1
|
Domrazek K, Jurka P. Application of Next-Generation Sequencing (NGS) Techniques for Selected Companion Animals. Animals (Basel) 2024; 14:1578. [PMID: 38891625 PMCID: PMC11171117 DOI: 10.3390/ani14111578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Next-Generation Sequencing (NGS) techniques have revolutionized veterinary medicine for cats and dogs, offering insights across various domains. In veterinary parasitology, NGS enables comprehensive profiling of parasite populations, aiding in understanding transmission dynamics and drug resistance mechanisms. In infectious diseases, NGS facilitates rapid pathogen identification, characterization of virulence factors, and tracking of outbreaks. Moreover, NGS sheds light on metabolic processes by elucidating gene expression patterns and metabolic pathways, essential for diagnosing metabolic disorders and designing tailored treatments. In autoimmune diseases, NGS helps identify genetic predispositions and molecular mechanisms underlying immune dysregulation. Veterinary oncology benefits from NGS through personalized tumor profiling, mutation analysis, and identification of therapeutic targets, fostering precision medicine approaches. Additionally, NGS plays a pivotal role in veterinary genetics, unraveling the genetic basis of inherited diseases and facilitating breeding programs for healthier animals. Physiological investigations leverage NGS to explore complex biological systems, unraveling gene-environment interactions and molecular pathways governing health and disease. Application of NGS in treatment planning enhances precision and efficacy by enabling personalized therapeutic strategies tailored to individual animals and their diseases, ultimately advancing veterinary care for companion animals.
Collapse
Affiliation(s)
- Kinga Domrazek
- Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland;
| | | |
Collapse
|
2
|
Limmanont C, Ponglowhapan S, Tienthai P, Lertwatcharasarakul P, Sathaphonkunlathat T, Sirinarumitr K. Proliferation and apoptosis studies of interplacental areas after aglepristone treatment for planned cesarean section in pregnant bitches. Vet World 2024; 17:956-962. [PMID: 38911094 PMCID: PMC11188900 DOI: 10.14202/vetworld.2024.956-962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/12/2024] [Indexed: 06/25/2024] Open
Abstract
Background and Aim Progesterone (P4) is the main hormone for pregnancy maintenance, occurring approximately 62-64 days after ovulation in bitches. Progesterone acts by binding to specific receptors. Aglepristone is a progesterone receptor (PR) antagonist with a higher affinity for PR binding. There are no published studies on cell proliferation and apoptosis in the canine uterus at the time of parturition. Therefore, this study aimed to determine the local effects of aglepristone on cell proliferation and apoptosis of interplacental uterine tissue during planned cesarean section (C-section) in bitches. Materials and Methods In this study, 13 client-owned French bulldogs were examined. Bitches were divided into treatment (n = 8) and control (n = 5) groups. Ovulation timing was predicted based on the serum P4 level on 62-64 days post-ovulation for parturition. Serum P4 levels were measured before (on 60-day post-ovulation) and on C-section day (on 61-day post-ovulation). Aglepristone (Alizine®), 15 mg/kg subcutaneously (SC), was administered on 60 days post-ovulation in the treatment group. A C-section was planned 20-24 h later, and interplacental uterine areas were collected from both groups during the C-section. Immunohistochemistry based on Ki-67 and TUNEL assay was used to evaluate cell proliferation and apoptosis in four different interplacental uterine tissue layers (epithelium, stroma, glandular epithelium, and myometrium). Data are reported as mean ± standard deviation. Kruskal-Wallis test was used for comparisons of more than two independent groups. P value of 0.05 was considered statistically significant. Results One bitch in the treatment group was excluded due to emergency C-section 8 h after aglepristone administration. Serum P4 levels (ng/mL) at 20-24 h before and at C-section were 6.09 ± 2.72 and 4.32 ± 2.2 in the treatment group (n = 7) and 5.45 ± 1.28 and 3.67 ± 1.89 in the control group (n = 5), respectively. Proliferation (PI) and apoptotic (AI) indices were <5% and >45%, respectively, in both the treatment (n = 5) and control (n = 3) groups. PI and AI were detected at interplacental areas. Conclusion There were no significant differences in serum P4 levels or PI and AI indices between the groups. The PI <5% and AI was higher than 45% in both groups. Aglepristone did not have a direct effect on the serum P4 levels in both groups. These results correlated with the natural physiology of parturition preparation. Aglepristone 15 mg/kg SC injected 20-24 h before parturition had no effect on the P4 level, nor were any harmful effects observed for a planned C-section in pregnant bitches.
Collapse
Affiliation(s)
- Chunsumon Limmanont
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
- Theriogenology Center, Kasetsart University Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
- Kasetsart University Research and Development Institute, Kasetsart University, Bangkok, 10900, Thailand
| | - Suppawiwat Ponglowhapan
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Paisan Tienthai
- Department of Anatomy, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Preeda Lertwatcharasarakul
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Nakhon Pathom, 73140, Thailand
| | - Thareerat Sathaphonkunlathat
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
- Theriogenology Center, Kasetsart University Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Kaitkanoke Sirinarumitr
- Theriogenology Center, Kasetsart University Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
- Kasetsart University Research and Development Institute, Kasetsart University, Bangkok, 10900, Thailand
| |
Collapse
|
3
|
Kazemian A, Tavares Pereira M, Aslan S, Payan-Carreira R, Reichler IM, Agaoglu RA, Kowalewski MP. Membrane-bound progesterone receptors in the canine uterus and placenta; possible targets in the maintenance of pregnancy. Theriogenology 2023; 210:68-83. [PMID: 37480804 DOI: 10.1016/j.theriogenology.2023.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/24/2023]
Abstract
To date, the biological functions of P4 within the canine placenta have been attributed to maternal stroma-derived decidual cells as the only placental cells expressing the nuclear P4 receptor (PGR). However, P4 can also exert its effects via membrane-bound receptors. To test the hypothesis that membrane-bound P4 receptors are involved in regulating placental function in the dog, the expression of mPRα, -β, -γ, PGRMC1 and -2 was investigated in the uterine and placental compartments derived from different stages of pregnancy and from prepartum luteolysis. Further, to assess the PGR signaling-mediated effects upon membrane P4 receptors in canine decidual cells, in vitro decidualized dog uterine stromal (DUS) cells were treated with type II antigestagens (aglepristone or mifepristone). The expression of all membrane P4 receptors was detectable in reproductive tissues and in DUS cells. The main findings indicate their distinguishable placental spatio-temporal distribution; PGRMC2 was predominantly found in decidual cells, PGRMC1 was strong in maternal endothelial compartments, and syncytiotrophoblast showed abundant levels of mPRα and mPRβ. In vitro decidualization was associated with increased expression of PGRMC1 and -2, while their protein levels were diminished by antigestagen treatment. The involvement of membrane-bound P4 signaling in the regulation of canine placental function is implied, with P4 effects being directly exerted through maternal and fetal cellular compartments. The indirect effects of PGR might involve the modulation of membrane-bound receptors availability in decidual cells, implying a self-regulatory loop of P4 in regulating the availability of its own receptors in the canine placenta.
Collapse
Affiliation(s)
- Ali Kazemian
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.
| | - Miguel Tavares Pereira
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.
| | - Selim Aslan
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Near East University, Nicosia, Cyprus.
| | - Rita Payan-Carreira
- School of Science and Technology, Department of Veterinary Medicine, University of Évora, Évora, Portugal.
| | - Iris M Reichler
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich (UZH), Zurich, Switzerland.
| | - Reha A Agaoglu
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey.
| | - Mariusz P Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland; Center for Clinical Studies (ZKS), Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
4
|
Kowalewski MP. Advances in understanding canine pregnancy: Endocrine and morpho-functional regulation. Reprod Domest Anim 2023; 58 Suppl 2:163-175. [PMID: 37724655 DOI: 10.1111/rda.14443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/10/2023] [Accepted: 07/23/2023] [Indexed: 09/21/2023]
Abstract
Canine pregnancy relies on luteal steroidogenesis for progesterone (P4) production. The canine placenta responds to P4, depending on the nuclear P4 receptor (PGR). This has sparked interest in investigating the interaction between ovarian luteal steroids and the placenta in dogs. Canine placentation is characterized by restricted (shallow) trophoblast invasion, making the dog an interesting model for studying decidua-derived modulation of trophoblast invasion, compared with the more invasive (hemochorial) placentation. The PGR is expressed in maternally derived decidual cells and plays a crucial role in feto-maternal communication during pregnancy maintenance. Understanding PGR-mediated signalling has clinical implications for improving reproductive performance control in dogs. Altering the PGR signalling induces the release of PGF2α from the foetal trophoblast, hindering placental homeostasis, which can also be achieved with antigestagens like aglepristone. Consequently, luteolysis, both natural and antigestagen-induced, involves apoptosis, vascular lesion, and immune cell infiltration in the placenta, resulting in placentolysis and foetal membranes expulsion. Our laboratory developed the immortalized dog uterine stromal (DUS) cell line to study canine-specific decidualization. We study canine reproduction by observing physiological processes and investigating evidence-based mechanisms of decidualization and feto-maternal interaction. Our focus on morphology, function and molecular aspects enhances understanding and enables targeted and translational studies.
Collapse
Affiliation(s)
- Mariusz P Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Pei X, Li H, Yu H, Wang W, Mao D. APN Expression in Serum and Corpus Luteum: Regulation of Luteal Steroidogenesis Is Possibly Dependent on the AdipoR2/AMPK Pathway in Goats. Cells 2023; 12:1393. [PMID: 37408227 DOI: 10.3390/cells12101393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/23/2023] [Accepted: 05/09/2023] [Indexed: 07/07/2023] Open
Abstract
Adiponectin (APN) is an essential adipokine for a variety of reproductive processes. To investigate the role of APN in goat corpora lutea (CLs), CLs and sera from different luteal phases were collected for analysis. The results showed that the APN structure and content had no significant divergence in different luteal phases both in CLs and sera; however, high molecular weight APN was dominant in serum, while low molecular weight APN was more present in CLs. The luteal expression of both AdipoR1/2 and T-cadherin (T-Ca) increased on D11 and 17. APN and its receptors (AdipoR1/2 and T-Ca) were mainly expressed in goat luteal steroidogenic cells. The steroidogenesis and APN structure in pregnant CLs had a similar model as in the mid-cycle CLs. To further explore the effects and mechanisms of APN in CLs, steroidogenic cells from pregnant CLs were isolated to detect the AMPK-mediated pathway by the activation of APN (AdipoRon) and knockdown of APN receptors. The results revealed that P-AMPK in goat luteal cells increased after incubation with APN (1 μg/mL) or AdipoRon (25 μM) for 1 h, and progesterone (P4) and steroidogenic proteins levels (STAR/CYP11A1/HSD3B) decreased after 24 h. APN did not affect the steroidogenic protein expression when cells were pretreated with Compound C or SiAMPK. APN increased P-AMPK and reduced the CYP11A1 expression and P4 levels when cells were pretreated with SiAdipoR1 or SiT-Ca, while APN failed to affect P-AMPK, the CYP11A1 expression or the P4 levels when pretreated with SiAdipoR2. Therefore, the different structural forms of APN in CLs and sera may possess distinct functions; APN might regulate luteal steroidogenesis through AdipoR2 which is most likely dependent on AMPK.
Collapse
Affiliation(s)
- Xiaomeng Pei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Haolin Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Dagan Mao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
6
|
Diessler ME, Hernández R, Gomez Castro G, Barbeito CG. Decidual cells and decidualization in the carnivoran endotheliochorial placenta. Front Cell Dev Biol 2023; 11:1134874. [PMID: 37009475 PMCID: PMC10060884 DOI: 10.3389/fcell.2023.1134874] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Decidualization is considered a distinctive feature of eutherian pregnancy, and has appeared during evolution along with the development of invasive forms of placentation, as the endotheliochorial placenta. Although decidualization is not massive in carnivores, as it is in most species developing hemochorial placentas, isolated or grouped cells regarded as decidual have been documented and characterized, mainly in bitches and queens. For the majority of the remaining species of the order, data in the bibliography are fragmentary. In this article, general morphological aspects of decidual stromal cells (DSCs), their time of appearance and lasting, data about the expression of cytoskeletal proteins and molecules considered as markers of decidualization were reviewed. From the data reviewed, it follows that carnivoran DSCs take part either in the secretion of progesterone, prostaglandins, relaxin, among other substances, or at least in the signaling pathways triggered by them. Beyond their physiological roles, some of those molecules are already being used, or are yet under study, for the non-invasive endocrine monitoring and reproductive control of domestic and wild carnivores. Only insulin-like growth factor binding protein 1, among the main decidual markers, has been undoubtedly demonstrated in both species. Laminin, on the contrary, was found only in feline DSCs, and prolactin was preliminary reported in dogs and cats. Prolactin receptor, on the other hand, was found in both species. While canine DSCs are the only placental cell type expressing the nuclear progesterone receptor (PGR), that receptor has not been demonstrated neither in feline DSCs, nor in any other cell in the queen placenta, although the use of PGR blockers leads to abortion. Against this background, and from the data gathered so far, it is unquestionable that DSCs in carnivorans do play a pivotal role in placental development and health. The knowledge about placental physiology is critical for medical care and breeding management, primarily in domestic carnivores; it is also absolutely crucial for a conservation approach in the management of endangered carnivore species.
Collapse
Affiliation(s)
- Mónica Elizabeth Diessler
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (FCV, UNLP), La Plata, Argentina
- *Correspondence: Mónica Elizabeth Diessler,
| | - Rocío Hernández
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (FCV, UNLP), La Plata, Argentina
| | - Gimena Gomez Castro
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (FCV, UNLP), La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), FCV, UNLP, La Plata, Argentina
| | - Claudio Gustavo Barbeito
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (FCV, UNLP), La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), FCV, UNLP, La Plata, Argentina
| |
Collapse
|
7
|
Transcriptomic profiling of canine decidualization and effects of antigestagens on decidualized dog uterine stromal cells. Sci Rep 2022; 12:21890. [PMID: 36535952 PMCID: PMC9763427 DOI: 10.1038/s41598-022-24790-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
Maternal-stroma derived decidual cells, the only cell population in the canine placenta expressing the nuclear progesterone (P4) receptor (PGR), are crucial for the maintenance of canine pregnancy. Decreased circulating progesterone (P4) levels, or blockage of PGR function with antigestagens, terminate canine pregnancy. As an in vitro model for canine decidualization, dog uterine stromal (DUS) cells can be decidualized in vitro with cAMP. The antigestagens aglepristone and mifepristone ablate the expression of decidualization markers in DUS cells (e.g., PGR, PRLR, IGF1 or PTGES). Here, the transcriptome profile of DUS cells was investigated to acquire deeper insights into decidualization-associated changes. Additionally, effects mediated by antigestagens (competitive PGR blockers) in decidualized cells were assessed. Decidualization led to the upregulation of 1841 differentially expressed genes (DEGs, P and FDR < 0.01) involved in cellular proliferation and adhesion, mesenchymal-epithelial transition, extracellular matrix organization, and vaso- and immunomodulation. The 1475 DEGs downregulated after decidualization were mostly associated with apoptosis and cell migration. In decidualized DUS cells, aglepristone modulated 1400 DEGs and mifepristone 1558 DEGs. Interestingly, around half of the identified DEGs were modulated by only one of the antigestagens. In all cases, however, PGR-blockage was mainly associated with an inversion of several decidualization-induced effects. Comparison between antigestagen-mediated effects and transcriptional changes in the canine placenta at term allowed the identification of 191 DEGs associated with diminished cell proliferation and adhesion, and vascular and immune modulation. This study emphasizes the importance of P4/PGR signaling for decidual cell function, providing new insights into the maintenance of canine pregnancy.
Collapse
|
8
|
Zabitler F, Aslan S, Darbaz I, Ergene O, Schäfer-Somi S. Computerized histogram analysis of the canine placenta during normal pregnancy. Theriogenology 2022; 182:96-102. [DOI: 10.1016/j.theriogenology.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/04/2022] [Accepted: 01/08/2022] [Indexed: 11/24/2022]
|
9
|
Kazemian A, Tavares Pereira M, Hoffmann B, Kowalewski MP. Antigestagens Mediate the Expression of Decidualization Markers, Extracellular Matrix Factors and Connexin 43 in Decidualized Dog Uterine Stromal (DUS) Cells. Animals (Basel) 2022; 12:ani12070798. [PMID: 35405788 PMCID: PMC8996927 DOI: 10.3390/ani12070798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/27/2022] [Accepted: 03/10/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Adequate embryo-maternal communication is essential for a successful pregnancy. In the dog, this interaction is intimately associated with maternal stroma-derived decidual cells, the only cell population in the canine placenta expressing the nuclear progesterone receptor (PGR) and, therefore, sensitive to the circulating progesterone levels. Prepartum decrease of progesterone or clinical application of PGR blockers (antigestagens, e.g., aglepristone and mifepristone) induce placental release of luteolytic factors and terminate pregnancy. However, the importance of progesterone for decidual cells functionality has not been fully elucidated. Therefore, we investigated the effects of PGR blockers on the expression of markers of decidualization and cellular viability, as well as on epithelial and mesenchymal factors in in vitro decidualized dog uterine stromal (DUS) cells. Decidualization increased the expression of the respective markers, including factors involved in cell growth and prostaglandin synthesis. Their expression was suppressed by the application of antigestagens. Additionally, the expression of factors involved in tissue remodeling and cell-cell communication was increased, and antiproliferative and proapoptotic effects were induced in decidualized cells. Altogether, progesterone signaling appears to be crucial for modulating decidual cells physiology and biological activity, and thus for the maintenance of pregnancy. Abstract Feto-maternal communication in the dog involves the differentiation of stromal cells into decidual cells. As the only placental cells expressing the nuclear progesterone (P4) receptor (PGR), decidual cells play crucial roles in the maintenance and termination of pregnancy. Accordingly, to investigate possible PGR-mediated mechanisms in canine decidual cells, in vitro decidualized dog uterine stromal (DUS) cells were treated with functional PGR-blockers, mifepristone and aglepristone. Effects on decidualization markers, epithelial and mesenchymal factors, and markers of cellular viability were assessed. Decidualization increased the expression of PTGES, PGR, IGF1, and PRLR, along with ECM1, COL4 and CX43, but downregulated IGF2. DUS cells retained their mesenchymal character, and the expression of COL4 indicated the mesenchymal-epithelial transformation. Antigestagen treatment decreased the availability of PTGES, PRLR, IGF1 and PGR. Furthermore, antigestagens decreased the mRNA and protein expression of CX43, and transcriptional levels of ECM1 and COL4. Additionally, antigestagens increased levels of activated-CASP3 (a proapoptotic factor), associated with lowered levels of PCNA (a proliferation marker). These data reveal important aspects of the functional involvement of PGR in canine decidual cells, regarding the expression of decidualization markers and acquisition of epithelial-like characteristics. Some of these mechanisms may be crucial for the maintenance and/or termination of canine pregnancy.
Collapse
Affiliation(s)
- Ali Kazemian
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; (A.K.); (M.T.P.)
| | - Miguel Tavares Pereira
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; (A.K.); (M.T.P.)
| | - Bernd Hoffmann
- Clinic for Obstetrics, Gynaecology and Andrology of Large and Small Animals, Faculty of Veterinary Medicine, Justus Liebig University, 35392 Giessen, Germany;
| | - Mariusz P. Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; (A.K.); (M.T.P.)
- Center for Clinical Studies (ZKS), Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
- Correspondence:
| |
Collapse
|
10
|
Fusi J, Veronesi MC. Canine parturition: what is known about the hormonal setting? Domest Anim Endocrinol 2022; 78:106687. [PMID: 34653927 DOI: 10.1016/j.domaniend.2021.106687] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 11/03/2022]
Abstract
Parturition is a challenging physiological process with perfect timing dictated by the events leading to the end of pregnancy in the female, and by the maturation of the fetus(es). The process of parturition remains an intricate interaction of hormones in a fine-tuned timing that remains to be better elucidated in the dog. In the dog pregnancy is maintained by the progesterone production by the corpora lutea, in which some hormones play a luteotrophic action. At term of pregnancy, the pre-parturient luteolytic cascade is the most apparent event, characterized by a rapid decline in plasma progesterone concentrations and useful in predicting the onset of spontaneous parturition. In contrast, cortisol plasma concentrations measurement showed high variability and suggested to be related to the stress condition instead of the onset of parturition. Both prostaglandin F2α and E2 concur in the process of parturition in the dog. The measurement of oxytocin plasma concentrations, also very variable, is implicated in uterine contractions. The measurement of plasma oxytocin concentrations showed to be useful to distinguish between normal and disturbed parturition, allowing the prompt recognition of dystocia and the immediate obstetrical intervention. In contrast to other species, no significant roles of estrogens for the initiating of parturition were demonstrated. Relaxin, the main pregnancy hormonal marker in the dog, beside an endocrine action, is also supposed to play a paracrine/autocrine role at the utero-placental unit and to support the maintenance of high plasma progesterone concentrations through a luteotrophic action, concurring to the main action of prolactin. Although important information has been provided, some aspects in the understanding the hormonal interactions and action timing implications in the process of parturition in the dog remains to be better investigated and represent intriguing topic for basic knowledge and applied research.
Collapse
Affiliation(s)
- J Fusi
- Department of Veterinary Medicine, University of Milan, 26900, Lodi, Italy
| | - M C Veronesi
- Department of Veterinary Medicine, University of Milan, 26900, Lodi, Italy.
| |
Collapse
|
11
|
Tavares Pereira M, Nowaczyk R, Aslan S, Ay SS, Kowalewski MP. Utero-Placental Immune Milieu during Normal and Aglepristone-Induced Parturition in the Dog. Animals (Basel) 2021; 11:3598. [PMID: 34944375 PMCID: PMC8697996 DOI: 10.3390/ani11123598] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/01/2021] [Accepted: 12/11/2021] [Indexed: 12/29/2022] Open
Abstract
Maternal immunotolerance is required for the maintenance of pregnancy, in sharp contrast with the uterine pro-inflammatory activity observed during parturition in several species. Correspondingly, in the dog, increased immune signaling at term has been suggested, but a deeper understanding of the uterine immune milieu is still missing. Thus, the availability of 30 immune-related factors was assessed in utero-placental samples collected during post-implantation (days 18-25 of pregnancy) and mid-gestation (days 35-40) stages, and at the time of prepartum luteolysis. Gene expression and/or protein localization studies were employed. Samples collected from antigestagen (aglepristone)-treated dogs were further analyzed. Progression of pregnancy was associated with the downregulation of IL1β and upregulation of IL10 (p < 0.05) at mid-gestation. When compared with mid-gestation, a higher availability of several factors was observed at term (e.g., CD206, CD4, TLR4). However, in contrast with natural parturition, MHCII, CD25, CCR7, TNFα, IDO1 and AIF1 were upregulated after aglepristone treatment (p < 0.05), but not TNFR1 or CCL13 (p > 0.05). Altogether, these results show an increased immune activity during canine parturition, involving, i.a., M2 macrophages, Treg and Th cells, with strong support for progesterone-mediated immunomodulation. Furthermore, differences between term and induced parturition/abortion could relate to differences in placental maturation towards parturition and/or functional traits of antigestagens.
Collapse
Affiliation(s)
- Miguel Tavares Pereira
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich (UZH), 8057 Zurich, Switzerland;
| | - Renata Nowaczyk
- Department of Biostructure and Animal Physiology, Division of Histology and Embryology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50-366 Wroclaw, Poland;
| | - Selim Aslan
- Department of Obstetrics and Gynaecology, Faculty of Veterinary Medicine, Near East University, Nicosia 99138, North Cyprus, Turkey;
| | - Serhan S. Ay
- Department of Obstetrics and Gynecology, Ondokuz Mayıs University, Atakum 55200, Samsun, Turkey;
| | - Mariusz P. Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich (UZH), 8057 Zurich, Switzerland;
- Center for Clinical Studies (ZKS), Vetsuisse Faculty, University of Zurich (UZH), 8057 Zurich, Switzerland
| |
Collapse
|
12
|
Rempel LM, Lillevang KTA, Straten AKT, Friðriksdóttir SB, Körber H, Wehrend A, Kowalewski MP, Reichler IM, Balogh O, Goericke-Pesch S. Do uterine PTGS2, PGFS, and PTGFR expression play a role in canine uterine inertia? Cell Tissue Res 2021; 385:251-264. [PMID: 33830296 PMCID: PMC8270881 DOI: 10.1007/s00441-021-03427-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/25/2021] [Indexed: 01/01/2023]
Abstract
The aetiology of primary uterine inertia (PUI), which is the most common cause of canine dystocia, is still not elucidated. Prostaglandins (PGs) play a crucial role in parturition. We hypothesized that the expression of prostaglandin endoperoxidase synthase 2 (PTGS2), PGF2α synthase (PGFS), and corresponding receptor (PTGFR) is altered in PUI. We investigated PTGS2, PGFS, and PTGFR mRNA expression, and PTGS2 and PGFS protein expression in interplacental (IP) and uteroplacental sites (UP) in bitches with PUI, obstructive dystocia (OD), and prepartum (PC). PTGS2, PGFS, and PTGFR mRNA expression did not differ significantly between PUI and OD (IP/UP). PTGFR ratio in UP was higher in PC than in OD (p = 0.014). PTGS2 immunopositivity was noted in foetal trophoblasts, luminal and superficial glandular epithelial cells, smooth muscle cells of both myometrial layers, and weakly and sporadically in deep uterine glands. PGFS was localized in luminal epithelial cells and in the epithelium of superficial uterine glands. PTGS2 and PGFS staining was similar between PUI and OD, while PGFS protein expression differed between OD and PC (p = 0.0215). For PTGS2, the longitudinal myometrial layer of IP stained significantly stronger than the circular layer, independent of groups. These results do not support a role for PTGS2, PGFS, and PTGFR in PUI. Reduced PGFS expression in IP during parturition compared with PC and the overall lack of placental PGFS expression confirm that PGFS is not the main source of prepartal PGF2alpha increase. The difference in PTGS2 expression between IP myometrial layers warrants further investigation into its physiological relevance.
Collapse
Affiliation(s)
- Lea Magdalena Rempel
- Reproductive Unit of the Clinics-Clinic for Small Animals, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Karina Tietgen Andresen Lillevang
- Reproductive Unit of the Clinics-Clinic for Small Animals, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Department of Veterinary Clinical Sciences, Section of Veterinary Reproduction and Obstetrics, University of Copenhagen, Taastrup, Denmark
| | - Ann-Kirstine thor Straten
- Department of Veterinary Clinical Sciences, Section of Veterinary Reproduction and Obstetrics, University of Copenhagen, Taastrup, Denmark
| | - Sólrún Barbara Friðriksdóttir
- Department of Veterinary Clinical Sciences, Section of Veterinary Reproduction and Obstetrics, University of Copenhagen, Taastrup, Denmark
| | - Hanna Körber
- Reproductive Unit of the Clinics-Clinic for Small Animals, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Department of Veterinary Clinical Sciences, Section of Veterinary Reproduction and Obstetrics, University of Copenhagen, Taastrup, Denmark
| | - Axel Wehrend
- Klinikum Veterinärmedizin, Clinic for Obstetrics, Gynaecology and Andrology for Large and Small Animals with Veterinary Ambulance, Justus-Liebig-University Giessen, Giessen, Germany
| | - Mariusz P. Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Iris Margaret Reichler
- Clinic of Reproductive Medicine, Vetsuisse-Faculty, University of Zurich, Zurich, Switzerland
| | - Orsolya Balogh
- Clinic of Reproductive Medicine, Vetsuisse-Faculty, University of Zurich, Zurich, Switzerland
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA USA
| | - Sandra Goericke-Pesch
- Reproductive Unit of the Clinics-Clinic for Small Animals, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Department of Veterinary Clinical Sciences, Section of Veterinary Reproduction and Obstetrics, University of Copenhagen, Taastrup, Denmark
| |
Collapse
|
13
|
Conley AJ, Loux SC, Legacki EL, Stoops MA, Pukazhenthi B, Brown JL, Sattler R, French HM, Tibary A, Robeck TR. The steroid metabolome of pregnancy, insights into the maintenance of pregnancy and evolution of reproductive traits. Mol Cell Endocrinol 2021; 528:111241. [PMID: 33711335 DOI: 10.1016/j.mce.2021.111241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 11/28/2022]
Abstract
Modes of mammalian reproduction are diverse and not always conserved among related species. Progesterone is universally required to supports pregnancy but sites of synthesis and metabolic pathways vary widely. The steroid metabolome of mid-to late gestation was characterized, focusing on 5α-reduced pregnanes in species representing the Perissodactyla, Cetartiodactyla and Carnivora using mass spectrometry. Metabolomes and steroidogenic enzyme ortholog sequences were used in heirarchial analyses. Steroid metabolite profiles were similar within orders, whales within cetartiodactyls for instance, but with notable exceptions such as rhinoceros clustering with goats, and tapirs with pigs. Steroidogenic enzyme sequence clustering reflected expected evolutionary relationships but once again with exceptions. Human sequences (expected outgroups) clustered with perissodactyl CYP11A1, CYP17A1 and SRD5A1 gene orthologues, forming outgroups only for HSD17B1 and SRD5A2. Spotted hyena CYP19A1 clustered within the Perissodactyla, between rhinoceros and equid orthologues, whereas CYP17A1 clustered within the Carnivora. This variability highlights the random adoption of divergent physiological strategies as pregnancy evolved among genetically similar species.
Collapse
Affiliation(s)
- A J Conley
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA.
| | - S C Loux
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - E L Legacki
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA; Hollings Marine Laboratory, National Institute of Standards & Technology, Charleston, SC, USA
| | - M A Stoops
- Omaha's Henry Doorly Zoo and Aquarium, Omaha, NE, USA
| | - B Pukazhenthi
- Center for Species Survival, Smithsonian Conservation Biology Institute, Front Royal, VA, USA
| | - J L Brown
- Center for Species Survival, Smithsonian Conservation Biology Institute, Front Royal, VA, USA
| | - R Sattler
- Alaska Department of Fish and Game, Palmer, AK, USA
| | - H M French
- Department of Clinical Sciences, Ross University School of Veterinary Medicine, St. Kitts, West Indies
| | - A Tibary
- Comparative Theriogenology, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - T R Robeck
- Zoological Operations, SeaWorld Parks and Entertainment, Orlando, FL, USA
| |
Collapse
|
14
|
Kowalewski MP, Kazemian A, Klisch K, Gysin T, Tavares Pereira M, Gram A. Canine Endotheliochorial Placenta: Morpho-Functional Aspects. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2021; 234:155-179. [PMID: 34694481 DOI: 10.1007/978-3-030-77360-1_8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the domestic dog, placentation arises from central implantation, passing through a transitional, yet important stage of choriovitelline placenta (yolk sac placenta), on the way to the formation of the definite, deciduate, zonary (girdle) allantochorionic endotheliochorial placenta.Sharing some similarities with other invasive types of placentation, e.g., by revealing decidualization, it is characterized by restricted (shallow) invasion of trophoblast not affecting maternal capillaries and maternal decidual cells. Thus, being structurally and functionally placed between noninvasive epitheliochorial placentation and the more invasive hemochorial type, it presents an interesting and important model for understanding the evolutionarily determined aspects of mammalian placentation. More profound insights into the biological mechanisms underlying the restricted invasion of the fetal trophoblast into maternal uterine structures and the role of decidual cells in that process could provide better understanding of some adverse conditions occurring in humans, like preeclampsia or placenta accreta. As an important endocrine organ actively responding to ovarian steroids and producing its own hormones, e.g., serving as the source of gestational relaxin or prepartum prostaglandins, the canine placenta has become an attractive research target, both in basic and clinical research. In particular, the placental feto-maternal communication between maternal stroma-derived decidual cells and fetal trophoblast cells (i.e., an interplay between placenta materna and placenta fetalis) during the maintenance and termination of canine pregnancy serves as an interesting model for induction of parturition in mammals and is an attractive subject for translational and comparative research. Here, an updated view on morpho-functional aspects associated with canine placentation is presented.
Collapse
Affiliation(s)
- Mariusz P Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse-Faculty, University of Zurich, Zurich, Switzerland.
| | - Ali Kazemian
- Institute of Veterinary Anatomy, Vetsuisse-Faculty, University of Zurich, Zurich, Switzerland
| | - Karl Klisch
- Institute of Veterinary Anatomy, Vetsuisse-Faculty, University of Zurich, Zurich, Switzerland
| | - Tina Gysin
- Institute of Veterinary Anatomy, Vetsuisse-Faculty, University of Zurich, Zurich, Switzerland
| | - Miguel Tavares Pereira
- Institute of Veterinary Anatomy, Vetsuisse-Faculty, University of Zurich, Zurich, Switzerland
| | - Aykut Gram
- Institute of Veterinary Anatomy, Vetsuisse-Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Kowalewski MP, Pereira MT, Papa P, Gram A. Progesterone receptor blockers: historical perspective, mode of function and insights into clinical and scientific applications. TIERAERZTLICHE PRAXIS AUSGABE KLEINTIERE HEIMTIERE 2020; 48:433-440. [PMID: 33276393 DOI: 10.1055/a-1274-9290] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Antigestagens (antiprogestins) are functional competitors of progesterone (P4) that prevent P4 from mediating its biological functions either by suppressing its production or blocking its function. Among the latter are progesterone antagonists, competitors of P4 binding to its nuclear receptor PGR, which have found application in both human and veterinary medicine, in particular in small animal practice for the prevention of nidation and the interruption of pregnancy. Depending on their mode of action, progesterone receptor antagonists can be divided into 2 classes. Class I antagonists bind to the PGR but fail to induce its binding to promoters of target genes (competitive inhibitors). Class II antigestagens, including aglepristone used in veterinary medicine, bind to the PGR, activate its association with a promoter, but interfere with the downstream signalling cascades, e. g., by recruiting transcriptional repressors. They act thereby as transdominant repressors exerting negative effects on target gene expression. Importantly for experimental sciences, as active antagonists, class II antagonists do not require the presence of the natural ligand for their action. Besides their clinical application, antigestagens are used in research for investigating P4-dependent physiological and pathological processes. Here an overview of the history and the current usage of progesterone receptor antagonists in veterinary medicine and research is presented.
Collapse
Affiliation(s)
| | | | - Paula Papa
- Institute of Veterinary Anatomy, Vetsuisse-Faculty, University of Zurich
| | - Aykut Gram
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Erciyes University
| |
Collapse
|
16
|
Nowak M, Aslan S, Kowalewski MP. Determination of novel reference genes for improving gene expression data normalization in selected canine reproductive tissues - a multistudy analysis. BMC Vet Res 2020; 16:440. [PMID: 33183298 PMCID: PMC7659137 DOI: 10.1186/s12917-020-02635-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 10/22/2020] [Indexed: 11/19/2022] Open
Abstract
Background Real time RT-PCR (qPCR) is a useful and powerful tool for quantitative measurement of gene expression. The proper choice of internal standards such as reference genes is crucial for correct data evaluation. In female dogs, as in other species, the reproductive tract is continuously undergoing hormonal and cycle stage-dependent morphological changes, which are associated with altered gene expression. However, there have been few attempts published so far targeted to the dog aimed at determining optimal reference genes for the reproductive organs. Most of these approaches relied on genes previously described in other species. Large-scale transcriptome-based experiments are promising tools for defining potential candidate reference genes, but were never considered in this context in canine research. Results Here, using available microarray and RNA-seq datasets derived from reproductive organs (corpus luteum, placenta, healthy and diseased uteri) of dogs, we have performed multistudy analysis to identify the most stably expressed genes for expression studies, in each tissue separately and collectively for different tissues. The stability of newly identified reference genes (EIF4H, KDELR2, KDM4A and PTK2) has been determined and ranked relative to previously used reference genes, i.e., GAPDH, β-actin and cyclophillin A/PPIA, using RefFinder and NormFinder algorithms. Finally, expression of selected target genes (luteal IL-1b and MHCII, placental COX2 and VEGFA, and uterine IGF2 and LHR) was re-evaluated and normalized. All proposed candidate reference genes were more stable, ranked higher and introduced less variation than previously used genes. Conclusions Based on our analyses, we recommend applying KDM4A and PTK2 for normalization of gene expression in the canine CL and placenta. The inclusion of a third reference gene, EIF4H, is suggested for healthy uteri. With this, the interpretation of qPCR data will be more reliable, allowing better understanding of canine reproductive physiology. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-020-02635-6.
Collapse
Affiliation(s)
- Marta Nowak
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich (UZH), Winterthurerstrasse 260, CH-8057, Zurich, Switzerland
| | - Selim Aslan
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Near East University, Nicosia, North Cyprus, Turkey
| | - Mariusz P Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich (UZH), Winterthurerstrasse 260, CH-8057, Zurich, Switzerland.
| |
Collapse
|
17
|
Kowalewski MP, Tavares Pereira M, Kazemian A. Canine conceptus-maternal communication during maintenance and termination of pregnancy, including the role of species-specific decidualization. Theriogenology 2020; 150:329-338. [PMID: 32143817 DOI: 10.1016/j.theriogenology.2020.01.082] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/27/2022]
Abstract
Among domestic animal species, the reproductive biology of the dog belongs to the most peculiar. This includes the conceptus-maternal communication and endocrine mechanisms involved in maintenance of pregnancy. Dogs fully depend on luteal progesterone (P4) throughout pregnancy, with similar steroid secretion patterns in pregnant and non-pregnant bitches until prepartum luteolysis. Thus, dogs lack the classical recognition of pregnancy. The luteal P4 is the most important hormone regulating the onset and maintenance of pregnancy in previously estrogenized bitches. Although the canine uterus is exposed to high P4 levels, decidualization is not spontaneous but induced by the presence of embryos. Following implantation, decidualization continues, associated with development of the invasive endotheliochorial placenta, leading to establishment of maternal decidual cells expressing the nuclear P4 receptor (PGR). Consequently, although not producing steroids, the canine placenta remains highly sensitive to circulating ovarian steroids. The placental conceptus-maternal communication is responsible for the maintenance of pregnancy, with functional withdrawal of PGR evoking a luteolytic cascade with prepartum PGF2α release. The fetal trophoblast is the major source of prepartum placental prostaglandins. This conceptus-maternal communication is unique to the dog and has clinical implications. Due to luteal steroids, there is no prepartum estradiol increase. Elevated cortisol levels are observed irregularly. This emphasizes the unique character of canine reproductive physiology and the challenges in transferring translational research to the dog. Further research is needed for better understanding of canine reproduction and improving clinical protocols, including the latest results obtained from applying modern laboratory technologies such as the transcriptomic approach.
Collapse
Affiliation(s)
- M P Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Switzerland.
| | - M Tavares Pereira
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Switzerland
| | - A Kazemian
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Switzerland
| |
Collapse
|