1
|
Rastogi S, Haldar C. Seasonal plasticity in immunocompetent cytokines (IL-2, IL-6, and TNF-α), myeloid progenitor cell (CFU-GM) proliferation, and LPS-induced oxido-inflammatory aberrations in a tropical rodent Funambulus pennanti: role of melatonin. Cell Stress Chaperones 2023; 28:567-582. [PMID: 36542205 PMCID: PMC10469145 DOI: 10.1007/s12192-022-01313-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
In seasonal breeders, photoperiods regulate the levels of circulatory melatonin, a well-known immunomodulator and an antioxidant. Melatonin is known to play a complex physiological role in maintaining the immune homeostasis by affecting cytokine production in immunocompetent cells. In this study, we have quantified seasonal and temporal variations in immunocompetent cytokines-IL-2, IL-6, and TNF-α-and circulatory corticosterone along with in- vitro proliferation of bone marrow-derived granulocyte macrophage-colony forming unit (CFU-GM) progenitor cells of a tropical seasonal breeder Funambulus pennanti (northern palm squirrel). Transient variations in antioxidant status of seasonal breeders might be due to the fluctuations associated with immunity and inflammation. Further, to establish a direct immunomodulatory effect of photoperiod, we recorded the LPS-induced oxidative and inflammatory responses of squirrels by housing them in artificial photoperiodic chambers mimicking summer and winter seasons respectively. We observed a marked variation in cytokines level, melatonin, and corticosterone , and CFU-GM cell proliferation during summer and winter seasons. High Peripheral melatonin levels directly correlated with cytokine IL-2 levels, and inversely correlated with TNF-α, and circulatory corticosterone level. LPS-challenged squirrels housed in short photoperiod (10L:14D; equivalent to winter days) showed a marked reduction in the components of the inflammatory cascade, CRP, TNF-α, IL-6, NOx, NF-κB, Cox-2, and PGES, with an overall improvement in antioxidant status when compared to squirrels maintained under a long photoperiod (16L:8D; equivalent to summer days). Our results underline the impact of seasonality, photoperiod, and melatonin in maintaining an intrinsic redox-immune homeostasis which helps the animal to withstand environmental stresses.
Collapse
Affiliation(s)
- Shraddha Rastogi
- Pineal Research Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
- Present address: NCI-NIH, Bethesda, MD, USA
| | - Chandana Haldar
- Pineal Research Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
2
|
Zeng J, Ge W, Duan H, Lv J, Ding Z, Wang W, Zhang Y, Zhao X, Hu J. Effect of dihydrotestosterone on melatonin secretion and the expression of melatonin receptors and apoptosis-related factors in sheep epididymides. Reprod Domest Anim 2022; 57:1244-1254. [PMID: 35775862 DOI: 10.1111/rda.14199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 06/28/2022] [Indexed: 12/01/2022]
Abstract
Melatonin (MEL) is involved in homeostasis of the epididymis lumen environment. Dihydrotestosterone (DHT) partakes in the development of gonads and organs in male animals. However, whether MEL secretion, the expression of its receptors, MT1 and MT2, and sheep epididymal epithelial cell apoptosis is regulated by DHT remains unclear. In this study, we used immunohistochemical staining to detect the distribution patterns of DHT synthetases [5α-reductase (5α-red)] and its androgen receptor (AR) in sheep epididymides. 5α-red1, 5α-red2, and AR were positively expressed in sperm, epididymal epithelial cells, and the smooth muscle cells of the caput, corpus, and cauda regions of the epididymis. DHT concentration and the expression levels of 5α-red and AR in the caput, corpus, and cauda regions were measured by enzyme-linked immunosorbent assay, liquid chromatography-mass spectrometry, real-time quantitative polymerase chain reaction, and western blot analysis. DHT concentration in the caput was significantly higher than those in corpus and cauda, probably because of the high expression of 5α-red2 in the caput and secretion and transport of DHT by the testicles. DHT inhibited MEL secretion, the expression of its membrane receptors, and MEL synthetases in cultured sheep epididymal epithelial cells in vitro. In addition, the Bax/Bcl-2 ratio, ACT CASP3, and caspase-3 mRNA expression were also decreased. The decreasing effect was partially reversed after flutamide treatment. Therefore, DHT regulates sheep epididymal function by influencing MEL expression and apoptosis-related factors. This study provides basic data for further research on the reproductive physiology of male animals.
Collapse
Affiliation(s)
- Jianlin Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Wenbo Ge
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Hongwei Duan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Jianshu Lv
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Ziqiang Ding
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Wenjuan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Junjie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| |
Collapse
|
3
|
Zhao F, Ma C, Zhao G, Wang G, Li X, Yang K. Rumen-Protected 5-Hydroxytryptophan Improves Sheep Melatonin Synthesis in the Pineal Gland and Intestinal Tract. Med Sci Monit 2019; 25:3605-3616. [PMID: 31091223 PMCID: PMC6534969 DOI: 10.12659/msm.915909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Based on the extensive biological effects of melatonin (MLT), it is beneficial to increase the MLT content in the bodies of animals at a specific physiological stage. This study was conducted to investigate the effect of a diet supplemented with rumen-protected (RP) 5-hydroxytryptophan (5-HTP) on the pineal gland and intestinal tract MLT synthesis of sheep. MATERIAL AND METHODS Eighteen Kazakh sheep were assigned randomly to 3 diet groups: control group (CT, corn-soybean meal basal diet), CT+111 group (111 mg/kg BW RP 5-HTP), and CT+222 group (222 mg/kg BW RP 5-HTP). The gene expressions of aromatic amino acid decarboxylase (AADC), arylalkylamine N-acetyltransferase (AA-NAT), hydroxyindole-O-methyltransferase (HIOMT), monoamine oxidase A (MAOA), and the intermediates of MLT synthesis were observed from the pineal gland and intestinal tract by the reverse transcription (RT)-PCR method. The 5-HTP, 5-HT, N-acetylserotonin (NAS), MLT, and 5-hydroxyindole acetic acid (5-HIAA) contents in the pineal gland and intestinal tract were analyzed by ultra-high-performance liquid chromatography-tandem mass spectrometry. RESULTS The study showed that the pineal gland HIOMT expression (P<0.05), MLT (P<0.05) and 5-HIAA (P<0.05) levels in the 222 mg/kg group significantly increased compared to those in the CT and CT+111 mg/kg groups. In addition, the AADC (P<0.01) and AA-NAT (P<0.05) gene expression levels in the duodenum and jejunum were increased by the supplementation of RP 5-HTP. CONCLUSIONS Rumen-protected 5-hydroxytryptophan promoted melatonin synthesis in the pineal gland and intestinal tract during the natural light period.
Collapse
Affiliation(s)
- Fang Zhao
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China (mainland)
| | - Chen Ma
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China (mainland)
| | - Guodong Zhao
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China (mainland)
| | - Gen Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China (mainland)
| | - Xiaobin Li
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China (mainland)
| | - Kailun Yang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China (mainland)
| |
Collapse
|