1
|
Wei S, Ma F, Feng S, Ha X. Integrating transcriptomics and proteomics to understand the molecular mechanisms underlying the pathogenesis of type 2 diabetes mellitus. Genomics 2024; 116:110964. [PMID: 39571829 DOI: 10.1016/j.ygeno.2024.110964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024]
Abstract
The liver plays an important role in glucose regulation, and their dysfunction is closely associated with the development of type 2 diabetes mellitus (T2DM), and insulin resistance (IR) in hepatocyte mediate the pathogenesis of diabetes mellitus. In T2DM rats and their correlated control, we investigated various genes expression at transcriptional and translational level by utilizing transcriptomic using RNA sequencing (RNA-seq) and proteomics using isobaric tags for relative and absolute quantification (iTRAQ) to disclose potential candidates for Type 2 diabetes diagnosis and therapy. We found the lecithin retinol acyltransferase (Lrat) gene regulate hepatocyte IR in T2DM. Furthermore, BRL-3A cells, rat liver cells, worked as the IR model in vitro study. Hence, Lrat gene was overexpressed in BRL-3A cells to explore the role of Lrat gene in IR by measuring the cellular glucose consumption, TCHO, and LDL-C levels. Finally, we found that Lrat gene can improve the level of glycolipid metabolism in BRL-3A cells and reduce the degree of IR in BRL-3A cells. Therefore, further exploration of Lrat gene related molecular mechanism is meaningful.
Collapse
Affiliation(s)
- Shuyao Wei
- Department of Clinical Laboratory, The 940th Hospital of Joint Logistics Support force of Chinese People's Liberation Army, Lanzhou 730050, China; Department of Clinical Laboratory, Xuzhou Municipal First People's Hospital, Xuzhou 221009, China; Clinical Laboratory Diagnostics, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory of Stem Cells and Gene Drugs, Lanzhou 730050, China
| | - Feifei Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; Key Laboratory of Stem Cells and Gene Drugs, Lanzhou 730050, China
| | - Shanshan Feng
- Clinical Laboratory Diagnostics, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory of Stem Cells and Gene Drugs, Lanzhou 730050, China
| | - Xiaoqin Ha
- Department of Clinical Laboratory, The 940th Hospital of Joint Logistics Support force of Chinese People's Liberation Army, Lanzhou 730050, China; Clinical Laboratory Diagnostics, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory of Stem Cells and Gene Drugs, Lanzhou 730050, China.
| |
Collapse
|
2
|
Erdmann L, Santos PI, Rieper P, Klafki HW, Beutner D, Wiltfang J, Outeiro TF, Setz C. Automated Capillary Electrophoresis Immunoblot for the Detection of Alpha-Synuclein in Mouse Tissue. JOURNAL OF PARKINSON'S DISEASE 2024; 14:681-692. [PMID: 38578903 PMCID: PMC11191443 DOI: 10.3233/jpd-230379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 04/07/2024]
Abstract
Background Alpha-synuclein (aSyn) is a key player in neurodegenerative diseases such as Parkinson's disease (PD), dementia with Lewy bodies, or multiple system atrophy. aSyn is expressed throughout the brain, and can also be detected in various peripheral tissues. In fact, initial symptoms of PD are non-motoric and include autonomic dysfunction, suggesting that the periphery might play an important role in early development of the disease. aSyn is expressed at relatively low levels in non-central tissues, which brings challenges for its detection and quantification in different tissues. Objective Our goal was to assess the sensitivity of aSyn detection in central and peripheral mouse tissues through capillary electrophoresis (CE) immunoblot, considering the traditional SDS-PAGE immunoblot as the current standard. Methods Tissues from central and non-central origin from wild type mice were extracted, and included midbrain, inner ear, and esophagus/stomach. aSyn detection was assessed through immunoblotting using Simple Western size-based CE and SDS-PAGE. Results CE immunoblots show a consistent detection of aSyn in central and peripheral tissues. Through SDS-PAGE, immunoblots revealed a reliable signal corresponding to aSyn, particularly following membrane fixation. Conclusion Our results suggest a reliable detection of aSyn in central and peripheral tissues using the CE Simple Western immunoblot system. These observations can serve as preliminary datasets when aiming to formally compare CE with SDS-PAGE, as well as for further characterization of aSyn using this technique.
Collapse
Affiliation(s)
- Leonie Erdmann
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Patrícia I. Santos
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Petra Rieper
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Hans W. Klafki
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Dirk Beutner
- Department of Otolaryngology-Head and Neck Surgery, Inner Ear Lab, University Medical Center Göttingen, Göttingen, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Tiago F. Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Cristian Setz
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Department of Otolaryngology-Head and Neck Surgery, Inner Ear Lab, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
3
|
Bornschein U, Zeberg H, Enard W, Hevers W, Pääbo S. Functional dissection of two amino acid substitutions unique to the human FOXP2 protein. Sci Rep 2023; 13:3747. [PMID: 36879029 PMCID: PMC9988825 DOI: 10.1038/s41598-023-30663-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
The transcription factor forkhead box P2 (FOXP2) is involved in the development of language and speech in humans. Two amino acid substitutions (T303N, N325S) occurred in the human FOXP2 after the divergence from the chimpanzee lineage. It has previously been shown that when they are introduced into the FOXP2 protein of mice they alter striatal synaptic plasticity by increasing long-term depression in medium spiny neurons. Here we introduce each of these amino acid substitutions individually into mice and analyze their effects in the striatum. We find that long-term depression in medium spiny neurons is increased in mice carrying only the T303N substitution to the same extent as in mice carrying both amino acid substitutions. In contrast, the N325S substitution has no discernable effects.
Collapse
Affiliation(s)
- Ulrich Bornschein
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
| | - Hugo Zeberg
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany.,Department of Pharmacology and Physiology, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Wolfgang Enard
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany.,Faculty of Biology, Ludwig Maximilian University, 82152, Martinsried, Germany
| | - Wulf Hevers
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany.
| | - Svante Pääbo
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany.,Okinawa Institute of Science and Technology, Onna-Son, Japan
| |
Collapse
|
4
|
Fathi M, Vakili K, Yaghoobpoor S, Qadirifard MS, Kosari M, Naghsh N, Asgari taei A, Klegeris A, Dehghani M, Bahrami A, Taheri H, Mohamadkhani A, Hajibeygi R, Rezaei Tavirani M, Sayehmiri F. Pre-clinical Studies Identifying Molecular Pathways of Neuroinflammation in Parkinson's Disease: A Systematic Review. Front Aging Neurosci 2022; 14:855776. [PMID: 35912090 PMCID: PMC9327618 DOI: 10.3389/fnagi.2022.855776] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/23/2022] [Indexed: 12/09/2022] Open
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disorder, is characterized by neuroinflammation, formation of Lewy bodies, and progressive loss of dopaminergic neurons in the substantia nigra of the brain. In this review, we summarize evidence obtained by animal studies demonstrating neuroinflammation as one of the central pathogenetic mechanisms of PD. We also focus on the protein factors that initiate the development of PD and other neurodegenerative diseases. Our targeted literature search identified 40 pre-clinical in vivo and in vitro studies written in English. Nuclear factor kappa B (NF-kB) pathway is demonstrated as a common mechanism engaged by neurotoxins such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 6-hydroxydopamine (6-OHDA), as well as the bacterial lipopolysaccharide (LPS). The α-synuclein protein, which plays a prominent role in PD neuropathology, may also contribute to neuroinflammation by activating mast cells. Meanwhile, 6-OHDA models of PD identify microsomal prostaglandin E synthase-1 (mPGES-1) as one of the contributors to neuroinflammatory processes in this model. Immune responses are used by the central nervous system to fight and remove pathogens; however, hyperactivated and prolonged immune responses can lead to a harmful neuroinflammatory state, which is one of the key mechanisms in the pathogenesis of PD.
Collapse
Affiliation(s)
- Mobina Fathi
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Vakili
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirin Yaghoobpoor
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Sadegh Qadirifard
- Department of Nursing and Midwifery, Islamic Azad University, Tehran, Iran
- Department of Nursing, Garmsar Branch, Islamic Azad University, Garmsar, Iran
| | - Mohammadreza Kosari
- The First Clinical College, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Navid Naghsh
- Department of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Afsaneh Asgari taei
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Andis Klegeris
- Department of Biology, Faculty of Science, University of British Columbia Okanagan Campus, Kelowna, BC, Canada
| | - Mina Dehghani
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ashkan Bahrami
- Faculty of Medicine, Kashan University of Medical Science, Kashan, Iran
| | - Hamed Taheri
- Dental School, Kazan Federal University, Kazan, Russia
| | - Ashraf Mohamadkhani
- Digestive Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramtin Hajibeygi
- Department of Cardiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mostafa Rezaei Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Mostafa Rezaei Tavirani
| | - Fatemeh Sayehmiri
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Fatemeh Sayehmiri
| |
Collapse
|
5
|
Deletion in chromosome 6 spanning alpha-synuclein and multimerin1 loci in the Rab27a/b double knockout mouse. Sci Rep 2022; 12:9837. [PMID: 35701443 PMCID: PMC9197848 DOI: 10.1038/s41598-022-13557-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/25/2022] [Indexed: 11/08/2022] Open
Abstract
We report an incidental 358.5 kb deletion spanning the region encoding for alpha-synuclein (αsyn) and multimerin1 (Mmrn1) in the Rab27a/Rab27b double knockout (DKO) mouse line previously developed by Tolmachova and colleagues in 2007. Western blot and RT-PCR studies revealed lack of αsyn expression at either the mRNA or protein level in Rab27a/b DKO mice. PCR of genomic DNA from Rab27a/b DKO mice demonstrated at least partial deletion of the Snca locus using primers targeted to exon 4 and exon 6. Most genes located in proximity to the Snca locus, including Atoh1, Atoh2, Gm5570, Gm4410, Gm43894, and Grid2, were shown not to be deleted by PCR except for Mmrn1. Using whole genomic sequencing, the complete deletion was mapped to chromosome 6 (60,678,870–61,037,354), a slightly smaller deletion region than that previously reported in the C57BL/6J substrain maintained by Envigo. Electron microscopy of cortex from these mice demonstrates abnormally enlarged synaptic terminals with reduced synaptic vesicle density, suggesting potential interplay between Rab27 isoforms and αsyn, which are all highly expressed at the synaptic terminal. Given this deletion involving several genes, the Rab27a/b DKO mouse line should be used with caution or with appropriate back-crossing to other C57BL/6J mouse substrain lines without this deletion.
Collapse
|
6
|
Abstract
The inbred mouse strain C57BL/6 has been widely used as a background strain for spontaneous and induced mutations. Developed in the 1930s, the C57BL/6 strain
diverged into two major groups in the 1950s, namely, C57BL/6J and C57BL/6N, and more than 20 substrains have been established from them worldwide. We previously
reported genetic differences among C57BL/6 substrains in 2009 and 2015. Since then, dozens of reports have been published on phenotypic differences in
behavioral, neurological, cardiovascular, and metabolic traits. Substrains need to be chosen according to the purpose of the study because phenotypic
differences might affect the experimental results. In this paper, we review recent reports of phenotypic and genetic differences among C57BL/6 substrains, focus
our attention on the proper use of C57BL/6 and other inbred strains in the era of genome editing, and provide the life science research community wider
knowledge about this subject.
Collapse
Affiliation(s)
- Kazuyuki Mekada
- Department of Zoology, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan.,Experimental Animal Division, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Atsushi Yoshiki
- Experimental Animal Division, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| |
Collapse
|
7
|
Chaprov KD, Goloborshcheva VV, Tarasova TV, Teterina EV, Korokin MV, Soldatov VO, Pokrovskiy MV, Kucheryanu VG, Morozov SG, Ovchinnikov RK. Increased Expression of the Multimerin-1 Gene in α-Synuclein Knokout Mice. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2020; 494:260-263. [PMID: 33083886 DOI: 10.1134/s0012496620050014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 12/20/2022]
Abstract
Multimerin-1 (Mmrn-1) is a soluble protein, also known as elastin microfibril interfacer 4 (EMILIN-4), found in platelets and in the endothelium of blood vessels. Its function and role in pathology are still not fully understood. Genetic modifications in alpha-synuclein gene (Snca) locus that mapped 160 Kb apart from Mmrn-1 in mouse genome, could weigh with regulatory elements of Mmrn-1 gene. We have studied the Mmrn-1 expression in brain cortex of three mouse lines with Snca knock-out: B6(Cg)-Sncatm1.2Vlb/J, B6;129-Sncatm1Sud/J, and B6;129X1-Sncatm1Rosl/J. The 35-fold increase for Mmrn-1 mRNA level have been found in B6;129X1-Sncatm1Rosl/J mice that carry in their genome foreign sequences including bacterial gene neo and a strong promoter of a mouse phosphoglycerate kinase (Pgk1) oriented towards Mmrn-1 gene. This effect on regulatory elements of Mmrn-1 gene as a result of modifications in Snca locus should be taken into consideration when using B6;129X1-Sncatm1Rosl/J line, that is widely applied for study of neurodegeneration mechanisms.
Collapse
Affiliation(s)
- K D Chaprov
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia. .,School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom.
| | - V V Goloborshcheva
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom.,Institute of General Pathology and Pathophysiology, 125315, Moscow, Russia
| | - T V Tarasova
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia.,School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom
| | - E V Teterina
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia
| | - M V Korokin
- Research Institute of Living Systems Pharmacology, Belgorod National Research University, 308007, Belgorod, Russia
| | - V O Soldatov
- Research Institute of Living Systems Pharmacology, Belgorod National Research University, 308007, Belgorod, Russia
| | - M V Pokrovskiy
- Research Institute of Living Systems Pharmacology, Belgorod National Research University, 308007, Belgorod, Russia
| | - V G Kucheryanu
- Institute of General Pathology and Pathophysiology, 125315, Moscow, Russia
| | - S G Morozov
- Institute of General Pathology and Pathophysiology, 125315, Moscow, Russia
| | - R K Ovchinnikov
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia
| |
Collapse
|
8
|
The Role of Alpha-Synuclein and Other Parkinson's Genes in Neurodevelopmental and Neurodegenerative Disorders. Int J Mol Sci 2020; 21:ijms21165724. [PMID: 32785033 PMCID: PMC7460874 DOI: 10.3390/ijms21165724] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/29/2020] [Accepted: 08/08/2020] [Indexed: 12/13/2022] Open
Abstract
Neurodevelopmental and late-onset neurodegenerative disorders present as separate entities that are clinically and neuropathologically quite distinct. However, recent evidence has highlighted surprising commonalities and converging features at the clinical, genomic, and molecular level between these two disease spectra. This is particularly striking in the context of autism spectrum disorder (ASD) and Parkinson's disease (PD). Genetic causes and risk factors play a central role in disease pathophysiology and enable the identification of overlapping mechanisms and pathways. Here, we focus on clinico-genetic studies of causal variants and overlapping clinical and cellular features of ASD and PD. Several genes and genomic regions were selected for our review, including SNCA (alpha-synuclein), PARK2 (parkin RBR E3 ubiquitin protein ligase), chromosome 22q11 deletion/DiGeorge region, and FMR1 (fragile X mental retardation 1) repeat expansion, which influence the development of both ASD and PD, with converging features related to synaptic function and neurogenesis. Both PD and ASD display alterations and impairments at the synaptic level, representing early and key disease phenotypes, which support the hypothesis of converging mechanisms between the two types of diseases. Therefore, understanding the underlying molecular mechanisms might inform on common targets and therapeutic approaches. We propose to re-conceptualize how we understand these disorders and provide a new angle into disease targets and mechanisms linking neurodevelopmental disorders and neurodegeneration.
Collapse
|
9
|
Benavides F, Rülicke T, Prins JB, Bussell J, Scavizzi F, Cinelli P, Herault Y, Wedekind D. Genetic quality assurance and genetic monitoring of laboratory mice and rats: FELASA Working Group Report. Lab Anim 2019; 54:135-148. [PMID: 31431136 PMCID: PMC7160752 DOI: 10.1177/0023677219867719] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Genetic quality assurance (QA), including genetic monitoring (GeMo) of inbred
strains and background characterization (BC) of genetically altered (GA) animal
models, should be an essential component of any QA programme in laboratory
animal facilities. Genetic quality control is as important for ensuring the
validity of the animal model as health and microbiology monitoring are. It
should be required that studies using laboratory rodents, mainly mice and rats,
utilize genetically defined animals. This paper, presented by the FELASA Working
Group on Genetic Quality Assurance and Genetic Monitoring of Laboratory Murines,
describes the objectives of and available methods for genetic QA programmes in
rodent facilities. The main goals of any genetic QA programme are: (a) to verify
the authenticity and uniformity of inbred stains and substrains, thus ensuring a
genetically reliable colony maintenance; (b) to detect possible genetic
contamination; and (c) to precisely describe the genetic composition of GA
lines. While this publication focuses mainly on mouse and rat genetic QA, the
principles will apply to other rodent species some of which are briefly
mentioned within the context of inbred and outbred stocks.
Collapse
Affiliation(s)
- Fernando Benavides
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas, MD Anderson Cancer Center, USA
| | - Thomas Rülicke
- Institute of Laboratory Animal Science, University of Veterinary Medicine, Vienna, Austria
| | - Jan-Bas Prins
- The Francis Crick Institute, London, UK.,Leiden University Medical Centre, Leiden, The Netherlands
| | - James Bussell
- Biomedical and Veterinary Services Department, University of Oxford, Oxford, UK
| | | | - Paolo Cinelli
- Department of Trauma Surgery, University of Zurich, Zurich, Switzerland
| | - Yann Herault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France.,Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris, CELPHEDIA-PHENOMIN-ICS, Illkirch, France
| | - Dirk Wedekind
- Institute of Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| |
Collapse
|
10
|
Persyn W, Houchi H, Papillon CA, Martinetti M, Antol J, Guillaumont C, Dervaux A, Naassila M. Ethanol (EtOH)-Related Behaviors in α-Synuclein Mutant Mice and Association of SNCA SNPs with Anxiety in EtOH-Dependent Patients. Alcohol Clin Exp Res 2018; 42:2172-2185. [PMID: 30120834 DOI: 10.1111/acer.13875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 08/10/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Data have shown a role of α-synuclein in anxiety and also in addiction, particularly in alcohol use disorders (AUD). Since the comorbidity between AUD and anxiety is very high and because anxiety is an important factor in ethanol (EtOH) relapse, the aim of the present study was to investigate the role of α-synuclein in moderating EtOH intake, the anxiolytic effects of EtOH, and EtOH withdrawal-induced anxiety and convulsions in mice. The study aimed to determine whether SNCA variants moderated anxiety in EtOH-dependent patients. METHODS We analyzed the moderator effect of 3 SNCA Tag-single nucleotide polymorphisms (Tag-SNPs) rs356200, rs356219, and rs2119787 on the anxiety symptoms in 128 EtOH-dependent patients. We used the C57BL/6JOlaHsd Snca mutant mice to assess EtOH intake; sensitivity to the anxiolytic effects of EtOH in a test battery comprising the open field, the light-dark box, and the elevated plus maze; and both anxiety and convulsions induced by EtOH withdrawal. RESULTS Our results demonstrated a reduction in both EtOH intake and preference and also a lack of sensitivity to the anxiolytic effects of EtOH in α-synuclein mutant mice. Results on anxiety-like behavior were mixed, but mutant mice displayed increased anxiety when exposed to a low anxiogenic environment. Mutant mice also displayed an increase in handling-induced convulsion scores during withdrawal after EtOH inhalation, but did not differ in terms of EtOH withdrawal-induced anxiety. In humans, we found a significant association of the rs356219 SNP with a high level of anxiety (Beck Anxiety Inventory score >15) and the rs356200 SNP with a positive familial history of AUD. CONCLUSIONS Our translational study highlights a significant role of α-synuclein in components of AUD.
Collapse
Affiliation(s)
- Wolfgang Persyn
- Research Group on Alcohol & Pharmacodependences (GRAP), Centre Universitaire de Recherche en Santé (CURS) , INSERM U1247, University of Picardie Jules Verne, Amiens, France.,Unité d'alcoologie SESAME , Centre hospitalier Psychiatrique Philippe Pinel, Amiens, France
| | - Hakim Houchi
- Research Group on Alcohol & Pharmacodependences (GRAP), Centre Universitaire de Recherche en Santé (CURS) , INSERM U1247, University of Picardie Jules Verne, Amiens, France
| | - Charles-Antoine Papillon
- Research Group on Alcohol & Pharmacodependences (GRAP), Centre Universitaire de Recherche en Santé (CURS) , INSERM U1247, University of Picardie Jules Verne, Amiens, France
| | - Margaret Martinetti
- Research Group on Alcohol & Pharmacodependences (GRAP), Centre Universitaire de Recherche en Santé (CURS) , INSERM U1247, University of Picardie Jules Verne, Amiens, France.,Department of Psychology , The College of New Jersey, Ewing, New Jersey
| | - Johann Antol
- Research Group on Alcohol & Pharmacodependences (GRAP), Centre Universitaire de Recherche en Santé (CURS) , INSERM U1247, University of Picardie Jules Verne, Amiens, France
| | - Cyrille Guillaumont
- Research Group on Alcohol & Pharmacodependences (GRAP), Centre Universitaire de Recherche en Santé (CURS) , INSERM U1247, University of Picardie Jules Verne, Amiens, France.,Unité d'alcoologie SESAME , Centre hospitalier Psychiatrique Philippe Pinel, Amiens, France
| | - Alain Dervaux
- Research Group on Alcohol & Pharmacodependences (GRAP), Centre Universitaire de Recherche en Santé (CURS) , INSERM U1247, University of Picardie Jules Verne, Amiens, France.,CHU Sud , Service de consultations de Psychiatrie et Addictologie, Amiens Cedex, France
| | - Mickael Naassila
- Research Group on Alcohol & Pharmacodependences (GRAP), Centre Universitaire de Recherche en Santé (CURS) , INSERM U1247, University of Picardie Jules Verne, Amiens, France
| |
Collapse
|
11
|
Dobrowolski P, Fischer M, Naumann R. Novel insights into the genetic background of genetically modified mice. Transgenic Res 2018; 27:265-275. [PMID: 29663254 DOI: 10.1007/s11248-018-0073-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/09/2018] [Indexed: 12/21/2022]
Abstract
Unclear or misclassified genetic background of laboratory rodents or a lack of strain awareness causes a number of difficulties in performing or reproducing scientific experiments. Until now, genetic differentiation between strains and substrains of inbred mice has been a challenge. We have developed a screening method for analyzing inbred strains regarding their genetic background. It is based on 240 highly informative short tandem repeat (STR) markers covering the 19 autosomes as well as X and Y chromosomes. Combination of analysis results for presence of known C57BL/6 substrain-specific mutations together with autosomal STR markers and the Y-chromosomal STR-haplotype provides a comprehensive snapshot of the genetic background of mice. In this study, the genetic background of 72 mouse lines obtained from 18 scientific institutions in Germany and Austria was determined. By analyzing only 3 individuals per genetically modified line it was possible to detect mixed genetic backgrounds frequently. In several lines presence of a mispairing Y chromosome was detected. At least every second genetically modified line displayed a mixed genetic background which could lead to unexpected and non-reproducible results, irrespective of the investigated gene of interest.
Collapse
Affiliation(s)
- Peter Dobrowolski
- GVG Genetic Monitoring GmbH, Deutscher Platz 5b, 04103, Leipzig, Germany.
| | - Melina Fischer
- Genolytic GmbH, Deutscher Platz 5b, 04103, Leipzig, Germany
| | - Ronald Naumann
- MPI of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307, Dresden, Germany
| |
Collapse
|
12
|
Zeiss CJ. From Reproducibility to Translation in Neurodegenerative Disease. ILAR J 2017; 58:106-114. [PMID: 28444192 DOI: 10.1093/ilar/ilx006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Indexed: 12/11/2022] Open
Abstract
Despite tremendous investment and preclinical success in neurodegenerative disease, effective disease-altering treatments for patients have remained elusive. One highly cited reason for this discrepancy is flawed animal study design and reporting. If this can be broadly remedied, reproducibility of preclinical studies will improve. However, without concurrent efforts to improve generalizability, these improvements may not translate effectively from animal experiments to more complex human neurodegenerative diseases. Mechanistic and phenotypic variability of neurodegenerative disease is such that most models are only able to interrogate individual aspects of complex phenomena. One approach is to consider animals as models of individual targets rather than as models of individual diseases and to migrate the concept of predictive validity from the individual model to the body of experiments that demonstrate translatability of a target. Both exploratory and therapeutic preclinical studies are dependent upon study design methods that promote rigor and reproducibility. However, the body of evidence that is needed to demonstrate efficacy in therapeutic studies is substantially broader than that needed for exploratory studies. In addition to requiring rigor within individual experiments, convincing evidence for therapeutic potential must assess the relationships between model choice, intended goal of the intervention, pharmacologic criteria, and integration of biomarker data with outcome measures that are clinically relevant to humans. It is conceivable that proof-of-concept studies will migrate to cell-based systems and that animal systems will be increasingly reserved for more distal translational purposes. If this occurs, it is likely to prompt reexamination of what the term "translational" truly means.
Collapse
|
13
|
Rotermund C, Reolon GK, Leixner S, Boden C, Bilbao A, Kahle PJ. Enhanced motivation to alcohol in transgenic mice expressing human α-synuclein. J Neurochem 2017; 143:294-305. [PMID: 28833174 DOI: 10.1111/jnc.14151] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 07/20/2017] [Accepted: 08/14/2017] [Indexed: 12/17/2022]
Abstract
α-Synuclein (αSYN) is the neuropathological hallmark protein of Parkinson's disease (PD) and related neurodegenerative disorders. Moreover, the gene encoding αSYN (SNCA) is a major genetic contributor to PD. Interestingly, independent genome-wide association studies also identified SNCA as the most important candidate gene for alcoholism. Furthermore, single-nucleotide-polymorphisms have been associated with alcohol-craving behavior and alcohol-craving patients showed augmented αSYN expression in blood. To investigate the effect of αSYN on the addictive properties of chronic alcohol use, we examined consumption, motivation, and seeking responses induced by environmental stimuli and relapse behavior in transgenic mice expressing the human mutant [A30P]αSYN throughout the brain. The primary reinforcing effects of alcohol under operant self-administration conditions were increased, while consumption and the alcohol deprivation effect were not altered in the transgenic mice. The same mice were subjected to immunohistochemical measurements of immediate-early gene inductions in brain regions involved in addiction-related behaviors. Acute ethanol injection enhanced immunostaining for the phosphorylated form of cAMP response element binding protein in both amygdala and nucleus accumbens of αSYN transgenic mice, while in wild-type mice no effect was visible. However, at the same time, levels of cFos remain unchanged in both genotypes. These results provide experimental confirmation of SNCA as a candidate gene for alcoholism in addition to its known link to PD.
Collapse
Affiliation(s)
- Carola Rotermund
- Laboratory of Functional Neurogenetics, Department of Neurodegeneration, German Center of Neurodegenerative Diseases, Tübingen, Germany
| | - Gustavo K Reolon
- Laboratory of Functional Neurogenetics, Department of Neurodegeneration, Hertie Institute of Clinical Brain Research, Faculty of Medicine, University of Tübingen, Tübingen, Germany
| | - Sarah Leixner
- Behavioral Genetics Research Group, Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty of Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Cindy Boden
- Laboratory of Functional Neurogenetics, Department of Neurodegeneration, German Center of Neurodegenerative Diseases, Tübingen, Germany
| | - Ainhoa Bilbao
- Behavioral Genetics Research Group, Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty of Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Philipp J Kahle
- Laboratory of Functional Neurogenetics, Department of Neurodegeneration, German Center of Neurodegenerative Diseases, Tübingen, Germany.,Laboratory of Functional Neurogenetics, Department of Neurodegeneration, Hertie Institute of Clinical Brain Research, Faculty of Medicine, University of Tübingen, Tübingen, Germany
| |
Collapse
|
14
|
Liron T, Raphael B, Hiram‐Bab S, Bab IA, Gabet Y. Bone loss in C57BL/6J‐OlaHsd mice, a substrain of C57BL/6J carrying mutated alpha‐synuclein and multimerin‐1 genes. J Cell Physiol 2017; 233:371-377. [DOI: 10.1002/jcp.25895] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Tamar Liron
- Sackler Faculty of MedicineDepartment of Anatomy and AnthropologyTel Aviv UniversityTel AvivIsrael
| | - Bitya Raphael
- Sackler Faculty of MedicineDepartment of Anatomy and AnthropologyTel Aviv UniversityTel AvivIsrael
| | - Sahar Hiram‐Bab
- Sackler Faculty of MedicineDepartment of Anatomy and AnthropologyTel Aviv UniversityTel AvivIsrael
| | - Itai A. Bab
- Bone LaboratoryThe Hebrew University of JerusalemJerusalemIsrael
| | - Yankel Gabet
- Sackler Faculty of MedicineDepartment of Anatomy and AnthropologyTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
15
|
Raphael B, Gabet Y. The skeletal endocannabinoid system: clinical and experimental insights. J Basic Clin Physiol Pharmacol 2017; 27:237-45. [PMID: 26457774 DOI: 10.1515/jbcpp-2015-0073] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/07/2015] [Indexed: 12/17/2022]
Abstract
Recently, there has been a rapidly growing interest in the role of cannabinoids in the regulation of skeletal remodeling and bone mass, addressed in basic, translational and clinical research. Since the first publications in 2005, there are more than 1000 publications addressing the skeletal endocannabinoid system. This review focuses on the roles of the endocannabinoid system in skeletal biology via the cannabinoid receptors CB1, CB2 and others. Endocannabinoids play important roles in bone formation, bone resorption and skeletal growth, and are sometimes age, gender, species and strain dependent. Controversies in the literature and potential therapeutic approaches targeting the endocannabinoid system in skeletal disorders are also discussed.
Collapse
|
16
|
Nuvolone M, Sorce S, Paolucci M, Aguzzi A. Extended characterization of the novel co-isogenic C57BL/6J Prnp -/- mouse line. Amyloid 2017; 24:36-37. [PMID: 28434290 DOI: 10.1080/13506129.2017.1289913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mario Nuvolone
- a Institute of Neuropathology, University Hospital of Zurich , Zurich , Switzerland
| | - Silvia Sorce
- a Institute of Neuropathology, University Hospital of Zurich , Zurich , Switzerland
| | - Marta Paolucci
- a Institute of Neuropathology, University Hospital of Zurich , Zurich , Switzerland
| | - Adriano Aguzzi
- a Institute of Neuropathology, University Hospital of Zurich , Zurich , Switzerland
| |
Collapse
|
17
|
Nardo G, Trolese MC, Tortarolo M, Vallarola A, Freschi M, Pasetto L, Bonetto V, Bendotti C. New Insights on the Mechanisms of Disease Course Variability in ALS from Mutant SOD1 Mouse Models. Brain Pathol 2016; 26:237-47. [PMID: 26780365 PMCID: PMC8029191 DOI: 10.1111/bpa.12351] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 01/14/2016] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a heterogeneous disease in terms of progression rate and survival. This is probably one of the reasons for the failure of many clinical trials and the lack of effective therapies. Similar variability is also seen in SOD1(G93A) mouse models based on their genetic background. For example, when the SOD1(G93A) transgene is expressed in C57BL6 background the phenotype is mild with slower disease progression than in the 129Sv mice expressing the same amount of transgene but showing faster progression and shorter lifespan. This review summarizes and discusses data obtained from the analysis of these two mouse models under different aspects such as the motor phenotype, neuropathological alterations in the central nervous system (CNS) and peripheral nervous system (PNS) and the motor neuron autonomous and non-cell autonomous mechanisms with the aim of finding elements to explain the different rates of disease progression. We also discuss the identification of promising prognostic biomarkers by comparative analysis of the two ALS mouse models. This analysis might possibly suggest new strategies for effective therapeutic intervention in ALS to slow significantly or even block the course of the disease.
Collapse
Affiliation(s)
- Giovanni Nardo
- Department of NeuroscienceLaboratory Molecular Neurobiology, IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”MilanoItaly
| | - Maria Chiara Trolese
- Department of NeuroscienceLaboratory Molecular Neurobiology, IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”MilanoItaly
| | - Massimo Tortarolo
- Department of NeuroscienceLaboratory Molecular Neurobiology, IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”MilanoItaly
| | - Antonio Vallarola
- Department of NeuroscienceLaboratory Molecular Neurobiology, IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”MilanoItaly
| | - Mattia Freschi
- Department of NeuroscienceLaboratory Molecular Neurobiology, IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”MilanoItaly
- Animal Facility, AriSLA, Fondazione Italiana di ricerca per la Sclerosi Laterale Amiotrofica
| | - Laura Pasetto
- Department of Molecular Biochemistry and Pharmacology, Laboratory of Translational ProteomicsIRCCS‐Istituto di Ricerche Farmacologiche “Mario Negri”MilanoItaly
| | - Valentina Bonetto
- Department of Molecular Biochemistry and Pharmacology, Laboratory of Translational ProteomicsIRCCS‐Istituto di Ricerche Farmacologiche “Mario Negri”MilanoItaly
| | - Caterina Bendotti
- Department of NeuroscienceLaboratory Molecular Neurobiology, IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”MilanoItaly
| |
Collapse
|
18
|
Reichenbach N, Herrmann U, Kähne T, Schicknick H, Pielot R, Naumann M, Dieterich DC, Gundelfinger ED, Smalla KH, Tischmeyer W. Differential effects of dopamine signalling on long-term memory formation and consolidation in rodent brain. Proteome Sci 2015; 13:13. [PMID: 25852303 PMCID: PMC4387680 DOI: 10.1186/s12953-015-0069-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/25/2015] [Indexed: 12/01/2022] Open
Abstract
Background Using auditory discrimination learning in gerbils, we have previously shown that activation of auditory-cortical D1/D5 dopamine receptors facilitates mTOR-mediated, protein synthesis-dependent mechanisms of memory consolidation and anterograde memory formation. To understand molecular mechanisms of this facilitatory effect, we tested the impact of local pharmacological activation of different D1/D5 dopamine receptor signalling modes in the auditory cortex. To this end, protein patterns in soluble and synaptic protein-enriched fractions from cortical, hippocampal and striatal brain regions of ligand- and vehicle-treated gerbils were analysed by 2D gel electrophoresis and mass spectrometry 24 h after intervention. Results After auditory-cortical injection of SKF38393 – a D1/D5 dopamine receptor-selective agonist reported to activate the downstream effectors adenylyl cyclase and phospholipase C – prominent proteomic alterations compared to vehicle-treated controls appeared in the auditory cortex, striatum, and hippocampus, whereas only minor changes were detectable in the frontal cortex. In contrast, auditory-cortical injection of SKF83959 – a D1/D5 agonist reported to preferentially stimulate phospholipase C – induced pronounced changes in the frontal cortex. At the molecular level, we detected altered regulation of cytoskeletal and scaffolding proteins, changes in proteins with functions in energy metabolism, local protein synthesis, and synaptic signalling. Interestingly, abundance and/or subcellular localisation of the predominantly presynaptic protein α-synuclein displayed dopaminergic regulation. To assess the role of α-synuclein for dopaminergic mechanisms of memory modulation, we tested the impact of post-conditioning systemic pharmacological activation of different D1/D5 dopamine receptor signalling modes on auditory discrimination learning in α-synuclein-mutant mice. In C57BL/6JOlaHsd mice, bearing a spontaneous deletion of the α-synuclein-encoding gene, but not in the related substrains C57BL/6JCrl and C57BL/6JRccHsd, adenylyl cyclase-mediated signalling affected acquisition rates over future learning episodes, whereas phospholipase C-mediated signalling affected final memory performance. Conclusions Dopamine signalling modes via D1/D5 receptors in the auditory cortex differentially impact protein profiles related to rearrangement of cytomatrices, energy metabolism, and synaptic neurotransmission in cortical, hippocampal, and basal brain structures. Altered dopamine neurotransmission in α-synuclein-deficient mice revealed that distinct D1/D5 receptor signalling modes may control different aspects of memory consolidation. Electronic supplementary material The online version of this article (doi:10.1186/s12953-015-0069-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicole Reichenbach
- Special Lab Molecular Biological Techniques, Leibniz Institute for Neurobiology, Magdeburg, 39118 Germany ; Present address: Research Group Neurovascular Diseases, German Center for Neurodegenerative Diseases (DZNE), Ludwig-Erhard-Allee 2, Bonn, 53175 Germany
| | - Ulrike Herrmann
- Special Lab Molecular Biological Techniques, Leibniz Institute for Neurobiology, Magdeburg, 39118 Germany ; Present address: Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, Braunschweig, 38106 Germany
| | - Thilo Kähne
- Institute of Experimental Internal Medicine, Medical School, Otto von Guericke University, Magdeburg, 39120 Germany
| | - Horst Schicknick
- Special Lab Molecular Biological Techniques, Leibniz Institute for Neurobiology, Magdeburg, 39118 Germany
| | - Rainer Pielot
- Department Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, 39118 Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Medical School, Otto von Guericke University, Magdeburg, 39120 Germany
| | - Daniela C Dieterich
- Research Group Neuralomics, Leibniz Institute for Neurobiology, Magdeburg, 39118 Germany ; Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke-University Magdeburg, Magdeburg, 39120 Germany ; Center for Behavioral Brain Sciences, Magdeburg, 39106 Germany
| | - Eckart D Gundelfinger
- Department Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, 39118 Germany ; Center for Behavioral Brain Sciences, Magdeburg, 39106 Germany ; Molecular Neurobiology, Medical Faculty, Otto-von-Guericke-University Magdeburg, Magdeburg, 39120 Germany
| | - Karl-Heinz Smalla
- Special Lab Molecular Biological Techniques, Leibniz Institute for Neurobiology, Magdeburg, 39118 Germany ; Center for Behavioral Brain Sciences, Magdeburg, 39106 Germany
| | - Wolfgang Tischmeyer
- Special Lab Molecular Biological Techniques, Leibniz Institute for Neurobiology, Magdeburg, 39118 Germany ; Center for Behavioral Brain Sciences, Magdeburg, 39106 Germany
| |
Collapse
|
19
|
Hall K, Yang S, Sauchanka O, Spillantini MG, Anichtchik O. Behavioural deficits in transgenic mice expressing human truncated (1-120 amino acid) alpha-synuclein. Exp Neurol 2014; 264:8-13. [PMID: 25450466 DOI: 10.1016/j.expneurol.2014.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/03/2014] [Accepted: 11/11/2014] [Indexed: 11/30/2022]
Abstract
Accumulation and aggregation of alpha-synuclein in cortical and hippocampal areas is a pathological sign for dementia with Lewy bodies (DLB) and Parkinson's disease with dementia. However the mechanisms of alpha-synuclein triggered cellular dysfunction leading to the development of memory impairment is not clear. We have created a mouse model of DLB, where aggregation-prone human truncated (120 amino acid) alpha-synuclein is expressed in forebrain areas under the calcium/calmodulin-dependent protein kinase II alpha (CamKII-alpha) promoter. We have observed the presence of the transgenic protein in target forebrain areas, with small granular cytoplasmic accumulation of aggregated alpha-synuclein. This was associated with a progressive deficit in cortical-hippocampal memory tests including the Barnes maze and novel object recognition. This data suggests that low levels of aggregation prone alpha-synuclein are sufficient to induce memory deficits in mice and that forebrain regions associated with cognitive function may have an increased sensitivity to the truncated toxic form of alpha-synuclein.
Collapse
Affiliation(s)
- Katie Hall
- Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Sujeong Yang
- Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Olga Sauchanka
- Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Maria Grazia Spillantini
- Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Oleg Anichtchik
- Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK; Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth University, PL6 8BU, UK.
| |
Collapse
|
20
|
Quadri M, Yang X, Cossu G, Olgiati S, Saddi VM, Breedveld GJ, Ouyang L, Hu J, Xu N, Graafland J, Ricchi V, Murgia D, Guedes LC, Mariani C, Marti MJ, Tarantino P, Asselta R, Valldeoriola F, Gagliardi M, Pezzoli G, Ezquerra M, Quattrone A, Ferreira J, Annesi G, Goldwurm S, Tolosa E, Oostra BA, Melis M, Wang J, Bonifati V. An exome study of Parkinson's disease in Sardinia, a Mediterranean genetic isolate. Neurogenetics 2014; 16:55-64. [PMID: 25294124 DOI: 10.1007/s10048-014-0425-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 09/15/2014] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder of complex aetiology. Rare, highly penetrant PD-causing mutations and common risk factors of small effect size have been identified in several genes/loci. However, these mutations and risk factors only explain a fraction of the disease burden, suggesting that additional, substantial genetic determinants remain to be found. Genetically isolated populations offer advantages for dissecting the genetic architecture of complex disorders, such as PD. We performed exome sequencing in 100 unrelated PD patients from Sardinia, a genetic isolate. SNPs absent from dbSNP129 and 1000 Genomes, shared by at least five patients, and of functional effects were genotyped in an independent Sardinian case-control sample (n = 500). Variants associated with PD with nominal p value <0.05 and those with odds ratio (OR) ≥3 were validated by Sanger sequencing and typed in a replication sample of 2965 patients and 2678 controls from Italy, Spain, and Portugal. We identified novel moderately rare variants in several genes, including SCAPER, HYDIN, UBE2H, EZR, MMRN2 and OGFOD1 that were specifically present in PD patients or enriched among them, nominating these as novel candidate risk genes for PD, although no variants achieved genome-wide significance after Bonferroni correction. Our results suggest that the genetic bases of PD are highly heterogeneous, with implications for the design of future large-scale exome or whole-genome analyses of this disease.
Collapse
Affiliation(s)
- Marialuisa Quadri
- Department of Clinical Genetics, Erasmus MC, PO Box 2040, 3000, CA, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Peña-Oliver Y, Sanchez-Roige S, Stephens DN, Ripley TL. Alpha-synuclein deletion decreases motor impulsivity but does not affect risky decision making in a mouse Gambling Task. Psychopharmacology (Berl) 2014; 231:2493-506. [PMID: 24402137 DOI: 10.1007/s00213-013-3416-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 12/16/2013] [Indexed: 12/20/2022]
Abstract
RATIONALE There is evidence to support the role of alpha-synuclein in motor impulsivity, but the extrapolation of this finding to other types of impulsivity remains to be elucidated. OBJECTIVE This study aims to investigate the role of alpha-synuclein in choice impulsivity/risky decision-making by means of a mouse version of the Iowa Gambling Task (mIGT). METHODS Two strains of mice that differ in the expression of the alpha-synuclein gene, the C57BL/6JOlaHsd (HA) and C57BL/6J (CR), were tested in the mIGT. HA mice differ from their CR ancestors in possessing a chromosomal deletion resulting in the loss of two genes: snca, encoding alpha-synuclein and mmrn1, encoding multimerin-1. Mice were trained in the mIGT until a stable pattern of responding was achieved and then the acute effects of ethanol and cocaine in choice preference were investigated. RESULTS No differences between the strains were evident in risky decision-making in any of the experiments, but HA mice showed consistently reduced levels of premature responding in comparison with CR mice, confirming the reduced motor impulsivity found in a previous study. Ethanol did not modify the percentage of advantageous choices in either strain, while cocaine increased the risky choice behaviour by increasing the percentage of disadvantageous choices in both strains. CONCLUSIONS We provide further evidence for the involvement of alpha-synuclein in motor impulsivity and suggest that alpha-synuclein does not play a role in risky decision-making as evaluated in the mIGT.
Collapse
|
22
|
Hatami A, Chesselet MF. Transgenic rodent models to study alpha-synuclein pathogenesis, with a focus on cognitive deficits. Curr Top Behav Neurosci 2014; 22:303-30. [PMID: 25218491 DOI: 10.1007/7854_2014_355] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The aggregation of alpha-synuclein (aSyn) has been implicated in a number of degenerative diseases collectively termed synucleinopathies. Although most cases of synucleinopathies are idiopathic in nature, there are familial cases of these diseases that are due to mutations or multiplications of the gene coding for aSyn. Two of the most common synucleinopathies are Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Both of these diseases present with cognitive deficits, though with different clinical and temporal features. In PD, cognitive deficits are subtle, may occur before the onset of the classical motor symptoms, and only occasionally lead to dementia in the later stages of the disease. In contrast, dementia is the dominating feature of DLB from the disease onset. The impact of aSyn pathology on the development of neurobiological and behavioral impairments can be investigated using rodent models. There are currently several lines of transgenic mice overexpressing wild-type or mutated aSyn under various promoters. This review will provide an updated synopsis of the mouse lines available, summarize their cognitive deficits, and reflect on how deficits observed in these mice relate to the disease process in humans. In addition, we will review mouse lines where knockout strategies have been applied to study the effects of aSyn on various cognitive tasks and comment on how these lines have been used in combination with other transgenic strains, or with human aSyn overexpression by viral vectors. Finally, we will discuss the recent advent of bacterial artificial chromosome (BAC) transgenic models of PD and their effectiveness in modeling cognitive decline in PD.
Collapse
Affiliation(s)
- Asa Hatami
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, USA,
| | | |
Collapse
|
23
|
Pelkonen A, Kallunki P, Yavich L. Effects of exogenous alpha-synuclein on stimulated dopamine overflow in dorsal striatum. Neurosci Lett 2013; 554:141-5. [PMID: 24021803 DOI: 10.1016/j.neulet.2013.08.072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 08/30/2013] [Indexed: 12/22/2022]
Abstract
Alpha-synuclein (α-syn) is mainly a presynaptic protein that has been implicated in Parkinson's disease and various other neurodegenerative disorders. Evidence obtained in knockout mice suggests that α-syn controls plasticity of dopamine (DA) overflow in presynaptic terminals. It is also believed that α-syn spreads and may seed its aggregates from cell to cell. The effects of exogenously applied α-syn on dopaminergic neurotransmission have not been studied. We addressed this issue by microinjecting human α-syn protein into the dorsal striatum of wild-type and α-syn knockout mice and monitoring stimulated DA overflow with constant potential amperometry. The evoked DA overflow was decreased in knockout mice six days after α-syn microinjection. The maximal velocity of DA re-uptake was reduced in both genotypes. Similar results were not seen when the effects of microinjected α-syn were studied immediately after the treatment, but instead there was a trend toward an increase in both stimulated DA overflow and maximal velocity of DA re-uptake. We conclude that locally applied human α-syn affects DA overflow and the effects depend on the presence of endogenous α-syn.
Collapse
Affiliation(s)
- Anssi Pelkonen
- University of Eastern Finland, School of Pharmacy, Yliopistonranta 1C, P.O. Box 1627, 70211 Kuopio, Finland.
| | | | | |
Collapse
|
24
|
Molecular layer heterotopia of the cerebellar vermis in mutant and transgenic mouse models on a C57BL/6 background. Brain Res Bull 2013; 97:63-8. [DOI: 10.1016/j.brainresbull.2013.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 05/01/2013] [Accepted: 05/06/2013] [Indexed: 01/18/2023]
|
25
|
Tello JA, Kohout T, Pineda R, Maki RA, Scott Struthers R, Millar RP. Reproductive physiology of a humanized GnRH receptor mouse model: application in evaluation of human-specific analogs. Am J Physiol Endocrinol Metab 2013; 305:E67-77. [PMID: 23632635 DOI: 10.1152/ajpendo.00624.2012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The human GnRH receptor (GNRHR1) has a specific set of properties with physiological and pharmacological influences not appropriately modeled in laboratory animals or cell-based systems. To address this deficiency, we have generated human GNRHR1 knock-in mice and described their reproductive phenotype. Measurement of pituitary GNRHR1 transcripts from homozygous human GNRHR1 knock-in (ki/ki) mice revealed a severe reduction (7- to 8-fold) compared with the mouse Gnrhr1 in wild-type mice. ¹²⁵I-GnRH binding assays on pituitary membrane fractions corroborated reduced human GNRHR1 protein expression in ki/ki mice, as occurs with transfection of human GNRHR1 in cell lines. Female homozygous knock-in mice displayed normal pubertal onset, indicating that a large reduction in GNRHR1 expression is sufficient for this process. However, ki/ki females exhibited periods of prolonged estrous and/or metestrous and reduced fertility. No impairment was found in reproductive maturity or adult fertility in male ki/ki mice. Interestingly, the serum LH response to GnRH challenge was reduced in both knock-in males and females, indicating a reduced GNRHR1 signaling capacity. Small molecules targeting human GPCRs usually have poor activities at homologous rodent receptors, thus limiting their use in preclinical development. Therefore, we tested a human-specific GnRH1 antagonist, NBI-42902, in our mouse model and demonstrated abrogation of a GnRH1-induced serum LH rise in ki/ki mice and an absence of effect in littermates expressing the wild-type murine receptor. This novel model provides the opportunity to study the human receptor in vivo and for screening the activity of human-specific GnRH analogs.
Collapse
Affiliation(s)
- Javier A Tello
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | | | | |
Collapse
|
26
|
López-Jiménez A, Walter NAR, Giné E, Santos Á, Echeverry-Alzate V, Bühler KM, Olmos P, Giezendanner S, Moratalla R, Montoliu L, Buck KJ, López-Moreno JA. A spontaneous deletion of α-synuclein is associated with an increase in CB1 mRNA transcript and receptor expression in the hippocampus and amygdala: effects on alcohol consumption. Synapse 2013; 67:280-9. [PMID: 23345080 DOI: 10.1002/syn.21639] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 01/11/2013] [Indexed: 11/08/2022]
Abstract
α-Synuclein (α-syn) protein and endocannabinoid CB1 receptors are primarily located in presynaptic terminals. An association between α-syn and CB1 receptors has recently been established in Parkinson's disease, but it is completely unknown whether there is an association between these two proteins in alcohol addiction. Therefore, we aimed to examine the α-syn mRNA transcript and protein expression levels in the prefrontal cortex, striatum, amygdala and hippocampus. These brain regions are the most frequently implicated in alcohol and other drug addiction. In these studies, we used C57BL/6 mice carrying a spontaneous deletion of the α-syn gene (C57BL/6(Snca-/-) ) and their respective controls (C57BL/6(Snca) (+/) (+) ). These animals were monitored for spontaneous alcohol consumption (3-10%) and their response to a hypnotic-sedative dose of alcohol (3 g kg(-1) ) was also assessed. Compared with the C57BL/6(Snca+/+) mice, we found that the C57BL/6(Snca-/-) mice exhibited a higher expression level of the CB1 mRNA transcript and CB1 receptor in the hippocampus and amygdala. Furthermore, C57BL/6(Snca-/-) mice showed an increase in alcohol consumption when offered a 10% alcohol solution. There was no significant difference in sleep time after the injection of 3 g/kg alcohol. These results are the first to reveal an association between α-syn and the CB1 receptor in the brain regions that are most frequently implicated in alcohol and other drug addictions.
Collapse
Affiliation(s)
- Alejandro López-Jiménez
- Department of Psychobiology, Faculty of Psychology, Campus de Somosaguas, Complutense University, 28223 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Chadchankar H, Ihalainen J, Tanila H, Yavich L. Methylphenidate modifies overflow and presynaptic compartmentalization of dopamine via an α-synuclein-dependent mechanism. J Pharmacol Exp Ther 2012; 341:484-92. [PMID: 22344407 DOI: 10.1124/jpet.111.189225] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Methylphenidate (MPD) modulates dopamine (DA) overflow in part by redistributing vesicle pools, a function shared by the presynaptic protein α-synuclein (α-syn). We suggest that α-syn modifies the effect of MPD on DA neurotransmission. The effect was studied in the dorsal striatum in wild-type mice and two mouse lines lacking α-syn by using in vivo voltammetry and microdialysis. MPD (1 mg/kg) attenuated evoked DA overflow only in mice lacking α-syn but produced a similar increase in the extracellular DA levels in all three lines. A kinetic analysis showed that MPD decreased DA release per stimulus pulse in α-syn-deficient mice but increased in wild-type mice. MPD blocked DA reuptake and produced a similar increase in the apparent affinity (K(m)) for DA reuptake in all three lines. Repeated-burst stimulation redistributes vesicular storage pools and facilitates DA overflow, and this form of facilitation is significantly enhanced in α-syn knockout mice. The DA reuptake inhibitor 1-[2-[bis(4-fluorophenyl)methoxy]ethyl]-4-(3-phenylpropyl)piperazine (GBR12909) (10 mg/kg) completely blocked the facilitation of DA overflow in all three lines, whereas MPD (1 mg/kg) selectively decreased it only in mice lacking α-syn. MPD (5 mg/kg) and GBR12909 (10 mg/kg) produced equipotent inhibition of DA reuptake (in terms of K(m)), indicating that reuptake inhibition does not explain the MPD selectivity. Our data indicate that MPD decreases DA release probability in the absence of α-syn and increases it in control animals, whereas the effect of MPD on DA reuptake is independent of α-syn. We suggest that this selectivity is based on α-syn-dependent compartmentalization of presynaptic DA.
Collapse
Affiliation(s)
- Heramb Chadchankar
- School of Pharmacy, Faculty of Health Sciences, P. O. Box 1627, University of Eastern Finland, Kuopio 70211, Finland.
| | | | | | | |
Collapse
|
28
|
Kokhan VS, Afanasyeva MA, Van'kin GI. α-Synuclein knockout mice have cognitive impairments. Behav Brain Res 2012; 231:226-30. [PMID: 22469626 DOI: 10.1016/j.bbr.2012.03.026] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 03/14/2012] [Accepted: 03/18/2012] [Indexed: 11/25/2022]
Abstract
α-Synuclein is a member of the synuclein family of cytoplasmic, predominantly neuron-specific proteins. Considerable amount of α-synuclein is found in axons and presynaptic terminals of neurons located in brain areas responsible for emotions and memory. In the present study we have carried out behavioral evaluation of spatial and working long-term memory of α-synuclein knockout mice. Our data shows that α-synuclein knockout mice have reduced learning ability in tests requiring both working and spatial memory. For the first time we have demonstrated that α-synuclein is necessary for these types of learning.
Collapse
Affiliation(s)
- V S Kokhan
- Institute of Physiologically Active Compounds of RAS, Chernogolovka, Russia.
| | | | | |
Collapse
|
29
|
Age-dependent axonal transport and locomotor changes and tau hypophosphorylation in a “P301L” tau knockin mouse. Neurobiol Aging 2012; 33:621.e1-621.e15. [DOI: 10.1016/j.neurobiolaging.2011.02.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 02/03/2011] [Accepted: 02/20/2011] [Indexed: 12/19/2022]
|
30
|
Peña-Oliver Y, Buchman VL, Dalley JW, Robbins TW, Schumann G, Ripley TL, King SL, Stephens DN. Deletion of alpha-synuclein decreases impulsivity in mice. GENES, BRAIN, AND BEHAVIOR 2012; 11:137-46. [PMID: 22142176 PMCID: PMC3380554 DOI: 10.1111/j.1601-183x.2011.00758.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 10/05/2011] [Accepted: 11/03/2011] [Indexed: 12/31/2022]
Abstract
The presynaptic protein alpha-synuclein, associated with Parkinson's Disease (PD), plays a role in dopaminergic neurotransmission and is implicated in impulse control disorders (ICDs) such as drug addiction. In this study we investigated a potential causal relationship between alpha-synuclein and impulsivity, by evaluating differences in motor impulsivity in the 5-choice serial reaction time task (5-CSRTT) in strains of mice that differ in the expression of the alpha-synuclein gene. C57BL/6JOlaHsd mice differ from their C57BL/6J ancestors in possessing a chromosomal deletion resulting in the loss of two genes, snca, encoding alpha-synuclein, and mmrn1, encoding multimerin-1. C57BL/6J mice displayed higher impulsivity (more premature responding) than C57BL/6JOlaHsd mice when the pre-stimulus waiting interval was increased in the 5-CSRTT. In order to ensure that the reduced impulsivity was indeed related to snca, and not adjacent gene deletion, wild type (WT) and mice with targeted deletion of alpha-synuclein (KO) were tested in the 5-CSRTT. Similarly, WT mice were more impulsive than mice with targeted deletion of alpha-synuclein. Interrogation of our ongoing analysis of impulsivity in BXD recombinant inbred mouse lines revealed an association of impulsive responding with levels of alpha-synuclein expression in hippocampus. Expression of beta- and gamma-synuclein, members of the synuclein family that may substitute for alpha-synuclein following its deletion, revealed no differential compensations among the mouse strains. These findings suggest that alpha-synuclein may contribute to impulsivity and potentially, to ICDs which arise in some PD patients treated with dopaminergic medication.
Collapse
Affiliation(s)
- Y Peña-Oliver
- School of Psychology, University of SussexFalmer, Brighton BN1 9QG, UK
| | - V L Buchman
- School of Biosciences, Cardiff UniversityMuseum Avenue, Cardiff CF10 3AX, UK
| | - J W Dalley
- Behavioural and Clinical Neuroscience Institute and Department of Experimental Psychology, University of CambridgeDowning Street, Cambridge CB2 3EB, UK
- Department of Psychiatry, Addenbrooke's Hospital, University of CambridgeHill's Road, Cambridge CB2 2QQ, UK
| | - T W Robbins
- Behavioural and Clinical Neuroscience Institute and Department of Experimental Psychology, University of CambridgeDowning Street, Cambridge CB2 3EB, UK
| | - G Schumann
- Institute of Psychiatry, Kings CollegeDenmark Hill, London, SE5 8AF
| | - T L Ripley
- School of Psychology, University of SussexFalmer, Brighton BN1 9QG, UK
| | - S L King
- School of Psychology, University of SussexFalmer, Brighton BN1 9QG, UK
| | - D N Stephens
- School of Psychology, University of SussexFalmer, Brighton BN1 9QG, UK
| |
Collapse
|
31
|
Ranson A, Cheetham CEJ, Fox K, Sengpiel F. Homeostatic plasticity mechanisms are required for juvenile, but not adult, ocular dominance plasticity. Proc Natl Acad Sci U S A 2012; 109:1311-6. [PMID: 22232689 PMCID: PMC3268335 DOI: 10.1073/pnas.1112204109] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ocular dominance (OD) plasticity in the visual cortex is a classic model system for understanding developmental plasticity, but the visual cortex also shows plasticity in adulthood. Whether the plasticity mechanisms are similar or different at the two ages is not clear. Several plasticity mechanisms operate during development, including homeostatic plasticity, which acts to maintain the total excitatory drive to a neuron. In agreement with this idea, we found that an often-studied substrain of C57BL/6 mice, C57BL/6JOlaHsd (6JOla), lacks both the homeostatic component of OD plasticity as assessed by intrinsic signal imaging and synaptic scaling of mEPSC amplitudes after a short period of dark exposure during the critical period, whereas another substrain, C57BL/6J (6J), exhibits both plasticity processes. However, in adult mice, OD plasticity was identical in the 6JOla and 6J substrains, suggesting that adult plasticity occurs by a different mechanism. Consistent with this interpretation, adult OD plasticity was normal in TNFα knockout mice, which are known to lack juvenile synaptic scaling and the homeostatic component of OD plasticity, but was absent in adult α-calcium/calmodulin-dependent protein kinase II;T286A (αCaMKII(T286A)) mice, which have a point mutation that prevents autophosphorylation of αCaMKII. We conclude that increased responsiveness to open-eye stimulation after monocular deprivation during the critical period is a homeostatic process that depends mechanistically on synaptic scaling during the critical period, whereas in adult mice it is mediated by a different mechanism that requires αCaMKII autophosphorylation. Thus, our study reveals a transition between homeostatic and long-term potentiation-like plasticity mechanisms with increasing age.
Collapse
Affiliation(s)
- Adam Ranson
- School of Biosciences and the Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff CF10 3AX, United Kingdom
| | - Claire E. J. Cheetham
- School of Biosciences and the Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff CF10 3AX, United Kingdom
| | - Kevin Fox
- School of Biosciences and the Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff CF10 3AX, United Kingdom
| | - Frank Sengpiel
- School of Biosciences and the Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff CF10 3AX, United Kingdom
| |
Collapse
|
32
|
Bolkvadze T, Pitkänen A. Development of post-traumatic epilepsy after controlled cortical impact and lateral fluid-percussion-induced brain injury in the mouse. J Neurotrauma 2012; 29:789-812. [PMID: 22023672 DOI: 10.1089/neu.2011.1954] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The present study investigated the development of hyperexcitability and epilepsy in mice with traumatic brain injury (TBI) induced by controlled cortical impact (CCI) or lateral fluid-percussion injury (FPI), which are the two most commonly used experimental models of human TBI in rodents. TBI was induced with CCI to 50 (14 controls) and with lateral FPI to 45 (15 controls) C57BL/6S adult male mice. The animals were followed-up for 9 months, including three 2-week periods of continuous video-electroencephalographic (EEG) monitoring, and a seizure susceptibility test with pentylenetetrazol (PTZ). In the end, the animals were perfusion-fixed for histology. The experiment included two independent cohorts of animals. Late post-traumatic spontaneous electrographic seizures were detected in 9% of mice after CCI and 3% after lateral FPI. Eighty-two percent of mice after CCI and 71% after lateral FPI had spontaneous epileptiform spiking on EEG. In addition, 58% of mice with lateral FPI showed spontaneous epileptiform discharges. A PTZ test demonstrated increased seizure susceptibility in the majority of mice in both models, compared to control mice. There was no further progression in the occurrence of epilepsy or epileptiform spiking when follow-up was extended from 6 to 9 months. The severity of cortical or hippocampal damage did not differentiate mice with or without epileptiform activity in either model. Finally, two independent series of experiments in both injury models provided comparable data demonstrating reproducibility of the modeling. These data show that different types of impact can trigger epileptogenesis in mice. Even though the frequency of spontaneous seizures in C57BL/6S mice is low, a large majority of animals develop hyperexcitability.
Collapse
Affiliation(s)
- Tamuna Bolkvadze
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | |
Collapse
|
33
|
Chadchankar H, Yavich L. Sub-regional differences and mechanisms of the short-term plasticity of dopamine overflow in striatum in mice lacking alpha-synuclein. Brain Res 2011; 1423:67-76. [PMID: 22000591 DOI: 10.1016/j.brainres.2011.09.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 08/19/2011] [Accepted: 09/13/2011] [Indexed: 11/29/2022]
Abstract
Mice lacking the pre-synaptic protein alpha-synuclein (α-syn) demonstrate enhanced facilitation of dopamine (DA) overflow in dorsal striatum following repeated, high-frequency burst stimulation of the dopaminergic pathways. Dorsal striatum is most vulnerable to neurodegeneration in Parkinson's disease. The role of α-syn in facilitation of DA overflow in the ventral striatum, which is less vulnerable to neurodegeneration, is unknown. We investigated the link between the absence of α-syn and the plasticity of DA overflow in the dorsal and ventral striatum by in vivo voltammetry and the possible mechanisms of modulation of the plasticity of DA overflow. We show that the facilitation of DA overflow following paired-burst stimulation is significantly enhanced in the dorsolateral but not in the ventral striatum of mice lacking α-syn. Re-uptake inhibitor, GBR12909, completely eliminated the facilitation of DA overflow regardless of the presence of α-syn in both dorsal and ventral striatum, indicating that re-uptake is critical for maintenance of paired-burst facilitation (PBF). Inhibition of D2 autoreceptors by haloperidol decreased PBF only in mice lacking α-syn. However, the basal function of D2 autoreceptors tested by paired-pulse depression of DA overflow was not different between the lines. Therefore, alterations in the D2 autoreceptor system do not explain the different effect of haloperidol on PBF in mice with and without α-syn. This indicates that neither re-uptake nor D2 autoreceptors differentiate the PBF between the genotypes. We propose that modification of DA vesicles in α-syn knockout mice, as reported in several studies, may be a factor underlying the enhanced PBF in these mice.
Collapse
Affiliation(s)
- Heramb Chadchankar
- School of Pharmacy, Faculty of Health Sciences, P. O. Box 1627, University of Eastern Finland, Kuopio Campus, Kuopio 70211, Finland.
| | | |
Collapse
|
34
|
Neocortical molecular layer heterotopia in substrains of C57BL/6 and C57BL/10 mice. Brain Res 2011; 1391:36-43. [PMID: 21419110 DOI: 10.1016/j.brainres.2011.03.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 03/08/2011] [Accepted: 03/09/2011] [Indexed: 11/23/2022]
Abstract
Abnormal development of the neocortex is often associated with cognitive deficits and epilepsy. Rodent models are widely used to study normal and abnormal cortical development and have revealed the roles of many important genetic and environmental factors. Interestingly, several inbred mouse strains commonly used in behavioral, anatomical, and/or physiological studies display neocortical malformations including C57BL/6J mice, which are among the most widely utilized mice. In the present report we describe the prevalence and cytoarchitecture of molecular-layer heterotopia in C57BL/6J mice and related strains obtained from three commercial vendors as well as mice bred in academic vivaria from founders obtained commercially. In particular, we found that the prevalence of molecular-layer heterotopia vaired according to the sex as well as the vendor-of-origin of the mouse. These data are relevant to the use of this strain as a mouse-model in the study of brain-behavior relationships.
Collapse
|
35
|
Chadchankar H, Ihalainen J, Tanila H, Yavich L. Decreased reuptake of dopamine in the dorsal striatum in the absence of α-synuclein. Brain Res 2011; 1382:37-44. [PMID: 21276428 DOI: 10.1016/j.brainres.2011.01.064] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 01/17/2011] [Accepted: 01/19/2011] [Indexed: 10/18/2022]
Abstract
The presynaptic protein alpha-synuclein (α-syn) plays a role in dopaminergic neurotransmission in the nigrostriatal dopaminergic system. Mutations in this protein have been linked to pathogenesis of Parkinson's disease. However, the details of regulation of dopamine homeostasis by α-syn and its molecular targets are generally unknown. We investigated the effect of α-syn deletion on striatal dopaminergic homeostasis. Two α-syn deficient mouse lines, one carrying a spontaneous deletion of α-syn locus and the other a transgenic α-syn knockout, were used in the study. Stimulated and basal extracellular dopamine levels were determined in the dorsal striatum by in vivo voltammetry and in vivo microdialysis, respectively. Dopamine transporter expression was studied by immunohistochemistry. Stimulated dopamine overflow and basal extracellular dopamine levels were higher in mice lacking α-syn with a concomitant decrease in dopamine transporter expression and reuptake in the dorsal striatum. We show that α-syn deletion produces significant adaptive changes in the striatal dopaminergic system via modulation of reuptake.
Collapse
Affiliation(s)
- Heramb Chadchankar
- School of Pharmacy, Faculty of Health Sciences, P. O. Box 1627, University of Eastern Finland, Kuopio Campus, Kuopio 70211, Finland.
| | | | | | | |
Collapse
|
36
|
Abstract
Axons depend critically on axonal transport both for supplying materials and for communicating with cell bodies. This chapter looks at each activity, asking what aspects are essential for axon survival. Axonal transport declines in neurodegenerative disorders, such as Alzheimer's disease, amyotrophic lateral sclerosis, and multiple sclerosis, and in normal ageing, but whether all cargoes are equally affected and what limits axon survival remains unclear. Cargoes can be differentially blocked in some disorders, either individually or in groups. Each missing protein cargo results in localized loss-of-function that can be partially modeled by disrupting the corresponding gene, sometimes with surprising results. The axonal response to losing specific proteins also depends on the rates of protein turnover and on whether the protein can be locally synthesized. Among cargoes with important axonal roles are components of the PI3 kinase, Mek/Erk, and Jnk signaling pathways, which help to communicate with cell bodies and to regulate axonal transport itself. Bidirectional trafficking of Bdnf, NT-3, and other neurotrophic factors contribute to intra- and intercellular signaling, affecting the axon's cellular environment and survival. Finally, several adhesion molecules and gangliosides are key determinants of axon survival, probably by mediating axon-glia interactions. Thus, failure of long-distance intracellular transport can deprive axons of one, few, or many cargoes. This can lead to axon degeneration either directly, through the absence of essential axonal proteins, or indirectly, through failures in communication with cell bodies and nonneuronal cells.
Collapse
|
37
|
Pelkonen A, Yavich L. Neuromuscular pathology in mice lacking alpha-synuclein. Neurosci Lett 2010; 487:350-3. [PMID: 21029764 DOI: 10.1016/j.neulet.2010.10.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 10/19/2010] [Accepted: 10/19/2010] [Indexed: 10/18/2022]
Abstract
This work was undertaken in order to study the possible role of alpha-synuclein in the function of the neuro-muscular junction in skeletal muscles. Repeated stimulation of skeletal muscle motor neurons revealed signs of neuromuscular pathology in alpha-synuclein null mutated (C57Bl/6JOlaHsd) and knockout (B6;129X1-Snca(tm1Rosl)/J) mice. This stimulation produced repetitive compound muscle action potentials in both lines of alpha-synuclein deficient mice. Muscle strength and muscle coordination during ambulation were unaffected, though motor learning was slower in alpha-synuclein deficient mice in the Rotarod test. We conclude that alpha-synuclein may play a role in acetylcholine compartmentalization at the neuromuscular junction, and in the fine control of activity of skeletal muscles.
Collapse
Affiliation(s)
- Anssi Pelkonen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland.
| | | |
Collapse
|
38
|
Siebert H, Kahle PJ, Kramer ML, Isik T, Schlüter OM, Schulz-Schaeffer WJ, Brück W. Over-expression of alpha-synuclein in the nervous system enhances axonal degeneration after peripheral nerve lesion in a transgenic mouse strain. J Neurochem 2010; 114:1007-18. [PMID: 20524960 DOI: 10.1111/j.1471-4159.2010.06832.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Wallerian degeneration in peripheral nerves occurs after a traumatic insult when the distal nerve part degenerates while peripheral macrophages enter the nerve stump and remove the accruing debris by phagozytosis. We used an experimental model to investigate the effect of either the absence or over-expression of alpha-synuclein (alpha-syn) after transecting the sciatic nerves of mice. alpha-Synuclein is a major component of Lewy bodies and its aggregation results in a premature destruction of nerve cells. It has also been found present in different peripheral nerves but its role in the axon remains still unclear. Following sciatic nerve transection in different mouse strains, we investigated the numbers of invading macrophages, the amounts of remaining myelin and axons 6 days after injury. All mice showed clear signs of Wallerian degeneration, but transgenic mice expressing human wild-type alpha-syn showed lower numbers of invading macrophages, less preserved myelin and significantly lower numbers of preserved axons in comparison with either knockout mice or a mouse strain with a spontaneous deletion of alpha-syn. The use of protein aggregation filtration blots and paraffin-embedded tissue blots displayed depositions of alpha-syn aggregates within sciatic nerve axons of transgenic mice. Thicker myelin sheaths and higher numbers of mitochondria were detected in old alpha-syn transgenic mice. In a human sural nerve, alpha-syn could also be identified within axons. Thus, alpha-syn and its aggregates are not only a component of Lewy bodies and synapses but also of axons and these aggregates might interfere with axonal transport. alpha-Synuclein transgenic mice represent an appropriate model for investigations on axonal transport in neurodegenerative diseases.
Collapse
Affiliation(s)
- Heike Siebert
- Institute of Neuropathology, University Medical Centre Goettingen, Goettingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
39
|
Mice with deleted multimerin 1 and α-synuclein genes have impaired platelet adhesion and impaired thrombus formation that is corrected by multimerin 1. Thromb Res 2010; 125:e177-83. [DOI: 10.1016/j.thromres.2010.01.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 12/23/2009] [Accepted: 01/12/2010] [Indexed: 11/23/2022]
|
40
|
Kurz A, Wöhr M, Walter M, Bonin M, Auburger G, Gispert S, Schwarting R. Alpha-synuclein deficiency affects brain Foxp1 expression and ultrasonic vocalization. Neuroscience 2010; 166:785-95. [DOI: 10.1016/j.neuroscience.2009.12.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 12/22/2009] [Accepted: 12/23/2009] [Indexed: 12/17/2022]
|
41
|
Peña-Oliver Y, Buchman VL, Stephens DN. Lack of involvement of alpha-synuclein in unconditioned anxiety in mice. Behav Brain Res 2010; 209:234-40. [PMID: 20138921 DOI: 10.1016/j.bbr.2010.01.049] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 01/22/2010] [Accepted: 01/29/2010] [Indexed: 10/19/2022]
Abstract
Alpha-synuclein is implicated in the pathology of Parkinson disease (PD) and is involved in synaptic function, particularly in presynaptic events in dopamine (DA) synapses. Recently, a role for alpha-synuclein in reward and addiction, especially in alcoholism, has been reported. Since PD and alcohol dependence present a strong comorbidity with anxiety disorders, a role for alpha-synuclein in anxiety has been proposed. The aim of the present investigation was to study the involvement of alpha-synuclein in anxiety by testing alpha-synuclein knock out and wild type mice in three different emotionality tests: the open field, the elevated plus maze and the light-dark box. Alpha-synuclein knock out mice and wild type controls displayed consistently similar emotionality profiles in all the tests, suggesting a lack of involvement of alpha-synuclein in unconditioned anxiety in mice.
Collapse
Affiliation(s)
- Yolanda Peña-Oliver
- Department of Psychology, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | | | | |
Collapse
|
42
|
Asuni AA, Hilton K, Siskova Z, Lunnon K, Reynolds R, Perry VH, O'Connor V. Alpha-synuclein deficiency in the C57BL/6JOlaHsd strain does not modify disease progression in the ME7-model of prion disease. Neuroscience 2009; 165:662-74. [PMID: 19879926 DOI: 10.1016/j.neuroscience.2009.10.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 10/22/2009] [Accepted: 10/22/2009] [Indexed: 11/28/2022]
Abstract
We previously detailed how intrahippocampal inoculation of C57BL/6J mice with murine modified scrapie (ME7) leads to chronic neurodegeneration (Cunningham C, Deacon R, Wells H, Boche D, Waters S, Diniz CP, Scott H, Rawlins JN, Perry VH (2003) Eur J Neurosci 17:2147-2155.). Our characterization of the ME7-model is based on inoculation of this murine modified scrapie agent into C57BL/6J mice from Harlan laboratories. This agent in the C57BL/6J host generates a disease that spans a 24-week time course. The hippocampal pathology shows progressive misfolded prion (PrP(Sc)) deposition, astrogliosis and leads to behavioural dysfunction underpinned by the early synaptic loss that precedes neuronal death. The Harlan C57BL/6J, although widely used as a wild type mouse, are a sub-strain harbouring a spontaneous deletion of alpha-synuclein with the full description C57BL/6JOlaHsd. Recently alpha-synuclein has been shown to ameliorate the synaptic loss in a mouse model lacking the synaptic chaperone CSP-alpha. This opens a potential confound of the ME7-model, particularly with respect to the signature synaptic loss that underpin the physiological and behavioural dysfunction. To investigate if this strain-selective loss of a candidate disease modifier impacts on signature ME7 pathology, we compared cohorts of C57BL/6JOlaHsd (alpha-synuclein negative) with the founder strain from Charles Rivers (C57BL/6JCrl, alpha-synuclein positive). There were subtle changes in behaviour when comparing control animals from the two sub-strains indicating potentially significant consequences for studies assuming neurobiogical identity of both strains. However, there was no evidence that the absence of alpha-synuclein modifies disease. Indeed, accumulation of PrP(Sc), synaptic loss and the behavioural dysfunction associated with the ME7-agent was the same in both genetic backgrounds. Our data suggest that alpha-synuclein deficiency does not contribute to the compartment specific processes that give rise to prion disease mediated synaptotoxicity and neurodegeneration.
Collapse
Affiliation(s)
- A A Asuni
- CNS Inflammation Group, University of Southampton, UK.
| | | | | | | | | | | | | |
Collapse
|
43
|
Tasneem S, Adam F, Minullina I, Pawlikowska M, Hui SK, Zheng S, Miller JL, Hayward CPM. Platelet adhesion to multimerin 1 in vitro: influences of platelet membrane receptors, von Willebrand factor and shear. J Thromb Haemost 2009; 7:685-92. [PMID: 19175495 DOI: 10.1111/j.1538-7836.2009.03284.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Multimerin 1 (MMRN1) is a large, homopolymeric adhesive protein, stored in platelets and endothelium, that when released, binds to activated platelets, endothelial cells and the extracellular matrix. OBJECTIVES The goals of our study were to determine if (i) MMRN1 supports adhesion of resting and/or activated platelets under conditions of blood flow, and (ii) if MMRN1 enhances platelet adhesion to types I and III collagen. PATIENTS/METHODS Platelet adhesion was evaluated using protein-coated microcapillaries, with or without added adhesive proteins and receptor antibodies. Platelets from healthy controls, Glanzmann thrombasthenia (GT) and severe von Willebrand factor (VWF)-deficient donors were tested. RESULTS MMRN1 supported the adhesion of activated, but not resting, washed platelets over a wide range of shear rates. At low shear (150 s(-1)), this adhesion was supported by integrins alphavbeta3 and glycoprotein (GP) Ibalpha but it did not require integrins alphaIIbbeta3 or VWF. At high shear (1500 s(-1)), adhesion to MMRN1 was supported by beta3 integrin-independent mechanisms, involving GPIbalpha and VWF, that did not require platelet activation when VWF was perfused over MMRN1 prior to platelets. MMRN1 bound to types I and III collagen, independent of VWF, however, its enhancing effects on platelet adhesion to collagen at high shear were VWF dependent. CONCLUSIONS MMRN1 supports platelet adhesion by VWF-dependent and -independent mechanisms that vary by flow rate. Additionally, MMRN1 binds to, and enhances, platelet adhesion to collagen. These findings suggest that MMRN1 could function as an adhesive ligand that promotes platelet adhesion at sites of vascular injury.
Collapse
Affiliation(s)
- S Tasneem
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Wöhr M, Dahlhoff M, Wolf E, Holsboer F, Schwarting RKW, Wotjak CT. Effects of Genetic Background, Gender, and Early Environmental Factors on Isolation-Induced Ultrasonic Calling in Mouse Pups: An Embryo-Transfer Study. Behav Genet 2008; 38:579-95. [DOI: 10.1007/s10519-008-9221-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 07/29/2008] [Indexed: 12/19/2022]
|
45
|
Abstract
Multimerin 1 is a massive, soluble, disulfide-linked homopolymeric protein that is expressed in megakaryocytes, platelets and endothelial cells. Normally, multimerin 1 undergoes efficient sorting to secretion granules, and it is not detectable in plasma. Recently, multimerin 1 was designated as a member of the EMILIN protein family, a group of structurally similar, disulfide-linked multimeric proteins. Multimerin 1 has the structural features of an adhesive protein and it supports the adhesion of many different cell types in vitro, including activated platelets, neutrophils, and endothelial cells. Multimerin 1 also has the ability to self associate and form large, branching matrix fibers. In platelet alpha-granules, multimerin 1 functions as the binding protein for coagulation factor V, a key regulator of coagulation. This review summarizes the current knowledge on multimerin 1 including its orthologous genes, restricted pattern of expression, structure, biosynthesis and functions.
Collapse
Affiliation(s)
- Samira B Jeimy
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
46
|
Ross OA, Braithwaite AT, Skipper LM, Kachergus J, Hulihan MM, Middleton FA, Nishioka K, Fuchs J, Gasser T, Maraganore DM, Adler CH, Larvor L, Chartier-Harlin MC, Nilsson C, Langston JW, Gwinn K, Hattori N, Farrer MJ. Genomic investigation of alpha-synuclein multiplication and parkinsonism. Ann Neurol 2008; 63:743-50. [PMID: 18571778 DOI: 10.1002/ana.21380] [Citation(s) in RCA: 258] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Copy number variation is a common polymorphic phenomenon within the human genome. Although the majority of these events are non-deleterious they can also be highly pathogenic. Herein we characterize five families with parkinsonism that have been identified to harbor multiplication of the chromosomal 4q21 locus containing the alpha-synuclein gene (SNCA). METHODS A methodological approach using fluorescent in situ hybridization and Affymetrix (Santa Clara, CA) 250K SNP microarrays was used to characterize the multiplication in each family and to identify the genes encoded within the region. The telomeric and centromeric breakpoints of each family were further narrowed using semiquantitative polymerase chain reaction with microsatellite markers and then screened for transposable repeat elements. RESULTS The severity of clinical presentation is correlated with SNCA dosage and does not appear to be overtly affected by the presence of other genes in the multiplicated region. With the exception of the Lister kindred, in each family the multiplication event appears de novo. The type and position of Alu/LINE repeats are also different at each breakpoint. Microsatellite analysis demonstrates two genomic mechanisms are responsible for chromosome 4q21 multiplications, including both SNCA duplication and recombination. INTERPRETATION SNCA dosage is responsible for parkinsonism, autonomic dysfunction, and dementia observed within each family. We hypothesize dysregulated expression of wild-type alpha-synuclein results in parkinsonism and may explain the recent association of common SNCA variants in sporadic Parkinson's disease. SNCA genomic duplication results from intraallelic (segmental duplication) or interallelic recombination with unequal crossing over, whereas both mechanisms appear to be required for genomic SNCA triplication.
Collapse
Affiliation(s)
- Owen A Ross
- Division of Neurogenetics, Department of Neuroscience, College of Medicine, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Variation in the electroretinogram of C57BL/6 substrains of mouse. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 613:383-91. [PMID: 18188968 DOI: 10.1007/978-0-387-74904-4_45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
|
48
|
alpha-Synucleinopathy models and human neuropathology: similarities and differences. Acta Neuropathol 2008; 115:87-95. [PMID: 17932682 DOI: 10.1007/s00401-007-0302-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 09/17/2007] [Accepted: 09/18/2007] [Indexed: 12/23/2022]
Abstract
Point mutations and genomic multiplications in the alpha-synuclein (alphaSYN) gene cause autosomal-dominant Parkinson's disease. Moreover, alphaSYN fibrils are the major component of Lewy bodies, the neuropathological hallmarks of Parkinson's disease and dementia with Lewy bodies as well as of glial cytoplasmic inclusions in multiple system atrophy. These diseases are collectively referred to as alpha-synucleinopathies. Cellular mechanisms regulating alphaSYN fibril formation and toxicity are intensely studied in vitro, and in cell culture and diverse animal models. Specific neuropathology was achieved in transgenic mouse models using several promoters to express human wild-type and mutant alphaSYN in brain regions affected by the various alpha-synucleinopathies. Somatodendritic accumulation of the transgenic alphaSYN with neuritic distortions was a common finding. The nigrostriatal dopaminergic projections were surprisingly resistant to alpha-synucleinopathy in transgenic mice, although they tended to be more vulnerable to neurotoxins. In a few mouse models, alphaSYN aggregated in an age-dependent manner into genuine fibrillar amyloid. Brain region selective alphaSYN neuropathology correlated with specific behavioral impairments, such as locomotor dysfunction and cognitive decline. Thus, the alphaSYN fibrillization process is tightly linked to neuropathology. The role and thus therapeutic potential of post-translational modifications (ubiquitinylation, oxidation, phosphorylation, truncation) and modifier genes on alphaSYN neuropathology can now be assessed in valid transgenic mouse models of alpha-synucleinopathies.
Collapse
|
49
|
Quiet mutations in inbred strains of mice. Trends Mol Med 2007; 13:512-9. [PMID: 17981508 DOI: 10.1016/j.molmed.2007.10.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 09/27/2007] [Accepted: 10/01/2007] [Indexed: 11/22/2022]
Abstract
The year 2009 is the 100th anniversary of the founding of the first inbred strain of mouse, called DBA. During the last 100 years, inbred strains have proved their value for biomedical research and the number of such strains has mushroomed to over 450, each with different genotypic and phenotypic characteristics and useful for the study of disease and normal function. However, although inbred strains are stable, they are not fixed entities and researchers need to be aware of the phenomena of new mutations and of genetic drift, which occur within all mouse colonies. If the mutations are what we term in this review 'quiet mutations', then they might result in rather unexpected and sometimes tremendously valuable results. Here, we discuss these phenomena and look at how new genomic technologies might help us to detect 'quiet mutations' and use them to our advantage.
Collapse
|
50
|
Gajović S, Mitrecić D, Augustincić L, Iaconcig A, Muro AF. Unexpected rescue of alpha-synuclein and multimerin1 deletion in C57BL/6JOlaHsd mice by beta-adducin knockout. Transgenic Res 2007; 15:255-9. [PMID: 16604465 DOI: 10.1007/s11248-006-0003-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Accepted: 01/19/2006] [Indexed: 11/30/2022]
Abstract
Uniform genetic background of inbred mouse strains is essential in experiments with genetically modified mice. In order to assess Add2 (beta-adducin) function, its null mutation was produced in embryonic stem cells derived from 129Sv mouse and the subsequently obtained mouse mutants were backcrossed for 6 generations with C57BL/6JOlaHsd strain. Comparison of brain proteins between mutated and control animals by two-dimensional gels linked to mass spectroscopy analysis showed expression of Snca (alpha-synuclein) in the mutated animals, but unexpectedly not in the control C57BL/6JOlaHsd mice. Comparison between C57BL/6JOlaHsd and C57BL/6NCrl mice confirmed the presence of a deletion encompassing Snca and in addition Mmrn1 (multimerin1) loci in C57BL/6JOlaHsd strain. The segregation of mutated Add2 together with an adjacent part of the chromosome 6 derived from 129Sv mice, rescued the loss of these two genes in knockout mice on C57BL/6JOlaHsd background. The fact that Add2 knockout was compared with the C57BL/6JOlaHsd mouse strain, which is actually a double knockout of Snca and Mmrn1 emphasizes a need for information provided by commercial suppliers and of exact denominations of substrains used in research.
Collapse
Affiliation(s)
- Srećko Gajović
- Croatian Institute for Brain Research, School of Medicine, Univeristy of Zagreb, Croatia.
| | | | | | | | | |
Collapse
|