1
|
Motipally SI, Kolson DR, Guan T, Kolandaivelu S. Aberrant lipid accumulation and retinal pigment epithelium dysfunction in PRCD-deficient mice. Exp Eye Res 2024; 246:110016. [PMID: 39098587 PMCID: PMC11388538 DOI: 10.1016/j.exer.2024.110016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Progressive Rod-Cone Degeneration (PRCD) is an integral membrane protein found in photoreceptor outer segment (OS) disc membranes and its function remains unknown. Mutations in Prcd are implicated in Retinitis pigmentosa (RP) in humans and multiple dog breeds. PRCD-deficient models exhibit decreased levels of cholesterol in the plasma. However, potential changes in the retinal cholesterol remain unexplored. In addition, impaired phagocytosis observed in these animal models points to potential deficits in the retinal pigment epithelium (RPE). Here, using a Prcd-/- murine model we investigated the alterations in the retinal cholesterol levels and impairments in the structural and functional integrity of the RPE. Lipidomic and immunohistochemical analyses show a 5-fold increase in the levels of cholesteryl esters (C.Es) and lipid deposits in the PRCD-deficient retina, respectively, indicating alterations in total retinal cholesterol. Furthermore, the RPE of Prcd-/- mice exhibit a 1.7-fold increase in the expression of lipid transporter gene ATP-binding cassette transporter A1 (Abca1). Longitudinal fundus and spectral domain optical coherence tomography (SD-OCT) examinations showed focal lesions and RPE hyperreflectivity. Strikingly, the RPE of Prcd-/- mice exhibited age-related pathological features such as lipofuscin accumulation, Bruch's membrane (BrM) deposits and drusenoid focal deposits, mirroring an Age-related Macular Degeneration (AMD)-like phenotype. We propose that the extensive lipofuscin accumulation likely impairs lysosomal function, leading to the defective phagocytosis observed in Prcd-/- mice. Our findings support the dysregulation of retinal cholesterol homeostasis in the absence of PRCD. Further, we demonstrate that progressive photoreceptor degeneration in Prcd-/- mice is accompanied by progressive structural and functional deficits in the RPE, which likely exacerbates vision loss over time.
Collapse
Affiliation(s)
- Sree I Motipally
- Department of Neuroscience, Rockefeller Neuroscience Institute, 33 Medical Centre Drive, West Virginia University, Morgantown, WV, 26506, USA; Department of Ophthalmology and Visual Sciences, One Medical Center Drive, ERMA 2nd Floor, West Virginia University, Morgantown, WV, 26505-9193, USA
| | - Douglas R Kolson
- Department of Ophthalmology and Visual Sciences, One Medical Center Drive, ERMA 2nd Floor, West Virginia University, Morgantown, WV, 26505-9193, USA
| | - Tongju Guan
- Department of Ophthalmology and Visual Sciences, One Medical Center Drive, ERMA 2nd Floor, West Virginia University, Morgantown, WV, 26505-9193, USA; Department of Biochemistry and Molecular Medicine, 64 Medical Center Drive, West Virginia University, Morgantown, WV, 26505-9193, USA
| | - Saravanan Kolandaivelu
- Department of Ophthalmology and Visual Sciences, One Medical Center Drive, ERMA 2nd Floor, West Virginia University, Morgantown, WV, 26505-9193, USA; Department of Biochemistry and Molecular Medicine, 64 Medical Center Drive, West Virginia University, Morgantown, WV, 26505-9193, USA.
| |
Collapse
|
2
|
Cook SR, Hugen S, Hayward JJ, Famula TR, Belanger JM, McNiel E, Fieten H, Oberbauer AM, Leegwater PA, Ostrander EA, Mandigers PJ, Evans JM. Genomic analyses identify 15 susceptibility loci and reveal HDAC2, SOX2-OT, and IGF2BP2 in a naturally-occurring canine model of gastric cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.604426. [PMID: 39372775 PMCID: PMC11451740 DOI: 10.1101/2024.08.14.604426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Gastric cancer (GC) is the fifth most common human cancer worldwide, but the genetic etiology is largely unknown. We performed a Bayesian genome-wide association study and selection analyses in a naturally-occurring canine model of GC, the Belgian Tervuren and Sheepdog breeds, to elucidate underlying genetic risk factors. We identified 15 loci with over 90% predictive accuracy for the GC phenotype. Variant filtering revealed germline putative regulatory variants for the EPAS1 (HIF2A) and PTEN genes and a coding variant in CD101. Although closely related to Tervuren and Sheepdogs, Belgian Malinois rarely develop GC. Across-breed analyses uncovered protective haplotypes under selection in Malinois at SOX2-OT and IGF2BP2. Among Tervuren and Sheepdogs, HDAC2 putative regulatory variants were present at comparatively high frequency and were associated with GC. Here, we describe a complex genetic architecture governing GC in a dog model, including genes such as PDZRN3, that have not been associated with human GC.
Collapse
Affiliation(s)
- Shawna R. Cook
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Sanne Hugen
- Expertisecentre of Genetics, Department of Clinical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jessica J. Hayward
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Thomas R. Famula
- Department of Animal Science, University of California, Davis, CA, USA
| | | | - Elizabeth McNiel
- Cummings School of Veterinary Medicine, Tufts University, Grafton, Massachusetts, USA
| | - Hille Fieten
- Expertisecentre of Genetics, Department of Clinical Sciences, Utrecht University, Utrecht, The Netherlands
| | | | - Peter A.J. Leegwater
- Expertisecentre of Genetics, Department of Clinical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Elaine A. Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Paul J.J. Mandigers
- Expertisecentre of Genetics, Department of Clinical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jacquelyn M. Evans
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
3
|
Stanbury K, Schofield EC, McLaughlin B, Forman OP, Mellersh CS. Exonic Short Interspersed Nuclear Element Insertion in FAM161A Is Associated with Autosomal Recessive Progressive Retinal Atrophy in the English Shepherd. Genes (Basel) 2024; 15:952. [PMID: 39062732 PMCID: PMC11275866 DOI: 10.3390/genes15070952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Progressive retinal atrophies (PRAs) are a genetically heterogeneous group of inherited eye diseases that affect over 100 breeds of dog. The initial clinical sign is visual impairment in scotopic conditions, as a consequence of rod photoreceptor cell degeneration. Photopic vision degeneration then follows, due to progression of the disease to the cone photoreceptors, and ultimately results in complete blindness. Two full-sibling English Shepherds were diagnosed with PRA at approximately 5 years old and tested clear of all published PRA genetic variants. This study sought to identify the novel PRA-associated variant segregating in the breed. We utilised a combined approach of whole genome sequencing of the probands and homozygosity mapping of four cases and 22 controls and identified a short interspersed nuclear element within an alternatively spliced exon in FAM161A. The XP_005626197.1 c.17929_ins210 variant was homozygous in six PRA cases and heterozygous or absent in control dogs, consistent with a recessive mode of inheritance. The insertion is predicted to extend exon 4 by 39 aberrant amino acids followed by an early termination stop codon. PRA is intractable to treatment, so the development of a genetic screening test, based on the associated variant, is significant, because it provides dog breeders/owners with a means of reducing the frequency of the disease variant within this breed as well as minimising the risk of breeding puppies that will develop this blinding disease.
Collapse
Affiliation(s)
- Katherine Stanbury
- Canine Genetics Centre, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Ellen C. Schofield
- Canine Genetics Centre, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Bryan McLaughlin
- Canine Genetics Centre, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Oliver P. Forman
- Wisdom Panel, Mars Petcare (Science and Diagnostics Division), Freeby Lane, Waltham on the Wolds, Leicestershire LE14 4RS, UK
| | - Cathryn S. Mellersh
- Canine Genetics Centre, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| |
Collapse
|
4
|
Murgiano L, Banjeree E, O'Connor C, Miyadera K, Werner P, Niggel JK, Aguirre GD, Casal ML. A naturally occurring canine model of syndromic congenital microphthalmia. G3 (BETHESDA, MD.) 2024; 14:jkae067. [PMID: 38682429 DOI: 10.1093/g3journal/jkae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/13/2024] [Indexed: 05/01/2024]
Abstract
In humans, the prevalence of congenital microphthalmia is estimated to be 0.2-3.0 for every 10,000 individuals, with nonocular involvement reported in ∼80% of cases. Inherited eye diseases have been widely and descriptively characterized in dogs, and canine models of ocular diseases have played an essential role in unraveling the pathophysiology and development of new therapies. A naturally occurring canine model of a syndromic disorder characterized by microphthalmia was discovered in the Portuguese water dog. As nonocular findings included tooth enamel malformations, stunted growth, anemia, and thrombocytopenia, we hence termed this disorder Canine Congenital Microphthalmos with Hematopoietic Defects. Genome-wide association study and homozygosity mapping detected a 2 Mb candidate region on canine chromosome 4. Whole-genome sequencing and mapping against the Canfam4 reference revealed a Short interspersed element insertion in exon 2 of the DNAJC1 gene (g.74,274,883ins[T70]TGCTGCTTGGATT). Subsequent real-time PCR-based mass genotyping of a larger Portuguese water dog population found that the homozygous mutant genotype was perfectly associated with the Canine Congenital Microphthalmos with Hematopoietic Defects phenotype. Biallelic variants in DNAJC21 are mostly found to be associated with bone marrow failure syndrome type 3, with a phenotype that has a certain degree of overlap with Fanconi anemia, dyskeratosis congenita, Shwachman-Diamond syndrome, Diamond-Blackfan anemia, and reports of individuals showing thrombocytopenia, microdontia, and microphthalmia. We, therefore, propose Canine Congenital Microphthalmos with Hematopoietic Defects as a naturally occurring model for DNAJC21-associated syndromes.
Collapse
Affiliation(s)
- Leonardo Murgiano
- Department of Clinical Sciences & Advanced Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Sylvia M. Van Sloun Laboratory for Canine Genomic Analysis, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Esha Banjeree
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cynthia O'Connor
- Section of Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- East Bridgewater Veterinary Hospitla, East Bridgewater, MA 02333, USA
| | - Keiko Miyadera
- Department of Clinical Sciences & Advanced Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Petra Werner
- Section of Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Genetic Diagnostic Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica K Niggel
- Department of Clinical Sciences & Advanced Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Sylvia M. Van Sloun Laboratory for Canine Genomic Analysis, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gustavo D Aguirre
- Department of Clinical Sciences & Advanced Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Sylvia M. Van Sloun Laboratory for Canine Genomic Analysis, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Margret L Casal
- Department of Clinical Sciences & Advanced Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Section of Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Motipally SI, Kolson DR, Guan T, Kolandaivelu S. Aberrant lipid accumulation and retinal pigmental epithelium dysfunction in PRCD-deficient mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.584131. [PMID: 38558979 PMCID: PMC10979840 DOI: 10.1101/2024.03.08.584131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Progressive Rod-Cone Degeneration (PRCD) is an integral membrane protein found in photoreceptor outer segment (OS) disc membranes and its function remains unknown. Mutations in Prcd are implicated in Retinitis pigmentosa (RP) in humans and multiple dog breeds. PRCD-deficient models exhibit decreased levels of cholesterol in the plasma. However, potential changes in the retinal cholesterol remain unexplored. In addition, impaired phagocytosis observed in these animal models points to potential deficits in the retinal pigment epithelium (RPE). Here, using a Prcd -/- murine model we investigated the alterations in the retinal cholesterol levels and impairments in the structural and functional integrity of the RPE. Lipidomic and immunohistochemical analyses show a 5-fold increase in the levels of cholesteryl esters (C.Es) and accumulation of neutral lipids in the PRCD-deficient retina, respectively, indicating alterations in total retinal cholesterol. Longitudinal fundus and spectral domain optical coherence tomography (SD-OCT) examinations showed focal lesions and RPE hyperreflectivity. Strikingly, the RPE of Prcd -/- mice exhibited age-related pathological features such as neutral lipid deposits, lipofuscin accumulation, Bruch's membrane (BrM) thickening and drusenoid focal deposits, mirroring an Age-related Macular Degeneration (AMD)-like phenotype. We propose that the extensive lipofuscin accumulation likely impairs lysosomal function, leading to the defective phagocytosis observed in Prcd -/- mice. Our findings support the dysregulation of retinal cholesterol homeostasis in the absence of PRCD. Further, we demonstrate that progressive photoreceptor degeneration in Prcd -/- mice is accompanied by progressive structural and functional deficits in the RPE, which likely exacerbates vision loss over time.
Collapse
|
6
|
Petersen-Jones SM, Komáromy AM. Canine and Feline Models of Inherited Retinal Diseases. Cold Spring Harb Perspect Med 2024; 14:a041286. [PMID: 37217283 PMCID: PMC10835616 DOI: 10.1101/cshperspect.a041286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Naturally occurring inherited retinal diseases (IRDs) in cats and dogs provide a rich source of potential models for human IRDs. In many cases, the phenotypes between the species with mutations of the homologous genes are very similar. Both cats and dogs have a high-acuity retinal region, the area centralis, an equivalent to the human macula, with tightly packed photoreceptors and higher cone density. This and the similarity in globe size to that of humans means these large animal models provide information not obtainable from rodent models. The established cat and dog models include those for Leber congenital amaurosis, retinitis pigmentosa (including recessive, dominant, and X-linked forms), achromatopsia, Best disease, congenital stationary night blindness and other synaptic dysfunctions, RDH5-associated retinopathy, and Stargardt disease. Several of these models have proven to be important in the development of translational therapies such as gene-augmentation therapies. Advances have been made in editing the canine genome, which necessitated overcoming challenges presented by the specifics of canine reproduction. Feline genome editing presents fewer challenges. We can anticipate the generation of specific cat and dog IRD models by genome editing in the future.
Collapse
Affiliation(s)
- Simon M Petersen-Jones
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan 48824, USA
| | - András M Komáromy
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
7
|
Ghilardi S, Bagardi M, Frattini S, Barbariga GE, Brambilla PG, Minozzi G, Polli M. Genotypic and allelic frequencies of progressive rod-cone degeneration and other main variants associated with progressive retinal atrophy in Italian dogs. Vet Rec Open 2023; 10:e77. [PMID: 38028226 PMCID: PMC10665785 DOI: 10.1002/vro2.77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/28/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Background Progressive retinal atrophy (PRA) is a group of canine inherited retinal disorders affecting up to 100 breeds. Genetic tests are available. The aim of this study was to retrospectively evaluate the genetic variants associated with PRA among dogs residing in Italy. Methods Genetic data of 20 variants associated with different forms of PRA were collected through DNA tests over a 10-year period for several dog breeds in the Italian canine population. Allelic and genotypic frequencies were calculated. Results A total of 1467 DNA tests were conducted for 1180 dogs. Progressive rod-cone degeneration (PRCD) was the most tested form of PRA, with 58.15% (n = 853) of the DNA tests. Among the widespread breeds in Italy, Labrador retrievers and toy poodles showed a prevalence of heterozygous carriers higher than 15%. Among the others, 175 DNA tests for golden retrievers (GR) showed a prevalence of heterozygous carriers of 13.04% (n = 12) for GR-PRA1 and 8.43% (n = 7) for GR-PRA2. The zwergschnauzer breed was tested for the type B and/or the type B1 forms of PRA with 25.32% (n = 20) heterozygous carriers and 0%, respectively. Conclusion The study offers an overview of the prevalence of PRCD and other PRA forms within some of the most popular breeds in Italy.
Collapse
Affiliation(s)
- Sara Ghilardi
- Department of Veterinary Medicine and Animal Sciences—DIVASUniversity of MilanLodiItaly
| | - Mara Bagardi
- Department of Veterinary Medicine and Animal Sciences—DIVASUniversity of MilanLodiItaly
| | | | - Giulia E. Barbariga
- Department of Veterinary Medicine and Animal Sciences—DIVASUniversity of MilanLodiItaly
| | - Paola G. Brambilla
- Department of Veterinary Medicine and Animal Sciences—DIVASUniversity of MilanLodiItaly
| | - Giulietta Minozzi
- Department of Veterinary Medicine and Animal Sciences—DIVASUniversity of MilanLodiItaly
| | - Michele Polli
- Department of Veterinary Medicine and Animal Sciences—DIVASUniversity of MilanLodiItaly
| |
Collapse
|
8
|
Clark JA, Anderson H, Donner J, Pearce-Kelling S, Ekenstedt KJ. Global Frequency Analyses of Canine Progressive Rod-Cone Degeneration-Progressive Retinal Atrophy and Collie Eye Anomaly Using Commercial Genetic Testing Data. Genes (Basel) 2023; 14:2093. [PMID: 38003037 PMCID: PMC10671078 DOI: 10.3390/genes14112093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Hundreds of genetic variants associated with canine traits and disorders have been identified, with commercial tests offered. However, the geographic distributions and changes in allele and genotype frequencies over prolonged, continuous periods of time are lacking. This study utilized a large set of genotypes from dogs tested for the progressive rod-cone degeneration-progressive retinal atrophy (prcd-PRA) G>A missense PRCD variant (n = 86,667) and the collie eye anomaly (CEA)-associated NHEJ1 deletion (n = 33,834) provided by the commercial genetic testing company (Optigen/Wisdom Panel, Mars Petcare Science & Diagnostics). These data were analyzed using the chi-square goodness-of-fit test, time-trend graphical analysis, and regression modeling in order to evaluate how test results changed over time. The results span fifteen years, representing 82 countries and 67 breeds/breed mixes. Both diseases exhibited significant differences in genotype frequencies (p = 2.7 × 10-152 for prcd-PRA and 0.023 for CEA) with opposing graphical trends. Regression modeling showed time progression to significantly affect the odds of a dog being homozygous or heterozygous for either disease, as do variables including breed and breed popularity. This study shows that genetic testing informed breeding decisions to produce fewer affected dogs. However, the presence of dogs homozygous for the disease variant, especially for prcd-PRA, was still observed fourteen years after test availability, potentially due to crosses of unknown carriers. This suggests that genetic testing of dog populations should continue.
Collapse
Affiliation(s)
- Jessica A. Clark
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA;
| | - Heidi Anderson
- Wisdom Panel, Mars Petcare Science & Diagnostics, 00581 Helsinki, Finland; (H.A.); (J.D.)
| | - Jonas Donner
- Wisdom Panel, Mars Petcare Science & Diagnostics, 00581 Helsinki, Finland; (H.A.); (J.D.)
| | | | - Kari J. Ekenstedt
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA;
| |
Collapse
|
9
|
Broeckx BJG. Incorporating Genetic Testing into a Breeding Program. Vet Clin North Am Small Anim Pract 2023:S0195-5616(23)00064-5. [PMID: 37221103 DOI: 10.1016/j.cvsm.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Genetic tests are powerful tools that enable (1) a focus on genetic diversity as mating outcomes can be predicted and thus optimized to minimize or even avoid exclusion and (2) working toward breeding goals by improving a phenotype.
Collapse
Affiliation(s)
- Bart J G Broeckx
- Department of Veterinary and Biosciences, Laboratory of Animal Genetics, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, Merelbeke 9820, Belgium.
| |
Collapse
|
10
|
Spencer WJ. Extracellular vesicles highlight many cases of photoreceptor degeneration. Front Mol Neurosci 2023; 16:1182573. [PMID: 37273908 PMCID: PMC10233141 DOI: 10.3389/fnmol.2023.1182573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
The release of extracellular vesicles is observed across numerous cell types and serves a range of biological functions including intercellular communication and waste disposal. One cell type which stands out for its robust capacity to release extracellular vesicles is the vertebrate photoreceptor cell. For decades, the release of extracellular vesicles by photoreceptors has been documented in many different animal models of photoreceptor degeneration and, more recently, in wild type photoreceptors. Here, I review all studies describing extracellular vesicle release by photoreceptors and discuss the most unifying theme among them-a photoreceptor cell fully, or partially, diverts its light sensitive membrane material to extracellular vesicles when it has defects in the delivery or morphing of this material into the photoreceptor's highly organized light sensing organelle. Because photoreceptors generate an enormous amount of light sensitive membrane every day, the diversion of this material to extracellular vesicles can cause a massive accumulation of these membranes within the retina. Little is known about the uptake of photoreceptor derived extracellular vesicles, although in some cases the retinal pigment epithelial cells, microglia, Müller glia, and/or photoreceptor cells themselves have been shown to phagocytize them.
Collapse
|
11
|
Majchrakova Z, Hrckova Turnova E, Bielikova M, Turna J, Dudas A. The incidence of genetic disease alleles in Australian Shepherd dog breed in European countries. PLoS One 2023; 18:e0281215. [PMID: 36848350 PMCID: PMC9970066 DOI: 10.1371/journal.pone.0281215] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 01/18/2023] [Indexed: 03/01/2023] Open
Abstract
Genetic disease control is generally not given the importance it deserves. Information about what percentage of individuals carry a disorder-causing mutation is crucial for breeders to produce healthy offspring and maintain a healthy dog population of a particular breed. This study aims to provide information about the incidence of mutant alleles for the most frequently occurring hereditary diseases in the Australian Shepherd dog breed (AS). The samples were collected during a 10-years period (2012-2022) in the European population of the AS. Mutant alleles and incidence were calculated from all the obtained data for all the diseases, specifically: collie eye anomaly (9.71%), canine multifocal retinopathy type 1 (0.53%), hereditary cataract (11.64%), progressive rod-cone degeneration (1.58%), degenerative myelopathy (11.77%) and bob-tail/short-tail (31.74%). Our data provide more information to dog breeders to support their effort to limit the spread of hereditary diseases.
Collapse
Affiliation(s)
| | | | - Marcela Bielikova
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Jan Turna
- Comenius University Science Park, Bratislava, Slovakia,Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Andrej Dudas
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia,* E-mail:
| |
Collapse
|
12
|
Arizmendi A, Rudd Garces G, Crespi JA, Olivera LH, Barrientos LS, Peral García P, Giovambattista G. Analysis of Doberman Pinscher and Toy Poodle samples with targeted next-generation sequencing. Gene 2023; 853:147069. [PMID: 36427679 DOI: 10.1016/j.gene.2022.147069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 11/04/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
Next-generation sequencing (NGS) technologies have enabled the identification of many causal variants of genetic disorders, the development of parentage tests and the analysis of multiple traits in domestic animals. In this study, we evaluated the performance of a Canine Targeted Genotyping-by-Sequencing (GBS) custom panel (Thermo Fisher Scientific, Waltham, Ma, USA) in a cohort of 95 dog DNA samples, comprising 76 Doberman Pinschers and 19 Toy Poodles from Argentina. The used panel included 383 targets (228 parentage SNVs, 137 genetic disorder markers and 18 trait markers). While paternity analysis showed correct duo (97.4%; LOD > 2.98E+13) and trio (100%; LOD > 2.20E+15) parentage assignment, the panel resulted still insufficient for excluding close relatives in inbred populations. In this sense, close relatives were wrongly assigned as parents in 12.6% of duos and 0.3% of trios. We detected 17 polymorphic markers (genetic disorders, n = 4; hair type, n = 3; coat color, n = 10) and estimated their allele frequencies in the studied breeds. The accuracy of targeted GBS results were evaluated for three markers that were associated with Progressive rod-cone degeneration, von Willebrand disease type 1 and dilated cardiomyopathy by pyrosequencing and Sanger sequencing genotyping, showing 94-100% concordance among assays. The targeted GBS custom panel resulted cost-effective strategy to study the prevalence of genetic disorders and traits in a large number of samples and to analyze genetic interactions between previously reported variants. Once assays based on AgriSeq technology were standardized, their uses are a good strategy for large-scale routine genetic evaluation of animal populations.
Collapse
Affiliation(s)
- A Arizmendi
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Calle 60 y 118 S/N, 1900 La Plata, Buenos Aires, Argentina; Servicio de Cardiología, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Calle 60 y 118 S/N, 1900 La Plata, Buenos Aires, Argentina
| | - G Rudd Garces
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Calle 60 y 118 S/N, 1900 La Plata, Buenos Aires, Argentina
| | - J A Crespi
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Calle 60 y 118 S/N, 1900 La Plata, Buenos Aires, Argentina
| | - L H Olivera
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Calle 60 y 118 S/N, 1900 La Plata, Buenos Aires, Argentina
| | - L S Barrientos
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Calle 60 y 118 S/N, 1900 La Plata, Buenos Aires, Argentina
| | - P Peral García
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Calle 60 y 118 S/N, 1900 La Plata, Buenos Aires, Argentina
| | - G Giovambattista
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Calle 60 y 118 S/N, 1900 La Plata, Buenos Aires, Argentina.
| |
Collapse
|
13
|
Leeb T, Bannasch D, Schoenebeck JJ. Identification of Genetic Risk Factors for Monogenic and Complex Canine Diseases. Annu Rev Anim Biosci 2023; 11:183-205. [PMID: 36322969 DOI: 10.1146/annurev-animal-050622-055534] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Advances in DNA sequencing and other technologies have greatly facilitated the identification of genetic risk factors for inherited diseases in dogs. We review recent technological developments based on selected examples from canine disease genetics. The identification of disease-causing variants in dogs with monogenic diseases may become a widely employed diagnostic approach in clinical veterinary medicine in the not-too-distant future. Diseases with complex modes of inheritance continue to pose challenges to researchers but have also become much more tangible than in the past. In addition to strategies for identifying genetic risk factors, we provide some thoughts on the interpretation of sequence variants that are largely inspired by developments in human clinical genetics.
Collapse
Affiliation(s)
- Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland;
| | - Danika Bannasch
- Department of Population Health and Reproduction, University of California, Davis, California, USA;
| | - Jeffrey J Schoenebeck
- The Roslin Institute and Royal (Dick) School for Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom;
| |
Collapse
|
14
|
Donner J, Freyer J, Davison S, Anderson H, Blades M, Honkanen L, Inman L, Brookhart-Knox CA, Louviere A, Forman OP, Chodroff Foran R. Genetic prevalence and clinical relevance of canine Mendelian disease variants in over one million dogs. PLoS Genet 2023; 19:e1010651. [PMID: 36848397 PMCID: PMC9997962 DOI: 10.1371/journal.pgen.1010651] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 03/09/2023] [Accepted: 02/02/2023] [Indexed: 03/01/2023] Open
Abstract
Hundreds of genetic variants implicated in Mendelian disease have been characterized in dogs and commercial screening is being offered for most of them worldwide. There is typically limited information available regarding the broader population frequency of variants and uncertainty regarding their functional and clinical impact in ancestry backgrounds beyond the discovery breed. Genetic panel screening of disease-associated variants, commercially offered directly to the consumer or via a veterinary clinician, provides an opportunity to establish large-scale cohorts with phenotype data available to address open questions related to variant prevalence and relevance. We screened the largest canine cohort examined in a single study to date (1,054,293 representative dogs from our existing cohort of 3.5 million; a total of 811,628 mixed breed dogs and 242,665 purebreds from more than 150 countries) to examine the prevalence and distribution of a total of 250 genetic disease-associated variants in the general population. Electronic medical records from veterinary clinics were available for 43.5% of the genotyped dogs, enabling the clinical impact of variants to be investigated. We provide detailed frequencies for all tested variants across breeds and find that 57% of dogs carry at least one copy of a studied Mendelian disease-associated variant. Focusing on a subset of variants, we provide evidence of full penetrance for 10 variants, and plausible evidence for clinical significance of 22 variants, on diverse breed backgrounds. Specifically, we report that inherited hypocatalasia is a notable oral health condition, confirm that factor VII deficiency presents as subclinical bleeding propensity and verify two genetic causes of reduced leg length. We further assess genome-wide heterozygosity levels in over 100 breeds, and show that a reduction in genome-wide heterozygosity is associated with an increased Mendelian disease variant load. The accumulated knowledge represents a resource to guide discussions on genetic test relevance by breed.
Collapse
Affiliation(s)
- Jonas Donner
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Helsinki, Finland
| | - Jamie Freyer
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| | - Stephen Davison
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Leicestershire, United Kingdom
| | - Heidi Anderson
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Helsinki, Finland
| | - Matthew Blades
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Leicestershire, United Kingdom
| | - Leena Honkanen
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Helsinki, Finland
| | - Laura Inman
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| | - Casey A. Brookhart-Knox
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| | - Annette Louviere
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| | - Oliver P. Forman
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Leicestershire, United Kingdom
| | - Rebecca Chodroff Foran
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| |
Collapse
|
15
|
Gulati S, Palczewski K. Structural view of G protein-coupled receptor signaling in the retinal rod outer segment. Trends Biochem Sci 2023; 48:172-186. [PMID: 36163145 PMCID: PMC9868064 DOI: 10.1016/j.tibs.2022.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 01/26/2023]
Abstract
Visual phototransduction is the most extensively studied G protein-coupled receptor (GPCR) signaling pathway because of its quantifiable stimulus, non-redundancy of genes, and immense importance in vision. We summarize recent discoveries that have advanced our understanding of rod outer segment (ROS) morphology and the pathological basis of retinal diseases. We have combined recently published cryo-electron tomography (cryo-ET) data on the ROS with structural knowledge on individual proteins to define the precise spatial limitations under which phototransduction occurs. Although hypothetical, the reconstruction of the rod phototransduction system highlights the potential roles of phosphodiesterase 6 (PDE6) and guanylate cyclases (GCs) in maintaining the spacing between ROS discs, suggesting a plausible mechanism by which intrinsic optical signals are generated in the retina.
Collapse
Affiliation(s)
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute and the Department of Ophthalmology, Center for Translational Vision Research, Department of Physiology and Biophysics, Department of Chemistry, Molecular Biology, and Biochemistry, University of California Irvine, 850 Health Sciences Road, Irvine, CA 92697-4375, USA.
| |
Collapse
|
16
|
Preclinical Models of Retinitis Pigmentosa. Methods Mol Biol 2022; 2560:181-215. [PMID: 36481897 DOI: 10.1007/978-1-0716-2651-1_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Retinitis pigmentosa (RP) is the name for a group of phenotypically-related heritable retinal degenerative disorders. Many genes have been implicated as causing variants of RP, and while the clinical phenotypes are remarkably similar, they may differ in age of onset, progression, and severity. Common inheritance patterns for specific genes connected with the development of the disorder include autosomal dominant, autosomal recessive, and X-linked. Modeling the disease in animals and other preclinical systems offers a cost-conscious, ethical, and time-efficient method for studying the disease subtypes. The history of RP models is briefly examined, and both naturally occurring and transgenic preclinical models of RP in many different organisms are discussed. Syndromic forms of RP and models thereof are reviewed as well.
Collapse
|
17
|
Trecenti-Santana AS, Guiraldelli GG, Albertino LG, Ferreira JF, Andrade FM, Borges AS, Oliveira-Filho JP. Allele frequency of SLC4A3 (PRA1), TTC8 (PRA2), and PRA-prcd mutations in golden retrievers in Brazil. Front Vet Sci 2022; 9:973854. [PMID: 36325094 PMCID: PMC9619134 DOI: 10.3389/fvets.2022.973854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/29/2022] [Indexed: 11/23/2022] Open
Abstract
Progressive retinal atrophy (PRA) is a term used in veterinary medicine to describe inherited and progressive retinal diseases characterized by progressive retinal degeneration and loss of vision. In the Golden Retriever (GR) breed, the mutations associated with PRA have an autosomal recessive inheritance pattern. This study aimed to verify the allele frequencies of PRA1, PRA2, and PRA-prcd in the GR breed in Brazil. A total of 121 GR DNA samples (n = 66 females and n = 55 males) were analyzed. All animals assessed in this study were identified as wild-type (121/121 animals; 100%) for PRA1 and PRA2 mutations; therefore, no carrier or homozygous animals were identified in this population. For the PRA-prcd mutation, 118 animals (118/121 animals; 97.52%) were wild-type. Three animals were genotyped as heterozygous for PRA-prcd (3/121 animals; 2.47%), demonstrating that this mutation is still present in some bloodlines and animals in Brazil, even with a rare prevalence. Five animals (5/121 animals, 4.2%) had a previous eye disease, which was diagnosed by a veterinarian as entropion (2 animals), keratoconjunctivitis sicca (1 animal), corneal ulcer (1 animal), and bilateral blindness (1 animal). This dog with bilateral blindness was identified as wild type homozygous for three mutations assessed in this study; therefore, blindness was not associated with the investigated mutations. In addition, the vast majority (98.3%) of Brazilian breeders assessed in this study were unaware of these mutations as a cause of blindness in the Golden Retriever. Therefore, the present study will serve to disseminate knowledge about PRA and its genetic etiologies, as well as to support future studies with other Brazilian GR populations.
Collapse
Affiliation(s)
| | | | - Lukas Garrido Albertino
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, Brazil
| | - Julia Franco Ferreira
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, Brazil
| | - Fabiana Michelsen Andrade
- Zootechnics Department, School of Agronomy, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Alexandre Secorun Borges
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, Brazil
| | - José Paes Oliveira-Filho
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, Brazil
- *Correspondence: José Paes Oliveira-Filho
| |
Collapse
|
18
|
Myers B, Sechrest ER, Hamner G, Motipally SI, Murphy J, Kolandaivelu S. R17C Mutation in Photoreceptor Disc-Specific Protein, PRCD, Results in Additional Lipidation Altering Protein Stability and Subcellular Localization. Int J Mol Sci 2022; 23:ijms231810802. [PMID: 36142714 PMCID: PMC9503786 DOI: 10.3390/ijms231810802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Progressive rod-cone degeneration (PRCD) is a photoreceptor outer segment (OS) disc-specific protein essential for maintaining OS structures while contributing to rhodopsin packaging densities and distribution in disc membranes. Previously, we showed PRCD undergoing palmitoylation at the sole cysteine (Cys2), where a mutation linked with retinitis pigmentosa (RP) in humans and dogs demonstrates the importance of palmitoylation for protein stability and trafficking to the OS. We demonstrate a mutation, in the polybasic region (PBR) of PRCD (Arg17Cys) linked with RP where an additional lipidation is observed through acyl-RAC. Immunolocalization of transiently expressed R17C in hRPE1 cells depicts similar characteristics to wild-type PRCD; however, a double mutant lacking endogenous palmitoylation at Cys2Tyr with Arg17Cys is comparable to the C2Y protein as both aggregate, mislocalized to the subcellular compartments within the cytoplasm. Subretinal injection of PRCD mutant constructs followed by electroporation in murine retina exhibit mislocalization in the inner segment. Despite being additionally lipidated and demonstrating strong membrane association, the mutation in the PBR affects protein stability and localization to the OS. Acylation within the PBR alone neither compensates for protein stability nor trafficking, revealing defects in the PBR likely lead to dysregulation of PRCD protein associated with blinding diseases.
Collapse
Affiliation(s)
- Boyden Myers
- Department of Ophthalmology and Visual Sciences, Eye Institute, One Medical Center Drive, West Virginia University, Morgantown, WV 26506, USA
| | - Emily R. Sechrest
- Department of Ophthalmology and Visual Sciences, Eye Institute, One Medical Center Drive, West Virginia University, Morgantown, WV 26506, USA
| | - Gabrielle Hamner
- Department of Ophthalmology and Visual Sciences, Eye Institute, One Medical Center Drive, West Virginia University, Morgantown, WV 26506, USA
| | - Sree I. Motipally
- Department of Ophthalmology and Visual Sciences, Eye Institute, One Medical Center Drive, West Virginia University, Morgantown, WV 26506, USA
- Department of Neurosciences, One Medical Center Drive, West Virginia University, Morgantown, WV 26506, USA
| | - Joseph Murphy
- Department of Ophthalmology and Visual Sciences, Eye Institute, One Medical Center Drive, West Virginia University, Morgantown, WV 26506, USA
| | - Saravanan Kolandaivelu
- Department of Ophthalmology and Visual Sciences, Eye Institute, One Medical Center Drive, West Virginia University, Morgantown, WV 26506, USA
- Department of Biochemistry and Molecular Medicine, One Medical Center Drive, West Virginia University, Morgantown, WV 26506, USA
- Correspondence:
| |
Collapse
|
19
|
Park SA, Rhodes J, Iwabe S, Ying GS, Pan W, Huang J, Komáromy AM. Quantitative and qualitative characterization of retinal dystrophies in canine models of inherited retinal diseases using spectral domain optical coherence tomography (SD-OCT). Exp Eye Res 2022; 220:109106. [PMID: 35588783 PMCID: PMC9789526 DOI: 10.1016/j.exer.2022.109106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/19/2022] [Accepted: 05/06/2022] [Indexed: 12/26/2022]
Abstract
The purpose of this study was to establish spectral domain optical coherence tomography (SD-OCT) assessment data in well-established canine models of inherited retinal dystrophies: PDE6B-rod-cone dysplasia 1 (RCD1: early onset retinitis pigmentosa), PRCD-progressive rod-cone degeneration (PRCD: late onset retinitis pigmentosa), CNGB3-achromatopsia, and RPE65-Leber congenital amaurosis (LCA). High resolution SD-OCT images of the retina were acquired from both eyes in 5 planes: temporal; superotemporal; superior; nasal; and inferior in adult dogs with: RCD1 (n = 4 dogs, median age: 1.5 yrs); PRCD (n = 2, 4.3 yrs); LCA (n = 3, 5.2 yrs); achromatopsia (n = 3, 4.2 yrs); and wild types (wt, n = 6, 5.5 yrs). Total, inner and outer retinal thicknesses and ellipsoid zone were analyzed. In selected animals, histomorphometric evaluations were performed. In dogs with RCD1, PRCD, and LCA, the thickness of the outer retina was, compared to wt, significantly decreased (p ≤ 0.02) in all OCT imaging planes, and in superotemporal and inferior imaging planes in dogs with achromatopsia. No significant thinning was observed in inner retina thickness in any disease model except in the inferior imaging plane in dogs with RCD1. Dogs with RCD1, PRCD, and LCA had significantly more areas with disrupted ellipsoid zone in the presumed area centralis than wt (p ≤ 0.001). OCT findings provide baseline information for research of retinal dystrophies using these canine models.
Collapse
Affiliation(s)
- Shin Ae Park
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA; Department of Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA.
| | - Jamie Rhodes
- Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Simone Iwabe
- Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gui-Shuang Ying
- Department of Ophthalmology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei Pan
- Department of Ophthalmology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jiayan Huang
- Department of Ophthalmology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - András M Komáromy
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA; Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
20
|
Bhardwaj A, Yadav A, Yadav M, Tanwar M. Genetic dissection of non-syndromic retinitis pigmentosa. Indian J Ophthalmol 2022; 70:2355-2385. [PMID: 35791117 PMCID: PMC9426071 DOI: 10.4103/ijo.ijo_46_22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Retinitis pigmentosa (RP) belongs to a group of pigmentary retinopathies. It is the most common form of inherited retinal dystrophy, characterized by progressive degradation of photoreceptors that leads to nyctalopia, and ultimately, complete vision loss. RP is distinguished by the continuous retinal degeneration that progresses from the mid-periphery to the central and peripheral retina. RP was first described and named by Franciscus Cornelius Donders in the year 1857. It is one of the leading causes of bilateral blindness in adults, with an incidence of 1 in 3000 people worldwide. In this review, we are going to focus on the genetic heterogeneity of this disease, which is provided by various inheritance patterns, numerosity of variations and inter-/intra-familial variations based upon penetrance and expressivity. Although over 90 genes have been identified in RP patients, the genetic cause of approximately 50% of RP cases remains unknown. Heterogeneity of RP makes it an extremely complicated ocular impairment. It is so complicated that it is known as “fever of unknown origin”. For prognosis and proper management of the disease, it is necessary to understand its genetic heterogeneity so that each phenotype related to the various genetic variations could be treated.
Collapse
Affiliation(s)
- Aarti Bhardwaj
- Department of Genetics, M. D. University, Rohtak, Haryana, India
| | - Anshu Yadav
- Department of Genetics, M. D. University, Rohtak, Haryana, India
| | - Manoj Yadav
- Department of Genetics, M. D. University, Rohtak, Haryana, India
| | - Mukesh Tanwar
- Department of Genetics, M. D. University, Rohtak, Haryana, India
| |
Collapse
|
21
|
cGMP-PKG dependent transcriptome in normal and degenerating retinas: Novel insights into the retinitis pigmentosa pathology. Exp Eye Res 2021; 212:108752. [PMID: 34478738 DOI: 10.1016/j.exer.2021.108752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 06/25/2021] [Accepted: 08/25/2021] [Indexed: 12/26/2022]
Abstract
Retinitis Pigmentosa represents a group of genetic disorders that cause progressive vision loss via degeneration of photoreceptors, but there is in principle no treatment available. For any therapy development, a deeper comprehension of the disease-leading mechanism(s) at the molecular level is needed. Here we focused on the cGMP-PKG system, which has been suggested to be a driver in several models of the disease. To gain insights in its downstream signaling we manipulated the cGMP-PKG system with the aid of organotypic retinal explant cultures from either a mouse-based disease model, i.e. the rd1 mouse, or its healthy wild-type counterpart (wt), by adding different types of cGMP analogues to either inhibit or activate PKG in retinal explants from rd1 and wt, respectively. An RNA sequencing was then performed to study the cGMP-PKG dependent transcriptome. Expression changes of gene sets related to specific pathways or functions, that fulfilled criteria involving that the changes should match PKG activation and inhibition, were determined via bioinformatics. The analyses highlighted that several gene sets linked to oxidative phosphorylation and mitochondrial pathways were regulated by this enzyme system. Specifically, the expression of such pathway components was upregulated in the rd1 treated with PKG inhibitor and downregulated in the wt with PKG activator treatment, suggesting that cGMP-PKG act as a negative regulator in this context. Downregulation of energy production pathways may thus play an integral part in the mechanism behind the degeneration for at least several RP mutations.
Collapse
|
22
|
Pegram C, Woolley C, Brodbelt DC, Church DB, O'Neill DG. Disorder predispositions and protections of Labrador Retrievers in the UK. Sci Rep 2021; 11:13988. [PMID: 34262062 PMCID: PMC8280121 DOI: 10.1038/s41598-021-93379-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
The Labrador Retriever is one of the most popular dog breeds worldwide, therefore it is important to have reliable evidence on the general health issues of the breed. Using anonymised veterinary clinical data from the VetCompass Programme, this study aimed to explore the relative risk to common disorders in the Labrador Retriever. The clinical records of a random sample of dogs were reviewed to extract the most definitive diagnoses for all disorders recorded during 2016. A list of disorders was generated, including the 30 most common disorders in Labrador Retrievers and the 30 most common disorders in non-Labrador Retrievers. Multivariable logistic regression was used to report the odds of each of these disorders in 1462 (6.6%) Labrador Retrievers compared with 20,786 (93.4%) non-Labrador Retrievers. At a specific-level of diagnostic precision, after accounting for confounding, Labrador Retrievers had significantly increased odds of 12/35 (34.3%) disorders compared to non-Labrador Retrievers; osteoarthritis (OR 2.83) had the highest odds. Conversely, Labrador Retrievers had reduced odds of 7/35 (20.0%) disorders; patellar luxation (OR 0.18) had the lowest odds. This study provides useful information about breed-specific disorder predispositions and protections, which future research could evaluate further to produce definitive guidance for Labrador Retriever breeders and owners.
Collapse
Affiliation(s)
- Camilla Pegram
- Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA, Herts, UK.
| | - Charlotte Woolley
- The Roslin Institute and the Royal (Dick), School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Dave C Brodbelt
- Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA, Herts, UK
| | - David B Church
- Clinical Sciences and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA, Herts, UK
| | - Dan G O'Neill
- Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA, Herts, UK
| |
Collapse
|
23
|
Dog10K_Boxer_Tasha_1.0: A Long-Read Assembly of the Dog Reference Genome. Genes (Basel) 2021; 12:genes12060847. [PMID: 34070911 PMCID: PMC8228171 DOI: 10.3390/genes12060847] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 12/27/2022] Open
Abstract
The domestic dog has evolved to be an important biomedical model for studies regarding the genetic basis of disease, morphology and behavior. Genetic studies in the dog have relied on a draft reference genome of a purebred female boxer dog named "Tasha" initially published in 2005. Derived from a Sanger whole genome shotgun sequencing approach coupled with limited clone-based sequencing, the initial assembly and subsequent updates have served as the predominant resource for canine genetics for 15 years. While the initial assembly produced a good-quality draft, as with all assemblies produced at the time, it contained gaps, assembly errors and missing sequences, particularly in GC-rich regions, which are found at many promoters and in the first exons of protein-coding genes. Here, we present Dog10K_Boxer_Tasha_1.0, an improved chromosome-level highly contiguous genome assembly of Tasha created with long-read technologies that increases sequence contiguity >100-fold, closes >23,000 gaps of the CanFam3.1 reference assembly and improves gene annotation by identifying >1200 new protein-coding transcripts. The assembly and annotation are available at NCBI under the accession GCF_000002285.5.
Collapse
|
24
|
Kaukonen M, Pettinen IT, Wickström K, Arumilli M, Donner J, Juhola IJ, Holopainen S, Turunen JA, Yoshihara M, Kere J, Lohi H. A missense variant in IFT122 associated with a canine model of retinitis pigmentosa. Hum Genet 2021; 140:1569-1579. [PMID: 33606121 PMCID: PMC8519925 DOI: 10.1007/s00439-021-02266-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/10/2021] [Indexed: 11/28/2022]
Abstract
Retinitis pigmentosa (RP) is a blinding eye disease affecting nearly two million people worldwide. Dogs are affected with a similar illness termed progressive retinal atrophy (PRA). Lapponian herders (LHs) are affected with several types of inherited retinal dystrophies, and variants in PRCD and BEST1 genes have been associated with generalized PRA and canine multifocal retinopathy 3 (cmr3), respectively. However, all retinal dystrophy cases in LHs are not explained by these variants, indicating additional genetic causes of disease in the breed. We collected DNA samples from 10 PRA affected LHs, with known PRCD and BEST1 variants excluded, and 34 unaffected LHs. A genome-wide association study identified a locus on CFA20 (praw = 2.4 × 10-7, pBonf = 0.035), and subsequent whole-genome sequencing of an affected LH revealed a missense variant, c.3176G>A, in the intraflagellar transport 122 (IFT122) gene. The variant was also found in Finnish Lapphunds, in which its clinical relevancy needs to be studied further. The variant interrupts a highly conserved residue, p.(R1059H), in IFT122 and likely impairs its function. Variants in IFT122 have not been associated with retinal degeneration in mammals, but the loss of ift122 in zebrafish larvae impaired opsin transport and resulted in progressive photoreceptor degeneration. Our study establishes a new spontaneous dog model to study the role of IFT122 in RP biology, while the affected breed will benefit from a genetic test for a recessive condition.
Collapse
Affiliation(s)
- Maria Kaukonen
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland
| | - Inka-Tuulevi Pettinen
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland
| | | | - Meharji Arumilli
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland
| | - Jonas Donner
- Genoscoper Laboratories Ltd (Wisdom Health), Helsinki, Finland
| | - Ida-Julia Juhola
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland
| | - Saila Holopainen
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland.,Department of Equine and Small Animal Medicine, University of Helsinki, Helsinki, Finland
| | - Joni A Turunen
- Folkhälsan Research Center, Helsinki, Finland.,Department of Ophthalmology, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Masahito Yoshihara
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Juha Kere
- Folkhälsan Research Center, Helsinki, Finland.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Stem Cells and Metabolism Research Program STEMM, University of Helsinki, 00014, Helsinki, Finland
| | - Hannes Lohi
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland. .,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland. .,Folkhälsan Research Center, Helsinki, Finland.
| |
Collapse
|
25
|
CCDC66 frameshift variant associated with a new form of early-onset progressive retinal atrophy in Portuguese Water Dogs. Sci Rep 2020; 10:21162. [PMID: 33273526 PMCID: PMC7712861 DOI: 10.1038/s41598-020-77980-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 11/10/2020] [Indexed: 11/17/2022] Open
Abstract
Aberrant photoreceptor function or morphogenesis leads to blinding retinal degenerative diseases, the majority of which have a genetic aetiology. A variant in PRCD previously identified in Portuguese Water Dogs (PWDs) underlies prcd (progressive rod-cone degeneration), an autosomal recessive progressive retinal atrophy (PRA) with a late onset at 3–6 years of age or older. Herein, we have identified a new form of early-onset PRA (EOPRA) in the same breed. Pedigree analysis suggested an autosomal recessive inheritance. Four PWD full-siblings affected with EOPRA diagnosed at 2–3 years of age were genotyped (173,661 SNPs) along with 2 unaffected siblings, 2 unaffected parents, and 15 unrelated control PWDs. GWAS, linkage analysis and homozygosity mapping defined a 26-Mb candidate region in canine chromosome 20. Whole-genome sequencing in one affected dog and its obligatory carrier parents identified a 1 bp insertion (CFA20:g.33,717,704_33,717,705insT (CanFam3.1); c.2262_c.2263insA) in CCDC66 predicted to cause a frameshift and truncation (p.Val747SerfsTer8). Screening of an extended PWD population confirmed perfect co-segregation of this genetic variant with the disease. Western blot analysis of COS-1 cells transfected with recombinant mutant CCDC66 expression constructs showed the mutant transcript translated into a truncated protein. Furthermore, in vitro studies suggest that the mutant CCDC66 is mislocalized to the nucleus relative to wild type CCDC66. CCDC66 variants have been associated with inherited retinal degenerations (RDs) including canine and murine ciliopathies. As genetic variants affecting the primary cilium can cause ciliopathies in which RD may be either the sole clinical manifestation or part of a syndrome, our findings further support a role for CCDC66 in retinal function and viability, potentially through its ciliary function.
Collapse
|
26
|
TULP1 and TUB Are Required for Specific Localization of PRCD to Photoreceptor Outer Segments. Int J Mol Sci 2020; 21:ijms21228677. [PMID: 33213002 PMCID: PMC7698587 DOI: 10.3390/ijms21228677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 11/28/2022] Open
Abstract
Photoreceptor disc component (PRCD) is a small protein which is exclusively localized to photoreceptor outer segments, and is involved in the formation of photoreceptor outer segment discs. Mutations in PRCD are associated with retinal degeneration in humans, mice, and dogs. The purpose of this work was to identify PRCD-binding proteins in the retina. PRCD protein-protein interactions were identified when implementing the Ras recruitment system (RRS), a cytoplasmic-based yeast two-hybrid system, on a bovine retina cDNA library. An interaction between PRCD and tubby-like protein 1 (TULP1) was identified. Co-immunoprecipitation in transfected mammalian cells confirmed that PRCD interacts with TULP1, as well as with its homolog, TUB. These interactions were mediated by TULP1 and TUB highly conserved C-terminal tubby domain. PRCD localization was altered in the retinas of TULP1- and TUB-deficient mice. These results show that TULP1 and TUB, which are involved in the vesicular trafficking of several photoreceptor proteins from the inner segment to the outer segment, are also required for PRCD exclusive localization to photoreceptor outer segment discs.
Collapse
|
27
|
Sechrest ER, Murphy J, Senapati S, Goldberg AFX, Park PSH, Kolandaivelu S. Loss of PRCD alters number and packaging density of rhodopsin in rod photoreceptor disc membranes. Sci Rep 2020; 10:17885. [PMID: 33087780 PMCID: PMC7577997 DOI: 10.1038/s41598-020-74628-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023] Open
Abstract
Progressive rod-cone degeneration (PRCD) is a small protein localized to photoreceptor outer segment (OS) disc membranes. Several mutations in PRCD are linked to retinitis pigmentosa (RP) in canines and humans, and while recent studies have established that PRCD is required for high fidelity disc morphogenesis, its precise role in this process remains a mystery. To better understand the part which PRCD plays in disease progression as well as its contribution to photoreceptor OS disc morphogenesis, we generated a Prcd-KO animal model using CRISPR/Cas9. Loss of PRCD from the retina results in reduced visual function accompanied by slow rod photoreceptor degeneration. We observed a significant decrease in rhodopsin levels in Prcd-KO retina prior to photoreceptor degeneration. Furthermore, ultrastructural analysis demonstrates that rod photoreceptors lacking PRCD display disoriented and dysmorphic OS disc membranes. Strikingly, atomic force microscopy reveals that many disc membranes in Prcd-KO rod photoreceptor neurons are irregular, containing fewer rhodopsin molecules and decreased rhodopsin packing density compared to wild-type discs. This study strongly suggests an important role for PRCD in regulation of rhodopsin incorporation and packaging density into disc membranes, a process which, when dysregulated, likely gives rise to the visual defects observed in patients with PRCD-associated RP.
Collapse
Affiliation(s)
- Emily R Sechrest
- Department of Pharmaceutical Sciences, One Medical Center Drive, West Virginia University, Morgantown, WV, 26506-9193, USA.,Department of Ophthalmology and Visual Sciences, Eye Institute, One Medical Center Drive, West Virginia University, Morgantown, WV, 26506-9193, USA
| | - Joseph Murphy
- Department of Ophthalmology and Visual Sciences, Eye Institute, One Medical Center Drive, West Virginia University, Morgantown, WV, 26506-9193, USA.,Department of Biochemistry, One Medical Center Drive, West Virginia University, Morgantown, WV, 26506-9193, USA
| | - Subhadip Senapati
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | | | - Paul S-H Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Saravanan Kolandaivelu
- Department of Ophthalmology and Visual Sciences, Eye Institute, One Medical Center Drive, West Virginia University, Morgantown, WV, 26506-9193, USA. .,Department of Biochemistry, One Medical Center Drive, West Virginia University, Morgantown, WV, 26506-9193, USA.
| |
Collapse
|
28
|
Hitti-Malin RJ, Burmeister LM, Ricketts SL, Lewis TW, Pettitt L, Boursnell M, Schofield EC, Sargan D, Mellersh CS. A LINE-1 insertion situated in the promoter of IMPG2 is associated with autosomal recessive progressive retinal atrophy in Lhasa Apso dogs. BMC Genet 2020; 21:100. [PMID: 32894063 PMCID: PMC7487703 DOI: 10.1186/s12863-020-00911-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 08/30/2020] [Indexed: 12/30/2022] Open
Abstract
Background Canine progressive retinal atrophies are a group of hereditary retinal degenerations in dogs characterised by depletion of photoreceptor cells in the retina, which ultimately leads to blindness. PRA in the Lhasa Apso (LA) dog has not previously been clinically characterised or described in the literature, but owners in the UK are advised to have their dog examined through the British Veterinary Association/ Kennel Club/ International Sheep Dog Society (BVA/KC/ISDS) eye scheme annually, and similar schemes that are in operation in other countries. After the exclusion of 25 previously reported canine retinal mutations in LA PRA-affected dogs, we sought to identify the genetic cause of PRA in this breed. Results Analysis of whole-exome sequencing data of three PRA-affected LA and three LA without signs of PRA did not identify any exonic or splice site variants, suggesting the causal variant was non-exonic. We subsequently undertook a genome-wide association study (GWAS), which identified a 1.3 Mb disease-associated region on canine chromosome 33, followed by whole-genome sequencing analysis that revealed a long interspersed element-1 (LINE-1) insertion upstream of the IMPG2 gene. IMPG2 has previously been implicated in human retinal disease; however, until now no canine PRAs have been associated with this gene. The identification of this PRA-associated variant has enabled the development of a DNA test for this form of PRA in the breed, here termed PRA4 to distinguish it from other forms of PRA described in other breeds. This test has been used to determine the genotypes of over 900 LA dogs. A large cohort of genotyped dogs was used to estimate the allele frequency as between 0.07–0.1 in the UK LA population. Conclusions Through the use of GWAS and subsequent sequencing of a PRA case, we have identified a LINE-1 insertion in the retinal candidate gene IMPG2 that is associated with a form of PRA in the LA dog. Validation of this variant in 447 dogs of 123 breeds determined it was private to LA dogs. We envisage that, over time, the developed DNA test will offer breeders the opportunity to avoid producing dogs affected with this form of PRA.
Collapse
Affiliation(s)
- Rebekkah J Hitti-Malin
- Kennel Club Genetics Centre, Animal Health Trust, Lanwades Park, Newmarket, Suffolk, CB8 7UU, UK. .,Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK.
| | - Louise M Burmeister
- Kennel Club Genetics Centre, Animal Health Trust, Lanwades Park, Newmarket, Suffolk, CB8 7UU, UK
| | - Sally L Ricketts
- Kennel Club Genetics Centre, Animal Health Trust, Lanwades Park, Newmarket, Suffolk, CB8 7UU, UK
| | - Thomas W Lewis
- The Kennel Club, London, W1J 8AB, UK.,School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington, Leicestershire, LE12 5RD, UK
| | - Louise Pettitt
- Kennel Club Genetics Centre, Animal Health Trust, Lanwades Park, Newmarket, Suffolk, CB8 7UU, UK
| | - Mike Boursnell
- Kennel Club Genetics Centre, Animal Health Trust, Lanwades Park, Newmarket, Suffolk, CB8 7UU, UK
| | - Ellen C Schofield
- Kennel Club Genetics Centre, Animal Health Trust, Lanwades Park, Newmarket, Suffolk, CB8 7UU, UK
| | - David Sargan
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Cathryn S Mellersh
- Kennel Club Genetics Centre, Animal Health Trust, Lanwades Park, Newmarket, Suffolk, CB8 7UU, UK
| |
Collapse
|
29
|
Spencer WJ, Lewis TR, Pearring JN, Arshavsky VY. Photoreceptor Discs: Built Like Ectosomes. Trends Cell Biol 2020; 30:904-915. [PMID: 32900570 DOI: 10.1016/j.tcb.2020.08.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 01/22/2023]
Abstract
The light-sensitive outer segment organelle of the vertebrate photoreceptor cell is a modified cilium filled with hundreds of flattened 'disc' membranes that provide vast light-absorbing surfaces. The outer segment is constantly renewed with new discs added at its base every day. This continuous process is essential for photoreceptor viability. In this review, we describe recent breakthroughs in the understanding of disc morphogenesis, with a focus on the molecular mechanisms responsible for initiating disc formation from the ciliary membrane. We highlight the discoveries that this mechanism evolved from an innate ciliary process of releasing small extracellular vesicles, or ectosomes, and that both disc formation and ectosome release rely on the actin cytoskeleton.
Collapse
Affiliation(s)
- William J Spencer
- Albert Eye Research Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Tylor R Lewis
- Albert Eye Research Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Jillian N Pearring
- Department of Ophthalmology, University of Michigan, Ann Arbor, MI 48105, USA; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48105, USA
| | - Vadim Y Arshavsky
- Albert Eye Research Institute, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
30
|
Baker L, Muir P, Sample SJ. Genome-wide association studies and genetic testing: understanding the science, success, and future of a rapidly developing field. J Am Vet Med Assoc 2020; 255:1126-1136. [PMID: 31687891 DOI: 10.2460/javma.255.10.1126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dog owners are increasingly interested in using commercially available testing panels to learn about the genetics of their pets, both to identify breed ancestry and to screen for specific genetic diseases. Helping owners interpret and understand results from genetic screening panels is becoming an important issue facing veterinarians. The objective of this review article is to introduce basic concepts behind genetic studies and current genetic screening tests while highlighting their value in veterinary medicine. The potential uses and limitations of commercially available genetic testing panels as screening tests are discussed, including appropriate cautions regarding the interpretation of results. Future directions, particularly with regard to the study of common complex genetic diseases, are also described.
Collapse
|
31
|
Collin GB, Gogna N, Chang B, Damkham N, Pinkney J, Hyde LF, Stone L, Naggert JK, Nishina PM, Krebs MP. Mouse Models of Inherited Retinal Degeneration with Photoreceptor Cell Loss. Cells 2020; 9:cells9040931. [PMID: 32290105 PMCID: PMC7227028 DOI: 10.3390/cells9040931] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022] Open
Abstract
Inherited retinal degeneration (RD) leads to the impairment or loss of vision in millions of individuals worldwide, most frequently due to the loss of photoreceptor (PR) cells. Animal models, particularly the laboratory mouse, have been used to understand the pathogenic mechanisms that underlie PR cell loss and to explore therapies that may prevent, delay, or reverse RD. Here, we reviewed entries in the Mouse Genome Informatics and PubMed databases to compile a comprehensive list of monogenic mouse models in which PR cell loss is demonstrated. The progression of PR cell loss with postnatal age was documented in mutant alleles of genes grouped by biological function. As anticipated, a wide range in the onset and rate of cell loss was observed among the reported models. The analysis underscored relationships between RD genes and ciliary function, transcription-coupled DNA damage repair, and cellular chloride homeostasis. Comparing the mouse gene list to human RD genes identified in the RetNet database revealed that mouse models are available for 40% of the known human diseases, suggesting opportunities for future research. This work may provide insight into the molecular players and pathways through which PR degenerative disease occurs and may be useful for planning translational studies.
Collapse
Affiliation(s)
- Gayle B. Collin
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Navdeep Gogna
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Bo Chang
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Nattaya Damkham
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Jai Pinkney
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Lillian F. Hyde
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Lisa Stone
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Jürgen K. Naggert
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Patsy M. Nishina
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
- Correspondence: (P.M.N.); (M.P.K.); Tel.: +1-207-2886-383 (P.M.N.); +1-207-2886-000 (M.P.K.)
| | - Mark P. Krebs
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
- Correspondence: (P.M.N.); (M.P.K.); Tel.: +1-207-2886-383 (P.M.N.); +1-207-2886-000 (M.P.K.)
| |
Collapse
|
32
|
Winkler PA, Occelli LM, Petersen-Jones SM. Large Animal Models of Inherited Retinal Degenerations: A Review. Cells 2020; 9:cells9040882. [PMID: 32260251 PMCID: PMC7226744 DOI: 10.3390/cells9040882] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
Studies utilizing large animal models of inherited retinal degeneration (IRD) have proven important in not only the development of translational therapeutic approaches, but also in improving our understanding of disease mechanisms. The dog is the predominant species utilized because spontaneous IRD is common in the canine pet population. Cats are also a source of spontaneous IRDs. Other large animal models with spontaneous IRDs include sheep, horses and non-human primates (NHP). The pig has also proven valuable due to the ease in which transgenic animals can be generated and work is ongoing to produce engineered models of other large animal species including NHP. These large animal models offer important advantages over the widely used laboratory rodent models. The globe size and dimensions more closely parallel those of humans and, most importantly, they have a retinal region of high cone density and denser photoreceptor packing for high acuity vision. Laboratory rodents lack such a retinal region and, as macular disease is a critical cause for vision loss in humans, having a comparable retinal region in model species is particularly important. This review will discuss several large animal models which have been used to study disease mechanisms relevant for the equivalent human IRD.
Collapse
|
33
|
A putative silencer variant in a spontaneous canine model of retinitis pigmentosa. PLoS Genet 2020; 16:e1008659. [PMID: 32150541 PMCID: PMC7082071 DOI: 10.1371/journal.pgen.1008659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 03/19/2020] [Accepted: 02/06/2020] [Indexed: 01/19/2023] Open
Abstract
Retinitis pigmentosa (RP) is the leading cause of blindness with nearly two million people affected worldwide. Many genes have been implicated in RP, yet in 30–80% of the RP patients the genetic cause remains unknown. A similar phenotype, progressive retinal atrophy (PRA), affects many dog breeds including the Miniature Schnauzer. We performed clinical, genetic and functional experiments to identify the genetic cause of PRA in the breed. The age of onset and pattern of disease progression suggested that at least two forms of PRA, types 1 and 2 respectively, affect the breed, which was confirmed by genome-wide association study that implicated two distinct genomic loci in chromosomes 15 and X, respectively. Whole-genome sequencing revealed a fully segregating recessive regulatory variant in type 1 PRA. The associated variant has a very recent origin based on haplotype analysis and lies within a regulatory site with the predicted binding site of HAND1::TCF3 transcription factor complex. Luciferase assays suggested that mutated regulatory sequence increases expression. Case-control retinal expression comparison of six best HAND1::TCF3 target genes were analyzed with quantitative reverse-transcriptase PCR assay and indicated overexpression of EDN2 and COL9A2 in the affected retina. Defects in both EDN2 and COL9A2 have been previously associated with retinal degeneration. In summary, our study describes two genetically different forms of PRA and identifies a fully penetrant variant in type 1 form with a possible regulatory effect. This would be among the first reports of a regulatory variant in retinal degeneration in any species, and establishes a new spontaneous dog model to improve our understanding of retinal biology and gene regulation while the affected breed will benefit from a reliable genetic testing. Retinitis pigmentosa (RP) is a blinding eye disease that affects nearly two million people worldwide. Several genes and variants have been associated with the disease, but still 30–80% of the patients lack genetic diagnosis. There is currently no standard treatment for RP, and much is expected from gene therapy. A similar disease, called progressive retinal atrophy (PRA), affects many dog breeds. We performed clinical, genetic and functional analyses to find the genetic cause for PRA in Miniature Schnauzers. We discovered two forms of PRA in the breed, named type 1 and 2, and show that they are genetically distinct as they map to different chromosomes, 15 and X, respectively. Further genetic, bioinformatic and functional analyses discovered a fully penetrant recessive variant in a putative silencer region for type 1 PRA. Silencer regions are important for gene regulation and we found that two of its predicted target genes, EDN2 and COL9A2, were overexpressed in the retina of the affected dog. Defects in both EDN2 and COL9A2 have been associated with retinal degeneration. This study provides new insights to retinal biology while the genetic test guides better breeding choices.
Collapse
|
34
|
Jagannathan V, Drögemüller C, Leeb T. A comprehensive biomedical variant catalogue based on whole genome sequences of 582 dogs and eight wolves. Anim Genet 2019; 50:695-704. [PMID: 31486122 PMCID: PMC6842318 DOI: 10.1111/age.12834] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2019] [Indexed: 12/16/2022]
Abstract
The domestic dog serves as an excellent model to investigate the genetic basis of disease. More than 400 heritable traits analogous to human diseases have been described in dogs. To further canine medical genetics research, we established the Dog Biomedical Variant Database Consortium (DBVDC) and present a comprehensive list of functionally annotated genome variants that were identified with whole genome sequencing of 582 dogs from 126 breeds and eight wolves. The genomes used in the study have a minimum coverage of 10× and an average coverage of ~24×. In total, we identified 23 133 692 single-nucleotide variants (SNVs) and 10 048 038 short indels, including 93% undescribed variants. On average, each individual dog genome carried ∼4.1 million single-nucleotide and ~1.4 million short-indel variants with respect to the reference genome assembly. About 2% of the variants were located in coding regions of annotated genes and loci. Variant effect classification showed 247 141 SNVs and 99 562 short indels having moderate or high impact on 11 267 protein-coding genes. On average, each genome contained heterozygous loss-of-function variants in 30 potentially embryonic lethal genes and 97 genes associated with developmental disorders. More than 50 inherited disorders and traits have been unravelled using the DBVDC variant catalogue, enabling genetic testing for breeding and diagnostics. This resource of annotated variants and their corresponding genotype frequencies constitutes a highly useful tool for the identification of potential variants causative for rare inherited disorders in dogs.
Collapse
Affiliation(s)
- V Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - C Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - T Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
35
|
Allele Frequency of the C.5G>A Mutation in the PRCD Gene Responsible for Progressive Retinal Atrophy in English Cocker Spaniel Dogs. Animals (Basel) 2019; 9:ani9100844. [PMID: 31640229 PMCID: PMC6826964 DOI: 10.3390/ani9100844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/04/2019] [Accepted: 10/11/2019] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Progressive retinal atrophy (PRA) in English cocker spaniels (ECSs) is associated with progressive rod–cone degeneration (prcd-PRA), an inherited autosomal recessive disease caused by the c.5G>A mutation in the progressive rod–cone degeneration (PRCD) gene. Data regarding the prevalence of the mutated allele are scarce in the global literature, and there is no study evaluating this frequency in Brazil. Therefore, the aim of this study was to evaluate the allele frequency of the c.5G>A mutation in the PRCD gene responsible for progressive retinal atrophy (prcd-PRA) in ECS dogs. Abstract Progressive retinal atrophy (PRA) due to the c.5G>A mutation in the progressive rod–cone degeneration (PRCD) gene is an important genetic disease in English cocker spaniel (ECS) dogs. Because the prevalence of this disease has not been verified in Brazil, this study aimed to evaluate the allele frequency of the c.5G>A mutation in the PRCD gene. Purified DNA from 220 ECS dogs was used for genotyping, of which 131 were registered from 18 different kennels and 89 were unregistered. A clinical eye examination was performed in 28 of the genotyped animals; 10 were homozygous mutants. DNA fragments containing the mutation region were amplified by PCR and subjected to direct genomic sequencing. The prcd-PRA allele frequency was 25.5%. Among the registered dogs, the allele frequency was 14.9%; among the dogs with no history of registration, the allele frequency was 41%. Visual impairment was observed in 80% (8/10) of the homozygous mutant animals that underwent clinical eye examination. The high mutation frequency found in this study emphasizes the importance of genotyping ECSs as an early diagnostic test, especially as part of an informed breeding program, to avoid clinical cases of PRA.
Collapse
|
36
|
Blond F, Léveillard T. Functional Genomics of the Retina to Elucidate its Construction and Deconstruction. Int J Mol Sci 2019; 20:E4922. [PMID: 31590277 PMCID: PMC6801968 DOI: 10.3390/ijms20194922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/01/2019] [Indexed: 12/20/2022] Open
Abstract
The retina is the light sensitive part of the eye and nervous tissue that have been used extensively to characterize the function of the central nervous system. The retina has a central position both in fundamental biology and in the physiopathology of neurodegenerative diseases. We address the contribution of functional genomics to the understanding of retinal biology by reviewing key events in their historical perspective as an introduction to major findings that were obtained through the study of the retina using genomics, transcriptomics and proteomics. We illustrate our purpose by showing that most of the genes of interest for retinal development and those involved in inherited retinal degenerations have a restricted expression to the retina and most particularly to photoreceptors cells. We show that the exponential growth of data generated by functional genomics is a future challenge not only in terms of storage but also in terms of accessibility to the scientific community of retinal biologists in the future. Finally, we emphasize on novel perspectives that emerge from the development of redox-proteomics, the new frontier in retinal biology.
Collapse
Affiliation(s)
- Frédéric Blond
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France.
| | - Thierry Léveillard
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France.
| |
Collapse
|
37
|
Yeo JH, Jung BK, Lee H, Baek IJ, Sung YH, Shin HS, Kim HK, Seo KY, Lee JY. Development of a Pde6b Gene Knockout Rat Model for Studies of Degenerative Retinal Diseases. Invest Ophthalmol Vis Sci 2019; 60:1519-1526. [PMID: 31009522 DOI: 10.1167/iovs.18-25556] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To describe the phenotypes of a newly developed Pde6b-deficient rat model of retinal degeneration. Methods Pde6b knockout rats were produced by CRISPR-Cpf1 technology. Pde6b knockout rats were evaluated for ocular abnormalities by comparison with wild-type eyes. Eyes were imaged using fundus photography and optical coherence tomography (OCT), stained by hematoxylin and eosin (H&E), and examined by TUNEL assay. Finally, eyes were functionally assessed by electroretinograms (ERGs). Results Pde6b knockout rats exhibited visible photoreceptor degeneration at 3 weeks of postnatal age. The fundus appearance of mutants was notable for pigmentary changes, vascular attenuation with an irregular vascular pattern, and outer retinal thinning, which resembled retinitis pigmentosa (RP) in humans. OCT showed profound retinal thinning in Pde6b knockout rats; the outer nuclear layer (ONL) was significantly thinner in Pde6b knockout rats, with relative preservation of the inner retina at 3 weeks of postnatal age. H&E staining confirmed extensive degeneration of the ONL, beginning at 3 weeks of postnatal age; no ONL remained in the retina by 16 weeks of postnatal age. Retinal sections of Pde6b knockout rats were highly positive for TUNEL, specifically in the ONL. In ERGs, Pde6b knockout rats showed no detectable a- or b-waves at 8 weeks of postnatal age. Conclusions The Pde6b knockout rat exhibits photoreceptor degeneration. It may provide a better model for experimental therapy for RP because of its slower progression and larger anatomic architecture than the corresponding mouse model. Further studies in this rat model may yield insights into effective therapies for human RP.
Collapse
Affiliation(s)
- Joon Hyung Yeo
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Bok Kyoung Jung
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | - Heuiran Lee
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, Korea.,Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
| | - In-Jeoung Baek
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea.,Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, Korea
| | - Young Hoon Sung
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea.,Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, Korea
| | - Hae-Sol Shin
- Korea Mouse Sensory Phenotyping Center (KMSPC), Yonsei University College of Medicine, Seoul, Korea.,Institute for Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - Hong Kyung Kim
- Korea Mouse Sensory Phenotyping Center (KMSPC), Yonsei University College of Medicine, Seoul, Korea.,Institute for Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - Kyoung Yul Seo
- Korea Mouse Sensory Phenotyping Center (KMSPC), Yonsei University College of Medicine, Seoul, Korea.,Institute for Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - Joo Yong Lee
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
38
|
Spencer WJ, Ding JD, Lewis TR, Yu C, Phan S, Pearring JN, Kim KY, Thor A, Mathew R, Kalnitsky J, Hao Y, Travis AM, Biswas SK, Lo WK, Besharse JC, Ellisman MH, Saban DR, Burns ME, Arshavsky VY. PRCD is essential for high-fidelity photoreceptor disc formation. Proc Natl Acad Sci U S A 2019; 116:13087-13096. [PMID: 31189593 PMCID: PMC6601265 DOI: 10.1073/pnas.1906421116] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Progressive rod-cone degeneration (PRCD) is a small protein residing in the light-sensitive disc membranes of the photoreceptor outer segment. Until now, the function of PRCD has remained enigmatic despite multiple demonstrations that its mutations cause blindness in humans and dogs. Here, we generated a PRCD knockout mouse and observed a striking defect in disc morphogenesis, whereby newly forming discs do not properly flatten. This leads to the budding of disc-derived vesicles, specifically at the site of disc morphogenesis, which accumulate in the interphotoreceptor matrix. The defect in nascent disc flattening only minimally alters the photoreceptor outer segment architecture beyond the site of new disc formation and does not affect the abundance of outer segment proteins and the photoreceptor's ability to generate responses to light. Interestingly, the retinal pigment epithelium, responsible for normal phagocytosis of shed outer segment material, lacks the capacity to clear the disc-derived vesicles. This deficiency is partially compensated by a unique pattern of microglial migration to the site of disc formation where they actively phagocytize vesicles. However, the microglial response is insufficient to prevent vesicular accumulation and photoreceptors of PRCD knockout mice undergo slow, progressive degeneration. Taken together, these data show that the function of PRCD is to keep evaginating membranes of new discs tightly apposed to each other, which is essential for the high fidelity of photoreceptor disc morphogenesis and photoreceptor survival.
Collapse
Affiliation(s)
- William J Spencer
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| | - Jin-Dong Ding
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710
| | - Tylor R Lewis
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710
| | - Chen Yu
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710
| | - Sebastien Phan
- National Center for Microscopy and Imaging Research, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Jillian N Pearring
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Andrea Thor
- National Center for Microscopy and Imaging Research, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Rose Mathew
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710
| | - Joan Kalnitsky
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710
| | - Ying Hao
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710
| | - Amanda M Travis
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| | - Sondip K Biswas
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA 30310
| | - Woo-Kuen Lo
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA 30310
| | - Joseph C Besharse
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Daniel R Saban
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710
| | - Marie E Burns
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA 95616
- Department of Ophthalmology, University of California, Davis, CA 95616
| | - Vadim Y Arshavsky
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710;
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
39
|
A SIX6 Nonsense Variant in Golden Retrievers with Congenital Eye Malformations. Genes (Basel) 2019; 10:genes10060454. [PMID: 31207931 PMCID: PMC6628151 DOI: 10.3390/genes10060454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/04/2019] [Accepted: 06/11/2019] [Indexed: 12/22/2022] Open
Abstract
Causative genetic variants for more than 30 heritable eye disorders in dogs have been reported. For other clinically described eye disorders, the genetic cause is still unclear. We investigated four Golden Retriever litters segregating for highly variable congenital eye malformations. Several affected puppies had unilateral or bilateral retina dysplasia and/or optic nerve hypoplasia. The four litters shared the same father or grandfather suggesting a heritable condition with an autosomal dominant mode of inheritance. The genome of one affected dog was sequenced and compared to 601 control genomes. A heterozygous private nonsense variant, c.487C>T, was found in the SIX6 gene. This variant is predicted to truncate about a third of the open reading frame, p.(Gln163*). We genotyped all available family members and 464 unrelated Golden Retrievers. All three available cases were heterozygous. Five additional close relatives including the common sire were also heterozygous, but did not show any obvious eye phenotypes. The variant was absent from the 464 unrelated Golden Retrievers and 17 non-affected siblings of the cases. The SIX6 protein is a homeobox transcription factor with a known role in eye development. In humans and other species, SIX6 loss of function variants were reported to cause congenital eye malformations. This strongly suggests that the c.487C>T variant detected contributed to the observed eye malformations. We hypothesize that the residual amount of functional SIX6 protein likely to be expressed in heterozygous dogs is sufficient to explain the observed incomplete penetrance and the varying severity of the eye defects in the affected dogs.
Collapse
|
40
|
Hitti RJ, Oliver JAC, Schofield EC, Bauer A, Kaukonen M, Forman OP, Leeb T, Lohi H, Burmeister LM, Sargan D, Mellersh CS. Whole Genome Sequencing of Giant Schnauzer Dogs with Progressive Retinal Atrophy Establishes NECAP1 as a Novel Candidate Gene for Retinal Degeneration. Genes (Basel) 2019; 10:genes10050385. [PMID: 31117272 PMCID: PMC6562617 DOI: 10.3390/genes10050385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/08/2019] [Accepted: 05/17/2019] [Indexed: 12/30/2022] Open
Abstract
Canine progressive retinal atrophies (PRA) are genetically heterogeneous diseases characterized by retinal degeneration and subsequent blindness. PRAs are untreatable and affect multiple dog breeds, significantly impacting welfare. Three out of seven Giant Schnauzer (GS) littermates presented with PRA around four years of age. We sought to identify the causal variant to improve our understanding of the aetiology of this form of PRA and to enable development of a DNA test. Whole genome sequencing of two PRA-affected full-siblings and both unaffected parents was performed. Variants were filtered based on those segregating appropriately for an autosomal recessive disorder and predicted to be deleterious. Successive filtering against 568 canine genomes identified a single nucleotide variant in the gene encoding NECAP endocytosis associated 1 (NECAP1): c.544G>A (p.Gly182Arg). Five thousand one hundred and thirty canids of 175 breeds, 10 cross-breeds and 3 wolves were genotyped for c.544G>A. Only the three PRA-affected GS were homozygous (allele frequency in GS, excluding proband family = 0.015). In addition, we identified heterozygotes belonging to Spitz and Dachshund varieties, demonstrating c.544G>A segregates in other breeds of German origin. This study, in parallel with the known retinal expression and role of NECAP1 in clathrin mediated endocytosis (CME) in synapses, presents NECAP1 as a novel candidate gene for retinal degeneration in dogs and other species.
Collapse
Affiliation(s)
- Rebekkah J Hitti
- Kennel Club Genetics Centre, Animal Health Trust, Lanwades Park, Newmarket, Suffolk CB8 7UU, UK.
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK.
| | - James A C Oliver
- Kennel Club Genetics Centre, Animal Health Trust, Lanwades Park, Newmarket, Suffolk CB8 7UU, UK.
| | - Ellen C Schofield
- Kennel Club Genetics Centre, Animal Health Trust, Lanwades Park, Newmarket, Suffolk CB8 7UU, UK.
| | - Anina Bauer
- Institute of Genetics, University of Bern, 3001 Bern, Switzerland.
| | - Maria Kaukonen
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland.
- Department of Medical Genetics, University of Helsinki, 00014 Helsinki, Finland.
- Folkhälsan Research Center, 00290 Helsinki, Finland.
| | - Oliver P Forman
- Wisdom Health, Waltham-on-the-Wolds, Leicestershire LE14 4RS, UK.
| | - Tosso Leeb
- Institute of Genetics, University of Bern, 3001 Bern, Switzerland.
| | - Hannes Lohi
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland.
- Department of Medical Genetics, University of Helsinki, 00014 Helsinki, Finland.
- Folkhälsan Research Center, 00290 Helsinki, Finland.
| | - Louise M Burmeister
- Kennel Club Genetics Centre, Animal Health Trust, Lanwades Park, Newmarket, Suffolk CB8 7UU, UK.
| | - David Sargan
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK.
| | - Cathryn S Mellersh
- Kennel Club Genetics Centre, Animal Health Trust, Lanwades Park, Newmarket, Suffolk CB8 7UU, UK.
| |
Collapse
|
41
|
Menon DV, Patel D, Joshi CG, Kumar A. The road less travelled: The efficacy of canine pluripotent stem cells. Exp Cell Res 2019; 377:94-102. [DOI: 10.1016/j.yexcr.2019.01.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/20/2019] [Accepted: 01/22/2019] [Indexed: 12/28/2022]
|
42
|
Natural models for retinitis pigmentosa: progressive retinal atrophy in dog breeds. Hum Genet 2019; 138:441-453. [PMID: 30904946 DOI: 10.1007/s00439-019-01999-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/14/2019] [Indexed: 01/24/2023]
Abstract
Retinitis pigmentosa (RP) is a heterogeneous group of inherited retinal disorders eventually leading to blindness with different ages of onset, progression and severity. Human RP, first characterized by the progressive degeneration of rod photoreceptor cells, shows high genetic heterogeneity with more than 90 genes identified. However, about one-third of patients have no known genetic causes. Interestingly, dogs are also severely affected by similar diseases, called progressive retinal atrophy (PRA). Indeed, RP and PRA have comparable clinical signs, physiopathology and outcomes, similar diagnosis methods and most often, orthologous genes are involved. The many different dog PRAs often segregate in specific breeds. Indeed, undesired alleles have been selected and amplified through drastic selection and excessive use of inbreeding. Out of the 400 breeds, nearly 100 have an inherited form of PRA, which are natural animal models that can be used to investigate the genetics, disease progression and therapies in dogs for the benefit of both dogs and humans. Recent knowledge on the canine genome and access to new genotyping and sequencing technologies now efficiently allows the identification of mutations involved in canine genetic diseases. To date, PRA genes identified in dog breeds correspond to the same genes in humans and represent relevant RP models, and new genes found in dogs represent good candidate for still unknown human RP. We present here a review of the main advantages of the dog models for human RP with the genes already identified and an X-linked PRA in the Border collie as a model for orphan X-linked RPs in human.
Collapse
|
43
|
Mäkeläinen S, Gòdia M, Hellsand M, Viluma A, Hahn D, Makdoumi K, Zeiss CJ, Mellersh C, Ricketts SL, Narfström K, Hallböök F, Ekesten B, Andersson G, Bergström TF. An ABCA4 loss-of-function mutation causes a canine form of Stargardt disease. PLoS Genet 2019; 15:e1007873. [PMID: 30889179 PMCID: PMC6424408 DOI: 10.1371/journal.pgen.1007873] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 12/04/2018] [Indexed: 12/30/2022] Open
Abstract
Autosomal recessive retinal degenerative diseases cause visual impairment and blindness in both humans and dogs. Currently, no standard treatment is available, but pioneering gene therapy-based canine models have been instrumental for clinical trials in humans. To study a novel form of retinal degeneration in Labrador retriever dogs with clinical signs indicating cone and rod degeneration, we used whole-genome sequencing of an affected sib-pair and their unaffected parents. A frameshift insertion in the ATP binding cassette subfamily A member 4 (ABCA4) gene (c.4176insC), leading to a premature stop codon in exon 28 (p.F1393Lfs*1395), was identified. In contrast to unaffected dogs, no full-length ABCA4 protein was detected in the retina of an affected dog. The ABCA4 gene encodes a membrane transporter protein localized in the outer segments of rod and cone photoreceptors. In humans, the ABCA4 gene is associated with Stargardt disease (STGD), an autosomal recessive retinal degeneration leading to central visual impairment. A hallmark of STGD is the accumulation of lipofuscin deposits in the retinal pigment epithelium (RPE). The discovery of a canine homozygous ABCA4 loss-of-function mutation may advance the development of dog as a large animal model for human STGD. Stargardt disease (STGD) is the most common inherited retinal disease causing visual impairment and blindness in children and young adults, affecting 1 in 8–10 thousand people. For other inherited retinal diseases, the dog has become an established comparative animal model, both for identifying the underlying genetic causes and for developing new treatment methods. To date, there is no standard treatment for STGD and the only available animal model to study the disease is the mouse. As a nocturnal animal, the morphology of the mouse eye differs from humans and therefore the mouse model is not ideal for developing methods for treatment. We have studied a novel form of retinal degeneration in Labrador retriever dogs showing clinical signs similar to human STGD. To investigate the genetic cause of the disease, we used whole-genome sequencing of a family quartet including two affected offspring and their unaffected parents. This led to the identification of a loss-of-function mutation in the ABCA4 gene. The findings of this study may enable the development of a canine model for human STGD.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily A, Member 4/chemistry
- ATP Binding Cassette Transporter, Subfamily A, Member 4/genetics
- ATP Binding Cassette Transporter, Subfamily A, Member 4/metabolism
- ATP-Binding Cassette Transporters/genetics
- Amino Acid Sequence
- Animals
- Base Sequence
- Codon, Nonsense
- Disease Models, Animal
- Dog Diseases/genetics
- Dog Diseases/metabolism
- Dog Diseases/pathology
- Dogs
- Female
- Genes, Recessive
- Homozygote
- Humans
- Lipofuscin/metabolism
- Macular Degeneration/congenital
- Macular Degeneration/genetics
- Macular Degeneration/metabolism
- Macular Degeneration/veterinary
- Male
- Microscopy, Fluorescence
- Models, Molecular
- Mutagenesis, Insertional
- Mutation
- Pedigree
- Protein Conformation
- Retina/metabolism
- Retina/pathology
- Stargardt Disease
- Whole Genome Sequencing
Collapse
Affiliation(s)
- Suvi Mäkeläinen
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Marta Gòdia
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Minas Hellsand
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Agnese Viluma
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Daniela Hahn
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Karim Makdoumi
- Department of Ophthalmology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Caroline J. Zeiss
- Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Cathryn Mellersh
- Kennel Club Genetics Centre, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, United Kingdom
| | - Sally L. Ricketts
- Kennel Club Genetics Centre, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, United Kingdom
| | - Kristina Narfström
- Section for Comparative Ophthalmology, College of Veterinary Medicine, University of Missouri-Columbia, Missouri, United States of America
| | - Finn Hallböök
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Björn Ekesten
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Göran Andersson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Tomas F. Bergström
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
44
|
Lewis TW, Mellersh CS. Changes in mutation frequency of eight Mendelian inherited disorders in eight pedigree dog populations following introduction of a commercial DNA test. PLoS One 2019; 14:e0209864. [PMID: 30650096 PMCID: PMC6334900 DOI: 10.1371/journal.pone.0209864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/12/2018] [Indexed: 12/24/2022] Open
Abstract
Introduction DNA testing for autosomal recessive disease mutations in many dog breeds is now relatively commonplace. There have, however, been few efforts made to determine changes in the frequency of disease causing mutations as a result of probable selection based on the results of DNA testing. This study makes use of genotype data from both DNA test results reported to the UK Kennel Club and where known from a ‘hereditary status’ (where a definitive genotype may be inferred and ascribed based on known parental genotypes) to do so. Results The results, using all known genotype data, show a general and sizeable decline in disease causing mutation frequency across eight diseases in eight breeds (by between 12–86% in dogs born 2–4 years after publication of the mutation, and by nearly 90% or more in those born 8–10 years after). In contrast, data from test results only, while revealing an almost complete and immediate end to the production of affected individuals, show little general decline in either the derived mutation frequency or the proportion of heterozygote carriers. It appears that the numerical size of the breed is an important determinant on the rate of uptake of a DNA test (as judged by the proportion of a breed born four years after publication of the disease-causing mutation with a known genotype). Conclusion These results show that dog breeders appear to be incorporating the results of DNA testing into their selection strategies to successfully decrease the frequency of the mutation. It is shown that use of DNA test result data alone does not reveal such trends, possibly as some breeders undertake testing to determine clear stock which can then be used to produce future disease-free generations in the knowledge they are not carrying the disease causing mutation.
Collapse
Affiliation(s)
- T. W. Lewis
- The Kennel Club, London, England
- School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, England
- * E-mail:
| | - C. S. Mellersh
- The Kennel Club Genetics Centre at the Animal Health Trust, Kentford, Newmarket, Suffolk, England
| |
Collapse
|
45
|
PRCD Is a Small Disc-Specific Rhodopsin-Binding Protein of Unknown Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1185:531-535. [PMID: 31884666 DOI: 10.1007/978-3-030-27378-1_87] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
PRCD (progressive rod-cone degeneration) is a small ~6 kDa protein with unknown function that specifically resides in photoreceptor discs and interacts with rhodopsin. PRCD's discovery resulted from decades-long study of a canine retinal disease called progressive rod-cone degeneration which is one of the most frequent causes of blindness in dogs characterized by the slow, progressive death of rod photoreceptors followed by cones. A series of genetic studies eventually mapped the disease to a single point mutation in a novel gene which was then named Prcd. Highlighting the importance of this gene, this and several other mutations have been identified in human patients suffering from retinitis pigmentosa. In this review, we highlight what is currently known about PRCD protein, including the etiology and pathology of the retinal disease caused by its mutation, the protein's trafficking, localization, and biochemical characterization.
Collapse
|
46
|
Donner J, Anderson H, Davison S, Hughes AM, Bouirmane J, Lindqvist J, Lytle KM, Ganesan B, Ottka C, Ruotanen P, Kaukonen M, Forman OP, Fretwell N, Cole CA, Lohi H. Frequency and distribution of 152 genetic disease variants in over 100,000 mixed breed and purebred dogs. PLoS Genet 2018; 14:e1007361. [PMID: 29708978 PMCID: PMC5945203 DOI: 10.1371/journal.pgen.1007361] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/10/2018] [Accepted: 04/11/2018] [Indexed: 11/18/2022] Open
Abstract
Knowledge on the genetic epidemiology of disorders in the dog population has implications for both veterinary medicine and sustainable breeding. Limited data on frequencies of genetic disease variants across breeds exists, and the disease heritage of mixed breed dogs remains poorly explored to date. Advances in genetic screening technologies now enable comprehensive investigations of the canine disease heritage, and generate health-related big data that can be turned into action. We pursued population screening of genetic variants implicated in Mendelian disorders in the largest canine study sample examined to date by examining over 83,000 mixed breed and 18,000 purebred dogs representing 330 breeds for 152 known variants using a custom-designed beadchip microarray. We further announce the creation of MyBreedData (www.mybreeddata.com), an online updated inherited disorder prevalence resource with its foundation in the generated data. We identified the most prevalent, and rare, disease susceptibility variants across the general dog population while providing the first extensive snapshot of the mixed breed disease heritage. Approximately two in five dogs carried at least one copy of a tested disease variant. Most disease variants are shared by both mixed breeds and purebreds, while breed- or line-specificity of others is strongly suggested. Mixed breed dogs were more likely to carry a common recessive disease, whereas purebreds were more likely to be genetically affected with one, providing DNA-based evidence for hybrid vigor. We discovered genetic presence of 22 disease variants in at least one additional breed in which they were previously undescribed. Some mutations likely manifest similarly independently of breed background; however, we emphasize the need for follow up investigations in each case and provide a suggested validation protocol for broader consideration. In conclusion, our study provides unique insight into genetic epidemiology of canine disease risk variants, and their relevance for veterinary medicine, breeding programs and animal welfare. Like any human, dogs may suffer from or pass on a variety of inherited disorders. Knowledge of how likely a typical dog is to carry an inherited disorder in its genome, and which disorders are the most common and relevant ones across dog breeds, is valuable for both veterinary care and breeding of healthy dogs. We have explored the largest global dog study sample collected to date, consisting of more than 100,000 mixed breed and purebred dogs, to advance research on this subject. We found that mixed breed dogs and purebred dogs potentially suffer from many of the same inherited disorders, and that around two in five dogs carried at least one of the conditions that we screened for. A dog carrying an inherited disorder is not a “bad dog”–but we humans responsible for breeding selections do need to make sustainable decisions avoiding inbreeding, i.e. mating of dogs that are close relatives. The disease prevalence information we generated during this study is made available online (www.mybreeddata.com), as a free tool for breed and kennel clubs, breeders, as well as the veterinary and scientific community.
Collapse
Affiliation(s)
- Jonas Donner
- Genoscoper Laboratories, Helsinki, Finland
- * E-mail:
| | | | - Stephen Davison
- Wisdom Health, Waltham-on-the-Wolds, Leicestershire, United Kingdom
| | | | | | - Johan Lindqvist
- Genoscoper Laboratories, Helsinki, Finland
- MediSapiens Ltd., Helsinki, Finland
| | | | | | | | | | - Maria Kaukonen
- Research Programs Unit—Molecular Neurology, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Oliver P. Forman
- Wisdom Health, Waltham-on-the-Wolds, Leicestershire, United Kingdom
| | - Neale Fretwell
- Wisdom Health, Vancouver, Washington, United States of America
| | - Cynthia A. Cole
- Wisdom Health, Vancouver, Washington, United States of America
| | - Hannes Lohi
- Genoscoper Laboratories, Helsinki, Finland
- Research Programs Unit—Molecular Neurology, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, Helsinki, Finland
| |
Collapse
|
47
|
Karlskov-Mortensen P, Proschowsky HF, Gao F, Fredholm M. Identification of the mutation causing progressive retinal atrophy in Old Danish Pointing Dog. Anim Genet 2018; 49:237-241. [DOI: 10.1111/age.12659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2018] [Indexed: 12/23/2022]
Affiliation(s)
- P. Karlskov-Mortensen
- Animal Genetics, Bioinformatics & Breeding; Department of Veterinary & Animal Sciences; Faculty of Health & Medical Sciences; University of Copenhagen; Grønnegårdsvej 3 DK-1870 Frederiksberg C Denmark
| | | | - F. Gao
- Agricultural Genomes Institute at Shenzhen; Chinese Agricultural Academy of Sciences; Shenzhen China
| | - M. Fredholm
- Animal Genetics, Bioinformatics & Breeding; Department of Veterinary & Animal Sciences; Faculty of Health & Medical Sciences; University of Copenhagen; Grønnegårdsvej 3 DK-1870 Frederiksberg C Denmark
| |
Collapse
|
48
|
Takanosu M. Different allelic frequency of progressive rod-cone degeneration in two populations of Labrador Retrievers in Japan. J Vet Med Sci 2017; 79:1746-1748. [PMID: 28855430 PMCID: PMC5658571 DOI: 10.1292/jvms.17-0243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Progressive rod-cone degeneration (PRCD) is an autosomal recessive disease caused by
c.5G>A mutation of the PRCD exon 2. This mutation has been identified
in various breeds, including Labrador Retriever. The present study aimed to examine the
allelic frequency of PRCD in Labrador Retrievers in Japan. A domestic and a guide dog
population were genotyped for PRCD using polymerase chain reaction-restriction fragment
length polymorphism. The allelic frequency of c.5G>A in domestic and guide dog
populations (0.114 and 0.026, respectively) differed significantly. The allele with
c.5G>A mutation appeared to spread widely in the domestic population as compared to
that in the guide dog population. This might be the result of mating control for PRCD in
the guide dog population.
Collapse
Affiliation(s)
- Masamine Takanosu
- Nasunogahara Animal Clinic, 2-3574-98, Asaka, Ohtawara, Tochigi 342-0043, Japan
| |
Collapse
|
49
|
Everson R, Pettitt L, Forman OP, Dower-Tylee O, McLaughlin B, Ahonen S, Kaukonen M, Komáromy AM, Lohi H, Mellersh CS, Sansom J, Ricketts SL. An intronic LINE-1 insertion in MERTK is strongly associated with retinopathy in Swedish Vallhund dogs. PLoS One 2017; 12:e0183021. [PMID: 28813472 PMCID: PMC5558984 DOI: 10.1371/journal.pone.0183021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 07/30/2017] [Indexed: 12/31/2022] Open
Abstract
The domestic dog segregates a significant number of inherited progressive retinal diseases, several of which mirror human retinal diseases and which are collectively termed progressive retinal atrophy (PRA). In 2014, a novel form of PRA was reported in the Swedish Vallhund breed, and the disease was mapped to canine chromosome 17. The causal mutation was not identified, but expression analyses of the retinas of affected Vallhunds demonstrated a 6-fold increased expression of the MERTK gene compared to unaffected dogs. Using 24 retinopathy cases and 97 controls with no clinical signs of retinopathy, we replicated the chromosome 17 association in Swedish Vallhunds from the UK and aimed to elucidate the causal variant underlying this association using whole genome sequencing (WGS) of an affected dog. This revealed a 6-8 kb insertion in intron 1 of MERTK that was not present in WGS of 49 dogs of other breeds. Sequencing and BLASTN analysis of the inserted segment was consistent with the insertion comprising a full-length intact LINE-1 retroelement. Testing of the LINE-1 insertion for association with retinopathy in the UK set of 24 cases and 97 controls revealed a strong statistical association (P-value 6.0 x 10-11) that was subsequently replicated in the original Finnish study set (49 cases and 89 controls (P-value 4.3 x 10-19). In a pooled analysis of both studies (73 cases and 186 controls), the LINE-1 insertion was associated with a ~20-fold increased risk of retinopathy (odds ratio 23.41, 95% confidence intervals 10.99-49.86, P-value 1.3 x 10-27). Our study adds further support for regulatory disruption of MERTK in Swedish Vallhund retinopathy; however, further work is required to establish a functional overexpression model. Future work to characterise the mechanism by which this intronic mutation disrupts gene regulation will further improve the understanding of MERTK biology and its role in retinal function.
Collapse
Affiliation(s)
- Richard Everson
- Centre for Small Animal Studies–Ophthalmology Unit, Animal Health Trust, Kentford, Newmarket, Suffolk, United Kingdom
| | - Louise Pettitt
- Canine Genetics Research Group, Kennel Club Genetics Centre, Animal Health Trust, Kentford, Newmarket, Suffolk, United Kingdom
| | - Oliver P. Forman
- Canine Genetics Research Group, Kennel Club Genetics Centre, Animal Health Trust, Kentford, Newmarket, Suffolk, United Kingdom
| | - Olivia Dower-Tylee
- Canine Genetics Research Group, Kennel Club Genetics Centre, Animal Health Trust, Kentford, Newmarket, Suffolk, United Kingdom
| | - Bryan McLaughlin
- Canine Genetics Research Group, Kennel Club Genetics Centre, Animal Health Trust, Kentford, Newmarket, Suffolk, United Kingdom
| | - Saija Ahonen
- Department of Veterinary Biosciences and Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- The Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Maria Kaukonen
- Department of Veterinary Biosciences and Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- The Folkhälsan Institute of Genetics, Helsinki, Finland
| | - András M. Komáromy
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, United States of America
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Hannes Lohi
- Department of Veterinary Biosciences and Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- The Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Cathryn S. Mellersh
- Canine Genetics Research Group, Kennel Club Genetics Centre, Animal Health Trust, Kentford, Newmarket, Suffolk, United Kingdom
| | - Jane Sansom
- Centre for Small Animal Studies–Ophthalmology Unit, Animal Health Trust, Kentford, Newmarket, Suffolk, United Kingdom
| | - Sally L. Ricketts
- Canine Genetics Research Group, Kennel Club Genetics Centre, Animal Health Trust, Kentford, Newmarket, Suffolk, United Kingdom
- * E-mail:
| |
Collapse
|
50
|
A Coding Variant in the Gene Bardet-Biedl Syndrome 4 ( BBS4) Is Associated with a Novel Form of Canine Progressive Retinal Atrophy. G3-GENES GENOMES GENETICS 2017; 7:2327-2335. [PMID: 28533336 PMCID: PMC5499139 DOI: 10.1534/g3.117.043109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Progressive retinal atrophy is a common cause of blindness in the dog and affects >100 breeds. It is characterized by gradual vision loss that occurs due to the degeneration of photoreceptor cells in the retina. Similar to the human counterpart retinitis pigmentosa, the canine disorder is clinically and genetically heterogeneous and the underlying cause remains unknown for many cases. We use a positional candidate gene approach to identify putative variants in the Hungarian Puli breed using genotyping data of 14 family-based samples (CanineHD BeadChip array, Illumina) and whole-genome sequencing data of two proband and two parental samples (Illumina HiSeq 2000). A single nonsense SNP in exon 2 of BBS4 (c.58A > T, p.Lys20*) was identified following filtering of high quality variants. This allele is highly associated (PCHISQ = 3.425e-14, n = 103) and segregates perfectly with progressive retinal atrophy in the Hungarian Puli. In humans, BBS4 is known to cause Bardet-Biedl syndrome which includes a retinitis pigmentosa phenotype. From the observed coding change we expect that no functional BBS4 can be produced in the affected dogs. We identified canine phenotypes comparable with Bbs4-null mice including obesity and spermatozoa flagella defects. Knockout mice fail to form spermatozoa flagella. In the affected Hungarian Puli spermatozoa flagella are present, however a large proportion of sperm are morphologically abnormal and <5% are motile. This suggests that BBS4 contributes to flagella motility but not formation in the dog. Our results suggest a promising opportunity for studying Bardet-Biedl syndrome in a large animal model.
Collapse
|