1
|
Yan R, Chen L, Cai Z, Tang J, Zhu Y, Li Y, Wang X, Ruan Y, Han Q. NIPSNAP3A regulates cellular homeostasis by modulating mitochondrial dynamics. Gene 2025; 933:148976. [PMID: 39362349 DOI: 10.1016/j.gene.2024.148976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/07/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Mitochondria are essential for cell metabolism and survival as they produce the majority of cellular ATP through oxidative phosphorylation as well as regulate critical processes such as cell proliferation and apoptosis. NIPSNAP family of proteins are predominantly mitochondrial matrix proteins. However, the molecular and cellular functions of the NIPSNAPs, particularly NIPSNAP3A, have remained elusive. Here, we demonstrated that NIPSNAP3A knockdown in HeLa cells inhibited their proliferation and migration and attenuated apoptosis induced by Actinomycin D (Act-D). These findings suggested a complex relationship between cellular processes and mitochondrial functions, mediated by NIPSNAP3A. Further investigations revealed that NIPSNAP3A knockdown not only inhibited mitochondrial fission through reduction of DRP1-S616, but also suppressed cytochrome c release in apoptosis. Collectively, our findings highlight the critical role of NIPSNAP3A in coordinating cellular processes, likely through its influence on mitochondrial dynamics.
Collapse
Affiliation(s)
- Run Yan
- Department of Emergency and Critical Disease, Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Liting Chen
- Department of Emergency and Critical Disease, Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zimu Cai
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiyao Tang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315302, China
| | - Yanlin Zhu
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315302, China
| | - Yanping Li
- Institute of Precision Medicine, Jining Medical University, Jining 272067, China
| | - Xuemin Wang
- Department of Emergency and Critical Disease, Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 201600, China.
| | - Yu Ruan
- Department of Emergency and Critical Disease, Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Qi Han
- Department of Emergency and Critical Disease, Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.
| |
Collapse
|
2
|
Begovich K, Schoolmeesters A, Rajapakse N, Martinez-Terroba E, Kumar M, Shakya A, Lai C, Greene S, Whitefield B, Okano A, Mali V, Huang S, Chourasia AH, Fung L. Cereblon-based Bifunctional Degrader of SOS1, BTX-6654, Targets Multiple KRAS Mutations and Inhibits Tumor Growth. Mol Cancer Ther 2024; 23:407-420. [PMID: 38224565 DOI: 10.1158/1535-7163.mct-23-0513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/12/2023] [Accepted: 01/11/2024] [Indexed: 01/17/2024]
Abstract
Mutations within the oncogene KRAS drive an estimated 25% of all cancers. Only allele-specific KRAS G12C inhibitors are currently available and are associated with the emergence of acquired resistance, partly due to upstream pathway reactivation. Given its upstream role in the activation of KRAS, son of sevenless homolog 1 (SOS1), has emerged as an attractive therapeutic target. Agents that target SOS1 for degradation could represent a potential pan-KRAS modality that may be capable of circumventing certain acquired resistance mechanisms. Here, we report the development of two SOS1 cereblon-based bifunctional degraders, BTX-6654 and BTX-7312, cereblon-based bifunctional SOS1 degraders. Both compounds exhibited potent target-dependent and -specific SOS1 degradation. BTX-6654 and BTX-7312 reduced downstream signaling markers, pERK and pS6, and displayed antiproliferative activity in cells harboring various KRAS mutations. In two KRAS G12C xenograft models, BTX-6654 degraded SOS1 in a dose-dependent manner correlating with tumor growth inhibition, additionally exhibiting synergy with KRAS and MEK inhibitors. Altogether, BTX-6654 provided preclinical proof of concept for single-agent and combination use of bifunctional SOS1 degraders in KRAS-driven cancers.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chon Lai
- BioTheryx, Inc., San Diego, California
| | | | | | | | | | | | | | - Leah Fung
- BioTheryx, Inc., San Diego, California
| |
Collapse
|
3
|
Lindberg FA, Nordenankar K, Forsberg EC, Fredriksson R. SLC38A10 Deficiency in Mice Affects Plasma Levels of Threonine and Histidine in Males but Not in Females: A Preliminary Characterization Study of SLC38A10−/− Mice. Genes (Basel) 2023; 14:genes14040835. [PMID: 37107593 PMCID: PMC10138244 DOI: 10.3390/genes14040835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Solute carriers belong to the biggest group of transporters in the human genome, but more knowledge is needed to fully understand their function and possible role as therapeutic targets. SLC38A10, a poorly characterized solute carrier, is preliminary characterized here. By using a knockout mouse model, we studied the biological effects of SLC38A10 deficiency in vivo. We performed a transcriptomic analysis of the whole brain and found seven differentially expressed genes in SLC38A10-deficient mice (Gm48159, Nr4a1, Tuba1c, Lrrc56, mt-Tp, Hbb-bt and Snord116/9). By measuring amino acids in plasma, we found lower levels of threonine and histidine in knockout males, whereas no amino acid levels were affected in females, suggesting that SLC38A10−/− might affect sexes differently. Using RT-qPCR, we investigated the effect of SLC38A10 deficiency on mRNA expression of other SLC38 members, Mtor and Rps6kb1 in the brain, liver, lung, muscle, and kidney, but no differences were found. Relative telomere length measurement was also taken, as a marker for cellular age, but no differences were found between the genotypes. We conclude that SLC38A10 might be important for keeping amino acid homeostasis in plasma, at least in males, but no major effects were seen on transcriptomic expression or telomere length in the whole brain.
Collapse
|
4
|
Long KLP, Muroy SE, Sorooshyari SK, Ko MJ, Jaques Y, Sudmant P, Kaufer D. Transcriptomic profiles of stress susceptibility and resilience in the amygdala and hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527777. [PMID: 36798395 PMCID: PMC9934702 DOI: 10.1101/2023.02.08.527777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
A single, severe episode of stress can bring about myriad responses amongst individuals, ranging from cognitive enhancement to debilitating and persistent anxiety; however, the biological mechanisms that contribute to resilience versus susceptibility to stress are poorly understood. The dentate gyrus (DG) of the hippocampus and the basolateral nucleus of the amygdala (BLA) are key limbic regions that are susceptible to the neural and hormonal effects of stress. Previous work has also shown that these regions contribute to individual variability in stress responses; however, the molecular mechanisms underlying the role of these regions in susceptibility and resilience are unknown. In this study, we profiled the transcriptomic signatures of the DG and BLA of rats with divergent behavioral outcomes after a single, severe stressor. We subjected rats to three hours of immobilization with exposure to fox urine and conducted a behavioral battery one week after stress to identify animals that showed persistent, high anxiety-like behavior. We then conducted bulk RNA sequencing of the DG and BLA from susceptible, resilient, and unexposed control rats. Differential gene expression analyses revealed that the molecular signatures separating each of the three groups were distinct and non-overlapping between the DG and BLA. In the amygdala, key genes associated with insulin and hormonal signaling corresponded with vulnerability. Specifically, Inhbb, Rab31 , and Ncoa3 were upregulated in the amygdala of stress-susceptible animals compared to resilient animals. In the hippocampus, increased expression of Cartpt - which encodes a key neuropeptide involved in reward, reinforcement, and stress responses - was strongly correlated with vulnerability to anxiety-like behavior. However, few other genes distinguished stress-susceptible animals from control animals, while a larger number of genes separated stress-resilient animals from control and stress-susceptible animals. Of these, Rnf112, Tbx19 , and UBALD1 distinguished resilient animals from both control and susceptible animals and were downregulated in resilience, suggesting that an active molecular response in the hippocampus facilitates protection from the long-term consequences of severe stress. These results provide novel insight into the mechanisms that bring about individual variability in the behavioral responses to stress and provide new targets for the advancement of therapies for stress-induced neuropsychiatric disorders.
Collapse
|
5
|
Cheng HC, Chi SC, Liang CY, Yu JY, Wang AG. Candidate Modifier Genes for the Penetrance of Leber's Hereditary Optic Neuropathy. Int J Mol Sci 2022; 23:ijms231911891. [PMID: 36233195 PMCID: PMC9569928 DOI: 10.3390/ijms231911891] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Leber’s hereditary optic neuropathy (LHON) is a maternally transmitted disease caused by mitochondria DNA (mtDNA) mutation. It is characterized by acute and subacute visual loss predominantly affecting young men. The mtDNA mutation is transmitted to all maternal lineages. However, only approximately 50% of men and 10% of women harboring a pathogenic mtDNA mutation develop optic neuropathy, reflecting both the incomplete penetrance and its unexplained male prevalence, where over 80% of patients are male. Nuclear modifier genes have been presumed to affect the penetrance of LHON. With conventional genetic methods, prior studies have failed to solve the underlying pathogenesis. Whole exome sequencing (WES) is a new molecular technique for sequencing the protein-coding region of all genes in a whole genome. We performed WES from five families with 17 members. These samples were divided into the proband group (probands with acute onset of LHON, n = 7) and control group (carriers including mother and relative carriers with mtDNSA 11778 mutation, without clinical manifestation of LHON, n = 10). Through whole exome analysis, we found that many mitochondria related (MT-related) nuclear genes have high percentage of variants in either the proband group or control group. The MT genes with a difference over 0.3 of mutation percentage between the proband and control groups include AK4, NSUN4, RDH13, COQ3, and FAHD1. In addition, the pathway analysis revealed that these genes were associated with cofactor metabolism pathways. Family-based analysis showed that several candidate MT genes including METAP1D (c.41G > T), ACACB (c.1029del), ME3 (c.972G > C), NIPSNAP3B (c.280G > C, c.476C > G), and NSUN4 (c.4A > G) were involved in the penetrance of LHON. A GWAS (genome wide association study) was performed, which found that ADGRG5 (Chr16:575620A:G), POLE4 (Chr2:7495872T:G), ERMAP (Chr1:4283044A:G), PIGR (Chr1:2069357C:T;2069358G:A), CDC42BPB (Chr14:102949A:G), PROK1 (Chr1:1104562A:G), BCAN (Chr 1:1566582C:T), and NES (Chr1:1566698A:G,1566705T:C, 1566707T:C) may be involved. The incomplete penetrance and male prevalence are still the major unexplained issues in LHON. Through whole exome analysis, we found several MT genes with a high percentage of variants were involved in a family-based analysis. Pathway analysis suggested a difference in the mutation burden of MT genes underlining the biosynthesis and metabolism pathways. In addition, the GWAS analysis also revealed several candidate nuclear modifier genes. The new technology of WES contributes to provide a highly efficient candidate gene screening function in molecular genetics.
Collapse
Affiliation(s)
- Hui-Chen Cheng
- Program in Molecular Medicine, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, 201 Sec. 2, Shih-Pai Rd., Taipei 11217, Taiwan
- Department of Ophthalmology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Life Sciences and Institute of Genome Sciences, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Sheng-Chu Chi
- Department of Ophthalmology, Taipei Veterans General Hospital, 201 Sec. 2, Shih-Pai Rd., Taipei 11217, Taiwan
| | - Chiao-Ying Liang
- Department of Ophthalmology, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Jenn-Yah Yu
- Department of Life Sciences and Institute of Genome Sciences, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - An-Guor Wang
- Department of Ophthalmology, Taipei Veterans General Hospital, 201 Sec. 2, Shih-Pai Rd., Taipei 11217, Taiwan
- Department of Ophthalmology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Correspondence: ; Tel.: +886-2-2875-7325; Fax: +886-2-2876-1351
| |
Collapse
|
6
|
Olsson Hau S, Wahlin S, Cervin S, Falk V, Nodin B, Elebro J, Eberhard J, Moran B, Gallagher WM, Karnevi E, Jirström K. PRR11 unveiled as a top candidate biomarker within the RBM3-regulated transcriptome in pancreatic cancer. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2021; 8:65-77. [PMID: 34379360 PMCID: PMC8682941 DOI: 10.1002/cjp2.238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/07/2021] [Accepted: 07/12/2021] [Indexed: 11/24/2022]
Abstract
The outlook for patients with pancreatic cancer remains dismal. Treatment options are limited and chemotherapy remains standard of care, leading to only modest survival benefits. Hence, there is a great need to further explore the mechanistic basis for the intrinsic therapeutic resistance of this disease, and to identify novel predictive biomarkers. RNA‐binding motif protein 3 (RBM3) has emerged as a promising biomarker of disease severity and chemotherapy response in several types of cancer, including pancreatic cancer. The aim of this study was to unearth RBM3‐regulated genes and proteins in pancreatic cancer cells in vitro, and to examine their expression and prognostic significance in human tumours. Next‐generation RNA sequencing was applied to compare transcriptomes of MIAPaCa‐2 cells with and without RBM3 knockdown. The prognostic value of differentially expressed genes (DEGs) was examined in The Cancer Genome Atlas (TCGA). Top deregulated genes were selected for further studies in vitro and for immunohistochemical analysis of corresponding protein expression in tumours from a clinically well‐annotated consecutive cohort of 46 patients with resected pancreatic cancer. In total, 19 DEGs (p < 0.01) were revealed, among which some with functions in cell cycle and cell division stood out; PDS5A (PDS cohesin associated factor A) as the top downregulated gene, CCND3 (cyclin D3) as the top upregulated gene, and PRR11 (proline rich 11) as being highly prognostic in TCGA. Silencing of RBM3 in MiaPaCa‐2 cells led to congruent alterations of PDS5A, cyclin D3, and PRR11 levels. High protein expression of PRR11 was associated with adverse clinicopathological features and shorter overall survival. Neither PDS5A nor cyclin D3 protein expression was prognostic. This study unveils several RBM3‐regulated genes with potential clinical relevance in pancreatic cancer, among which PRR11 shows the most consistent association with disease severity, at both transcriptome and protein levels.
Collapse
Affiliation(s)
- Sofie Olsson Hau
- Division of Oncology and Therapeutic Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Sara Wahlin
- Division of Oncology and Therapeutic Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Sophie Cervin
- Division of Oncology and Therapeutic Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Vilgot Falk
- Division of Oncology and Therapeutic Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Björn Nodin
- Division of Oncology and Therapeutic Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Jacob Elebro
- Division of Oncology and Therapeutic Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Jakob Eberhard
- Division of Oncology and Therapeutic Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Bruce Moran
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - William M Gallagher
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Emelie Karnevi
- Division of Oncology and Therapeutic Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Karin Jirström
- Division of Oncology and Therapeutic Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Fathi E, Yarbro JM, Homayouni R. NIPSNAP protein family emerges as a sensor of mitochondrial health. Bioessays 2021; 43:e2100014. [PMID: 33852167 PMCID: PMC10577685 DOI: 10.1002/bies.202100014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022]
Abstract
Since their discovery over two decades ago, the molecular and cellular functions of the NIPSNAP family of proteins (NIPSNAPs) have remained elusive until recently. NIPSNAPs interact with a variety of mitochondrial and cytoplasmic proteins. They have been implicated in multiple cellular processes and associated with different physiologic and pathologic conditions, including pain transmission, Parkinson's disease, and cancer. Recent evidence demonstrated a direct role for NIPSNAP1 and NIPSNAP2 proteins in regulation of mitophagy, a process that is critical for cellular health and maintenance. Importantly, NIPSNAPs contain a 110 amino acid domain that is evolutionary conserved from mammals to bacteria. However, the molecular function of the conserved NIPSNAP domain and its potential role in mitophagy have not been explored. It stands to reason that the highly conserved NIPSNAP domain interacts with a substrate that is ubiquitously present across all species and can perhaps act as a sensor for mitochondrial health.
Collapse
Affiliation(s)
- Esmat Fathi
- Department of Biological Sciences, University of Memphis, Memphis, TN, United States
- Beaumont Research Institute, Beaumont Health, Royal Oak, MI, United States
| | - Jay M. Yarbro
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Ramin Homayouni
- Beaumont Research Institute, Beaumont Health, Royal Oak, MI, United States
- Oakland University William Beaumont School of Medicine, Oakland University, Rochester, MI, United States
| |
Collapse
|
8
|
Xu F, Chen Y, Tillman KA, Cui Y, Williams RW, Bhattacharya SK, Lu L, Sun Y. Characterizing modifier genes of cardiac fibrosis phenotype in hypertrophic cardiomyopathy. Int J Cardiol 2021; 330:135-141. [PMID: 33529666 PMCID: PMC8105878 DOI: 10.1016/j.ijcard.2021.01.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/18/2021] [Accepted: 01/24/2021] [Indexed: 01/19/2023]
Abstract
BACKGROUND Clinical phenotypes of hypertrophic cardiomyopathy (HCM) vary greatly even among patients with the same gene mutations. This variability is largely regulated by unidentified modifier loci. The purpose of the study is to identify modifier genes for cardiac fibrosis-a major phenotype of HCM-using the BXD family, a murine cohort. METHODS The relative severity of cardiac fibrosis was estimated by quantitation of cardiac collagen volume fraction (CCVF) across 66 members of the BXD family. Quantitative trait locus (QTL) mapping for cardiac fibrosis was done using GeneNetwork. Candidate modifier loci and genes associated with fibrosis were prioritized based on an explicit scoring system. Networks of correlation between fibrosis and cardiac transcriptomes were evaluated to generate causal models of disease susceptibility. RESULTS CCVF levels varied greatly within this family. Interval mapping identified a significant CCVF-related QTL on chromosome (Chr) 2 in males, and a significant QTL on Chr 4 Mb in females. The scoring system highlighted two strong candidate genes in the Chr 2 locus-Nek6 and Nr6a1. Both genes are highly expressed in the heart. Cardiac Nek6 mRNA levels are significantly correlated with CCVF. Nipsnap3b and Fktn are lead candidate genes for the Chr 4 locus, and both are also highly expressed in heart. Cardiac Nipsnap3b gene expression correlates well with CCVF. CONCLUSION Our study demonstrated that candidate modifier genes of cardiac fibrosis phenotype in HCM are different in males and females. Nek6 and Nr6a1 are strong candidates in males, while Nipsnap3b and Fktn are top candidates in females.
Collapse
Affiliation(s)
- Fuyi Xu
- Division of Cardiovascular Diseases, Department of Medicine, Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Yuanjian Chen
- Division of Cardiovascular Diseases, Department of Medicine, Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Kaitlin A Tillman
- Division of Cardiovascular Diseases, Department of Medicine, Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Yan Cui
- Division of Cardiovascular Diseases, Department of Medicine, Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Robert W Williams
- Division of Cardiovascular Diseases, Department of Medicine, Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Syamal K Bhattacharya
- Division of Cardiovascular Diseases, Department of Medicine, Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Lu Lu
- Division of Cardiovascular Diseases, Department of Medicine, Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States of America.
| | - Yao Sun
- Division of Cardiovascular Diseases, Department of Medicine, Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States of America.
| |
Collapse
|
9
|
Calvo-Serra B, Maitre L, Lau CHE, Siskos AP, Gützkow KB, Andrušaitytė S, Casas M, Cadiou S, Chatzi L, González JR, Grazuleviciene R, McEachan R, Slama R, Vafeiadi M, Wright J, Coen M, Vrijheid M, Keun HC, Escaramís G, Bustamante M. Urinary metabolite quantitative trait loci in children and their interaction with dietary factors. Hum Mol Genet 2020; 29:3830-3844. [PMID: 33283231 DOI: 10.1093/hmg/ddaa257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 11/14/2022] Open
Abstract
Human metabolism is influenced by genetic and environmental factors. Previous studies have identified over 23 loci associated with more than 26 urine metabolites levels in adults, which are known as urinary metabolite quantitative trait loci (metabQTLs). The aim of the present study is the identification for the first time of urinary metabQTLs in children and their interaction with dietary patterns. Association between genome-wide genotyping data and 44 urine metabolite levels measured by proton nuclear magnetic resonance spectroscopy was tested in 996 children from the Human Early Life Exposome project. Twelve statistically significant urine metabQTLs were identified, involving 11 unique loci and 10 different metabolites. Comparison with previous findings in adults revealed that six metabQTLs were already known, and one had been described in serum and three were involved the same locus as other reported metabQTLs but had different urinary metabolites. The remaining two metabQTLs represent novel urine metabolite-locus associations, which are reported for the first time in this study [single nucleotide polymorphism (SNP) rs12575496 for taurine, and the missense SNP rs2274870 for 3-hydroxyisobutyrate]. Moreover, it was found that urinary taurine levels were affected by the combined action of genetic variation and dietary patterns of meat intake as well as by the interaction of this SNP with beverage intake dietary patterns. Overall, we identified 12 urinary metabQTLs in children, including two novel associations. While a substantial part of the identified loci affected urinary metabolite levels both in children and in adults, the metabQTL for taurine seemed to be specific to children and interacted with dietary patterns.
Collapse
Affiliation(s)
- Beatriz Calvo-Serra
- ISGlobal, Barcelona 08003, Spain.,Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid 28029, Spain
| | - Léa Maitre
- ISGlobal, Barcelona 08003, Spain.,Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid 28029, Spain
| | - Chung-Ho E Lau
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK
| | - Alexandros P Siskos
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK.,Cancer Metabolism and Systems Toxicology Group, Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Kristine B Gützkow
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo 0213, Norway
| | - Sandra Andrušaitytė
- Department of Environmental Science, Vytautas Magnus University, Kaunas 44248, Lithuania
| | - Maribel Casas
- ISGlobal, Barcelona 08003, Spain.,Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid 28029, Spain
| | - Solène Cadiou
- Team of Environmental Epidemiology, IAB, Institute for Advanced Biosciences, Inserm, CNRS, CHU-Grenoble-Alpes, University Grenoble-Alpes, Grenoble 38000, France
| | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles 90033, USA
| | - Juan R González
- ISGlobal, Barcelona 08003, Spain.,Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid 28029, Spain
| | - Regina Grazuleviciene
- Department of Environmental Science, Vytautas Magnus University, Kaunas 44248, Lithuania
| | | | - Rémy Slama
- Team of Environmental Epidemiology, IAB, Institute for Advanced Biosciences, Inserm, CNRS, CHU-Grenoble-Alpes, University Grenoble-Alpes, Grenoble 38000, France
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion 71003, Greece
| | - John Wright
- Bradford Institute for Health Research, Bradford BD9 6RJ, UK
| | - Murieann Coen
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK.,Oncology Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB2 0RE, UK
| | - Martine Vrijheid
- ISGlobal, Barcelona 08003, Spain.,Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid 28029, Spain
| | - Hector C Keun
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK.,Cancer Metabolism and Systems Toxicology Group, Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Geòrgia Escaramís
- Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona (UB), Barcelona 08036, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid 28029, Spain
| | - Mariona Bustamante
- ISGlobal, Barcelona 08003, Spain.,Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid 28029, Spain
| |
Collapse
|
10
|
Sabater-Lleal M, Huffman JE, de Vries PS, Marten J, Mastrangelo MA, Song C, Pankratz N, Ward-Caviness CK, Yanek LR, Trompet S, Delgado GE, Guo X, Bartz TM, Martinez-Perez A, Germain M, de Haan HG, Ozel AB, Polasek O, Smith AV, Eicher JD, Reiner AP, Tang W, Davies NM, Stott DJ, Rotter JI, Tofler GH, Boerwinkle E, de Maat MPM, Kleber ME, Welsh P, Brody JA, Chen MH, Vaidya D, Soria JM, Suchon P, van Hylckama Vlieg A, Desch KC, Kolcic I, Joshi PK, Launer LJ, Harris TB, Campbell H, Rudan I, Becker DM, Li JZ, Rivadeneira F, Uitterlinden AG, Hofman A, Franco OH, Cushman M, Psaty BM, Morange PE, McKnight B, Chong MR, Fernandez-Cadenas I, Rosand J, Lindgren A, Gudnason V, Wilson JF, Hayward C, Ginsburg D, Fornage M, Rosendaal FR, Souto JC, Becker LC, Jenny NS, März W, Jukema JW, Dehghan A, Trégouët DA, Morrison AC, Johnson AD, O'Donnell CJ, Strachan DP, Lowenstein CJ, Smith NL. Genome-Wide Association Transethnic Meta-Analyses Identifies Novel Associations Regulating Coagulation Factor VIII and von Willebrand Factor Plasma Levels. Circulation 2019; 139:620-635. [PMID: 30586737 DOI: 10.1161/circulationaha.118.034532] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Factor VIII (FVIII) and its carrier protein von Willebrand factor (VWF) are associated with risk of arterial and venous thrombosis and with hemorrhagic disorders. We aimed to identify and functionally test novel genetic associations regulating plasma FVIII and VWF. METHODS We meta-analyzed genome-wide association results from 46 354 individuals of European, African, East Asian, and Hispanic ancestry. All studies performed linear regression analysis using an additive genetic model and associated ≈35 million imputed variants with natural log-transformed phenotype levels. In vitro gene silencing in cultured endothelial cells was performed for candidate genes to provide additional evidence on association and function. Two-sample Mendelian randomization analyses were applied to test the causal role of FVIII and VWF plasma levels on the risk of arterial and venous thrombotic events. RESULTS We identified 13 novel genome-wide significant ( P≤2.5×10-8) associations, 7 with FVIII levels ( FCHO2/TMEM171/TNPO1, HLA, SOX17/RP1, LINC00583/NFIB, RAB5C-KAT2A, RPL3/TAB1/SYNGR1, and ARSA) and 11 with VWF levels ( PDHB/PXK/KCTD6, SLC39A8, FCHO2/TMEM171/TNPO1, HLA, GIMAP7/GIMAP4, OR13C5/NIPSNAP, DAB2IP, C2CD4B, RAB5C-KAT2A, TAB1/SYNGR1, and ARSA), beyond 10 previously reported associations with these phenotypes. Functional validation provided further evidence of association for all loci on VWF except ARSA and DAB2IP. Mendelian randomization suggested causal effects of plasma FVIII activity levels on venous thrombosis and coronary artery disease risk and plasma VWF levels on ischemic stroke risk. CONCLUSIONS The meta-analysis identified 13 novel genetic loci regulating FVIII and VWF plasma levels, 10 of which we validated functionally. We provide some evidence for a causal role of these proteins in thrombotic events.
Collapse
Affiliation(s)
- Maria Sabater-Lleal
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden (M.S.-L.).,Unit of Genomics of Complex Diseases, Institut d'Investigació Biomèdica Sant Pau, IIB-Sant Pau, Barcelona, Spain (M.S.-L., A.M.-P., J.M.S.)
| | - Jennifer E Huffman
- Population Sciences Branch, National Heart, Lung, and Blood Institute, Framingham, MA (J.E.H., C.S., J.D.E., M.-H.C., A.D.J., C.J.O.).,Framingham Heart Study, MA (J.E.H., C.S., J.D.E., M.-H.C., A.D.J., C.J.O.)
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health (P.S.d.V., E.B., M.F., A.C.M.), University of Texas Health Science Center at Houston.,Department of Epidemiology (P.S.d.V., A.H., O.H.F., A.D.), Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jonathan Marten
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine (J.M., J.F.W., C.H.), University of Edinburgh, Scotland
| | - Michael A Mastrangelo
- Aab Cardiovascular Research Institute, University of Rochester Medical Center, NY (M.A.M., C.J.L.)
| | - Ci Song
- Population Sciences Branch, National Heart, Lung, and Blood Institute, Framingham, MA (J.E.H., C.S., J.D.E., M.-H.C., A.D.J., C.J.O.).,Framingham Heart Study, MA (J.E.H., C.S., J.D.E., M.-H.C., A.D.J., C.J.O.)
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota School of Medicine, Minneapolis (N.P.)
| | - Cavin K Ward-Caviness
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Chapel Hill, NC (C.K.W.-C.)
| | - Lisa R Yanek
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (L.R.Y., D.V., D.M.B., L.C.B.)
| | - Stella Trompet
- Department of Geriatrics and Gerontology (S.T.), Leiden University Medical Center, the Netherlands.,Department of Cardiology (S.T., J.W.J.), Leiden University Medical Center, the Netherlands
| | - Graciela E Delgado
- Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (G.E.D., M.E.K., W.M.)
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics and Medicine, LABioMed at Harbor-UCLA Medical Center, Torrance, CA (X.G., J.I.R.)
| | - Traci M Bartz
- Department of Biostatistics (T.M.B., B.M.), University of Washington, Seattle
| | - Angel Martinez-Perez
- Unit of Genomics of Complex Diseases, Institut d'Investigació Biomèdica Sant Pau, IIB-Sant Pau, Barcelona, Spain (M.S.-L., A.M.-P., J.M.S.)
| | - Marine Germain
- Institut national de la santé et de la recherche médicale (INSERM), UMR_S 1166, Team Genomics and Pathophysiology of Cardiovascular Diseases, Sorbonne Universités, Université Pierre-et-Marie-Curie, Paris, France (M.G., D.-A.T.).,ICAN Institute for Cardiometabolism and Nutrition, Paris, France (M.G., D.-A.T.)
| | - Hugoline G de Haan
- Department of Clinical Epidemiology (H.G.d.H., A.v.H.V., F.R.R.), Leiden University Medical Center, the Netherlands
| | - Ayse B Ozel
- Department of Human Genetics (A.B.O., J.Z.L., D.G.), University of Michigan, Ann Arbor
| | - Ozren Polasek
- Faculty of Medicine, University of Split, Croatia (O.P., I.K.)
| | - Albert V Smith
- School of Public Health, Department of Biostatistics (A.V.S.), University of Michigan, Ann Arbor
| | - John D Eicher
- Framingham Heart Study, MA (J.E.H., C.S., J.D.E., M.-H.C., A.D.J., C.J.O.)
| | - Alex P Reiner
- Department of Epidemiology, (A.P.R., B.M.P., N.L.S.), University of Washington, Seattle.,Fred Hutchinson Cancer Research Center, Seattle, WA (A.P.R.)
| | - Weihong Tang
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis (W.T.)
| | - Neil M Davies
- Medical Research Council Integrative Epidemiology Unit and Bristol Medical School (N.M.D.), University of Bristol, UK
| | - David J Stott
- Academic Section of Geriatrics, Faculty of Medicine (J.D.S.), University of Glasgow, UK
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics and Medicine, LABioMed at Harbor-UCLA Medical Center, Torrance, CA (X.G., J.I.R.)
| | - Geoffrey H Tofler
- Royal North Shore Hospital, University of Sydney, Australia (G.H.T.)
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health (P.S.d.V., E.B., M.F., A.C.M.), University of Texas Health Science Center at Houston.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX (E.B.)
| | - Moniek P M de Maat
- Department of Hematology (M.P.M.d.M.), Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marcus E Kleber
- Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (G.E.D., M.E.K., W.M.).,Institute of Nutrition, Friedrich-Schiller-University Jena, Mannheim, Germany (M.E.K.)
| | - Paul Welsh
- Institute of Cardiovascular and Medical Sciences (P.W.), University of Glasgow, UK
| | - Jennifer A Brody
- Department of Medicine (J.A.B., B.M.P.), University of Washington, Seattle
| | - Ming-Huei Chen
- Population Sciences Branch, National Heart, Lung, and Blood Institute, Framingham, MA (J.E.H., C.S., J.D.E., M.-H.C., A.D.J., C.J.O.).,Framingham Heart Study, MA (J.E.H., C.S., J.D.E., M.-H.C., A.D.J., C.J.O.)
| | - Dhananjay Vaidya
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (L.R.Y., D.V., D.M.B., L.C.B.)
| | - José Manuel Soria
- Unit of Genomics of Complex Diseases, Institut d'Investigació Biomèdica Sant Pau, IIB-Sant Pau, Barcelona, Spain (M.S.-L., A.M.-P., J.M.S.)
| | - Pierre Suchon
- Laboratory of Haematology, La Timone Hospital, Marseille, France (P.S., P.-E.M.).,Institut national de la santé et de la recherche médicale (INSERM), UMR_S 1062, Nutrition Obesity and Risk of Thrombosis, Marseille, France (P.S., P.-E.M.)
| | - Astrid van Hylckama Vlieg
- Department of Clinical Epidemiology (H.G.d.H., A.v.H.V., F.R.R.), Leiden University Medical Center, the Netherlands
| | - Karl C Desch
- Department of Pediatrics and Communicable Disease (K.D.C.), University of Michigan, Ann Arbor
| | - Ivana Kolcic
- Faculty of Medicine, University of Split, Croatia (O.P., I.K.)
| | - Peter K Joshi
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics (P.K.J., H.C., I.R., J.F.W.), University of Edinburgh, Scotland
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences National Institute on Aging, Bethesda, MD (L.J.L., T.B.H.)
| | - Tamara B Harris
- Laboratory of Epidemiology and Population Sciences National Institute on Aging, Bethesda, MD (L.J.L., T.B.H.)
| | - Harry Campbell
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics (P.K.J., H.C., I.R., J.F.W.), University of Edinburgh, Scotland
| | - Igor Rudan
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics (P.K.J., H.C., I.R., J.F.W.), University of Edinburgh, Scotland
| | - Diane M Becker
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (L.R.Y., D.V., D.M.B., L.C.B.)
| | - Jun Z Li
- Department of Human Genetics (A.B.O., J.Z.L., D.G.), University of Michigan, Ann Arbor
| | - Fernando Rivadeneira
- Department of Internal Medicine (F.R., A.G.U.), Erasmus University Medical Center, Rotterdam, the Netherlands
| | - André G Uitterlinden
- Department of Internal Medicine (F.R., A.G.U.), Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Albert Hofman
- Department of Epidemiology (P.S.d.V., A.H., O.H.F., A.D.), Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Epidemiology, Harvard H.T. Chan School of Public Health, Boston, MA (A.H.)
| | - Oscar H Franco
- Department of Epidemiology (P.S.d.V., A.H., O.H.F., A.D.), Erasmus University Medical Center, Rotterdam, the Netherlands.,Institute of Social and Preventive Medicine, University of Bern, Switzerland (O.H.F.)
| | - Mary Cushman
- Larner College of Medicine, University of Vermont, Colchester (M.C.)
| | - Bruce M Psaty
- Department of Epidemiology, (A.P.R., B.M.P., N.L.S.), University of Washington, Seattle.,Department of Medicine (J.A.B., B.M.P.), University of Washington, Seattle.,Department of Health Services (B.M.P.), University of Washington, Seattle.,Kaiser Permanente Washington Research Institute, Kaiser Permanente Washington, Seattle (B.M.P., N.L.S.)
| | - Pierre-Emmanuel Morange
- Laboratory of Haematology, La Timone Hospital, Marseille, France (P.S., P.-E.M.).,Institut national de la santé et de la recherche médicale (INSERM), UMR_S 1062, Nutrition Obesity and Risk of Thrombosis, Marseille, France (P.S., P.-E.M.)
| | - Barbara McKnight
- Department of Biostatistics (T.M.B., B.M.), University of Washington, Seattle.,Cardiovascular Health Research Unit (B.M.), University of Washington, Seattle
| | - Michael R Chong
- McMaster University, Population Health Research Institute, Population Health Research Institute, Biochemistry and Biomedical Sciences, Hamilton, Canada (M.R.C.)
| | - Israel Fernandez-Cadenas
- Stroke Pharmacogenomics and genetics, Department of Neurology, Institut d'Investigació Biomedica Sant Pau, IIB-Sant Pau, Barcelona, Spain (I.F.-C.)
| | - Jonathan Rosand
- Massachusetts General Hospital, Broad Institute, Harvard Medical School, Boston (J.R.)
| | - Arne Lindgren
- Department of Clinical Sciences Lund, Neurology, Lund University, Sweden (A.L.).,Department of Neurology and Rehabilitation Medicine, Neurology, Skåne University Hospital, Lund, Sweden (A.L.)
| | | | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur (V.G.).,Faculty of Medicine, University of Iceland, Reykjavik (V.G.)
| | - James F Wilson
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine (J.M., J.F.W., C.H.), University of Edinburgh, Scotland.,Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics (P.K.J., H.C., I.R., J.F.W.), University of Edinburgh, Scotland
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine (J.M., J.F.W., C.H.), University of Edinburgh, Scotland
| | - David Ginsburg
- Department of Human Genetics (A.B.O., J.Z.L., D.G.), University of Michigan, Ann Arbor
| | - Myriam Fornage
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health (P.S.d.V., E.B., M.F., A.C.M.), University of Texas Health Science Center at Houston.,Brown Foundation Institute of Molecular Medicine (M.F.), University of Texas Health Science Center at Houston
| | - Frits R Rosendaal
- Department of Clinical Epidemiology (H.G.d.H., A.v.H.V., F.R.R.), Leiden University Medical Center, the Netherlands.,Einthoven Laboratory of Experimental Vascular Medicine (F.R.R., J.W.J.), Leiden University Medical Center, the Netherlands
| | - Juan Carlos Souto
- Unit of Hemostasis and Thrombosis, Hospital de la Sant Creu i Sant Pau, Barcelona, Spain (J.C.S.)
| | - Lewis C Becker
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (L.R.Y., D.V., D.M.B., L.C.B.)
| | - Nancy S Jenny
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Colchester (N.S.J.)
| | - Winfried März
- Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (G.E.D., M.E.K., W.M.).,SYNLAB Academy, SYNLAB Holding Deutschland GmbH, Mannheim, Germany (W.M.).,Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University Graz, Mannheim, Germany (W.M.)
| | - J Wouter Jukema
- Department of Cardiology (S.T., J.W.J.), Leiden University Medical Center, the Netherlands.,Einthoven Laboratory of Experimental Vascular Medicine (F.R.R., J.W.J.), Leiden University Medical Center, the Netherlands.,Interuniversity Cardiology Institute of the Netherlands, Utrecht (J.W.J.)
| | - Abbas Dehghan
- Department of Epidemiology (P.S.d.V., A.H., O.H.F., A.D.), Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Epidemiology and Biostatistics, Imperial College London, UK (A.D.)
| | - David-Alexandre Trégouët
- Institut national de la santé et de la recherche médicale (INSERM), UMR_S 1166, Team Genomics and Pathophysiology of Cardiovascular Diseases, Sorbonne Universités, Université Pierre-et-Marie-Curie, Paris, France (M.G., D.-A.T.).,ICAN Institute for Cardiometabolism and Nutrition, Paris, France (M.G., D.-A.T.)
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health (P.S.d.V., E.B., M.F., A.C.M.), University of Texas Health Science Center at Houston
| | - Andrew D Johnson
- Population Sciences Branch, National Heart, Lung, and Blood Institute, Framingham, MA (J.E.H., C.S., J.D.E., M.-H.C., A.D.J., C.J.O.).,Framingham Heart Study, MA (J.E.H., C.S., J.D.E., M.-H.C., A.D.J., C.J.O.)
| | - Christopher J O'Donnell
- Population Sciences Branch, National Heart, Lung, and Blood Institute, Framingham, MA (J.E.H., C.S., J.D.E., M.-H.C., A.D.J., C.J.O.).,Framingham Heart Study, MA (J.E.H., C.S., J.D.E., M.-H.C., A.D.J., C.J.O.).,Cardiology Section Administration, Boston VA Healthcare System, West Roxbury, MA (C.J.O.)
| | - David P Strachan
- Population Health Research Institute, St George's, University of London, UK (D.P.S.)
| | - Charles J Lowenstein
- Aab Cardiovascular Research Institute, University of Rochester Medical Center, NY (M.A.M., C.J.L.)
| | - Nicholas L Smith
- Department of Epidemiology, (A.P.R., B.M.P., N.L.S.), University of Washington, Seattle.,Kaiser Permanente Washington Research Institute, Kaiser Permanente Washington, Seattle (B.M.P., N.L.S.).,Seattle Epidemiologic Research and Information Center, Department of Veterans Affairs Office of Research and Development, WA (N.L.S.)
| |
Collapse
|
11
|
Wang J, Huertas-Vazquez A, Wang Y, Lusis AJ. Isoproterenol-Induced Cardiac Diastolic Dysfunction in Mice: A Systems Genetics Analysis. Front Cardiovasc Med 2019; 6:100. [PMID: 31417910 PMCID: PMC6684968 DOI: 10.3389/fcvm.2019.00100] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/08/2019] [Indexed: 01/09/2023] Open
Abstract
We examined an isoproterenol heart failure model across a panel of diverse inbred strains of mice, the Hybrid Mouse Diversity Panel (HMDP), using left atrial (LA) and lung weights as well as echocardiogram parameters as surrogates for cardiac diastolic function. We identified gene transcripts that significantly correlated with diastolic function. In addition, we mapped echocardiographic parameters associated with diastolic function. We identified a locus near Tns3-Hus1 to be associated with baseline E/A ratio in mice (p = 1.65E-06), the syntenic region of which was recently associated with E/A ratio in a genome-wide association study (GWAS) meta-analysis of the EchoGen consortium in humans. We also identified a locus near Cdkn2a-Cdkn2b, which is a region syntenic to the human 9p21 locus, to be associated with week 3 A/E ratio (p = 2.15E-06). Our study is the first study to map diastolic dysfunction in mice, in which a locus was found to be shared with a recent human GWAS on diastolic function. Moreover, our cardiac transcriptome correlation and eQTL analysis generated hypotheses for future basic investigations. These results showed that, although technical and physiological challenges limit diastolic function assessment in mice and humans, future investigations examining the genetic architecture of diastolic function among a diverse mouse population, such as the HMDP, in controlled experimental settings, offer distinct advantages in understanding the genetic determinants of diastolic function.
Collapse
Affiliation(s)
- Jessica Wang
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Adriana Huertas-Vazquez
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yibin Wang
- Department of Anesthesiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Aldons J Lusis
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
12
|
Mitochondrial proteins NIP-SNAP-1 and -2 are a target for the immunomodulatory activity of clarithromycin, which involves NF-κB-mediated cytokine production. Biochem Biophys Res Commun 2017; 483:911-916. [DOI: 10.1016/j.bbrc.2016.12.100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 12/15/2016] [Indexed: 11/18/2022]
|
13
|
Yamamoto S, Okamoto T, Ogasawara N, Hashimoto S, Shiraishi T, Sato T, Yamamoto K, Tsutsumi H, Takano K, Himi T, Itoh H, Yokota SI. NIP-SNAP-1 and -2 mitochondrial proteins are maintained by heat shock protein 60. Biochem Biophys Res Commun 2017; 483:917-922. [DOI: 10.1016/j.bbrc.2016.12.133] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 12/20/2016] [Indexed: 01/16/2023]
|
14
|
Wallner S, Grandl M, Liebisch G, Peer M, Orsó E, Sigrüner A, Sobota A, Schmitz G. oxLDL and eLDL Induced Membrane Microdomains in Human Macrophages. PLoS One 2016; 11:e0166798. [PMID: 27870891 PMCID: PMC5117723 DOI: 10.1371/journal.pone.0166798] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/03/2016] [Indexed: 12/14/2022] Open
Abstract
Background Extravasation of macrophages and formation of lipid-laden foam cells are key events in the development and progression of atherosclerosis. The degradation of atherogenic lipoproteins subsequently leads to alterations in cellular lipid metabolism that influence inflammatory signaling. Especially sphingolipids and ceramides are known to be involved in these processes. We therefore analyzed monocyte derived macrophages during differentiation and after loading with enzymatically (eLDL) and oxidatively (oxLDL) modified low-density lipoproteins (LDL). Methods Primary human monocytes were isolated from healthy, normolipidemic blood donors using leukapheresis and counterflow elutriation. On the fourth day of MCSF-induced differentiation eLDL (40 μg/ml) or oxLDL (80 μg/ml) were added for 48h. Lipid species were analyzed by quantitative tandem mass spectrometry. Taqman qPCR was performed to investigate transcriptional changes in enzymes involved in sphingolipid metabolism. Furthermore, membrane lipids were studied using flow cytometry and confocal microscopy. Results MCSF dependent phagocytic differentiation of blood monocytes had only minor effects on the sphingolipid composition. Levels of total sphingomyelin and total ceramide remained unchanged, while lactosylceramides, cholesterylesters and free cholesterol decreased. At the species level most ceramide species showed a reduction upon phagocytic differentiation. Loading with eLDL preferentially increased cellular cholesterol while loading with oxLDL increased cellular ceramide content. Activation of the salvage pathway with a higher mRNA expression of acid and neutral sphingomyelinase, neutral sphingomyelinase activation associated factor and glucosylceramidase as well as increased surface expression of SMPD1 were identified as potentially underlying mechanisms. Moreover, flow-cytometric analysis revealed a higher cell-surface-expression of ceramide, lactosylceramide (CDw17), globotriaosylceramide (CD77), dodecasaccharide-ceramide (CD65s) and GM1 ganglioside upon oxLDL loading. ApoE in contrast to apoA-I preferentially bound to the ceramide enriched surfaces of oxLDL loaded cells. Confocal microscopy showed a co-localization of acid sphingomyelinase with ceramide rich membrane microdomains. Conclusion eLDL leads to the formation of lipid droplets and preferentially induces cholesterol/sphingomyelin rich membrane microdomains while oxLDL promotes the development of cholesterol/ceramide rich microdomains via activation of the salvage pathway.
Collapse
Affiliation(s)
- Stefan Wallner
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Margot Grandl
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Gerhard Liebisch
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Markus Peer
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Evelyn Orsó
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Alexander Sigrüner
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Andrzej Sobota
- Department of Cell Biology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
- * E-mail:
| |
Collapse
|
15
|
Hong JH, Kaustov L, Coyaud E, Srikumar T, Wan J, Arrowsmith C, Raught B. KCMF1 (potassium channel modulatory factor 1) Links RAD6 to UBR4 (ubiquitin N-recognin domain-containing E3 ligase 4) and lysosome-mediated degradation. Mol Cell Proteomics 2015; 14:674-85. [PMID: 25582440 DOI: 10.1074/mcp.m114.042168] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
RAD6 is a ubiquitin E2 protein with roles in a number of different biological processes. Here, using affinity purification coupled with mass spectrometry, we identify a number of new RAD6 binding partners, including the poorly characterized ubiquitin E3 ligases KCMF1 (potassium channel modulatory factor 1) and UBR4 (ubiquitin N-recognin domain-containing E3 ligase 4), a protein that can bind N-end rule substrates, and which was recently linked to lysosome-mediated degradation and autophagy. NMR, combined with in vivo and in vitro interaction mapping, demonstrate that the KCMF1 C terminus binds directly to RAD6, whereas N-terminal domains interact with UBR4 and other intracellular vesicle- and mitochondria-associated proteins. KCMF1 and RAD6 colocalize at late endosomes and lysosomes, and cells disrupted for KCMF1 or RAD6 function display defects in late endosome vesicle dynamics. Notably, we also find that two different RAD6A point mutants (R7W and R11Q) found in X-linked intellectual disability (XLID) patients specifically lose the interaction with KCMF1 and UBR4, but not with other previously identified RAD6 interactors. We propose that RAD6-KCMF1-UBR4 represents a unique new E2-E3 complex that targets unknown N-end rule substrates for lysosome-mediated degradation, and that disruption of this complex via RAD6A mutations could negatively affect neuronal function in XLID patients.
Collapse
Affiliation(s)
- Jenny H Hong
- From the ‡Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, University of Toronto
| | - Lilia Kaustov
- §Structural Genomics Consortium, Toronto, Ontario Canada
| | - Etienne Coyaud
- From the ‡Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, University of Toronto
| | - Tharan Srikumar
- From the ‡Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, University of Toronto
| | - Janet Wan
- From the ‡Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, University of Toronto
| | - Cheryl Arrowsmith
- From the ‡Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, University of Toronto; §Structural Genomics Consortium, Toronto, Ontario Canada
| | - Brian Raught
- From the ‡Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, University of Toronto;
| |
Collapse
|
16
|
Brittain JM, Wang Y, Wilson SM, Khanna R. Regulation of CREB signaling through L-type Ca2+channels by Nipsnap-2. Channels (Austin) 2014; 6:94-102. [DOI: 10.4161/chan.19415] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
17
|
Ramos-Morales F. Impact of Salmonella enterica Type III Secretion System Effectors on the Eukaryotic Host Cell. ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/787934] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Type III secretion systems are molecular machines used by many Gram-negative bacterial pathogens to inject proteins, known as effectors, directly into eukaryotic host cells. These proteins manipulate host signal transduction pathways and cellular processes to the pathogen’s advantage. Salmonella enterica possesses two virulence-related type III secretion systems that deliver more than forty effectors. This paper reviews our current knowledge about the functions, biochemical activities, host targets, and impact on host cells of these effectors. First, the concerted action of effectors at the cellular level in relevant aspects of the interaction between Salmonella and its hosts is analyzed. Then, particular issues that will drive research in the field in the near future are discussed. Finally, detailed information about each individual effector is provided.
Collapse
Affiliation(s)
- Francisco Ramos-Morales
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes 6, 41012 Sevilla, Spain
| |
Collapse
|
18
|
Asselman J, Glaholt SP, Smith Z, Smagghe G, Janssen CR, Colbourne JK, Shaw JR, De Schamphelaere KAC. Functional characterization of four metallothionein genes in Daphnia pulex exposed to environmental stressors. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 110-111:54-65. [PMID: 22266576 PMCID: PMC3967237 DOI: 10.1016/j.aquatox.2011.12.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Revised: 12/11/2011] [Accepted: 12/13/2011] [Indexed: 05/11/2023]
Abstract
We characterized the metallothionein genes (Mt1, Mt2, Mt3, and Mt4) in Daphnia pulex on both molecular and ecotoxicological level. We therefore conducted a bioinformatical analysis of the gene location and predicted protein sequence, and screened the upstream flanking region for regulatory elements. The number of these elements and their positions relative to the start codon varied strongly among the four genes and even among two gene duplicates (Mt1A and Mt1B), suggesting different roles of the four proteins in the organisms' response to stress. We subsequently conducted a chronic 16-day exposure of D. pulex to different environmental stressors (at sublethal levels causing approximately 50% reduction in reproduction). Based on prior knowledge, we exposed them to the metals Cd, Cu, and Ni, the moulting hormone hydroxyecdysone (20E), and the oxidative stressors cyanobacteria (Microcystis aeruginosa), and paraquat (Pq). We then compared mRNA expression levels of the four Mt genes under these stress conditions with control conditions in "The Chosen One" clone (TCO), for which the full genome was sequenced and annotated. All together, the mRNA expression results under the different stress regimes indicate that different Mt genes may play different and various roles in the response of D. pulex to stress and that some (but not all) of the differences among the four genes could be related to the pattern of regulatory elements in their upstream flanking region.
Collapse
Affiliation(s)
- J Asselman
- Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Okuda-Ashitaka E, Minami T, Tsubouchi S, Kiyonari H, Iwamatsu A, Noda T, Handa H, Ito S. Identification of NIPSNAP1 as a nocistatin-interacting protein involving pain transmission. J Biol Chem 2012; 287:10403-10413. [PMID: 22311985 DOI: 10.1074/jbc.m111.271866] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
4-Nitrophenylphosphatase domain and non-neuronal SNAP25-like protein homolog 1 (NIPSNAP1) is a molecule of physiologically unknown function, although it is predominantly expressed in the brain, spinal cord, liver, and kidney. We identified NIPSNAP1 as a protein that interacts with the neuropeptide nocistatin (NST) from synaptosomal membranes of mouse spinal cord using high-performance affinity latex beads. NST, which is produced from the same precursor protein as an opioid-like neuropeptide nociceptin/orphanin FQ (N/OFQ), has opposite effects on pain transmission evoked by N/OFQ. The calculated full-length pre-protein of NIPSNAP1 was 33 kDa, whereas the N-terminal truncated form of NIPSNAP1 (29 kDa) was ubiquitously expressed in the neuronal tissues, especially in synaptic membrane and mitochondria of brain. The 29-kDa NIPSNAP1 was distributed on the cell surface, and NST interacted with the 29-kDa but not the 33-kDa NIPSNAP1. Although intrathecal injection of N/OFQ induced tactile allodynia in both wild-type and NIPSNAP1-deficient mice, the inhibition of N/OFQ-evoked tactile allodynia by NST seen in wild-type mice was completely lacking in the deficient mice. These results suggest that NIPSNAP1 is an interacting molecule of NST and plays a crucial role in pain transmission.
Collapse
Affiliation(s)
- Emiko Okuda-Ashitaka
- Department of Medical Chemistry, Kansai Medical University, Moriguchi 570-8506, Japan,; Department of Biomedical Engineering, Osaka Institute of Technology, Osaka 535-8585, Japan,.
| | - Toshiaki Minami
- Department of Anesthesiology, Osaka Medical College, Takatsuki 569-8686, Japan
| | - Shingo Tsubouchi
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | | | - Tetsuo Noda
- Department of Cell Biology, Japanese Foundation for Cancer Research, Cancer Institute, Tokyo 135-8550, Japan
| | - Hiroshi Handa
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Seiji Ito
- Department of Medical Chemistry, Kansai Medical University, Moriguchi 570-8506, Japan
| |
Collapse
|
20
|
Smits P, Rodenburg RJ, Smeitink JAM, van den Heuvel LP. Sequence variants in four candidate genes (NIPSNAP1, GBAS, CHCHD1 and METT11D1) in patients with combined oxidative phosphorylation system deficiencies. J Inherit Metab Dis 2010; 33 Suppl 3:S13-9. [PMID: 24137763 DOI: 10.1007/s10545-009-0968-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The oxidative phosphorylation (OXPHOS) system, comprising five enzyme complexes, is located in the inner membrane of mitochondria and is the final biochemical pathway in oxidative ATP production. Defects in this energy-generating system can cause a wide range of clinical symptoms; these diseases are often progressive and multisystemic. Numerous genes have been implicated in OXPHOS deficiencies and many mutations have been described. However, in a substantial number of patients with decreased enzyme activities of two or more OXPHOS complexes, no mutations in the mitochondrial DNA or in nuclear genes known to be involved in these disorders have been found. In this study, four nuclear candidate genes--NIPSNAP1, GBAS, CHCHD1 and METT11D1--were screened for mutations in 22 patients with a combined enzymatic deficiency of primarily the OXPHOS complexes I, III and IV to determine whether a mutation in one of these genes could explain the mitochondrial disorder. For each variant not yet reported as a polymorphism, 100 control samples were screened for the presence of the variant. This way we identified 14 new polymorphisms and 2 presumably non-pathogenic mutations. No mutations were found that could explain the mitochondrial disorder in the patients investigated in this study. Therefore, the genetic defect in these patients must be located in other nuclear genes involved in mtDNA maintenance, transcription or translation, in import, processing or degradation of nuclear encoded mitochondrial proteins, or in assembly of the OXPHOS system.
Collapse
Affiliation(s)
- P Smits
- Department of Pediatrics, Nijmegen Centre for Mitochondrial Disorders, Radboud University Nijmegen Medical Centre, Geert Grooteplein 10, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
21
|
Nautiyal M, Sweatt AJ, MacKenzie JA, Mark Payne R, Szucs S, Matalon R, Wallin R, Hutson SM. Neuronal localization of the mitochondrial protein NIPSNAP1 in rat nervous system. Eur J Neurosci 2010; 32:560-9. [DOI: 10.1111/j.1460-9568.2010.07326.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
22
|
Dowd WW, Renshaw GMC, Cech JJ, Kültz D. Compensatory proteome adjustments imply tissue-specific structural and metabolic reorganization following episodic hypoxia or anoxia in the epaulette shark (Hemiscyllium ocellatum). Physiol Genomics 2010; 42:93-114. [PMID: 20371547 PMCID: PMC2888556 DOI: 10.1152/physiolgenomics.00176.2009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 04/05/2010] [Indexed: 12/31/2022] Open
Abstract
The epaulette shark (Hemiscyllium ocellatum) represents an ancestral vertebrate model of episodic hypoxia and anoxia tolerance at tropical temperatures. We used two-dimensional gel electrophoresis and mass spectrometry-based proteomics approaches, combined with a suite of physiological measures, to characterize this species' responses to 1) one episode of anoxia plus normoxic recovery, 2) one episode of severe hypoxia plus recovery, or 3) two episodes of severe hypoxia plus recovery. We examined these responses in the cerebellum and rectal gland, two tissues with high ATP requirements. Sharks maintained plasma ionic homeostasis following all treatments, and activities of Na(+)/K(+)-ATPase and caspase 3/7 in both tissues were unchanged. Oxygen lack and reoxygenation elicited subtle adjustments in the proteome. Hypoxia led to more extensive proteome responses than anoxia in both tissues. The cerebellum and rectal gland exhibited treatment-specific responses to oxygen limitation consistent with one or more of several strategies: 1) neurotransmitter and receptor downregulation in cerebellum to prevent excitotoxicity, 2) cytoskeletal/membrane reorganization, 3) metabolic reorganization and more efficient intracellular energy shuttling that are more consistent with sustained ATP turnover than with long-term metabolic depression, 4) detoxification of metabolic byproducts and oxidative stress in light of continued metabolic activity, particularly following hypoxia in rectal gland, and 5) activation of prosurvival signaling. We hypothesize that neuronal morphological changes facilitate prolonged protection from excitotoxicity via dendritic spine remodeling in cerebellum (i.e., synaptic structural plasticity). These results recapitulate several highly conserved themes in the anoxia and hypoxia tolerance, preconditioning, and oxidative stress literature in a single system. In addition, several of the identified pathways and proteins suggest potentially novel mechanisms for enhancing anoxia or hypoxia tolerance in vertebrates. Overall, our data show that episodic hypoxic or anoxic exposure and recovery in the epaulette shark amplifies a constitutive suite of compensatory mechanisms that further prepares them for subsequent insults.
Collapse
Affiliation(s)
- W Wesley Dowd
- Department of Animal Science, University of California, Davis, California, USA
| | | | | | | |
Collapse
|
23
|
Reppe S, Refvem H, Gautvik VT, Olstad OK, Høvring PI, Reinholt FP, Holden M, Frigessi A, Jemtland R, Gautvik KM. Eight genes are highly associated with BMD variation in postmenopausal Caucasian women. Bone 2010; 46:604-12. [PMID: 19922823 DOI: 10.1016/j.bone.2009.11.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 10/22/2009] [Accepted: 11/09/2009] [Indexed: 02/09/2023]
Abstract
Low bone mineral density (BMD) is an important risk factor for skeletal fractures which occur in about 40% of women >/=50 years in the western world. We describe the transcriptional changes in 84 trans-iliacal bone biopsies associated with BMD variations in postmenopausal females (50 to 86 years), aiming to identify genetic determinants of bone structure. The women were healthy or having a primary osteopenic or osteoporotic status with or without low energy fractures. The total cohort of 91 unrelated women representing a wide range of BMDs, were consecutively registered and submitted to global gene Affymetrix microarray expression analysis or histomorphometry. Among almost 23,000 expressed transcripts, a set represented by ACSL3 (acyl-CoA synthetase long-chain family member 3), NIPSNAP3B (nipsnap homolog 3B), DLEU2 (Deleted in lymphocytic leukemia, 2), C1ORF61 (Chromosome 1 open reading frame 61), DKK1 (Dickkopf homolog 1), SOST (Sclerostin), ABCA8, (ATP-binding cassette, sub-family A, member 8), and uncharacterized (AFFX-M27830-M-at), was significantly correlated to total hip BMD (5% false discovery rate) explaining 62% of the BMD variation expressed as T-score, 53% when adjusting for the influence of age (Z-score) and 44% when further adjusting for body mass index (BMI). Only SOST was previously associated to BMD, and the majority of the genes have previously not been associated with a bone phenotype. In molecular network analyses, SOST shows a strong, positive correlation with DKK1, both being members of the Wnt signaling pathway. The results provide novel insight in the underlying biology of bone metabolism and osteoporosis which is the ultimate consequence of low BMD.
Collapse
Affiliation(s)
- Sjur Reppe
- Institute of Basic Medical Sciences, University of Oslo, Norway.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Raymond AA, de Peredo AG, Stella A, Ishida-Yamamoto A, Bouyssie D, Serre G, Monsarrat B, Simon M. Lamellar Bodies of Human Epidermis. Mol Cell Proteomics 2008; 7:2151-75. [DOI: 10.1074/mcp.m700334-mcp200] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
25
|
Identification of Nipsnap1 as a novel auxiliary protein inhibiting TRPV6 activity. Pflugers Arch 2008; 457:91-101. [DOI: 10.1007/s00424-008-0494-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Accepted: 03/08/2008] [Indexed: 11/26/2022]
|
26
|
Zhang L, Wang X, Peng X, Wei Y, Cao R, Liu Z, Xiong J, Ying X, Chen P, Liang S. Immunoaffinity purification of plasma membrane with secondary antibody superparamagnetic beads for proteomic analysis. J Proteome Res 2007; 6:34-43. [PMID: 17203946 DOI: 10.1021/pr060069r] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Plasma membrane (PM) has very important roles in cell-cell interaction and signal transduction, and it has been extensively targeted for drug design. A major prerequisite for the analysis of PM proteome is the preparation of PM with high purity. Density gradient centrifugation has been commonly employed to isolate PM, but it often occurred with contamination of internal membrane. Here we describe a method for plasma membrane purification using second antibody superparamagnetic beads that combines subcellular fractionation and immunoisolation strategies. Four methods of immunoaffinity were compared, and the variation of crude plasma membrane (CPM), superparamagnetic beads, and antibodies was studied. The optimized method and the number of CPM, beads, and antibodies suitable for proteome analysis were obtained. The PM of mouse liver was enriched 3-fold in comparison with the density gradient centrifugation method, and contamination from mitochondria was reduced 2-fold. The PM protein bands were extracted and trypsin-digested, and the resulting peptides were resolved and characterized by MALDI-TOF-TOF and ESI-Q-TOF, respectively. Mascot software was used to analyze the data against IPI-mouse protein database. Nonredundant proteins (248) were identified, of which 67% are PM or PM-related proteins. No endoplasmic reticulum (ER) or nuclear proteins were identified according to the GO annotation in the optimized method. Our protocol represents a simple, economic, and reproducible tool for the proteomic characterization of liver plasma membrane.
Collapse
Affiliation(s)
- Lijun Zhang
- Key Laboratory of Protein Chemistry and Developmental Biology of National Education Committee, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Verhagen AM, Kratina TK, Hawkins CJ, Silke J, Ekert PG, Vaux DL. Identification of mammalian mitochondrial proteins that interact with IAPs via N-terminal IAP binding motifs. Cell Death Differ 2006; 14:348-57. [PMID: 16794601 DOI: 10.1038/sj.cdd.4402001] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Direct IAP binding protein with low pI/second mitochondrial activator of caspases, HtrA2/Omi and GstPT/eRF3 are mammalian proteins that bind via N-terminal inhibitor of apoptosis protein (IAP) binding motifs (IBMs) to the baculoviral IAP repeat (BIR) domains of IAPs. These interactions can prevent IAPs from inhibiting caspases, or displace active caspases, thereby promoting cell death. We have identified several additional potential IAP antagonists, including glutamate dehydrogenase (GdH), Nipsnap 3 and 4, CLPX, leucine-rich pentatricopeptide repeat motif-containing protein and 3-hydroxyisobutyrate dehydrogenase. All are mitochondrial proteins from which N-terminal import sequences are removed generating N-terminal IBMs. Whereas most of these proteins have alanine at the N-terminal position, as observed for previously described antagonists, GdH has an N-terminal serine residue that is essential for X-linked IAP (XIAP) interaction. These newly described IAP binding proteins interact with XIAP mainly via BIR2, with binding eliminated or significantly reduced by a single point mutation (D214S) within this domain. Through this interaction, many are able to antagonise XIAP inhibition of caspase 3 in vitro.
Collapse
Affiliation(s)
- A M Verhagen
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| | | | | | | | | | | |
Collapse
|