Hormone, and Its Possible Role in Gonadal Differentiation in Rice Field eel Monopterus albus. Animals (Basel) 2022; 12:1691. [PMID: 35804589 PMCID: PMC9264984 DOI: 10.3390/ani12131691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Rice field eel (Monopterus albus), a protogynous hermaphrodite fish, is a good model for the research of sex determination and gonadal differentiation in teleosts. In this study, we cloned the full-length cDNA sequence of trh, which encoded a predicted protein with 270 amino acids. Trh mainly expressed in the brain, followed by the ovary, testis, muscle and pituitary, and had low levels in other peripheral tissues. During natural sex reversal, trh mRNA expression levels exhibited a significant increase at the late intersexual stage in the hypothalamus. In the gonad, trh mRNA expression levels showed a trend of increase followed by decrease, and only increased significantly at the middle intersexual stage. No matter static incubation or intraperitoneal (IP) injection, TRH had no significant effect on trh and thyroid-stimulating hormone βsubunit (tshβ) mRNA expression levels, and serum T3, T4 and TRH release. After static incubation of ovarian fragments by TRH, the expression of gonadal soma derived factor (gsdf) was up-regulated significantly at both the doses of 10 and 100 nM. IP injection of TRH stimulated the expression of gsdf, and inhibited the expression of ovarian aromatase gene (cyp19a1a), accompanied by the increase of serum 11-KT levels. The results indicated that TRH may play a novel role in gonadal differentiation by the regulation of gonadal differentiation-related gene expression and sex steroid hormone secretion in rice field eel.
Collapse
Affiliation(s)
| | | | | | | | - Weizhi Yao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Fisheries, Southwest University, Chongqing 400715, China; (K.F.); (J.S.); (Z.W.); (S.S.)
| |
Collapse
|
23
|
Gao D, Huang J, Lin G, Lu J. A time-course transcriptome analysis of gonads from yellow catfish (Pelteobagrus fulvidraco) reveals genes associated with gonad development. BMC Genomics 2022; 23:409. [PMID: 35637435 PMCID: PMC9153201 DOI: 10.1186/s12864-022-08651-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 11/10/2022] Open
Abstract
Background The yellow catfish, Pelteobagrus fulvidraco, is a commercially important fish species. It is widely distributed in the fresh water areas of China, including rivers, lakes, and reservoirs. Like many other aquaculture fish species, people have observed significant size dimorphism between male and female yellow catfish and it shows a growth advantage in males. Results Here, at the first time, the time-course transcriptome was used to explore the various expression profiles of genes in different gonad developmental stages and genders. A total of 2696 different expression genes (DEGs) were identified from different stages. Based on these DEGs, 13 gonad development related genes were identified which showed time-specific or sex biased expression patterns. Conclusion This study will provide the crucial information on the molecular mechanism of gonad development of female and male yellow catfish. Especially, during the different gonad development stages, these 13 gonad development related genes exhibit various expression patterns in female and male individual respectively. These results could inspire and facilitate us to understanding the various roles of these genes play in different gonad development stages and genders. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08651-0.
Collapse
Affiliation(s)
- Dong Gao
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Junrou Huang
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Genmei Lin
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Jianguo Lu
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China. .,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China. .,Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, 510275, Guangdong, China. .,Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, 519000, China.
| |
Collapse
|
24
|
The miR-200 Family Targeting amh Affects the Gonadal Development of Japanese Flounder. FISHES 2022. [DOI: 10.3390/fishes7030129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Four members of the miR-200 family in Japanese flounder (Paralichthys olivaceus) have sex-biased expression patterns, but their target genes and how they work in the development of the gonads are rarely known. Anti-Müllerian hormone (AMH) can inhibit the development of Muller’s duct in female mammals and regulate the formation of gametes after sexual maturity. There is no Muller’s duct in teleosts, but the amh gene still exists. Knockout of amh results in sex reversal from male to female. Therefore, it is essential to explore the relationship between the miR-200 family and amh to clarify what role miR-200 plays in the development of the gonads. In Japanese flounder, the two binding sites for the miR-200 family in the 3′UTR of amh were found through bioinformatic prediction. Double luciferase and green fluorescent protein reporter experiments demonstrated amh to be directly targeted by miR-200a and miR-200b. Moreover, miR-200a and miR-200b reduced the expression of amh through site 1 rather than site 2. To explore the regulatory role of miR-200a in gonadal development, we further overexpressed miR-200a in the primary Sertoli cells of the testis. With the overexpression of miR-200a, the expression of amh decreased, while the expression of the other two male sex-related genes, dmrt1 (doublesex and mab-3 related transcription factor 1) and gsdf (diagonal soma driven factor), increased significantly. This result indicates that the miR-200 family regulates the gonadal differentiation and development by targeting amh in Japanese flounder.
Collapse
|
25
|
Transcriptomes of testis and pituitary from male Nile tilapia (O. niloticus L.) in the context of social status. PLoS One 2022; 17:e0268140. [PMID: 35544481 PMCID: PMC9094562 DOI: 10.1371/journal.pone.0268140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/22/2022] [Indexed: 11/19/2022] Open
Abstract
African cichlids are well established models for studying social hierarchies in teleosts and elucidating the effects social dominance has on gene expression. Ascension in the social hierarchy has been found to increase plasma levels of steroid hormones, follicle stimulating hormone (Fsh) and luteinizing hormone (Lh) as well as gonadosomatic index (GSI). Furthermore, the expression of genes related to gonadotropins and steroidogenesis and signaling along the brain-pituitary-gonad axis (BPG-axis) is affected by changes of an animal’s social status. In this study, we use RNA-sequencing to obtain an in-depth look at the transcriptomes of testes and pituitaries from dominant and subordinate male Nile tilapia living in long-term stable social hierarchies. This allows us to draw conclusions about factors along the brain-pituitary-gonad axis that are involved in maintaining dominance over weeks or even months. We identify a number of genes that are differentially regulated between dominant and subordinate males and show that in high-ranking fish this subset of genes is generally upregulated. Genes differentially expressed between the two social groups comprise growth factors, related binding proteins and receptors, components of Wnt-, Tgfβ- and retinoic acid-signaling pathway, gonadotropin signaling and steroidogenesis pathways. The latter is backed up by elevated levels of 11-ketotestosterone, testosterone and estradiol in dominant males. Luteinizing hormone (Lh) is found in higher concentration in the plasma of long-term dominant males than in subordinate animals. Our results both strengthen the existing models and propose new candidates for functional studies to expand our understanding of social phenomena in teleost fish.
Collapse
|
26
|
Begum S, Gnanasree SM, Anusha N, Senthilkumaran B. Germ cell markers in fishes - A review. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Tran NK, Kwan TN, Purser J, Patil JG. Masculinization of Adult Gambusia holbrooki: A Case of Recapitulation of Protogyny in a Gonochorist? BIOLOGY 2022; 11:694. [PMID: 35625423 PMCID: PMC9138882 DOI: 10.3390/biology11050694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 12/04/2022]
Abstract
17α-Methyltestosterone (MT) is a synthetic steroid that has been widely used to masculinize many fish species when administered early during larval development, however, reports on its efficacy on adults is limited. To this end, this study investigated the efficacy of MT in the masculinization of the eastern mosquitofish (G. holbrooki) at two adult stages (maiden and repeat gravid females). The treated females were fed control or respective MT incorporated feed (0-200 mg/kg diet) for 50 days. Effects of the hormone on secondary sexual characteristics, internal gonad morphology, expression of the Anti-Müllerian Hormone (amh) gene and sexual behavior of the treated females were investigated. The results showed that MT at the dose of 50 mg/kg feed stimulated secondary sexual character development, upregulated expression of amh, formation of testicular tissue and a shift in the behavior similar to those of normal males, prominently so in treated maiden gravid females. Post-treatment, long-term observations indicated that only two masculinized females reverted back to being females and gave birth to young. Induction of masculinizing effects in most individuals suggests that the sexual phenotype of this species appears to be highly plastic with potential to sex reverse at adulthood. This in combination with its small size and short reproductive cycle could provide an ideal system to explore the mechanisms of sequential hermaphroditism in fish and contribute to genetic control of this pest fish.
Collapse
Affiliation(s)
- Ngoc Kim Tran
- Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Launceston, TAS 7250, Australia; (N.K.T.); (J.P.)
- Department of Aquaculture, Faculty of Agriculture and Natural Resources, An Giang University, 18 Ung Van Khiem Street, Long Xuyen City 880000, Vietnam
| | - Tzu Nin Kwan
- Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Taroona, TAS 7053, Australia;
| | - John Purser
- Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Launceston, TAS 7250, Australia; (N.K.T.); (J.P.)
| | - Jawahar G. Patil
- Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Launceston, TAS 7250, Australia; (N.K.T.); (J.P.)
- Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Taroona, TAS 7053, Australia;
- Inland Fisheries Services, New Norfolk, TAS 7140, Australia
| |
Collapse
|
28
|
Dynamics of sexual development in teleosts with a note on Mugil cephalus. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Liu Y, Bai S, Wang Y, Li X, Qu J, Han M, Zhai J, Li W, Liu J, Zhang Q. Intensive masculinization caused by chronic heat stress in juvenile Cynoglossus semilaevis: Growth performance, gonadal histology and gene responses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113250. [PMID: 35121259 DOI: 10.1016/j.ecoenv.2022.113250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
The sea temperature has been observed to chronically increase during the past decades, leaving unpredictable influences to the marine biological resources. Thus, it is of vital significance to study the biological responses of ocean inhabited organisms with the artificially stimulated heat stress environment. Cynoglossus semilaevis provides us with an ideal model to study the influence of chronic heat stress on the sexual differentiation in marine teleosts for its genetic sex determination (GSD) + environmental effected (EE) sex determination system. In this study, the comparative experiment was conducted employing heated seawater (HT group) and ambient seawater (CT group) to cultivate juvenile C. semilaevis respectively. Significant differences were exhibited in growth performance and a delayed germ cell development effect was found in pseudomales formed under chronic heat stress. Using transcriptome analysis, the transcription profile of 55 days post fertilization (dpf) and 100 dpf juveniles' gonads were studied. A total of 47 libraries were constructed with an average mapping rate of 94.63% after assembling. GO and KEGG enrichment were proceeded using DEGs screened out between (1) pseudomale gonads at 55 dpf and 100 dpf in HT and CT group (2) pseudomale and female gonads at 55 dpf and 100 dpf in HT and CT group. Terms and pathways involved in steroid stimulation, reproduction ability, germ cell proliferation et al. were shed light on. The expression pattern of 29 DEGs including amh, hsp90b1, pgr et al. were also provided to supplement the results of functional enrichment. Weighted gene co-expression networks analysis (WGCNA) was constructed and hspb8-like, histone H2A.V were exhibited to play vital roles in the heat-induced masculinization. Our findings facilitate the understanding for transcriptional variations in intensive masculinization cause by chronic heat stress of C. semilaevis and provide referable study of the influences on the teleosts in elevated sea temperature.
Collapse
Affiliation(s)
- Yuxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| | - Shujun Bai
- Laboratory of Fisheries Oceanography, College of Fisheries, Ocean University of China, Qingdao, China
| | - Yujue Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| | - Xiaoqi Li
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Jiangbo Qu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| | - Miao Han
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| | - Jieming Zhai
- Laizhou Mingbo Aquatic Co., Ltd., Laizhou, China
| | - Wensheng Li
- Laizhou Mingbo Aquatic Co., Ltd., Laizhou, China
| | - Jinxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China.
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China.
| |
Collapse
|
30
|
Bedenk J, Režen T, Železnik Ramuta T, Jančar N, Vrtačnik Bokal E, Geršak K, Virant Klun I. Recombinant anti-Müllerian hormone in the maturation medium improves the in vitro maturation of human immature (GV) oocytes after controlled ovarian hormonal stimulation. Reprod Biol Endocrinol 2022; 20:18. [PMID: 35073905 PMCID: PMC8785574 DOI: 10.1186/s12958-022-00895-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/16/2022] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND In vitro maturation (IVM) of oocytes is a laboratory method that allows the maturation of immature (GV) oocytes retrieved from patients enrolled in the in vitro fertilization (IVF) programme. However, this method is still sparsely researched and used in clinical practice, leading to suboptimal clinical results. Anti-Müllerian hormone (AMH) is an important hormone with known effects on human ovaries, especially on follicles (follicular cells) during folliculogenesis. In contrast, the effect of AMH on the human oocyte itself is unknown. Therefore, we wanted to determine whether human oocytes express AMH receptor 2 (AMHR2) for this hormone. Recombinant AMH was added to the IVM medium to determine whether it affected oocyte maturation. METHODS In total, 247 human oocytes (171 immature and 76 mature) were collected from patients enrolled in the intracytoplasmic sperm injection (ICSI) programme who were aged 20 to 43 years and underwent a short antagonist protocol of ovarian stimulation. The expression of AMHR2 protein and AMHR2 gene was analysed in immature and mature oocytes. Additionally, maturation of GV oocytes was performed in vitro in different maturation media with or without added AMH to evaluate the effect of AMH on the oocyte maturation rate. RESULTS Immunocytochemistry and confocal microscopy revealed that AMHR2 protein is expressed in both immature and mature human oocytes. AMHR2 was expressed in a spotted pattern throughout the whole oocyte. The IVM procedure revealed that AMH in maturation medium improved GV oocyte maturation in vitro, as all oocytes were successfully matured in maturation medium containing recombinant AMH only. Furthermore, antagonism between AMH and follicle-stimulating hormone (FSH) during the maturation process was observed, with fewer oocytes maturing when both AMH and FSH were added to the maturation medium. Finally, AMHR2 gene expression was found in immature and in vitro matured oocytes but absent in mature oocytes. CONCLUSIONS The positive AMHR2 protein and AMHR2 gene expression in human oocytes shows that AMH could directly act on human oocytes. This was further functionally confirmed by the IVM procedure. These findings suggest the potential clinical application of recombinant AMH to improve IVM of human oocytes in the future.
Collapse
Affiliation(s)
- Jure Bedenk
- Clinical Research Centre, University Medical Centre Ljubljana, 1000, Ljubljana, Slovenia.
| | - Tadeja Režen
- Institute of Biochemistry and Molecular Genetics, Centre for Functional Genomics and Bio-Chips, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Taja Železnik Ramuta
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Nina Jančar
- Department of Gynaecology and Obstetrics, University Medical Centre Ljubljana, 1000, Ljubljana, Slovenia
| | - Eda Vrtačnik Bokal
- Department of Gynaecology and Obstetrics, University Medical Centre Ljubljana, 1000, Ljubljana, Slovenia
| | - Ksenija Geršak
- Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Irma Virant Klun
- Clinical Research Centre, University Medical Centre Ljubljana, 1000, Ljubljana, Slovenia
| |
Collapse
|
31
|
Abstract
Anti-Müllerian hormone (AMH) is a member of the TGF-β family produced essentially by the supporting somatic cells of the testis. Initially known for its inhibiting role upon the development of female internal organs, AMH has been shown to exert many other effects namely upon germ cells. Circulating AMH reflects the ovarian reserve of young developing follicles and is used to evaluate the fertility potential in assisted reproduction. The signaling pathway of AMH is both similar and different from that of other members of the TGF-β family. Like these, it signals through two distinct serine/threonine receptors, type 1 and type 2, that phosphorylate cytoplasmic effectors, the Smads. It also shares type 1 receptors and Smads with other members of the family. However, AMH is the only family member with its own, dedicated, ligand-specific type 2 receptor, AMHR2. The monogamic relationship between AMH and AMHR2 is supported by molecular studies of the Persistent Müllerian Duct Syndrome, characterized by the presence of Müllerian derivatives in otherwise normally virilized males: mutations of AMH or AMHR2 are clinically indistinguishable.
Collapse
Affiliation(s)
- Nathalie Josso
- Lipodystrophies, Adaptations Métaboliques et Hormonales, et Vieillissement, Sorbonne Université, INSERM, Centre de Recherches Saint-Antoine, 27 rue de Chaligny, 75012 Paris, France.
| | - Jean-Yves Picard
- Lipodystrophies, Adaptations Métaboliques et Hormonales, et Vieillissement, Sorbonne Université, INSERM, Centre de Recherches Saint-Antoine, 27 rue de Chaligny, 75012 Paris, France.
| |
Collapse
|
32
|
He P, Zhu P, Wei P, Zhuo X, Ma Y, Chen X, Lin Y, Xu Y, Luo H, Peng J. Gonadal transcriptomic analysis and differentially expressed genes between the testes and ovaries in Trachinotus ovatus. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2020.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Liu X, Dai S, Wu J, Wei X, Zhou X, Chen M, Tan D, Pu D, Li M, Wang D. Roles of anti-Müllerian hormone and its duplicates in sex determination and germ cell proliferation of Nile tilapia. Genetics 2021; 220:6486528. [PMID: 35100374 PMCID: PMC9208641 DOI: 10.1093/genetics/iyab237] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/17/2021] [Indexed: 12/30/2022] Open
Abstract
Duplicates of amh are crucial for fish sex determination and differentiation. In Nile tilapia, unlike in other teleosts, amh is located on X chromosome. The Y chromosome amh (amhΔ-y) is mutated with 5 bp insertion and 233 bp deletion in the coding sequence, and tandem duplicate of amh on Y chromosome (amhy) has been identified as the sex determiner. However, the expression of amh, amhΔ-y, and amhy, their roles in germ cell proliferation and the molecular mechanism of how amhy determines sex is still unclear. In this study, expression and functions of each duplicate were analyzed. Sex reversal occurred only when amhy was mutated as revealed by single, double, and triple mutation of the 3 duplicates in XY fish. Homozygous mutation of amhy in YY fish also resulted in sex reversal. Earlier and higher expression of amhy/Amhy was observed in XY gonads compared with amh/Amh during sex determination. Amhy could inhibit the transcription of cyp19a1a through Amhr2/Smads signaling. Loss of cyp19a1a rescued the sex reversal phenotype in XY fish with amhy mutation. Interestingly, mutation of both amh and amhy in XY fish or homozygous mutation of amhy in YY fish resulted in infertile females with significantly increased germ cell proliferation. Taken together, these results indicated that up-regulation of amhy during the critical period of sex determination makes it the sex-determining gene, and it functions through repressing cyp19a1a expression via Amhr2/Smads signaling pathway. Amh retained its function in controlling germ cell proliferation as reported in other teleosts, while amhΔ-y was nonfunctionalized.
Collapse
Affiliation(s)
- Xingyong Liu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Shengfei Dai
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jiahong Wu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xueyan Wei
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xin Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Mimi Chen
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Dejie Tan
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Deyong Pu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Minghui Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China,Corresponding author: Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China. ; Corresponding author: Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China,Corresponding author: Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China. ; Corresponding author: Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
34
|
Goikoetxea A, Muncaster S, Todd EV, Lokman PM, Robertson HA, De Farias E Moraes CE, Damsteegt EL, Gemmell NJ. A new experimental model for the investigation of sequential hermaphroditism. Sci Rep 2021; 11:22881. [PMID: 34819550 PMCID: PMC8613207 DOI: 10.1038/s41598-021-02063-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/08/2021] [Indexed: 11/08/2022] Open
Abstract
The stunning sexual transformation commonly triggered by age, size or social context in some fishes is one of the best examples of phenotypic plasticity thus far described. To date our understanding of this process is dominated by studies on a handful of subtropical and tropical teleosts, often in wild settings. Here we have established the protogynous New Zealand spotty wrasse, Notolabrus celidotus, as a temperate model for the experimental investigation of sex change. Captive fish were induced to change sex using aromatase inhibition or manipulation of social groups. Complete female-to-male transition occurred over 60 days in both cases and time-series sampling was used to quantify changes in hormone production, gene expression and gonadal cellular anatomy. Early-stage decreases in plasma 17β-estradiol (E2) concentrations or gonadal aromatase (cyp19a1a) expression were not detected in spotty wrasse, despite these being commonly associated with the onset of sex change in subtropical and tropical protogynous (female-to-male) hermaphrodites. In contrast, expression of the masculinising factor amh (anti-Müllerian hormone) increased during early sex change, implying a potential role as a proximate trigger for masculinisation. Collectively, these data provide a foundation for the spotty wrasse as a temperate teleost model to study sex change and cell fate in vertebrates.
Collapse
Affiliation(s)
- A Goikoetxea
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- MARBEC Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France
| | - S Muncaster
- Environmental Management Group, Toi Ohomai Institute of Technology, Tauranga, New Zealand.
- School of Science, University of Waikato, Tauranga, New Zealand.
| | - E V Todd
- School of Life and Environmental Sciences, Deakin University, Geelong, Australia
| | - P M Lokman
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - H A Robertson
- Environmental Management Group, Toi Ohomai Institute of Technology, Tauranga, New Zealand
| | - C E De Farias E Moraes
- Environmental Management Group, Toi Ohomai Institute of Technology, Tauranga, New Zealand
| | - E L Damsteegt
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - N J Gemmell
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
35
|
Lin CJ, Jeng SR, Lei ZY, Yueh WS, Dufour S, Wu GC, Chang CF. Involvement of Transforming Growth Factor Beta Family Genes in Gonadal Differentiation in Japanese Eel, Anguilla japonica, According to Sex-Related Gene Expressions. Cells 2021; 10:cells10113007. [PMID: 34831230 PMCID: PMC8616510 DOI: 10.3390/cells10113007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/20/2021] [Accepted: 11/01/2021] [Indexed: 11/18/2022] Open
Abstract
The gonochoristic feature with environmental sex determination that occurs during the yellow stage in the eel provides an interesting model to investigate the mechanisms of gonadal development. We previously studied various sex-related genes during gonadal sex differentiation in Japanese eels. In the present study, the members of transforming growth factor beta (TGF-β) superfamily were investigated. Transcript levels of anti-Müllerian hormone, its receptor, gonadal soma-derived factor (amh, amhr2, and gsdf, respectively) measured by real-time polymerase chain reaction (qPCR) showed a strong sexual dimorphism. Transcripts were dominantly expressed in the testis, and their levels significantly increased with testicular differentiation. In contrast, the expressions of amh, amhr2, and gsdf transcripts were low in the ovary of E2-feminized female eels. In situ hybridization detected gsdf (but not amh) transcript signals in undifferentiated gonads. amh and gsdf signals were localized to Sertoli cells and had increased significantly with testicular differentiation. Weak gsdf and no amh signals were detected in early ovaries of E2-feminized female eels. Transcript levels of amh and gsdf (not amhr2) decreased during human chorionic gonadotropin (HCG)-induced spermatogenesis in males. This study suggests that amh, amhr2, and especially gsdf might be involved in the gene pathway regulating testicular differentiation of Japanese eels.
Collapse
Affiliation(s)
- Chien-Ju Lin
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 912, Taiwan;
| | - Shan-Ru Jeng
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan; (Z.-Y.L.); (W.-S.Y.)
- Correspondence: (S.-R.J.); (G.-C.W.); (C.-F.C.)
| | - Zhen-Yuan Lei
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan; (Z.-Y.L.); (W.-S.Y.)
| | - Wen-Shiun Yueh
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan; (Z.-Y.L.); (W.-S.Y.)
| | - Sylvie Dufour
- Laboratory Biology of Aquatic Organisms and Ecosystems (BOREA), Muséum National d’Histoire Naturelle, CNRS, IRD, Sorbonne Université, CEDEX 05, 75231 Paris, France;
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Guan-Chung Wu
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan
- Correspondence: (S.-R.J.); (G.-C.W.); (C.-F.C.)
| | - Ching-Fong Chang
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan
- Correspondence: (S.-R.J.); (G.-C.W.); (C.-F.C.)
| |
Collapse
|
36
|
Sex Determination and Differentiation in Teleost: Roles of Genetics, Environment, and Brain. BIOLOGY 2021; 10:biology10100973. [PMID: 34681072 PMCID: PMC8533387 DOI: 10.3390/biology10100973] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 01/19/2023]
Abstract
The fish reproductive system is a complex biological system. Nonetheless, reproductive organ development is conserved, which starts with sex determination and then sex differentiation. The sex of a teleost is determined and differentiated from bipotential primordium by genetics, environmental factors, or both. These two processes are species-specific. There are several prominent genes and environmental factors involved during sex determination and differentiation. At the cellular level, most of the sex-determining genes suppress the female pathway. For environmental factors, there are temperature, density, hypoxia, pH, and social interaction. Once the sexual fate is determined, sex differentiation takes over the gonadal developmental process. Environmental factors involve activation and suppression of various male and female pathways depending on the sexual fate. Alongside these factors, the role of the brain during sex determination and differentiation remains elusive. Nonetheless, GnRH III knockout has promoted a male sex-biased population, which shows brain involvement during sex determination. During sex differentiation, LH and FSH might not affect the gonadal differentiation, but are required for regulating sex differentiation. This review discusses the role of prominent genes, environmental factors, and the brain in sex determination and differentiation across a few teleost species.
Collapse
|
37
|
Functional Activity of Recombinant Forms of Amh and Synergistic Action with Fsh in European Sea Bass Ovary. Int J Mol Sci 2021; 22:ijms221810092. [PMID: 34576257 PMCID: PMC8467395 DOI: 10.3390/ijms221810092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/05/2021] [Accepted: 09/09/2021] [Indexed: 01/21/2023] Open
Abstract
Although anti-Müllerian hormone (AMH) has classically been correlated with the regression of Müllerian ducts in male mammals, involvement of this growth factor in other reproductive processes only recently come to light. Teleost is the only gnathostomes that lack Müllerian ducts despite having amh orthologous genes. In adult teleost gonads, Amh exerts a role in the early stages of germ cell development in both males and females. Mechanisms involving the interaction of Amh with gonadotropin- and growth factor-induced functions have been proposed, but our overall knowledge regarding Amh function in fish gonads remains modest. In this study, we report on Amh actions in the European sea bass ovary. Amh and type 2 Amh receptor (Amhr2) are present in granulosa and theca cells of both early and late-vitellogenic follicles and cannot be detected in previtellogenic ovaries. Using the Pichia pastoris system a recombinant sea bass Amh has been produced that is endogenously processed to generate a 12–15 kDa bioactive mature protein. Contrary to previous evidence in lower vertebrates, in explants of previtellogenic sea bass ovaries, mature Amh has a synergistic effect on steroidogenesis induced by the follicle-stimulating hormone (Fsh), increasing E2 and cyp19a1a levels.
Collapse
|
38
|
Duan W, Gao FX, Chen ZW, Gao Y, Gui JF, Zhao Z, Shi Y. A sex-linked SNP mutation in amhr2 is responsible for male differentiation in obscure puffer (Takifugu obscurus). Mol Biol Rep 2021; 48:6035-6046. [PMID: 34341900 DOI: 10.1007/s11033-021-06606-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/27/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Anti-Mullerian hormone receptor type II (Amhr2) is a key receptor of Amh signaling in regulating gonad development. The amhr2 gene has been identified in numerous species, including a few teleost fishes. However, the roles of Amhr2 in Amh signaling in fish are poorly studied. METHODS AND RESULTS In this study, an amhr2 homolog from obscure puffer (Takifugu obscurus) was identified, and its molecular characteristics were systematically analyzed. Expression analysis revealed that amhr2 was highly expressed in the gonads of adult pufferfish and significantly upregulated during sex differentiation. Significantly, a sex-linked SNP site was verified in obscure puffer amhr2. Females exhibited a homozygous genotype (C/C), while males possessed a heterozygous genotype (C/G), resulting in an amino acid variation (His/Asp384) in the kinase domain of Amhr2. Then, the functions of the different Amhr2 genotypes were further investigated. The male genotype protein (Amhr2D384) showed an enhanced ability to interact with the type I receptor (Bmpr1a) compared to the female genotype (Amhr2H384). The phosphorylation levels of Smads and activity of the target gene (id3) induced by the male genotype were also much higher than those induced by the female genotype. These results confirmed that the male genotype had an enhanced effect on the Amh signaling pathway compared with the female genotype. CONCLUSIONS This study provides direct experimental evidence for the roles of different Amhr2 genotypes in pufferfish and suggests that amhr2 is responsible for male sex differentiation in obscure puffer.
Collapse
Affiliation(s)
- Wen Duan
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Fan-Xiang Gao
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China.,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zi-Wei Chen
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Yang Gao
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Jian-Fang Gui
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China.,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhe Zhao
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Yan Shi
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
39
|
Casas L, Saborido-Rey F. Environmental Cues and Mechanisms Underpinning Sex Change in Fish. Sex Dev 2021; 15:108-121. [PMID: 34111868 DOI: 10.1159/000515274] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/07/2021] [Indexed: 11/19/2022] Open
Abstract
Fishes are the only vertebrates that undergo sex change during their lifetime, but even within this group, a unique reproductive strategy is displayed by only 1.5% of the teleosts. This lability in alternating sexual fate is the result of the simultaneous suppression and activation of opposing male and female networks. Here, we provide a brief review summarizing recent advances in our understanding of the environmental cues that trigger sex change and their perception, integration, and translation into molecular cascades that convert the sex of an individual. We particularly focus on molecular events underpinning the complex behavioral and morphological transformation involved in sex change, dissecting the main molecular players and regulatory networks that shape the transformation of one sex into the opposite. We show that histological changes and molecular pathways governing gonadal reorganization are better described than the neuroendocrine basis of sex change and that, despite important advances, information is lacking for the majority of hermaphrodite species. We highlight significant gaps in our knowledge of how sex change takes place and suggest future research directions.
Collapse
Affiliation(s)
- Laura Casas
- Ecology and Marine Resources, Institute of Marine Research (IIM-CSIC), Vigo, Spain
| | - Fran Saborido-Rey
- Ecology and Marine Resources, Institute of Marine Research (IIM-CSIC), Vigo, Spain
| |
Collapse
|
40
|
Verta JP, Barton HJ, Pritchard V, Primmer CR. Genetic Drift Dominates Genome-Wide Regulatory Evolution Following an Ancient Whole-Genome Duplication in Atlantic Salmon. Genome Biol Evol 2021; 13:evab059. [PMID: 33749748 PMCID: PMC8140206 DOI: 10.1093/gbe/evab059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2021] [Indexed: 11/23/2022] Open
Abstract
Whole-genome duplications (WGD) have been considered as springboards that potentiate lineage diversification through increasing functional redundancy. Divergence in gene regulatory elements is a central mechanism for evolutionary diversification, yet the patterns and processes governing regulatory divergence following events that lead to massive functional redundancy, such as WGD, remain largely unknown. We studied the patterns of divergence and strength of natural selection on regulatory elements in the Atlantic salmon (Salmo salar) genome, which has undergone WGD 100-80 Ma. Using ChIPmentation, we first show that H3K27ac, a histone modification typical to enhancers and promoters, is associated with genic regions, tissue-specific transcription factor binding motifs, and with gene transcription levels in immature testes. Divergence in transcription between duplicated genes from WGD (ohnologs) correlated with difference in the number of proximal regulatory elements, but not with promoter elements, suggesting that functional divergence between ohnologs after WGD is mainly driven by enhancers. By comparing H3K27ac regions between duplicated genome blocks, we further show that a longer polyploid state post-WGD has constrained regulatory divergence. Patterns of genetic diversity across natural populations inferred from resequencing indicate that recent evolutionary pressures on H3K27ac regions are dominated by largely neutral evolution. In sum, our results suggest that post-WGD functional redundancy in regulatory elements continues to have an impact on the evolution of the salmon genome, promoting largely neutral evolution of regulatory elements despite their association with transcription levels. These results highlight a case where genome-wide regulatory evolution following an ancient WGD is dominated by genetic drift.
Collapse
Affiliation(s)
- Jukka-Pekka Verta
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Finland
| | - Henry J Barton
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Finland
| | - Victoria Pritchard
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Finland
| | - Craig R Primmer
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Finland
| |
Collapse
|
41
|
Oliveira MA, Martinez ERM, Butzge AJ, Doretto LB, Ricci JMB, Rodrigues MS, Vigoya AAA, Gómez-González NE, Stewart AB, Nóbrega RH. Molecular characterization and expression analysis of anti-Müllerian hormone in common carp (Cyprinus carpio) adult testes. Gene Expr Patterns 2021; 40:119169. [PMID: 33667682 DOI: 10.1016/j.gep.2021.119169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/11/2021] [Accepted: 02/26/2021] [Indexed: 11/24/2022]
Abstract
Anti-Müllerian hormone (Amh) is a member of the transforming growth factor-β (Tgf-β) superfamily required in the regression of Müllerian ducts during gonadal sex differentiation of higher vertebrates. Teleost fish lack Müllerian ducts, but identified Amh orthologs have been shown to exert crucial functions during sex determination and differentiation of several species of teleosts. However, the function of Amh during gametogenesis in adult fish remains poorly investigated. Therefore, to expand present knowledge on the role of Amh in teleosts, the present study aimed to isolate and clone full-length amh cDNA in the common carp, Cyprinus carpio, and examine its expression levels throughout the male reproductive cycle and in response to different hormone treatments of testicular explants. Molecular cloning and characterization showed that the common carp Amh precursor amino acid sequence shared common features to other fish Amh precursors, including a conserved C-terminus (Tgf-β domain) and a double proteolytic cleavage site (R-X-X-R-X-X-R) upstream to the Tgf-β domain. Expression analysis showed amh dimorphic expression in the adult gonads with higher expression in the testes than ovaries. In testes, amh mRNA was detected in Sertoli cells contacting different types of germ cells, although the expression was greatest in Sertoli cells associated with type A undifferentiated spermatogonia. Expression analysis during the reproductive cycle showed that amh transcripts were down-regulated during the developing phase, which is characterized by an increased proliferation of type A undifferentiated spermatogonia and Sertoli cells and appearance of spermatocytes (meiosis) in the testes. Furthermore, ex vivo experiments showed that a 7 day exposure to Fsh or estrogens was required to decrease amh mRNA levels in common carp testicular explants. In summary, this study provided information on the molecular characterization and transcript abundance of amh in common carp adult testes. Altogether, these data will be useful for further investigations on sex determination and differentiation in this species, and also to improved strategies for improved carp aquaculture, such as inhibiting precocious maturation of males.
Collapse
Affiliation(s)
- Marcos A Oliveira
- Aquaculture Program (CAUNESP), São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil; Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Emanuel R M Martinez
- Aquaculture Program (CAUNESP), São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil; Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Arno J Butzge
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Lucas B Doretto
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Juliana M B Ricci
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Maira S Rodrigues
- Aquaculture Program (CAUNESP), São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil; Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Angel A A Vigoya
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil; Faculty of Veterinary Medicine and Animal Science, San Martín University Foundation (FUSM), Bogotá, Colombia
| | - Núria E Gómez-González
- Department of Cell Biology and Histology, Faculty of Biology, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Amanda B Stewart
- Department of Orthopaedics Muscle skeletal Research, West Virginia University, USA
| | - Rafael H Nóbrega
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
| |
Collapse
|
42
|
Wu GC, Dufour S, Chang CF. Molecular and cellular regulation on sex change in hermaphroditic fish, with a special focus on protandrous black porgy, Acanthopagrus schlegelii. Mol Cell Endocrinol 2021; 520:111069. [PMID: 33127483 DOI: 10.1016/j.mce.2020.111069] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/19/2022]
Abstract
In teleost fish, sex can be determined by genetic factors, environmental factors, or both. Unlike in gonochoristic fish, in which sex is fixed in adults, sex can change in adults of hermaphroditic fish species. Thus, sex is generated during the initial gonadal differentiation stage (primary sex differentiation) and later during sexual fate alternation (secondary sex differentiation) in hermaphroditic fish species. Depending on the species, sex phase alternation can be induced by endogenous cues (such as individual age and body size) or by social cues (such as sex ratio or relative body size within the population). In general, the fluctuation in plasma estradiol-17β (E2) levels is correlated with the sexual fate alternation in hermaphroditic fish. Hormonal treatments can artificially induce sexual phase alternation in sequential hermaphroditic fishes, but in a transient and reversible manner. This is the case for the E2-induced female phase in protandrous black porgy and the methyltestosterone (MT)- or aromatase inhibitor (AI)-induced male phase in protogynous grouper. Recent reviews have focused on the different forms of sex change in fish who undergo sequential sex change, especially in terms of gene expression and the role of hormones. In this review, we use the protandrous black porgy, a nonsocial cue-influenced hermaphroditic species, with digonic gonads (ovarian and testis separated by a connective tissue), as a model to describe our findings and discuss the molecular and cellular regulation of sexual fate determination in hermaphroditic fish.
Collapse
Affiliation(s)
- Guan-Chung Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung, 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Sylvie Dufour
- Laboratory Biology of Aquatic Organisms and Ecosystems (BOREA), Muséum National d'Histoire Naturelle, CNRS, IRD, Sorbonne Université, Université de Caen Normandie, Université des Antilles, 75231, Paris Cedex 05, France
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung, 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan.
| |
Collapse
|
43
|
Shan B, Liu Y, Yang C, Zhao Y, Sun D. Comparative transcriptomic analysis for identification of candidate sex-related genes and pathways in Crimson seabream (Parargyrops edita). Sci Rep 2021; 11:1077. [PMID: 33441831 PMCID: PMC7806868 DOI: 10.1038/s41598-020-80282-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 12/18/2020] [Indexed: 01/29/2023] Open
Abstract
Teleost fishes display the largest array of sex-determining systems among animals, resulting in various reproductive strategies. Research on sex-related genes in teleosts will broaden our understanding of the process, and provide important insight into the plasticity of the sex determination process in vertebrates in general. Crimson seabream (Parargyrops edita Tanaka, 1916) is one of the most valuable and abundant fish resources throughout Asia. However, little genomic information on P. edita is available. In the present study, the transcriptomes of male and female P. edita were sequenced with RNA-seq technology. A total of 388,683,472 reads were generated from the libraries. After filtering and assembling, a total of 79,775 non redundant unigenes were obtained with an N50 of 2,921 bp. The unigenes were annotated with multiple public databases, including NT (53,556, 67.13%), NR (54,092, 67.81%), Swiss-Prot (45,265, 56.74%), KOG (41,274, 51.74%), KEGG (46,302, 58.04%), and GO (11,056, 13.86%) databases. Comparison of the unigenes of different sexes of P. edita revealed that 11,676 unigenes (9,335 in females, 2,341 in males) were differentially expressed between males and females. Of these, 5,463 were specifically expressed in females, and 1,134 were specifically expressed in males. In addition, the expression levels of ten unigenes were confirmed to validate the transcriptomic data by qRT-PCR. Moreover, 34,473 simple sequence repeats (SSRs) were identified in SSR-containing sequences, and 50 loci were randomly selected for primer development. Of these, 36 loci were successfully amplified, and 19 loci were polymorphic. Finally, our comparative analysis identified many sex-related genes (zps, amh, gsdf, sox4, cyp19a, etc.) and pathways (MAPK signaling pathway, p53 signaling pathway, etc.) of P. edita. This informative transcriptomic analysis provides valuable data to increase genomic resources of P. edita. The results will be useful for clarifying the molecular mechanism of sex determination and for future functional analyses of sex-associated genes.
Collapse
Affiliation(s)
- Binbin Shan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture Rural Affairs, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, China
| | - Yan Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture Rural Affairs, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, China
| | - Changping Yang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture Rural Affairs, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, China
| | - Yu Zhao
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture Rural Affairs, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, China
| | - Dianrong Sun
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture Rural Affairs, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, China.
- South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, China.
| |
Collapse
|
44
|
Xie Y, Huang D, Chu L, Liu Y, Sun X, Li J, Cheng CHK. Igf3 is essential for ovary differentiation in zebrafish†. Biol Reprod 2020; 104:589-601. [PMID: 33276384 DOI: 10.1093/biolre/ioaa218] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/16/2020] [Accepted: 12/03/2020] [Indexed: 12/28/2022] Open
Abstract
Zebrafish gonadal sexual differentiation is an important but poorly understood subject. Previously, we have identified a novel insulin-like growth factor (Igf) named insulin-like growth factor 3 (Igf3) in teleosts. The importance of Igf3 in oocyte maturation and ovulation has been recently demonstrated by us in zebrafish. In this study, we have further found the essential role of Igf3 in gonadal sexual differentiation of zebrafish. A differential expression pattern of igf3 between ovary and testis during sex differentiation (higher level in ovary than in testis) was found in zebrafish. An igf3 knockout zebrafish line was established using TALENs-mediated gene knockout technique. Intriguingly, all igf3 homozygous mutants were males due to the female-to-male sex reversal occurred during sex differentiation. Further analysis showed that Igf3 did not seem to affect the formation of so-called juvenile ovary and oocyte-like germ cells. Oocyte development was arrested at primary growth stage, and the ovary was gradually sex-reversed to testis before 60 day post fertilization (dpf). Such sex reversal was likely due to decreased germ cell proliferation by suppressing PI3K/Akt pathway in early ovaries of igf3 mutants. Estrogen is considered as a master regulator in fish sex differentiation. Here, we found that igf3 expression could be upregulated by estrogen in early stages of ovarian follicles as evidenced in in vitro treatment assays and cyp19a1a mutant zebrafish, and E2 failed to rescue the defects of igf3 mutants in ovarian development, suggesting that Igf3 may serve as a downstream factor of estrogen signaling in sex differentiation. Taken together, we demonstrated that Igf3 is essential for ovary differentiation in zebrafish.
Collapse
Affiliation(s)
- Yuxin Xie
- School of Biomedical Sciences, The Chinese University of Hong Kong-Shandong University Joint Laboratory on Reproductive Genetics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Duo Huang
- School of Biomedical Sciences, The Chinese University of Hong Kong-Shandong University Joint Laboratory on Reproductive Genetics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Lianhe Chu
- School of Biomedical Sciences, The Chinese University of Hong Kong-Shandong University Joint Laboratory on Reproductive Genetics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yun Liu
- School of Biomedical Sciences, The Chinese University of Hong Kong-Shandong University Joint Laboratory on Reproductive Genetics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xiao Sun
- School of Biomedical Sciences, The Chinese University of Hong Kong-Shandong University Joint Laboratory on Reproductive Genetics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jianzhen Li
- College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Christopher H K Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong-Shandong University Joint Laboratory on Reproductive Genetics, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
45
|
Zhang Z, Wu K, Ren Z, Ge W. Genetic evidence for Amh modulation of gonadotropin actions to control gonadal homeostasis and gametogenesis in zebrafish and its noncanonical signaling through Bmpr2a receptor. Development 2020; 147:dev189811. [PMID: 33060133 DOI: 10.1242/dev.189811] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022]
Abstract
Anti-Müllerian hormone (Amh) plays an important role in gonadal function. Amh deficiency causes severe gonadal dysgenesis and dysfunction in zebrafish, with gonadal hypertrophy in both sexes. However, its mechanism of action remains unknown. Intriguingly, the Amh cognate type II receptor (Amhr2) is missing in the zebrafish genome, in sharp contrast to other species. Using a series of zebrafish mutants (amh, fshb, fshr and lhcgr), we provided unequivocal evidence for actions of Amh, via modulation of gonadotropin signaling, on both germ cell proliferation and differentiation. The gonadal hypertrophy in amh mutants was abolished in the absence of Fshr in females or Fshr/Lhcgr in males. Furthermore, we demonstrated that knockout of bmpr2a, but not bmpr2b, phenocopied all phenotypes of the amh mutant in both sexes, including gonadal hypertrophy, hyperproliferation of germ cells, retarded gametogenesis and reduced fshb expression. In summary, the present study provided comprehensive genetic evidence for an intimate interaction of gonadotropin and Amh pathways in gonadal homeostasis and gametogenesis and for Bmpr2a as the possible missing link for Amh signaling in zebrafish.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Kun Wu
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Zhiqin Ren
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Wei Ge
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
46
|
Nagahama Y, Chakraborty T, Paul-Prasanth B, Ohta K, Nakamura M. Sex determination, gonadal sex differentiation, and plasticity in vertebrate species. Physiol Rev 2020; 101:1237-1308. [PMID: 33180655 DOI: 10.1152/physrev.00044.2019] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A diverse array of sex determination (SD) mechanisms, encompassing environmental to genetic, have been found to exist among vertebrates, covering a spectrum from fixed SD mechanisms (mammals) to functional sex change in fishes (sequential hermaphroditic fishes). A major landmark in vertebrate SD was the discovery of the SRY gene in 1990. Since that time, many attempts to clone an SRY ortholog from nonmammalian vertebrates remained unsuccessful, until 2002, when DMY/dmrt1by was discovered as the SD gene of a small fish, medaka. Surprisingly, however, DMY/dmrt1by was found in only 2 species among more than 20 species of medaka, suggesting a large diversity of SD genes among vertebrates. Considerable progress has been made over the last 3 decades, such that it is now possible to formulate reasonable paradigms of how SD and gonadal sex differentiation may work in some model vertebrate species. This review outlines our current understanding of vertebrate SD and gonadal sex differentiation, with a focus on the molecular and cellular mechanisms involved. An impressive number of genes and factors have been discovered that play important roles in testicular and ovarian differentiation. An antagonism between the male and female pathway genes exists in gonads during both sex differentiation and, surprisingly, even as adults, suggesting that, in addition to sex-changing fishes, gonochoristic vertebrates including mice maintain some degree of gonadal sexual plasticity into adulthood. Importantly, a review of various SD mechanisms among vertebrates suggests that this is the ideal biological event that can make us understand the evolutionary conundrums underlying speciation and species diversity.
Collapse
Affiliation(s)
- Yoshitaka Nagahama
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan.,South Ehime Fisheries Research Center, Ehime University, Ainan, Japan.,Faculty of Biological Science and Technology, Kanazawa University, Ishikawa, Japan
| | - Tapas Chakraborty
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan.,South Ehime Fisheries Research Center, Ehime University, Ainan, Japan.,Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukouka, Japan.,Karatsu Satellite of Aqua-Bioresource Innovation Center, Kyushu University, Karatsu, Japan
| | - Bindhu Paul-Prasanth
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan.,Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidapeetham, Kochi, Kerala, India
| | - Kohei Ohta
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukouka, Japan
| | - Masaru Nakamura
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan.,Research Center, Okinawa Churashima Foundation, Okinawa, Japan
| |
Collapse
|
47
|
Zhang Z, Zhu B, Chen W, Ge W. Anti-Müllerian hormone (Amh/amh) plays dual roles in maintaining gonadal homeostasis and gametogenesis in zebrafish. Mol Cell Endocrinol 2020; 517:110963. [PMID: 32745576 DOI: 10.1016/j.mce.2020.110963] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 11/21/2022]
Abstract
Anti-Müllerian hormone (AMH/Amh) plays a role in gonadal differentiation and function across vertebrates. In zebrafish we demonstrated that Amh deficiency caused severe gonadal dysgenesis and dysfunction. The mutant gonads showed extreme hypertrophy with accumulation of early germ cells in both sexes, namely spermatogonia in the testis and primary growth oocytes in the ovary. In amh mutant females, the folliculogenesis was normal in young fish but receded progressively in adults, which was accompanied by progressive decrease in follicle-stimulating hormone (fshb) expression. Interestingly the expression of fshb increased in the pituitary of juvenile amh mutant males but decreased in adults. The upregulation of fshb in mutant male juveniles was likely one of the mechanisms for triggering gonadal hypergrowth, whereas the downregulation of fshb in adults might involve a negative feedback by gonadal inhibin. Further analysis using mutants of fshb and growth differentiation factor 9 (gdf9) provided evidence for a role of FSH in triggering ovarian hypertrophy in young female amh mutant as well. In summary, the present study provided comprehensive genetic evidence for dual roles of Amh in controlling zebrafish gonadal homeostasis and gametogenesis in both sexes. Amh suppresses proliferation or accumulation of early germ cells (spermatogonia in testis and primary growth oocytes in ovary) while promoting their exit to advanced stages, and its action may involve both endocrine and paracrine pathways.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Bo Zhu
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Weiting Chen
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Wei Ge
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau.
| |
Collapse
|
48
|
Cis-regulatory differences in isoform expression associate with life history strategy variation in Atlantic salmon. PLoS Genet 2020; 16:e1009055. [PMID: 32997662 PMCID: PMC7549781 DOI: 10.1371/journal.pgen.1009055] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 10/12/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023] Open
Abstract
A major goal in biology is to understand how evolution shapes variation in individual life histories. Genome-wide association studies have been successful in uncovering genome regions linked with traits underlying life history variation in a range of species. However, lack of functional studies of the discovered genotype-phenotype associations severely restrains our understanding how alternative life history traits evolved and are mediated at the molecular level. Here, we report a cis-regulatory mechanism whereby expression of alternative isoforms of the transcription co-factor vestigial-like 3 (vgll3) associate with variation in a key life history trait, age at maturity, in Atlantic salmon (Salmo salar). Using a common-garden experiment, we first show that vgll3 genotype associates with puberty timing in one-year-old salmon males. By way of temporal sampling of vgll3 expression in ten tissues across the first year of salmon development, we identify a pubertal transition in vgll3 expression where maturation coincided with a 66% reduction in testicular vgll3 expression. The late maturation allele was not only associated with a tendency to delay puberty, but also with expression of a rare transcript isoform of vgll3 pre-puberty. By comparing absolute vgll3 mRNA copies in heterozygotes we show that the expression difference between the early and late maturity alleles is largely cis-regulatory. We propose a model whereby expression of a rare isoform from the late allele shifts the liability of its carriers towards delaying puberty. These results exemplify the potential importance of regulatory differences as a mechanism for the evolution of life history traits. Alternative life history strategies are an important source of diversity within populations and promote the maintenance of adaptive capacity and population resilience. However, in many cases the molecular basis of different life history strategies remains elusive. Age at maturity is a key adaptive life history trait in Atlantic salmon and has a relatively simple genetic basis. Using salmon age at maturity as a model, we report a mechanism whereby different transcript isoforms of the key age at maturity gene, vestigial-like 3 (vgll3), associate with variation in the timing of male puberty. Our results show how gene regulatory differences in conjunction with variation in gene transcript structure can encode for complex alternative life histories.
Collapse
|
49
|
Structure and Sequence of the Sex Determining Locus in Two Wild Populations of Nile Tilapia. Genes (Basel) 2020; 11:genes11091017. [PMID: 32872430 PMCID: PMC7563666 DOI: 10.3390/genes11091017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/15/2020] [Accepted: 08/27/2020] [Indexed: 12/30/2022] Open
Abstract
In domesticated strains of the Nile tilapia, phenotypic sex has been linked to genetic variants on linkage groups 1, 20 and 23. This diversity of sex-loci might reflect a naturally polymorphic sex determination system in Nile tilapia, or it might be an artefact arising from the process of domestication. Here, we searched for sex-determiners in wild populations from Kpandu, Lake Volta (Ghana-West Africa), and from Lake Koka (Ethiopia-East Africa) that have not been subjected to any genetic manipulation. We analysed lab-reared families using double-digest Restriction Associated DNA sequencing (ddRAD) and analysed wild-caught males and females with pooled whole-genome sequencing (WGS). Strong sex-linked signals were found on LG23 in both populations, and sex-linked signals with LG3 were observed in Kpandu samples. WGS uncovered blocks of high sequence coverage, suggesting the presence of B chromosomes. We confirmed the existence of a tandem amh duplication in LG23 in both populations and determined its breakpoints between the oaz1 and dot1l genes. We found two common deletions of ~5 kb in males and confirmed the presence of both amhY and amh∆Y genes. Males from Lake Koka lack both the previously reported 234 bp deletion and the 5 bp frameshift-insertion that creates a premature stop codon in amh∆Y.
Collapse
|
50
|
Hayman ES, Fairgrieve WT, Luckenbach JA. Molecular and morphological sex differentiation in sablefish (Anoplopoma fimbria), a marine teleost with XX/XY sex determination. Gene 2020; 764:145093. [PMID: 32866588 DOI: 10.1016/j.gene.2020.145093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/13/2020] [Accepted: 08/21/2020] [Indexed: 10/23/2022]
Abstract
Phenotypic sex of an organism is determined by molecular changes in the gonads, so-called molecular sex differentiation, which should precede the rise of cellular or anatomical sex-distinguishing features. This study characterized molecular and morphological sex differentiation in sablefish (Anoplopoma fimbria), a marine teleost with established XX/XY genotypic sex determination. Next generation sequencing was conducted on sablefish ovarian and testicular mRNAs to obtain sequences for transcripts associated with vertebrate sex determination and differentiation and early reproductive development. Gene-specific PCRs were developed to determine the distribution and ontogenetic gonadal expression of transcription, growth, steroidogenic and germline factors, as well as gonadotropin and steroid receptors. Molecular changes associated with sex differentiation were first apparent in both XY- and XX-genotype sablefish at ~ 60 mm in body length and prior to histological signs of sex differentiation. The earliest and most robust markers of testicular differentiation were gsdf, amh, dmrt1, cyp11b, star, sox9a, and fshr. Markedly elevated mRNA levels of several steroidogenesis-related genes and ar2 in differentiating testes suggested that androgens play a role in sablefish testicular differentiation. The earliest markers of ovarian differentiation were cyp19a1a, lhcgr, foxl2, nr0b1, and igf3. Other transcripts such as figla, zp3, and pou5f3 were expressed predominantly in XX-genotype fish and significantly increased with the first appearance and subsequent development of primary oocytes. This study provides valuable insight to the developmental sequence of events associated with gonadal sex differentiation in marine teleosts with XX/XY sex determination. It also implicates particular genes in processes of male and female development and establishes robust molecular markers for phenotypic sex in sablefish, useful for ongoing work related to sex control and reproductive sterilization.
Collapse
Affiliation(s)
- Edward S Hayman
- Ocean Associates Inc., Under Contract to Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA 98112, USA
| | - William T Fairgrieve
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA 98112, USA
| | - J Adam Luckenbach
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA 98112, USA; Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|