1
|
Hou X, Liao Q, Wu Y, Wang L, Zhao J, Liao X. Hypomethylation-Mediated Upregulation of NFE2L3 Promotes Malignant Phenotypes of Clear Cell Renal Cell Carcinoma Cells. Mol Biotechnol 2024; 66:198-207. [PMID: 37071304 DOI: 10.1007/s12033-023-00727-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/15/2023] [Indexed: 04/19/2023]
Abstract
This work aimed to study the effect of NFE2 like bZIP transcription factor 3 (NFE2L3) on clear cell renal cell carcinoma (ccRCC) cells and whether NFE2L3 expression was mediated by DNA methylation. Twenty-one ccRCC patients were collected. The gene methylation and expression data of TCGA-KIRC were accessed from TCGA. Candidate methylation driver genes were identified by "MethylMix" package, and finally, NFE2L3 was selected as the target gene. The methylation of NFE2L3 was assayed by Ms PCR and QMSP. mRNA level of NFE2L3 was analyzed by qRT-PCR. Protein level of NFE2L3 was measured by Western blot. Demethylation was performed with methylation inhibitor 5-Aza-2'-deoxycytidine (5-Aza-CdR). Proliferative, migratory, and invasive abilities of ccRCC cells were assayed via cell colony formation assay, scratch healing assay, and transwell assay, respectively. Analysis of TCGA database presented that DNA hypomethylation occurred in the NFE2L3 promoter region in ccRCC tissues. NFE2L3 was significantly upregulated in ccRCC tissues and cells. Its expression in cells treated with 5-Aza-CdR was proportional to the concentration of methylation inhibitor. In cell function experiments, overexpressing NFE2L3 or demethylation could stimulate proliferation, migration, and invasion abilities of ccRCC and normal cells. 5-Aza-CdR treatment rescued repressive impact of knockdown NFE2L3 on malignant phenotypes of ccRCC and normal cells. DNA hypomethylation could induce high expression of NFE2L3 and facilitate malignant phenotypes of ccRCC cells. These results may generate insights into ccRCC therapy.
Collapse
Affiliation(s)
- Xuehua Hou
- Department of Oncology, Shulan(Hangzhou)Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, 310022, Zhejiang, China
| | - Qin Liao
- Department of Oncology, Shulan(Hangzhou)Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, 310022, Zhejiang, China
| | - Ying Wu
- Department of Oncology, Shulan(Hangzhou)Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, 310022, Zhejiang, China
| | - Luo Wang
- Department of Oncology, Shulan(Hangzhou)Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, 310022, Zhejiang, China
| | - Jianfeng Zhao
- Neurosurgery, Xiangshan First People's Hospital Medical and Health Group, Xiangshan, 315700, Zhejiang, China
| | - Xuhui Liao
- Department of Pathology, Lishui People's Hospital, No. 15, Volkswagen Street, Liandu District, Lishui, 323000, Zhejiang, China.
| |
Collapse
|
2
|
Nazemi M, Yanes B, Martinez ML, Walker HJ, Pham K, Collins MO, Bard F, Rainero E. The extracellular matrix supports breast cancer cell growth under amino acid starvation by promoting tyrosine catabolism. PLoS Biol 2024; 22:e3002406. [PMID: 38227562 PMCID: PMC10791009 DOI: 10.1371/journal.pbio.3002406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/26/2023] [Indexed: 01/18/2024] Open
Abstract
Breast tumours are embedded in a collagen I-rich extracellular matrix (ECM) network, where nutrients are scarce due to limited blood flow and elevated tumour growth. Metabolic adaptation is required for cancer cells to endure these conditions. Here, we demonstrated that the presence of ECM supported the growth of invasive breast cancer cells, but not non-transformed mammary epithelial cells, under amino acid starvation, through a mechanism that required macropinocytosis-dependent ECM uptake. Importantly, we showed that this behaviour was acquired during carcinoma progression. ECM internalisation, followed by lysosomal degradation, contributed to the up-regulation of the intracellular levels of several amino acids, most notably tyrosine and phenylalanine. This resulted in elevated tyrosine catabolism on ECM under starvation, leading to increased fumarate levels, potentially feeding into the tricarboxylic acid (TCA) cycle. Interestingly, this pathway was required for ECM-dependent cell growth and invasive cell migration under amino acid starvation, as the knockdown of p-hydroxyphenylpyruvate hydroxylase-like protein (HPDL), the third enzyme of the pathway, opposed cell growth and motility on ECM in both 2D and 3D systems, without affecting cell proliferation on plastic. Finally, high HPDL expression correlated with poor prognosis in breast cancer patients. Collectively, our results highlight that the ECM in the tumour microenvironment (TME) represents an alternative source of nutrients to support cancer cell growth by regulating phenylalanine and tyrosine metabolism.
Collapse
Affiliation(s)
- Mona Nazemi
- School of Biosciences, The University of Sheffield, Sheffield, United Kingdom
| | - Bian Yanes
- School of Biosciences, The University of Sheffield, Sheffield, United Kingdom
| | - Montserrat Llanses Martinez
- School of Biosciences, The University of Sheffield, Sheffield, United Kingdom
- Institute of Molecular and Cell Biology, Singapore
| | - Heather J. Walker
- biOMICS Facility, School of Biosciences, The University of Sheffield, Sheffield, United Kingdom
| | - Khoa Pham
- biOMICS Facility, School of Biosciences, The University of Sheffield, Sheffield, United Kingdom
| | - Mark O. Collins
- School of Biosciences, The University of Sheffield, Sheffield, United Kingdom
- biOMICS Facility, School of Biosciences, The University of Sheffield, Sheffield, United Kingdom
| | - Frederic Bard
- Institute of Molecular and Cell Biology, Singapore
- Centre de Recherche en Cancerologie de Marseille, CRCM, Marseille, France
| | - Elena Rainero
- School of Biosciences, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
3
|
Shen W, Wang G, Cooper GR, Jiang Y, Zhou X. The Epithelial and Stromal Immune Microenvironment in Gastric Cancer: A Comprehensive Analysis Reveals Prognostic Factors with Digital Cytometry. Cancers (Basel) 2021; 13:cancers13215382. [PMID: 34771544 PMCID: PMC8582557 DOI: 10.3390/cancers13215382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/06/2021] [Accepted: 10/18/2021] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer (GC) is the third leading cause of cancer-related deaths worldwide. Tumor heterogeneity continues to confound researchers' understanding of tumor growth and the development of an effective therapy. Digital cytometry allows interpretation of heterogeneous bulk tissue transcriptomes at the cellular level. We built a novel signature matrix to dissect epithelium and stroma signals using a scRNA-seq data set (GSE134520) for GC and then applied cell mixture deconvolution to estimate diverse epithelial, stromal, and immune cell proportions from bulk transcriptome data in four independent GC cohorts (GSE62254, GSE15459, GSE84437, and TCGA-STAD) from the GEO and TCGA databases. Robust computational methods were applied to identify strong prognostic factors for GC. We identified an EMEC population whose proportions were significantly higher in patients with stage I cancer than other stages, and it was predominantly present in tumor samples but not typically found in normal samples. We found that the ratio of EMECs to stromal cells and the ratio of adaptive T cells to monocytes were the most significant prognostic factors within the non-immune and immune factors, respectively. The STEM score, which unifies these two prognostic factors, was an independent prognostic factor of overall survival (HR = 0.92, 95% CI = 0.89-0.94, p=2.05×10-9). The entire GC cohort was stratified into three risk groups (high-, moderate-, and low-risk), which yielded incremental survival times (p<0.0001). For stage III disease, patients in the moderate- and low-risk groups experienced better survival benefits from radiation therapy ((HR = 0.16, 95% CI = 0.06-0.4, p<0.0001), whereas those in the high-risk group did not (HR = 0.49, 95% CI = 0.14-1.72, p=0.25). We concluded that the STEM score is a promising prognostic factor for gastric cancer.
Collapse
Affiliation(s)
- Wenjun Shen
- Department of Bioinformatics, Shantou University Medical College, Shantou 515041, China;
- Stanford Center for Biomedical Informatics Research (BMIR), Department of Medicine, Stanford University, Stanford, CA 94035, USA
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou 515041, China
- Correspondence: (W.S.); (Y.J.)
| | - Guoyun Wang
- Department of Bioinformatics, Shantou University Medical College, Shantou 515041, China;
| | - Georgia R. Cooper
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA; (G.R.C.); (X.Z.)
| | - Yuming Jiang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94035, USA
- Correspondence: (W.S.); (Y.J.)
| | - Xin Zhou
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA; (G.R.C.); (X.Z.)
- Department of Computer Science, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
4
|
The Genetic Background of Endometriosis: Can ESR2 and CYP19A1 Genes Be a Potential Risk Factor for Its Development? Int J Mol Sci 2020; 21:ijms21218235. [PMID: 33153202 PMCID: PMC7663510 DOI: 10.3390/ijms21218235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/22/2022] Open
Abstract
Endometriosis is defined as the presence of endometrial foci, localized beyond their primary site, i.e., the uterine cavity. The etiology of this disease is rather complex. Its development is supported by hormonal, immunological, and environmental factors. During recent years, particular attention has been focused on the genetic mechanisms that may be of particular significance for the increased incidence rates of endometriosis. According to most recent studies, ESR2 and CYP19A1 genes may account for the potential risk factors of infertility associated with endometriosis. The paper presents a thorough review of the latest reports and data concerning the genetic background of the risk for endometriosis development.
Collapse
|
5
|
Identification of a Profile of Neutrophil-Derived Granule Proteins in the Surface of Gold Nanoparticles after Their Interaction with Human Breast Cancer Sera. NANOMATERIALS 2020; 10:nano10061223. [PMID: 32586001 PMCID: PMC7353125 DOI: 10.3390/nano10061223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/09/2020] [Accepted: 06/19/2020] [Indexed: 12/29/2022]
Abstract
It is well known that the interaction of a nanomaterial with a biological fluid leads to the formation of a protein corona (PC) surrounding the nanomaterial. Using standard blood analyses, alterations in protein patterns are difficult to detect. PC acts as a “nano-concentrator” of serum proteins with affinity for nanoparticles’ surface. Consequently, characterization of PC could allow detection of otherwise undetectable changes in protein concentration at an early stage of a disease, such as breast cancer (BC). Here, we employed gold nanoparticles (AuNPsdiameter: 10.02 ± 0.91 nm) as an enrichment platform to analyze the human serum proteome of BC patients (n = 42) and healthy controls (n = 42). Importantly, the analysis of the PC formed around AuNPs after their interaction with serum samples of BC patients showed a profile of proteins that could differentiate breast cancer patients from healthy controls. These proteins developed a significant role in the immune and/or innate immune system, some of them being neutrophil-derived granule proteins. The analysis of the PC also revealed serum proteome alterations at the subtype level.
Collapse
|
6
|
Integrative Analyses of Multilevel Omics Reveal Preneoplastic Breast to Possess a Molecular Landscape That is Globally Shared with Invasive Basal-Like Breast Cancer (Running Title: Molecular Landscape of Basal-Like Breast Cancer Progression). Cancers (Basel) 2020; 12:cancers12030722. [PMID: 32204397 PMCID: PMC7140033 DOI: 10.3390/cancers12030722] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/16/2020] [Indexed: 12/21/2022] Open
Abstract
To characterize molecular changes accompanying the stepwise progression to breast cancer and to identify functional target pathways, we performed miRNA and RNA sequencing using MCF10A cell lines based model system that replicates the multi-step progression involving normal, preneoplastic, ductal carcinoma in situ, and invasive carcinoma cells, where the carcinoma most resemble the basal-like subgroup of human breast cancers. These analyses suggest that 70% of miRNA alterations occurred during the initial progression from normal to a preneoplastic stage. Most of these early changes reflected a global upregulation of miRNAs. This was consistent with a global increase in the miRNA-processing enzyme DICER, which was upregulated as a direct result of loss of miRNA let-7b-5p. Several oncogenic and tumor suppressor pathways were also found to change early, prior to histologic stigmata of cancer. Our finding that most genomic changes in the progression to basal-like breast cancer occurred in the earliest stages of histologic progression has implications for breast cancer prevention and selection of appropriate control tissues in molecular studies. Furthermore, in support of a functional significance of let-7b-5p loss, we found its low levels to predict poor disease-free survival and overall survival in breast cancer patients.
Collapse
|
7
|
Kobayashi A, Waku T. New addiction to the NRF2-related factor NRF3 in cancer cells: Ubiquitin-independent proteolysis through the 20S proteasome. Cancer Sci 2020; 111:6-14. [PMID: 31742837 PMCID: PMC6942428 DOI: 10.1111/cas.14244] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 12/18/2022] Open
Abstract
Accumulating evidence has revealed that human cancers develop by sequentially mutating pivotal genes, including driver genes, and acquiring cancer hallmarks. For instance, cancer cells are addicted to the transcription factor NRF2 (NFE2L2), which is a driver gene that utilizes the cellular cytoprotection system against oxidative stress and metabolic pathway reprogramming for sustaining high growth. Our group has recently discovered a new addiction to the NRF2-related factor NRF3 (NFE2L3) in cancer. For many years, the physiological function of NRF3 remained obscure, in part because Nrf3-deficient mice do not show apparent abnormalities. Nevertheless, human cancer genome databases suggest critical roles of NRF3 in cancer because of high NRF3 mRNA induction in several cancer types, such as colorectal cancer and pancreatic adenocarcinoma, with a poor prognosis. We found that NRF3 promotes tumor growth and malignancy by activating ubiquitin-independent 20S proteasome assembly through inducing the expression of the proteasome maturation protein (POMP) chaperone and thereby degrading the tumor suppressors p53 and Rb. The NRF3-POMP-20S proteasome axis has an entirely different effect on cancer than NRF2. In this review, we describe recent research advances regarding the new cancer effector NRF3, including unclarified ubiquitin-independent proteolysis by the NRF3-POMP-20S proteasome axis. The expected development of cancer therapeutic interventions for this axis is also discussed.
Collapse
Affiliation(s)
- Akira Kobayashi
- Laboratory for Genetic CodeGraduate School of Life and Medical SciencesDoshisha UniversityKyotanabeJapan
- Department of Life and Medical SciencesDoshisha UniversityKyotanabeJapan
| | - Tsuyoshi Waku
- Department of Life and Medical SciencesDoshisha UniversityKyotanabeJapan
| |
Collapse
|
8
|
β-Catenin/TCF4 Complex-Mediated Induction of the NRF3 ( NFE2L3) Gene in Cancer Cells. Int J Mol Sci 2019; 20:ijms20133344. [PMID: 31288376 PMCID: PMC6651286 DOI: 10.3390/ijms20133344] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 01/13/2023] Open
Abstract
Remarkable upregulation of the NRF2 (NFE2L2)-related transcription factor NRF3 (NFE2L3) in several cancer tissues and its correlation with poor prognosis strongly suggest the physiological function of NRF3 in tumors. Indeed, we had recently uncovered the function of NRF3, which promotes cancer cell proliferation by p53 degradation via the 20S proteasome. Nevertheless, the molecular mechanism underlying the induction of NRF3 gene expression in cancer cells is highly elusive. We herein describe that NRF3 upregulation is induced by the β-catenin/TCF4 complex in colon cancer cells. We first confirmed high NRF3 mRNA expression in human colon cancer specimens. The genome database indicated that the human NRF3 gene possesses a species-conserved WRE sequence (TCF/LEF consensus element), implying that the β-catenin/TCF complex activates NRF3 expression in colon cancer. Consistently, we observed that the β-catenin/TCF4 complex mediates NRF3 expression by binding directly to the WRE site. Furthermore, inducing NRF3 activates cell proliferation and the expression of the glucose transporter GLUT1. The existence of the β-catenin/TCF4-NRF3 axis was also validated in the intestine and organoids of Apc-deficient mice. Finally, the positive correlation between NRF3 and β-catenin target gene expression strongly supports our conclusion. Our findings clearly demonstrate that NRF3 induction in cancer cells is controlled by the Wnt/β-catenin pathway.
Collapse
|
9
|
Karolak A, Poonja S, Rejniak KA. Morphophenotypic classification of tumor organoids as an indicator of drug exposure and penetration potential. PLoS Comput Biol 2019; 15:e1007214. [PMID: 31310602 PMCID: PMC6660094 DOI: 10.1371/journal.pcbi.1007214] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/26/2019] [Accepted: 06/27/2019] [Indexed: 12/21/2022] Open
Abstract
The dynamics of tumor progression is driven by multiple factors, which can be exogenous to the tumor (microenvironment) or intrinsic (genetic, epigenetic or due to intercellular interactions). While tumor heterogeneity has been extensively studied on the level of cell genetic profiles or cellular composition, tumor morphological diversity has not been given as much attention. The limited analysis of tumor morphophenotypes may be attributed to the lack of accurate models, both experimental and computational, capable of capturing changes in tumor morphology with fine levels of spatial detail. Using a three-dimensional, agent-based, lattice-free computational model, we generated a library of multicellular tumor organoids, the experimental analogues of in vivo tumors. By varying three biologically relevant parameters-cell radius, cell division age and cell sensitivity to contact inhibition, we showed that tumor organoids with similar growth dynamics can express distinct morphologies and possess diverse cellular compositions. Taking advantage of the high-resolution of computational modeling, we applied the quantitative measures of compactness and accessible surface area, concepts that originated from the structural biology of proteins. Based on these analyses, we demonstrated that tumor organoids with similar sizes may differ in features associated with drug effectiveness, such as potential exposure to the drug or the extent of drug penetration. Both these characteristics might lead to major differences in tumor organoid's response to therapy. This indicates that therapeutic protocols should not be based solely on tumor size, but take into account additional tumor features, such as their morphology or cellular packing density.
Collapse
Affiliation(s)
- Aleksandra Karolak
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States of America
| | - Sharan Poonja
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States of America
| | - Katarzyna A. Rejniak
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States of America
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL, United States of America
| |
Collapse
|
10
|
Loomans-Kropp HA, Umar A. Cancer prevention and screening: the next step in the era of precision medicine. NPJ Precis Oncol 2019; 3:3. [PMID: 30701196 PMCID: PMC6349901 DOI: 10.1038/s41698-018-0075-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/07/2018] [Indexed: 12/12/2022] Open
Abstract
A primary mode of cancer prevention and early detection in the United States is the widespread practice of screening. Although many strategies for early detection and prevention are available, adverse outcomes, such as overdiagnosis and overtreatment, are prevalent among those utilizing these approaches. Broad use of mammography and prostate cancer screening are key examples illustrating the potential harms stemming from the detection of indolent lesions and the subsequent overtreatment. Furthermore, there are several cancers for which prevention strategies do not currently exist. Clinical and experimental evidence have expanded our understanding of cancer initiation and progression, and have instructed the development of improved, precise modes of cancer prevention and early detection. Recent cancer prevention and early detection innovations have begun moving towards the integration of molecular knowledge and risk stratification profiles to allow for a more accurate representation of at-risk individuals. The future of cancer prevention and early detection efforts should emphasize the incorporation of precision cancer prevention integration where screening and cancer prevention regimens can be matched to one's risk of cancer due to known genomic and environmental factors.
Collapse
Affiliation(s)
- Holli A Loomans-Kropp
- 1Cancer Prevention Fellowship Program, Division of Cancer Prevention, National Cancer Institute, Rockville, MD USA.,2Gastrointestinal and Other Cancers Branch, Division of Cancer Prevention, National Cancer Institute, Rockville, MD USA
| | - Asad Umar
- 1Cancer Prevention Fellowship Program, Division of Cancer Prevention, National Cancer Institute, Rockville, MD USA
| |
Collapse
|
11
|
Wang H, Zhan M, Yang R, Shi Y, Liu Q, Wang J. Elevated expression of NFE2L3 predicts the poor prognosis of pancreatic cancer patients. Cell Cycle 2018; 17:2164-2174. [PMID: 30196752 DOI: 10.1080/15384101.2018.1520558] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The highly malignant feature and difficulties for early diagnosis are the key reasons contributing to the poor prognosis of pancreatic cancer (PC) patients. NFE2L3 is a nuclear transcription factor, which has been reported an important biomarker of several tumors. But the role of NFE2L3 in PC remained undefined. Herein, through qPCR and immunohistochemistry, we found a significantly increased NFE2L3 in PC tissues as compared with adjacent non-tumor tissues. While reducing NFE2L3 expression suppressed the invasion abilities of PC cells, elevated NFE2L3 was found associated with lymph node metastasis (P = 0.001; HR = 3.95; 95% CI: 1.70 - 9.17) and advanced TNM stages (P < 0.001; HR = 4.06; 95% CI: 1.74 - 9.46). Consistently, data from both our two cohorts and the TCGA database revealed that higher NFE2L3 PC carriers had worse outcomes than those lower NFE2L3 expressers. Lastly, we confirmed the regulatory role of NFE2L3 on VEGFA, an important player involved in tumor angiogenesis. Collectively, our investigations suggested the oncogenic role of NFE2L3 in PC development and provided the rational for future adding NFE2L3 for the risk assessment of PC patients. ABBREVIATIONS NFE2L3: NF-E2-related factor 3; UHMK1: U2AF homology motif kinase 1; VEGFA: vascular endothelial growth factor A; GEO: gene expression omnibus; TCGA: The Cancer Genome Atlas; HPDE: human pancreas duct cells; OS: overall survival; IHC: immunohistochemistry; FFPE: formalin-fixed and paraffin-embedded; SEM: standard error of mean.
Collapse
Affiliation(s)
- Hui Wang
- a Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , China
| | - Ming Zhan
- a Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , China
| | - Ruimeng Yang
- b The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital , Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Yongheng Shi
- c Department of Pathology, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , China
| | - Qiang Liu
- c Department of Pathology, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , China
| | - Jian Wang
- a Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , China
| |
Collapse
|
12
|
Jaiswal RK, Kumar P, Kumar M, Yadava PK. hTERT promotes tumor progression by enhancing TSPAN13 expression in osteosarcoma cells. Mol Carcinog 2018; 57:1038-1054. [PMID: 29722072 DOI: 10.1002/mc.22824] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/06/2018] [Accepted: 04/14/2018] [Indexed: 01/11/2023]
Abstract
Telomerase complex maintains the length of the telome, cbre, and protects erosion of the physical ends of the eukaryotic chromosome in all actively dividing cells including cancer cells. Telomerase activation extends the lifespan of cells in culture by maintaining the length of the telomere. Compared to terminally differentiated somatic cells, telomerase activity remains high in over 90% of cancer cells. It has now become clear that the role of telomerase is much more complex than just telomere lengthening. The remaining 10% of cancers deploy ALT (alternative lengthening of telomeres) pathway to maintain telomere length. Telomerase inhibitors offer a good therapeutic option. Also, telomerase-associated molecules can be targeted provided their roles are clearly established. In any case, it is necessary to understand the major role of telomerase in cancer cells. Many studies have already been done to explore gene profiling of a telomerase positive cell by knocking down expression of hTERT (telomerase reverse transcriptase). To complement these studies, we performed global gene profiling of a telomerase negative cell by ectopically expressing hTERT and studied changes in the global gene expression patterns. Analysis of microarray data for telomerase negative cells ectopically expressing telomerase showed 76 differentially regulated genes, out of which 39 genes were upregulated, and 37 were downregulated. Three upregulated genes such as TSPAN13, HMGCS2, DLX5, and three downregulated genes like DHRS2, CRYAB, and PDLIM1 were validated by real-time PCR. Knocking down of TSAPN13 in hTERT overexpressing U2OS cells enhanced the apoptosis of the cells. TSPAN13 knockdown in these cells suppressed mesenchymal properties and enhanced epithelial character.
Collapse
Affiliation(s)
- Rishi K Jaiswal
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Pramod Kumar
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.,Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi, India
| | - Manoj Kumar
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Pramod K Yadava
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
13
|
Wang C, Saji M, Justiniano SE, Yusof AM, Zhang X, Yu L, Fernández S, Wakely P, La Perle K, Nakanishi H, Pohlman N, Ringel MD. RCAN1-4 is a thyroid cancer growth and metastasis suppressor. JCI Insight 2017; 2:e90651. [PMID: 28289712 DOI: 10.1172/jci.insight.90651] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Metastasis suppressors are key regulators of tumor growth, invasion, and metastases. Loss of metastasis suppressors has been associated with aggressive tumor behaviors and metastatic progression. We previously showed that regulator of calcineurin 1, isoform 4 (RCAN1-4) was upregulated by the KiSS1 metastatic suppression pathway and could inhibit cell motility when overexpressed in cancer cells. To test the effects of endogenous RCAN1-4 loss on thyroid cancer in vivo, we developed RCAN1-4 knockdown stable cells. Subcutaneous xenograft models demonstrated that RCAN1-4 knockdown promotes tumor growth. Intravenous metastasis models demonstrated that RCAN1-4 loss promotes tumor metastases to the lungs and their subsequent growth. Finally, stable induction of RCAN1-4 expression reduced thyroid cancer cell growth and invasion. Microarray analysis predicted that nuclear factor, erythroid 2-like 3 (NFE2L3) was a pivotal downstream effector of RCAN1-4. NFE2L3 overexpression was shown to be necessary for RCAN1-4-mediated enhanced growth and invasiveness and NEF2L3 overexpression independently increased cell invasion. In human samples, NFE2L3 was overexpressed in TCGA thyroid cancer samples versus normal tissues and NFE2L3 overexpression was demonstrated in distant metastasis samples from thyroid cancer patients. In conclusion, we provide the first evidence to our knowledge that RCAN1-4 is a growth and metastasis suppressor in vivo and that it functions in part through NFE2L3.
Collapse
Affiliation(s)
- Chaojie Wang
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine.,Ohio State Biochemistry Program
| | - Motoyasu Saji
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine
| | - Steven E Justiniano
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine
| | - Adlina Mohd Yusof
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine
| | - Xiaoli Zhang
- Center for Biostatistics, Department of Biomedical Informatics
| | - Lianbo Yu
- Center for Biostatistics, Department of Biomedical Informatics
| | | | | | - Krista La Perle
- Department of Veterinary Biosciences and Comparative Pathology and Mouse Phenotyping Shared Resource, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Hiroshi Nakanishi
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine
| | - Neal Pohlman
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine
| | - Matthew D Ringel
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine.,Ohio State Biochemistry Program
| |
Collapse
|
14
|
Maguire SL, Peck B, Wai PT, Campbell J, Barker H, Gulati A, Daley F, Vyse S, Huang P, Lord CJ, Farnie G, Brennan K, Natrajan R. Three-dimensional modelling identifies novel genetic dependencies associated with breast cancer progression in the isogenic MCF10 model. J Pathol 2016; 240:315-328. [PMID: 27512948 PMCID: PMC5082563 DOI: 10.1002/path.4778] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 07/05/2016] [Accepted: 08/02/2016] [Indexed: 12/21/2022]
Abstract
The initiation and progression of breast cancer from the transformation of the normal epithelium to ductal carcinoma in situ (DCIS) and invasive disease is a complex process involving the acquisition of genetic alterations and changes in gene expression, alongside microenvironmental and recognized histological alterations. Here, we sought to comprehensively characterise the genomic and transcriptomic features of the MCF10 isogenic model of breast cancer progression, and to functionally validate potential driver alterations in three-dimensional (3D) spheroids that may provide insights into breast cancer progression, and identify targetable alterations in conditions more similar to those encountered in vivo. We performed whole genome, exome and RNA sequencing of the MCF10 progression series to catalogue the copy number and mutational and transcriptomic landscapes associated with progression. We identified a number of predicted driver mutations (including PIK3CA and TP53) that were acquired during transformation of non-malignant MCF10A cells to their malignant counterparts that are also present in analysed primary breast cancers from The Cancer Genome Atlas (TCGA). Acquisition of genomic alterations identified MYC amplification and previously undescribed RAB3GAP1-HRAS and UBA2-PDCD2L expressed in-frame fusion genes in malignant cells. Comparison of pathway aberrations associated with progression showed that, when cells are grown as 3D spheroids, they show perturbations of cancer-relevant pathways. Functional interrogation of the dependency on predicted driver events identified alterations in HRAS, PIK3CA and TP53 that selectively decreased cell growth and were associated with progression from preinvasive to invasive disease only when cells were grown as spheroids. Our results have identified changes in the genomic repertoire in cell lines representative of the stages of breast cancer progression, and demonstrate that genetic dependencies can be uncovered when cells are grown in conditions more like those in vivo. The MCF10 progression series therefore represents a good model with which to dissect potential biomarkers and to evaluate therapeutic targets involved in the progression of breast cancer. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
MESH Headings
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Cell Line, Tumor
- Cell Transformation, Neoplastic
- Class I Phosphatidylinositol 3-Kinases
- DNA, Neoplasm/chemistry
- DNA, Neoplasm/genetics
- Disease Progression
- Exome/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Genome
- High-Throughput Nucleotide Sequencing
- Humans
- Models, Biological
- Mutation
- Phosphatidylinositol 3-Kinases/genetics
- Phosphatidylinositol 3-Kinases/metabolism
- Sequence Analysis, DNA
- Spheroids, Cellular
- Transcriptome
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
- Sarah L Maguire
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer, The Institute of Cancer Research, London, UK
| | - Barrie Peck
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer, The Institute of Cancer Research, London, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Patty T Wai
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer, The Institute of Cancer Research, London, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - James Campbell
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer, The Institute of Cancer Research, London, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Holly Barker
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer, The Institute of Cancer Research, London, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Aditi Gulati
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer, The Institute of Cancer Research, London, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Frances Daley
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer, The Institute of Cancer Research, London, UK
| | - Simon Vyse
- Division of Cancer Biology, The Institute of Cancer Research, London, UK
| | - Paul Huang
- Division of Cancer Biology, The Institute of Cancer Research, London, UK
| | - Christopher J Lord
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer, The Institute of Cancer Research, London, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Gillian Farnie
- Institute of Cancer Sciences, University of Manchester, Manchester, UK
| | - Keith Brennan
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Rachael Natrajan
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer, The Institute of Cancer Research, London, UK.
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK.
| |
Collapse
|
15
|
Abstract
Endometriosis is a heritable complex disorder that is influenced by multiple genetic and environmental factors. Identification of these genetic factors will aid a better understanding of the underlying biology of the disease. In this article, we describe different methods of studying genetic variation of endometriosis, summarize results from genetic studies performed to date and provide recommendations for future studies to uncover additional factors contributing to the heritable component of endometriosis.
Collapse
Affiliation(s)
- Nilufer Rahmioglu
- Wellcome Trust Center for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Grant W Montgomery
- Molecular Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Krina T Zondervan
- Wellcome Trust Center for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.,Nuffield Department of Obstetrics & Gynaecology, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| |
Collapse
|
16
|
De Luca A, Roma C, Gallo M, Fenizia F, Bergantino F, Frezzetti D, Costantini S, Normanno N. RNA-seq analysis reveals significant effects of EGFR signalling on the secretome of mesenchymal stem cells. Oncotarget 2015; 5:10518-28. [PMID: 25344915 PMCID: PMC4279390 DOI: 10.18632/oncotarget.2420] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 08/28/2014] [Indexed: 01/29/2023] Open
Abstract
Bone marrow-derived mesenchymal stem cells (MSCs) contribute to breast cancer progression by releasing soluble factors that sustain tumor progression. MSCs express functional epidermal growth factor receptor (EGFR) and breast cancer cells secrete EGFR-ligands including transforming growth factor-α (TGFα). Using RNA-sequencing, we analysed the whole transcriptome of MSCs stimulated with TGFα. We identified 1,640 highly differentially regulated genes: 967 genes up-regulated with Fold Induction (FI)≥1.50 and 673 genes down-regulated with FI≤0.50. When highly regulated genes were categorized according to GO molecular function classification and KEGG pathways analysis, a large number of genes coding for potentially secreted proteins or surface receptors resulted enriched following TGFα treatment, including VEGFA, IL6, EREG, HB-EGF, LIF, NGF, NRG1, CCL19, CCL2, CCL25 and CXCL3. Secretion of corresponding proteins was confirmed for selected factors. Finally, we identified 4,377 and 4,262 alternatively spliced genes in untreated and TGFα-treated MSCs, respectively. Among these, an unannotated splice variant of VEGFA coding for a secreted VEGF protein of 172 aminoacids (VEGFA172), was found only in MSCs stimulated with TGFα. These findings suggest that EGFR activation in MSCs leads to a significant change in the expression of a wide array of genes coding for secreted proteins that can significantly enhance tumor progression.
Collapse
Affiliation(s)
- Antonella De Luca
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, Naples, Italy
| | - Cristin Roma
- Centro di Ricerche Oncologiche di Mercogliano (CROM)-Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, Mercogliano (AV), Italy
| | - Marianna Gallo
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, Naples, Italy
| | - Francesca Fenizia
- Centro di Ricerche Oncologiche di Mercogliano (CROM)-Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, Mercogliano (AV), Italy
| | - Francesca Bergantino
- Centro di Ricerche Oncologiche di Mercogliano (CROM)-Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, Mercogliano (AV), Italy
| | - Daniela Frezzetti
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, Naples, Italy
| | - Susan Costantini
- Centro di Ricerche Oncologiche di Mercogliano (CROM)-Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, Mercogliano (AV), Italy
| | - Nicola Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, Naples, Italy. Centro di Ricerche Oncologiche di Mercogliano (CROM)-Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, Mercogliano (AV), Italy
| |
Collapse
|
17
|
Fung JN, Rogers PA, Montgomery GW. Identifying the Biological Basis of GWAS Hits for Endometriosis1. Biol Reprod 2015; 92:87. [DOI: 10.1095/biolreprod.114.126458] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/05/2015] [Indexed: 12/18/2022] Open
|
18
|
Petrau C, Cornic M, Bertrand P, Maingonnat C, Marchand V, Picquenot JM, Jardin F, Clatot F. CD70: A Potential Target in Breast Cancer? J Cancer 2014; 5:761-4. [PMID: 25368676 PMCID: PMC4216800 DOI: 10.7150/jca.10360] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 09/29/2014] [Indexed: 02/03/2023] Open
Abstract
CD70 is a co-stimulatory molecule involved in the immune response and also in cancer development and progression. Recent studies show that high CD70 expression in cancer cells may inhibit the anti-tumor response. Furthermore, CD70 expression has been reported as a predictive marker of resistance to chemotherapy in ovarian cancers. Some in vitro studies have shown that CD70 expression is epigenetically down-regulated through hypermethylation of its promoter during tumoral progression. This study evaluated the level of CD70 expression in surgical samples of breast invasive tumors and determined its correlation with CD70 promoter methylation. Twenty “luminal A” and 20 “basal-like” frozen samples from early breast tumors were retrospectively selected. CD70 expression was evaluated by quantitative real-time PCR. Total DNA was bisulfite-treated, and methylation levels of 5 consecutive CG sites present in the proximal region (-464, -421) of the promoter were assessed by pyrosequencing analysis. Statistical analyses were performed using the Mann-Whitney test. The median relative CD70 expression level was 0.37 and was significantly higher in the basal-like group (0.78 [0.24-31.7]) compared to the luminal A group (0.25 [0.03-1.83], p=0.0001). The median methylation level was 61%, with no significant difference between the basal-like (63%) and luminal A (58%) groups. No correlation was found between CD70 expression and CD70 methylation level. In this study, higher CD70 expression was observed in the basal-like group, but this expression was not related to promoter methylation. The higher expression in the poor-prognosis subgroup of patients makes CD70 a potential target for emerging anti-CD70 therapies.
Collapse
Affiliation(s)
- Camille Petrau
- 1. Department of Medical Oncology, Centre Henri Becquerel, Rouen, France
| | - Marie Cornic
- 2. Department of Pathology, Centre Henri Becquerel, Rouen, France
| | | | | | | | - Jean-Michel Picquenot
- 2. Department of Pathology, Centre Henri Becquerel, Rouen, France; ; 3. INSERM U918, Centre Henri Becquerel, IRIB, Rouen, France
| | - Fabrice Jardin
- 3. INSERM U918, Centre Henri Becquerel, IRIB, Rouen, France
| | - Florian Clatot
- 1. Department of Medical Oncology, Centre Henri Becquerel, Rouen, France; ; 3. INSERM U918, Centre Henri Becquerel, IRIB, Rouen, France
| |
Collapse
|
19
|
Peterson LB, Yaffe MB, Imperiali B. Selective mitogen activated protein kinase activity sensors through the application of directionally programmable D domain motifs. Biochemistry 2014; 53:5771-8. [PMID: 25153342 PMCID: PMC4165445 DOI: 10.1021/bi500862c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Accurate and quantitative methods for measuring the dynamic fluctuations of protein kinase activities are critically needed as diagnostic tools and for the evaluation of kinase-targeted inhibitors, which represent a major therapeutic development area in the treatment of cancer and other diseases. In particular, rapid and economical methods that utilize simple instrumentation and provide quantitative data in a high throughput format will have the most impact on basic research in systems biology and medicine. There are over 500 protein kinases in the human kinome. Among these, the mitogen activated protein (MAP) kinases are recognized to be central players in key cellular signaling events and are associated with essential processes including growth, proliferation, differentiation, migration, and apoptosis. The major challenge with MAP kinase sensor development is achieving high selectivity since these kinases rely acutely on secondary interactions distal to the phosphorylation site to impart substrate specificity. Herein we describe the development and application of selective sensors for three MAP kinase subfamilies, ERK1/2, p38α/β, and JNK1/2/3. The new sensors are based on a modular design, which includes a sensing element that exploits a sulfonamido-oxine (Sox) fluorophore for reporting phosphorylation, a recognition and specificity element based on reported docking domain motifs and a variable linker, which can be engineered to optimize the intermodule distance and relative orientation. Following rigorous validation, the capabilities of the new sensors are exemplified through the quantitative analysis of the target MAP kinases in breast cancer progression in a cell culture model, which reveals a strong correlation between p38α/β activity and increased tumorgenicity.
Collapse
Affiliation(s)
- Laura B Peterson
- Departments of Chemistry and Biology, and ‡Departments of Biology and Biological Engineering, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | | | | |
Collapse
|
20
|
Jin Y, Kim TY, Kim MS, Kim MA, Park SH, Jang YK. Nuclear import of human histone lysine-specific demethylase LSD1. J Biochem 2014; 156:305-13. [PMID: 24986870 DOI: 10.1093/jb/mvu042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Upregulation and nuclear retention of the human histone demethylase LSD1 are correlated with aggressiveness and poor outcome of several cancer types, but the molecular mechanism of LSD1 nuclear import remains unclear. Here, we found that the N-terminal flexible region of LSD1 contains a nuclear localization signal (NLS), (112)RRKRAK(117). Mutation or deletion of the NLS completely abolished the nuclear import of LSD1, suggesting the motif is a bona fide NLS. More importantly, our GST pull-down assay showed that LSD1 physically interacts with three proteins of importin α family. In addition, our data suggest that the nuclear localization of LSD1 via the NLS is not a cell-type specific event. Thus, these findings demonstrate for the first time that the NLS motif within the N-terminal flexible domain of LSD1 is critical for its nuclear localization via interaction with importin α proteins.
Collapse
Affiliation(s)
- Yanhua Jin
- Department of Medical Genetics, College of Medicine, Yanbian University, 977 Gongyuan Road, Yanji City, China; Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea; and Initiative for Biological Function and Systems, Yonsei University, Seoul 120-749, Republic of Korea
| | - Tae Young Kim
- Department of Medical Genetics, College of Medicine, Yanbian University, 977 Gongyuan Road, Yanji City, China; Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea; and Initiative for Biological Function and Systems, Yonsei University, Seoul 120-749, Republic of Korea. Department of Medical Genetics, College of Medicine, Yanbian University, 977 Gongyuan Road, Yanji City, China; Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea; and Initiative for Biological Function and Systems, Yonsei University, Seoul 120-749, Republic of Korea
| | - Min Seong Kim
- Department of Medical Genetics, College of Medicine, Yanbian University, 977 Gongyuan Road, Yanji City, China; Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea; and Initiative for Biological Function and Systems, Yonsei University, Seoul 120-749, Republic of Korea. Department of Medical Genetics, College of Medicine, Yanbian University, 977 Gongyuan Road, Yanji City, China; Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea; and Initiative for Biological Function and Systems, Yonsei University, Seoul 120-749, Republic of Korea
| | - Min Aeh Kim
- Department of Medical Genetics, College of Medicine, Yanbian University, 977 Gongyuan Road, Yanji City, China; Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea; and Initiative for Biological Function and Systems, Yonsei University, Seoul 120-749, Republic of Korea. Department of Medical Genetics, College of Medicine, Yanbian University, 977 Gongyuan Road, Yanji City, China; Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea; and Initiative for Biological Function and Systems, Yonsei University, Seoul 120-749, Republic of Korea
| | - Su Hyung Park
- Department of Medical Genetics, College of Medicine, Yanbian University, 977 Gongyuan Road, Yanji City, China; Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea; and Initiative for Biological Function and Systems, Yonsei University, Seoul 120-749, Republic of Korea. Department of Medical Genetics, College of Medicine, Yanbian University, 977 Gongyuan Road, Yanji City, China; Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea; and Initiative for Biological Function and Systems, Yonsei University, Seoul 120-749, Republic of Korea
| | - Yeun Kyu Jang
- Department of Medical Genetics, College of Medicine, Yanbian University, 977 Gongyuan Road, Yanji City, China; Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea; and Initiative for Biological Function and Systems, Yonsei University, Seoul 120-749, Republic of Korea. Department of Medical Genetics, College of Medicine, Yanbian University, 977 Gongyuan Road, Yanji City, China; Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea; and Initiative for Biological Function and Systems, Yonsei University, Seoul 120-749, Republic of Korea.
| |
Collapse
|
21
|
Lazarus KA, Brown KA, Young MJ, Zhao Z, Coulson RS, Chand AL, Clyne CD. Conditional overexpression of liver receptor homolog-1 in female mouse mammary epithelium results in altered mammary morphogenesis via the induction of TGF-β. Endocrinology 2014; 155:1606-17. [PMID: 24564400 DOI: 10.1210/en.2013-1948] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Liver receptor homolog-1 (LRH-1) is an orphan nuclear receptor that belongs to the NR5A subgroup of nuclear receptors. LRH-1 induces key genes to regulate metabolic process, ovarian function, cancer cell proliferation, and steroidogenesis. In the breast, LRH-1 modulates and synergizes with endogenous estrogen signaling to promote breast cancer cell proliferation. We used small interfering RNA knockdown strategies to deplete LRH-1 in breast cancer cells and followed with microarray analysis to identify LRH-1-dependent mechanisms. We identified key genes involved in TGF-β signaling to be highly responsive to LRH-1 knockdown. This relationship was validated in 2 breast cancer cell lines overexpressing LRH-1 in vitro and in a novel transgenic mouse with targeted LRH-1 overexpression in mammary epithelial cells. Notably, TGF-β signaling was activated in LRH-1-overexpressing breast cancer cells and mouse mammary glands. Further analyses of mammary gross morphology revealed a significant reduction in mammary lateral budding after LRH-1 overexpression. These findings suggest that the altered mammary morphogenesis in LRH-1 transgenic animals is mediated via enhanced TGF-β expression. The regulation of TGF-β isoforms and SMAD2/3-mediated downstream signaling by LRH-1 also implicates a potential contribution of LRH-1 in breast cancer. Collectively, these data demonstrate that LRH-1 regulates TGF-β expression and downstream signaling in mouse mammary glands.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Proliferation
- Female
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Neoplastic
- Gene Silencing
- Humans
- MCF-7 Cells
- Mammary Glands, Animal/cytology
- Mammary Glands, Animal/growth & development
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/pathology
- Mice
- Mice, Transgenic
- Morphogenesis
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Protein Isoforms/biosynthesis
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Signal Transduction
- Smad Proteins, Receptor-Regulated/metabolism
- Transforming Growth Factor beta/biosynthesis
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Kyren A Lazarus
- Cancer Drug Discovery Laboratory (K.A.L., M.J.Y., Z.Z., R.S.C., A.L.C., C.D.C.) and Metabolism and Cancer Laboratory (K.A.B.), Prince Henry's Institute of Medical Research, Clayton, Victoria 3168, Australia; Environmental and Biotechnology Centre (K.A.L.), Swinburne University, Hawthorn, Victoria 3122, Australia; and Department of Biochemistry and Molecular Biology (C.D.C.), Monash University, Clayton, Victoria 3168, Australia
| | | | | | | | | | | | | |
Collapse
|
22
|
Rahmioglu N, Nyholt DR, Morris AP, Missmer SA, Montgomery GW, Zondervan KT. Genetic variants underlying risk of endometriosis: insights from meta-analysis of eight genome-wide association and replication datasets. Hum Reprod Update 2014; 20:702-16. [PMID: 24676469 PMCID: PMC4132588 DOI: 10.1093/humupd/dmu015] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Endometriosis is a heritable common gynaecological condition influenced by multiple genetic and environmental factors. Genome-wide association studies (GWASs) have proved successful in identifying common genetic variants of moderate effects for various complex diseases. To date, eight GWAS and replication studies from multiple populations have been published on endometriosis. In this review, we investigate the consistency and heterogeneity of the results across all the studies and their implications for an improved understanding of the aetiology of the condition. METHODS Meta-analyses were conducted on four GWASs and four replication studies including a total of 11 506 cases and 32 678 controls, and on the subset of studies that investigated associations for revised American Fertility Society (rAFS) Stage III/IV including 2859 cases. The datasets included 9039 cases and 27 343 controls of European (Australia, Belgium, Italy, UK, USA) and 2467 cases and 5335 controls of Japanese ancestry. Fixed and Han and Elkin random-effects models, and heterogeneity statistics (Cochran's Q test), were used to investigate the evidence of the nine reported genome-wide significant loci across datasets and populations. RESULTS Meta-analysis showed that seven out of nine loci had consistent directions of effect across studies and populations, and six out of nine remained genome-wide significant (P < 5 × 10−8), including rs12700667 on 7p15.2 (P = 1.6 × 10−9), rs7521902 near WNT4 (P = 1.8 × 10−15), rs10859871 near VEZT (P = 4.7 × 10−15), rs1537377 near CDKN2B-AS1 (P = 1.5 × 10−8), rs7739264 near ID4 (P = 6.2 × 10−10) and rs13394619 in GREB1 (P = 4.5 × 10−8). In addition to the six loci, two showed borderline genome-wide significant associations with Stage III/IV endometriosis, including rs1250248 in FN1 (P = 8 × 10−8) and rs4141819 on 2p14 (P = 9.2 × 10−8). Two independent inter-genic loci, rs4141819 and rs6734792 on chromosome 2, showed significant evidence of heterogeneity across datasets (P < 0.005). Eight of the nine loci had stronger effect sizes among Stage III/IV cases, implying that they are likely to be implicated in the development of moderate to severe, or ovarian, disease. While three out of nine loci were inter-genic, the remaining were in or near genes with known functions of biological relevance to endometriosis, varying from roles in developmental pathways to cellular growth/carcinogenesis. CONCLUSIONS Our meta-analysis shows remarkable consistency in endometriosis GWAS results across studies, with little evidence of population-based heterogeneity. They also show that the phenotypic classifications used in GWAS to date have been limited. Stronger associations with Stage III/IV disease observed for most loci emphasize the importance for future studies to include detailed sub-phenotype information. Functional studies in relevant tissues are needed to understand the effect of the variants on downstream biological pathways.
Collapse
Affiliation(s)
- Nilufer Rahmioglu
- Wellcome Trust Center for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Dale R Nyholt
- Neurogenetics, QIMR Berghofer Medical Research Institute, Brisbane QLD 4029, Australia
| | - Andrew P Morris
- Wellcome Trust Center for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK Department of Biostatistics, University of Liverpool, Duncan Building, Daulby Street, Liverpool L69 3GA, UK
| | - Stacey A Missmer
- Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Grant W Montgomery
- Molecular Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane QLD 4029, Australia
| | - Krina T Zondervan
- Wellcome Trust Center for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
23
|
Damayanti NP, Fang Y, Parikh MR, Craig AP, Kirshner J, Irudayaraj J. Differentiation of cancer cells in two-dimensional and three-dimensional breast cancer models by Raman spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2013; 18:117008. [PMID: 24247810 PMCID: PMC3832300 DOI: 10.1117/1.jbo.18.11.117008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 10/10/2013] [Accepted: 10/15/2013] [Indexed: 05/25/2023]
Abstract
We demonstrate the first application of Raman spectroscopy in diagnosing nonmalignant, premalignant, malignant, and metastatic stages of breast cancer in a three-dimensional (3-D) cell culture model that closely mimics an in vivo environment. Comprehensive study comparing classification in two-dimensional (2-D) and 3-D cell models was performed using statistical methods composed of principal component analysis for exploratory analysis and outlier removal, partial least squares discriminant analysis, and elastic net regularized regression for classification. Our results show that Raman spectroscopy with an appropriate classification tool has excellent resolution to discriminate the four stages of breast cancer progression, with a near 100% accuracy for both 2-D and 3-D cell models. The diversity in chemical groups related to nucleic acids, proteins, and lipids, among other chemicals, were identified by appropriate peaks in the Raman spectra that correspond to the correct classification of the different stages of tumorigenesis model comprising of MCF10A, MCF10AneoT, MCF10CA1h, and MCF10CA1a cell lines. An explicit relationship between wavenumber and the stages of cancer progression was identified by the elastic net variable selection.
Collapse
Affiliation(s)
- Nur P. Damayanti
- Purdue University, Department of Agricultural and Biological Engineering, 225 S. University Street, West Lafayette, Indiana 47907
- Purdue University, Bindley Bioscience Center, West Lafayette, Indiana 47907
| | - Yi Fang
- Purdue University, Department of Agricultural and Biological Engineering, 225 S. University Street, West Lafayette, Indiana 47907
- Purdue University, Bindley Bioscience Center, West Lafayette, Indiana 47907
| | - Mukti R. Parikh
- Purdue University, Department of Biological Sciences, 915 W. State Street, West Lafayette, Indiana 47907
| | - Ana Paula Craig
- Purdue University, Bindley Bioscience Center, West Lafayette, Indiana 47907
| | - Julia Kirshner
- Purdue University, Department of Biological Sciences, 915 W. State Street, West Lafayette, Indiana 47907
| | - Joseph Irudayaraj
- Purdue University, Department of Agricultural and Biological Engineering, 225 S. University Street, West Lafayette, Indiana 47907
- Purdue University, Bindley Bioscience Center, West Lafayette, Indiana 47907
| |
Collapse
|
24
|
Organista-Nava J, Gómez-Gómez Y, Gariglio P. Embryonic stem cell-specific signature in cervical cancer. Tumour Biol 2013; 35:1727-38. [PMID: 24163107 DOI: 10.1007/s13277-013-1321-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 10/14/2013] [Indexed: 10/26/2022] Open
Abstract
The wide range of invasive and noninvasive lesion phenotypes associated with high-risk human papillomavirus (HR-HPV) infection in cervical cancer (CC) indicates that not only the virus but also specific cervical epithelial cells in the transformation zone (TZ), such as stem cells (SCs), play an important part in the development of cervical neoplasia. In this review, we focused in an expression signature that is specific to embryonic SCs and to poorly differentiated cervical malignant tumors and we hypothesize that this expression signature may play an important role to promote cell growth, survival, colony formation, lack of adhesion, as well as cell invasion and migration in CC.
Collapse
Affiliation(s)
- Jorge Organista-Nava
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), México, DF, México,
| | | | | |
Collapse
|
25
|
Zhu L, Kohda F, Nakahara T, Chiba T, Tsuji G, Hachisuka J, Ito T, Tu Y, Moroi Y, Uchi H, Furue M. Aberrant expression of S100A6 and matrix metalloproteinase 9, but not S100A2, S100A4, and S100A7, is associated with epidermal carcinogenesis. J Dermatol Sci 2013; 72:311-9. [PMID: 23993025 DOI: 10.1016/j.jdermsci.2013.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/05/2013] [Accepted: 07/12/2013] [Indexed: 11/18/2022]
Abstract
BACKGROUND S100 proteins belong to a family of calcium-binding proteins that regulate cell proliferation and differentiation. Despite our growing knowledge about the biology of S100 proteins in some human cancers, little is known about the expression of S100 family members in epidermal tumors and their clinical significance. OBJECTIVE To determine the expression of S100A2, S100A4, S100A6, S100A7, as well as matrix metalloproteinases 9 (MMP9) in a spectrum of epidermal tumors with benign and malignant characteristics. METHODS Immunohistological staining was performed for S100A2, S100A4, S100A6, S100A7, and MMP9 in 101 cases of various types of epidermal tumors, viz., squamous cell carcinoma (SCC), Bowen's disease (BD), actinic keratosis (AK), basal cell carcinoma (BCC), keratoacanthoma (KA), and seborrheic keratosis (SK). Thirteen specimens of normal skin (NS) served as control. RESULTS S100A2, S100A6, and S100A7 positive immunostaining was variably observed in different epidermal tumors. S100A4 staining was not observed in any epidermal tumors, but was clearly visible in dendritic cells. MMP9 immunostaining was positive only in 22/26 (84.62%) of SCC and 2/15 (13.33%) of BD cases. Expression of S100A2, S100A6, and S100A7 was increased in tumor cells compared to NS. However, only S100A6 expression was significantly associated with malignant transformation of epidermal tumors. Moreover, S100A6 expression was correlated with MMP9 expression in metastatic SCC. CONCLUSIONS Epidermal tumors show increased expression of S100A2 and S100A7 proteins. S100A4 may be a useful and distinct marker for epidermal dendritic cells. Expression of S100A6 and MMP9 in combination is associated with the development of SCC.
Collapse
Affiliation(s)
- Li Zhu
- Department of Dermatology, Kyushu University, Fukuoka, Japan; Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Peng F, Zhou JP, Sheng WW, Zhang DH, Dong M. Clinicopathological significance of expression of leukaemia inhibitory factor in human pancreatic ductal adenocarcinoma. Shijie Huaren Xiaohua Zazhi 2013; 21:1877-1881. [DOI: 10.11569/wcjd.v21.i19.1877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To examine the expression of leukaemia inhibitory factor (LIF) in human pancreatic ductal adenocarcinoma (PDAC) and to analyze its clinicopathological significance.
METHODS: The expression of LIF protein was detected by immunohistochemistry in 53 paraffin-embedded PDAC specimens and matched tumor-adjacent non-cancerous pancreatic tissue specimens. The relationship between LIF protein expression and clinicopathological parameters of PDAC was analyzed. Western bolt was used to examine the expression of LIF in 14 fresh PDAC specimens and matched tumor-adjacent non-cancerous pancreatic tissues.
RESULTS: The positive rate of LIF expression was increased in 53 cases of PDAC compared to matched normal tissues (66.0% vs 35.8%; t = 3.031, P = 0.004). LIF expression was positively associated with tumor TNM stage (χ2 = 3.635, P = 0.057) and invasion depth (χ2 = 3.726, P = 0.054). Univariate analysis revealed that LIF expression may be an adverse prognostic factor for patients with PDAC (χ2 = 3.233, P = 0.072). LIF expression was much higher in 14 cases of PDAC than in tumor-adjacent normal pancreatic tissues (t = 5.283, P < 0.01).
CONCLUSION: Overexpression of LIF may contribute to the development and progression of PDAC. Expression of LIF may be used to predict the prognosis of PDAC.
Collapse
|
27
|
Pincini A, Tornillo G, Orso F, Sciortino M, Bisaro B, Leal MDPC, Lembo A, Brizzi MF, Turco E, De Pittà C, Provero P, Medico E, Defilippi P, Taverna D, Cabodi S. Identification of p130Cas/ErbB2-dependent invasive signatures in transformed mammary epithelial cells. Cell Cycle 2013; 12:2409-22. [PMID: 23839042 DOI: 10.4161/cc.25415] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Understanding transcriptional changes during cancer progression is of crucial importance to develop new and more efficacious diagnostic and therapeutic approaches. It is well known that ErbB2 is overexpressed in about 25% of human invasive breast cancers. We have previously demonstrated that p130Cas overexpression synergizes with ErbB2 in mammary cell transformation and promotes ErbB2-dependent invasion in three-dimensional (3D) cultures of human mammary epithelial cells. Here, by comparing coding and non-coding gene expression profiles, we define the invasive signatures associated with concomitant p130Cas overexpression and ErbB2 activation in 3D cultures of mammary epithelial cells. Specifically, we have found that genes involved in amino acids synthesis (CBS, PHGDH), cell motility, migration (ITPKA, PRDM1), and angiogenesis (HEY1) are upregulated, while genes involved in inflammatory response (SAA1, S100A7) are downregulated. In parallel, we have shown that the expression of specific miRNAs is altered. Among these, miR-200b, miR-222, miR-221, miR-R210, and miR-424 are upregulated, while miR-27a, miR-27b, and miR-23b are downregulated. Overall, this study presents, for the first time, the gene expression changes underlying the invasive behavior following p130Cas overexpression in an ErbB2 transformed mammary cell model.
Collapse
Affiliation(s)
- Alessandra Pincini
- Molecular Biotechnology Center (MBC); Department of Molecular Biotechnology and Health Sciences; University of Torino; Torino, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kaur H, Mao S, Li Q, Sameni M, Krawetz SA, Sloane BF, Mattingly RR. RNA-Seq of human breast ductal carcinoma in situ models reveals aldehyde dehydrogenase isoform 5A1 as a novel potential target. PLoS One 2012; 7:e50249. [PMID: 23236365 PMCID: PMC3516505 DOI: 10.1371/journal.pone.0050249] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 10/22/2012] [Indexed: 01/16/2023] Open
Abstract
Breast ductal carcinoma in situ (DCIS) is being found in great numbers of women due to the widespread use of mammography. To increase knowledge of DCIS, we determined the expression changes that are common among three DCIS models (MCF10.DCIS, SUM102 and SUM225) compared to the MCF10A model of non-tumorigenic mammary epithelial cells in three dimensional (3D) overlay culture with reconstituted basement membrane (rBM). Extracted mRNA was subjected to 76 cycles of deep sequencing (RNA-Seq) using Illumina Genome Analyzer GAIIx. Analysis of RNA-Seq results showed 295 consistently differentially expressed transcripts in the DCIS models. These differentially expressed genes encode proteins that are associated with a number of signaling pathways such as integrin, fibroblast growth factor and TGFβ signaling, show association with cell-cell signaling, cell-cell adhesion and cell proliferation, and have a notable bias toward localization in the extracellular and plasma membrane compartments. RNA-Seq data was validated by quantitative real-time PCR of selected differentially expressed genes. Aldehyde dehydrogenase 5A1 (ALDH5A1) which is an enzyme that is involved in mitochondrial glutamate metabolism, was over-expressed in all three DCIS models at both the mRNA and protein levels. Disulfiram and valproic acid are known to inhibit ALDH5A1 and are safe for chronic use in humans for other disorders. Both of these drugs significantly inhibited net proliferation of the DCIS 3D rBM overlay models, but had minimal effect on MCF10A 3D rBM overlay models. These results suggest that ALDH5A1 may play an important role in DCIS and potentially serve as a novel molecular therapeutic target.
Collapse
Affiliation(s)
- Hitchintan Kaur
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Shihong Mao
- Center for Molecular Medicine and Genetics, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Quanwen Li
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, United States of America
| | - Mansoureh Sameni
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Stephen A. Krawetz
- Center for Molecular Medicine and Genetics, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, United States of America
| | - Bonnie F. Sloane
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, United States of America
| | - Raymond R. Mattingly
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
29
|
Miao L, Grebhardt S, Shi J, Peipe I, Zhang J, Mayer D. Prostaglandin E2 stimulates S100A8 expression by activating protein kinase A and CCAAT/enhancer-binding-protein-beta in prostate cancer cells. Int J Biochem Cell Biol 2012; 44:1919-28. [DOI: 10.1016/j.biocel.2012.06.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 06/04/2012] [Accepted: 06/12/2012] [Indexed: 12/17/2022]
|
30
|
Novel image analysis approach quantifies morphological characteristics of 3D breast culture acini with varying metastatic potentials. J Biomed Biotechnol 2012; 2012:102036. [PMID: 22665978 PMCID: PMC3362088 DOI: 10.1155/2012/102036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 02/21/2012] [Accepted: 02/22/2012] [Indexed: 01/07/2023] Open
Abstract
Prognosis of breast cancer is primarily predicted by the histological grading of the tumor, where pathologists manually evaluate microscopic characteristics of the tissue. This labor intensive process suffers from intra- and inter-observer variations; thus, computer-aided systems that accomplish this assessment automatically are in high demand. We address this by developing an image analysis framework for the automated grading of breast cancer in in vitro three-dimensional breast epithelial acini through the characterization of acinar structure morphology. A set of statistically significant features for the characterization of acini morphology are exploited for the automated grading of six (MCF10 series) cell line cultures mimicking three grades of breast cancer along the metastatic cascade. In addition to capturing both expected and visually differentiable changes, we quantify subtle differences that pose a challenge to assess through microscopic inspection. Our method achieves 89.0% accuracy in grading the acinar structures as nonmalignant, noninvasive carcinoma, and invasive carcinoma grades. We further demonstrate that the proposed methodology can be successfully applied for the grading of in vivo tissue samples albeit with additional constraints. These results indicate that the proposed features can be used to describe the relationship between the acini morphology and cellular function along the metastatic cascade.
Collapse
|
31
|
Grebhardt S, Veltkamp C, Ströbel P, Mayer D. Hypoxia and HIF-1 increase S100A8 and S100A9 expression in prostate cancer. Int J Cancer 2012; 131:2785-94. [PMID: 22505354 DOI: 10.1002/ijc.27591] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 04/03/2012] [Indexed: 11/09/2022]
Abstract
S100A8 and S100A9, two heterodimer-forming members of the cytosolic S100 Ca(2+) signaling protein family, are overexpressed in various cancer types, including prostate cancer. They act as proinflammatory danger signals when secreted to the extracellular space and are thought to play an important role during tumorigenesis, affecting inflammatory processes, proliferation, invasion and metastasis of tumor cells. Despite this fact, little is known about tumor environmental factors influencing S100A8/A9 expression. The aim of this study was to test the effect of hypoxia and its master transcriptional regulator hypoxia-inducible factor 1 (HIF-1) on S100A8/A9 expression. Hypoxia treatment resulted in induction of S100A8/A9 protein and mRNA expression in prostate epithelial BPH-1 cells, the latter was also confirmed in the prostate cancer cell lines PC-3 and DU-145. Furthermore, overexpression of HIF-1α caused increase in S100A8/A9 protein and mRNA expression as well as secretion. Functional hypoxia response elements mediating promoter activation on HIF-1α overexpression were identified within the S100A8 and S100A9 promoters using promoter luciferase reporter constructs. Binding of HIF-1α to S100A8 and S100A9 promoters was confirmed by chromatin immunoprecipitation. Immunohistochemical analysis of a prostate cancer tissue array showed clear correlation of S100A8 and S100A9 with HIF-1α expression. Multivariate proportional hazard analysis revealed association of high S100A9 level with time to prostate cancer recurrence. In conclusion, we identified hypoxia and HIF-1 as novel regulators of S100A8/A9 expression in prostate cancer. S100A9 might be useful as prognostic marker for prostate cancer recurrence after radical prostatectomy.
Collapse
Affiliation(s)
- Sina Grebhardt
- Hormones and Signal Transduction Group, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | | | | | | |
Collapse
|
32
|
Swa HLF, Blackstock WP, Lim LHK, Gunaratne J. Quantitative proteomics profiling of murine mammary gland cells unravels impact of annexin-1 on DNA damage response, cell adhesion, and migration. Mol Cell Proteomics 2012; 11:381-93. [PMID: 22511458 DOI: 10.1074/mcp.m111.011205] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Annexin 1 (ANXA1), the first characterized member of the annexin superfamily, is known to bind or annex to cellular membranes in a calcium-dependent manner. Besides mediating inflammation, ANXA1 has also been reported to be involved in important physiopathological implications including cell proliferation, differentiation, apoptosis, cancer, and metastasis. However, with controversies in ANXA1 expression in breast carcinomas, its role in breast cancer initiation and progression remains unclear. To elucidate how ANXA1 plays a role in breast cancer initiation, we performed stable isotope labeling of amino acids in cell culture analysis on normal mammary gland epithelial cells from ANXA1-heterozygous (ANXA1(+/-)) and ANXA1-null (ANXA1(-/-)) mice. Among over 4000 quantified proteins, we observed 214 up-regulated and 169 down-regulated with ANXA1(-/-). Bioinformatics analysis of the down-regulated proteins revealed that ANXA1 is potentially implicated in DNA damage response, whereas the analysis of up-regulated proteins showed the possible roles of ANXA1 in cell adhesion and migration pathways. These observations were supported by relevant functional assays. The assays for DNA damage response demonstrated an accumulation of more DNA damage with slower recovery on heat stress and an impaired oxidative damage response in ANXA1(-/-) cells in comparison with ANXA1(+/-) cells. Overexpressing Yes-associated protein 1 or Yap1, the most down-regulated protein in DNA damage response pathway cluster, rescued the proliferative response in ANXA1(-/-) cells exposed to oxidative damage. Both migration and wound healing assays showed that ANXA1(+/-) cells possess higher motility with better wound closure capability than ANXA1(-/-) cells. Knocking down of β-parvin, the protein with the highest fold change in the cell adhesion protein cluster, indicated an increased cell migration in ANXA1(-/-) cells. Altogether our quantitative proteomics study on ANXA1 suggests that ANXA1 plays a protective role in DNA damage and modulates cell adhesion and motility, indicating its potential role in cancer initiation as well as progression in breast carcinoma.
Collapse
Affiliation(s)
- Hannah L F Swa
- Quantitative Proteomics Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | | | | | | |
Collapse
|
33
|
Chevillard G, Blank V. NFE2L3 (NRF3): the Cinderella of the Cap'n'Collar transcription factors. Cell Mol Life Sci 2011; 68:3337-48. [PMID: 21687990 PMCID: PMC11114735 DOI: 10.1007/s00018-011-0747-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 05/28/2011] [Accepted: 05/30/2011] [Indexed: 12/18/2022]
Abstract
NFE2L3 [Nuclear factor (erythroid-derived 2)-like 3] or NRF3, a member of the Cap'n'Collar (CNC) family, is a basic-region leucine zipper (bZIP) transcription factor that was first identified over 10 years ago. Contrary to its extensively studied homolog NFE2L2 (NRF2), the regulation and function of the NFE2L3 protein have not yet attracted as much attention. Nevertheless, several recent reports have now shed light on the possible roles of NFE2L3. Structural and biochemical studies revealed a series of domains and modifications that are critical for its cellular regulation. The control of the subcellular localization of NFE2L3 appears to be essential for understanding its role in various cellular processes. Importantly, newer studies provide fascinating insights linking NFE2L3 to differentiation, inflammation, and carcinogenesis. Here, we present an overview of the current level of knowledge of NFE2L3 transcription factor biology in humans and mice. From being the Cinderella of the CNC transcription factors for many years, NFE2L3 may now rapidly come into its own.
Collapse
Affiliation(s)
- Grégory Chevillard
- Lady Davis Institute for Medical Research, McGill University, Montreal, QC H3T 1E2, Canada.
| | | |
Collapse
|
34
|
Choong LY, Lim SK, Chen Y, Loh MCS, Toy W, Wong CY, Salto-Tellez M, Shah N, Lim YP. Elevated NRD1 metalloprotease expression plays a role in breast cancer growth and proliferation. Genes Chromosomes Cancer 2011; 50:837-47. [PMID: 21769958 DOI: 10.1002/gcc.20905] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 05/31/2011] [Accepted: 06/14/2011] [Indexed: 02/06/2023] Open
Abstract
Understanding the molecular etiology of cancer and increasing the number of drugs and their targets are critical to cancer management. In our attempt to unravel novel breast-cancer associated proteins, we previously conducted protein expression profiling of the MCF10AT model, which comprises a series of isogenic cell lines that mimic different stages of breast cancer progression. NRD1 expression was found to increase during breast cancer progression. Here, we attempted to confirm the relevance of NRD1 in clinical breast cancer and understand the functional role and mechanism of NRD1 in breast cancer cells. Immunohistochemistry data show that NRD1 expression was elevated in ductal carcinoma in situ and invasive ductal carcinomas compared with normal tissues in 30% of the 26 matched cases studied. Examination of NRD1 expression in tissue microarray comprising >100 carcinomas and subsequent correlation with clinical data revealed that NRD1 expression was significantly associated with tumor size, grade, and nodal status (P < 0.05). Silencing of NRD1 reduced MCF10CA1h and MDA-MD-231 breast-cancer-cell proliferation and growth. Probing the oncogenic EGF signaling pathways revealed that NRD1 knock down did not affect overall downstream tyrosine phosphorylation cascades including AKT and MAPK activation. Instead, silencing of NRD1 resulted in a reduction of overall cyclin D1 expression, a reduction of EGF-induced increase in cyclin D1 expression and an increase in apoptotic cell population compared with control cells.
Collapse
Affiliation(s)
- Lee-Yee Choong
- Cancer Science Institute of Singapore, National University of Singapore, 28 Medical Drive, Centre for Life Sciences, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Chu JH, Lazarus R, Carey VJ, Raby BA. Quantifying differential gene connectivity between disease states for objective identification of disease-relevant genes. BMC SYSTEMS BIOLOGY 2011; 5:89. [PMID: 21627793 PMCID: PMC3128864 DOI: 10.1186/1752-0509-5-89] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 05/31/2011] [Indexed: 02/16/2023]
Abstract
Background Network modeling of whole transcriptome expression data enables characterization of complex epistatic (gene-gene) interactions that underlie cellular functions. Though numerous methods have been proposed and successfully implemented to develop these networks, there are no formal methods for comparing differences in network connectivity patterns as a function of phenotypic trait. Results Here we describe a novel approach for quantifying the differences in gene-gene connectivity patterns across disease states based on Graphical Gaussian Models (GGMs). We compare the posterior probabilities of connectivity for each gene pair across two disease states, expressed as a posterior odds-ratio (postOR) for each pair, which can be used to identify network components most relevant to disease status. The method can also be generalized to model differential gene connectivity patterns within previously defined gene sets, gene networks and pathways. We demonstrate that the GGM method reliably detects differences in network connectivity patterns in datasets of varying sample size. Applying this method to two independent breast cancer expression data sets, we identified numerous reproducible differences in network connectivity across histological grades of breast cancer, including several published gene sets and pathways. Most notably, our model identified two gene hubs (MMP12 and CXCL13) that each exhibited differential connectivity to more than 30 transcripts in both datasets. Both genes have been previously implicated in breast cancer pathobiology, but themselves are not differentially expressed by histologic grade in either dataset, and would thus have not been identified using traditional differential gene expression testing approaches. In addition, 16 curated gene sets demonstrated significant differential connectivity in both data sets, including the matrix metalloproteinases, PPAR alpha sequence targets, and the PUFA synthesis pathway. Conclusions Our results suggest that GGM can be used to formally evaluate differences in global interactome connectivity across disease states, and can serve as a powerful tool for exploring the molecular events that contribute to disease at a systems level.
Collapse
Affiliation(s)
- Jen-hwa Chu
- Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston MA 02115, USA.
| | | | | | | |
Collapse
|
36
|
Shin JE, Park SH, Jang YK. Epigenetic up-regulation of leukemia inhibitory factor (LIF) gene during the progression to breast cancer. Mol Cells 2011; 31:181-9. [PMID: 21191816 PMCID: PMC3932684 DOI: 10.1007/s10059-011-0020-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 11/10/2010] [Accepted: 11/12/2010] [Indexed: 11/26/2022] Open
Abstract
The interleukin 6 family of cytokines including leukemia inhibitory factor (LIF) regulates the progression of several types of cancer. However, although LIF overexpression during breast cancer progression was observed in our previous report, the molecular mechanisms responsible for this deregulation remain largely unknown. Here we show that LIF expression is epigenetically up-regulated via DNA demethylation and changes in histone methylation status within its promoter region in the isogenic MCF10 model. Bisulfite sequencing revealed the CpG pairs within the promoter region are hypermethylated in normal breast epithelial cells, but extensively demethylated as breast cancer progresses. In agreement with the DNA methylation pattern, our chromatin immunoprecipitation showed that inactive epigenetic marks such as MeCP2 occupancy and histone H3-Lys9-dimethylation significantly decreased during the progression to breast cancer but an active histone mark was increased in an inverse manner. Also, the occupancy of the transcription factor Sp1, which has higher affinity for hypomethylated CpGs, increased. RNAi-mediated knockdown of LIF expression resulted in a significant reduction of cell growth and colony formation in breast cancer cells, suggesting the potential role of LIF-LIF receptor axis in autocrine stimulation of cancer cells. Collectively, our data suggest that the epigenetic up-regulation of the LIF gene likely play an important role in the development of breast cancer.
Collapse
Affiliation(s)
- Jung Eun Shin
- Department of Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
- Yonsei Biomolecule Research Initiative, Yonsei University, Seoul 120-749, Korea
| | - Su Hyung Park
- Department of Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
- Yonsei Biomolecule Research Initiative, Yonsei University, Seoul 120-749, Korea
| | - Yeun Kyu Jang
- Department of Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
- Yonsei Biomolecule Research Initiative, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
37
|
Affiliation(s)
- Debora Fumagalli
- Laboratoire JC Heuson de Recherche Translationnelle en Cancérologie Mammaire, Université Libre de Bruxelles, Boulevard de Waterloo, 121-1000 Bruxelles, Belgium
| | - Stefan Michiels
- Laboratoire JC Heuson de Recherche Translationnelle en Cancérologie Mammaire, Université Libre de Bruxelles, Boulevard de Waterloo, 121-1000 Bruxelles, Belgium
| | | |
Collapse
|
38
|
McKiernan E, McDermott EW, Evoy D, Crown J, Duffy MJ. The role of S100 genes in breast cancer progression. Tumour Biol 2010; 32:441-50. [PMID: 21153724 DOI: 10.1007/s13277-010-0137-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 11/17/2010] [Indexed: 12/24/2022] Open
Abstract
The S100 gene family encode low molecular weight proteins implicated in cancer progression. In this study, we analyzed the expression of four S100 genes in one cohort of patients with breast cancer and 16 S100 genes in a second cohort. In both cohorts, the expression of S100A8 and S1009 mRNA level was elevated in high-grade compared to low-grade tumors and in estrogen receptor-negative compared to estrogen receptor-positive tumors. None of the S100 transcripts investigated were significantly associated with the presence of lymph node metastasis. Notably, multiple S100 genes, including S100A1, S100A2, S100A4, S100A6, S100A8, S100A9, S100A10, S100A11, and S100A14 were upregulated in basal-type breast cancers compared to non-basal types. Using Spearman's correlation analysis, several S100 transcripts correlated significantly with each other, the strongest correlation has been found between S100A8 and S100A9 (r = 0.889, P < 0.001, n = 295). Of the 16 S100 transcripts investigated, only S100A11 and S100A14 were significantly associated with patient outcome. Indeed, these two transcripts predicted outcome in the cohort of patients that did not receive systemic adjuvant therapy. Based on our findings, we conclude that the different S100 genes play varying roles in breast cancer progression. Specific S100 genes are potential targets for the treatment of basal-type breast cancers.
Collapse
Affiliation(s)
- Eadaoin McKiernan
- Department of Pathology and Laboratory Medicine, St Vincent's University Hospital, Dublin 4, Ireland.
| | | | | | | | | |
Collapse
|
39
|
Abstract
We have previously generated mice deficient for Nfe213 (NF-E2 p45 related factor 3 or Nrf3), a member of the cap 'n' collar family of basic-leucine zipper transcription factors. To examine whether Nrf3 is involved in chemical-induced carcinogenesis, we exposed the mice to benzo[a]pyrene (B[a]P), a carcinogen found in cigarette smoke. Contrary to wild-type mice, Nrf3-null animals are highly susceptible to B[a]P, exhibiting significantly increased mortality. Pathology analysis of affected tissue sections revealed a high incidence of T-cell lymphoblastic lymphoma in B[a]P-treated Nrf3(-/-) mice. Lymphoblastic lymphoma occasionally metastasized into the lung as demonstrated by perivascular malignant lymphocytic infiltration. Together, our studies show that the absence of Nrf3 predisposes mice to lymphoma development, suggesting a protective role of this transcription factor in hematopoietic malignancies. Our data demonstrate the first in vivo function of Nrf3 and its link to tumor development. Nrf3-deficient mice may serve as a preclinical mouse model to study carcinogen-induced lymphomagenesis.
Collapse
|
40
|
Choong LY, Lim S, Chong PK, Wong CY, Shah N, Lim YP. Proteome-wide profiling of the MCF10AT breast cancer progression model. PLoS One 2010; 5:e11030. [PMID: 20543960 PMCID: PMC2882958 DOI: 10.1371/journal.pone.0011030] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 05/18/2010] [Indexed: 01/27/2023] Open
Abstract
Background Mapping the expression changes during breast cancer development should facilitate basic and translational research that will eventually improve our understanding and clinical management of cancer. However, most studies in this area are challenged by genetic and environmental heterogeneities associated with cancer. Methodology/Principal Findings We conducted proteomics of the MCF10AT breast cancer model, which comprises of 4 isogenic xenograft-derived human cell lines that mimic different stages of breast cancer progression, using iTRAQ-based tandem mass spectrometry. Of more than 1200 proteins detected, 98 proteins representing at least 20 molecular function groups including kinases, proteases, adhesion, calcium binding and cytoskeletal proteins were found to display significant expression changes across the MCF10AT model. The number of proteins that showed different expression levels increased as disease progressed from AT1k pre-neoplastic cells to low grade CA1h cancer cells and high grade cancer cells. Bioinformatics revealed that MCF10AT model of breast cancer progression is associated with a major re-programming in metabolism, one of the first identified biochemical hallmarks of tumor cells (the “Warburg effect”). Aberrant expression of 3 novel breast cancer-associated proteins namely AK1, ATOX1 and HIST1H2BM were subsequently validated via immunoblotting of the MCF10AT model and immunohistochemistry of progressive clinical breast cancer lesions. Conclusion/Significance The information generated by this study should serve as a useful reference for future basic and translational cancer research. Dysregulation of ATOX1, AK1 and HIST1HB2M could be detected as early as the pre-neoplastic stage. The findings have implications on early detection and stratification of patients for adjuvant therapy.
Collapse
Affiliation(s)
- Lee Yee Choong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Simin Lim
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Poh Kuan Chong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Chow Yin Wong
- Department of General Surgery, Singapore General Hospital, Singapore, Singapore
| | - Nilesh Shah
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Yoon Pin Lim
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore, Singapore
- * E-mail:
| |
Collapse
|
41
|
Yu SE, Park SH, Jang YK. Epigenetic silencing of TNFSF7 (CD70) by DNA methylation during progression to breast cancer. Mol Cells 2010; 29:217-21. [PMID: 20119871 DOI: 10.1007/s10059-010-0052-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 12/22/2009] [Indexed: 11/24/2022] Open
Abstract
To escape the immune system, tumor cells may remove surface molecules such as the major histocompatibility complex (MHC) and co-stimulatory molecules, which are essential for recognition by lymphocytes. Down-regulation of the co-stimulatory molecules CD70 (TNFSF7) and CD80 may contribute to tumor cell survival; however, the mechanism of down-regulation of the TNFSF7 gene during tumorigenesis is poorly understood. Here we present evidence indicating that TNFSF7 gene expression is epigenetically down-regulated via DNA hypermethylation within its promoter region during progression in breast cancer cells in the isogenic MCF10 model. Bisulfite sequencing revealed that the CpG pairs at the proximal region of the TNFSF7 promoter are heavily methylated during progression of breast cancer cells but that methylation of the more distal sequences was not changed considerably. Thus, this epigenetic silencing of the TNFSF7 gene via hypermethylation of its proximal region may allow the benign and invasive MCF10 variants to escape immune surveillance.
Collapse
Affiliation(s)
- Seung Eun Yu
- Department of Biology, College of Science, Yonsei University, Seoul, 120-749, Korea
| | | | | |
Collapse
|