1
|
Wang M, Chen J, Xu Y, Wang Y, Mohamed HI, Wei D, Gao C. RHPS4 Targeted the G-Quadruplex of the 1a Gene of Cucumber Mosaic Virus to Inhibit Viral Proliferation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25015-25022. [PMID: 39497360 DOI: 10.1021/acs.jafc.4c07174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
Small molecules targeting G-quadruplexes (G4s) in viruses could inhibit viral proliferation. The 1a protein of cucumber mosaic virus (CMV) act as RNA-dependent RNA polymerase (RdRp) that plays a crucial role in regulating the replication of CMV. In this study, four putative G4 sequences (CMV PQS1-PQS4) in the genetic coding region of CMV 1a were identified, and three of them (PQS2, PQS3, and PQS4) were confirmed to fold into G4 structures. The G4-ligand, RHPS4, could bind to CMV PQS2 and PQS4 with a strong binding affinity and preferred to interact with the 3' terminal G-quartet surfaces of CMV PQS2, and 5' terminal of CMV PQS4. RHPS4 was also found to stabilize the CMV PQS2 and PQS4 G4s. Further studies revealed that RHPS4 exhibited an excellent anti-CMV activity. This study suggested that CMV PQS2 and PQS4 could be considered potential targets for screening viral inhibitors.
Collapse
Affiliation(s)
- Mengxi Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jixin Chen
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| | - Yang Xu
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| | - Yuchan Wang
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| | - Hany I Mohamed
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Dengguo Wei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Chao Gao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| |
Collapse
|
2
|
Fu C, Shen W, Li W, Wang P, Liu L, Dong Y, He J, Fan D. Engineered β-glycosidase from Hyperthermophilic Sulfolobus solfataricus with Improved Rd-hydrolyzing Activity for Ginsenoside Compound K Production. Appl Biochem Biotechnol 2024; 196:3800-3816. [PMID: 37782456 DOI: 10.1007/s12010-023-04745-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/03/2023]
Abstract
Hyperthermophilic Sulfolobus solfataricus β-glycosidase (SS-βGly), with higher stability and activity than mesophilic enzymes, has potential for industrial ginsenosides biotransformation. However, its relatively low ginsenoside Rd-hydrolyzing activity limits the production of pharmaceutically active minor ginsenoside compound K (CK). In this study, first, we used molecular docking to predict the key enzyme residues that may hypothetically interact with ginsenoside Rd. Then, based on sequence alignment and alanine scanning mutagenesis approach, key variant sites were identified that might improve the enzyme catalytic efficiency. The enzyme catalytic efficiency (kcat/Km) and substrate affinity (Km) of the N264D variant enzyme for ginsenoside Rd increased by 60% and decreased by 17.9% compared with WT enzyme, respectively, which may be due to a decrease in the binding free energy (∆G) between the variant enzyme and substrate Rd. In addition, Markov state models (MSM) analysis during the whole 1000-ns MD simulations indicated that altering N264 to D made the variant enzyme achieve a more stable SS-βGly conformational state than the wild-type (WT) enzyme and corresponding Rd complex. Under identical conditions, the relative activities and the CK conversion rates of the N264D enzyme were 1.7 and 1.9 folds higher than those of the WT enzyme. This study identified an excellent hyperthermophilic β-glycosidase candidate for industrial biotransformation of ginsenosides.
Collapse
Affiliation(s)
- Chenchen Fu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech. & Biomed. Research Institute, School of Chemical Engineering, Northwest University, Shaanxi, 710069, China
| | - Wenfeng Shen
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech. & Biomed. Research Institute, School of Chemical Engineering, Northwest University, Shaanxi, 710069, China
| | - Weina Li
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech. & Biomed. Research Institute, School of Chemical Engineering, Northwest University, Shaanxi, 710069, China.
| | - Pan Wang
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech. & Biomed. Research Institute, School of Chemical Engineering, Northwest University, Shaanxi, 710069, China
| | - Luo Liu
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yangfang Dong
- Shaanxi Giant Biogene Co., Ltd, Xi'an, 710065, Shaanxi, China
| | - Jing He
- Xi'an Giant Biogene Co., Ltd, Xi'an, 710065, Shaanxi, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech. & Biomed. Research Institute, School of Chemical Engineering, Northwest University, Shaanxi, 710069, China.
| |
Collapse
|
3
|
Chen S, Yang Z, Sun W, Tian K, Sun P, Wu J. TMV-CP based rational design and discovery of α-Amide phosphate derivatives as anti plant viral agents. Bioorg Chem 2024; 147:107415. [PMID: 38701597 DOI: 10.1016/j.bioorg.2024.107415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/17/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024]
Abstract
The tobacco mosaic virus coat protein (TMV-CP) is indispensable for the virus's replication, movement and transmission, as well as for the host plant's immune system to recognize it. It constitutes the outermost layer of the virus particle, and serves as an essential component of the virus structure. TMV-CP is essential for initiating and extending viral assembly, playing a crucial role in the self-assembly process of Tobacco Mosaic Virus (TMV). This research employed TMV-CP as a primary target for virtual screening, from which a library of 43,417 compounds was sourced and SH-05 was chosen as the lead compound. Consequently, a series of α-amide phosphate derivatives were designed and synthesized, exhibiting remarkable anti-TMV efficacy. The synthesized compounds were found to be beneficial in treating TMV, with compound 3g displaying a slightly better curative effect than Ningnanmycin (NNM) (EC50 = 304.54 µg/mL) at an EC50 of 291.9 µg/mL. Additionally, 3g exhibited comparable inactivation activity (EC50 = 63.2 µg/mL) to NNM (EC50 = 67.5 µg/mL) and similar protective activity (EC50 = 228.9 µg/mL) to NNM (EC50 = 219.7 µg/mL). Microscale thermal analysis revealed that the binding of 3g (Kd = 4.5 ± 1.9 µM) to TMV-CP showed the same level with NNM (Kd = 5.5 ± 2.6 µM). Results from transmission electron microscopy indicated that 3g could disrupt the structure of TMV virus particles. The toxicity prediction indicated that 3g was low toxicity. Molecular docking showed that 3g interacted with TMV-CP through hydrogen bond, attractive charge interaction and π-Cation interaction. This research provided a novel α-amide phosphate structure target TMV-CP, which may help the discovery of new anti-TMV agents in the future.
Collapse
Affiliation(s)
- Shunhong Chen
- State Key Laboratory of Green Pesticide; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Zhaokai Yang
- State Key Laboratory of Green Pesticide; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Wei Sun
- State Key Laboratory of Green Pesticide; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Kuan Tian
- State Key Laboratory of Green Pesticide; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Ping Sun
- State Key Laboratory of Green Pesticide; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Jian Wu
- State Key Laboratory of Green Pesticide; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.
| |
Collapse
|
4
|
Chen D, Li K, Wang B, Chen H, Jiang H, Zhao C, Yao G, Li S, Xu H. Bruceine D Acts as a Potential Insecticide by Antagonizing 20E-EcR/USP Signal Transduction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37478461 DOI: 10.1021/acs.jafc.3c02275] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Bruceine D (BD) is an effective insecticidal compound found in the Chinese herb Brucea javanica (L.) Merr. BD inhibits the growth and metamorphosis of Plutella xylostella and Drosophila melanogaster; however, its target protein and the molecular mechanism of insecticidal activity remain unclear. In this study, proteins with high affinity for BD were screened using surface plasmon resonance and high-performance liquid chromatography coupled with matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry, revealing the ecdysone receptor (EcR) is the main target of BD. In vivo results showed that BD inhibited insect growth and metamorphosis through inhibition of the expression of 20E response genes. In vitro dual luciferase and enhanced green fluorescent protein (EGFP) fluorescence experiments indicated that BD suppressed the transcriptional activation activity of EcR by blocking the ecdysone response element (EcRE)-triggered transcriptional cascade, suggesting that BD inhibits the formation of the 20E-EcR-USP-EcRE complex. Moreover, molecular docking demonstrated that BD bound well to EcR. Elucidating the insecticidal mechanism of BD will be helpful in the development of green pesticides to control pests.
Collapse
Affiliation(s)
- Dongping Chen
- National Key Laboratory of Green Pesticide and the State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Kang Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Bingfeng Wang
- National Key Laboratory of Green Pesticide and the State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Huimin Chen
- National Key Laboratory of Green Pesticide and the State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Heng Jiang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Chen Zhao
- National Key Laboratory of Green Pesticide and the State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Guangkai Yao
- National Key Laboratory of Green Pesticide and the State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide and the State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
5
|
Structural insights into the RNA interaction with Yam bean Mosaic virus (coat protein) from Pachyrhizus erosus using bioinformatics approach. PLoS One 2022; 17:e0270534. [PMID: 35867657 PMCID: PMC9307209 DOI: 10.1371/journal.pone.0270534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/11/2022] [Indexed: 11/19/2022] Open
Abstract
Plants are constantly threatened by a virus infection, i.e., Potyviruses, the second largest genus of plant viruses which results in several million-dollar losses in various essential crops globally. Yam bean (Pachyrhizus erosus) is considered to be one of the essential tuberous legume crops holding a great potential source of starch. Yam Bean Mosaic Virus (YBMV) of Potyvirus group belonging to the family potyviridae affects Yam bean and several angiosperms both in the tropical and sub-tropical regions causing large economical losses in crops. In this study, we attempted to understand the sequence-structure relationship and mode of RNA binding mechanism in YBMV CP using in silico integrative modeling and all-atoms molecular dynamics (MD) simulations. The assembly of coat protein (CP) subunits from YBMV and the plausible mode of RNA binding were compared with the experimental structure of CP from Watermelon mosaic virus potyvirus (5ODV). The transmembrane helix region is present in the YBMV CP sequence ranging from 76 to 91 amino acids. Like the close structural-homolog, 24 CPs monomeric sub-units formed YBMV a conserved fold. Our computational study showed that ARG124, ARG155, and TYR151 orient towards the inner side of the virion, while, THR122, GLN125, SER92, ASP94 reside towards the outer side of the virion. Despite sharing very low sequence similarity with CPs from other plant viruses, the strongly conserved residues Ser, Arg, and Asp within the RNA binding pocket of YBMV CP indicate the presence of a highly conserved RNA binding site in CPs from different families. Using several bioinformatics tools and comprehensive analysis from MD simulation, our study has provided novel insights into the RNA binding mechanism in YBMV CP. Thus, we anticipate that our findings from this study will be useful for the development of new therapeutic agents against the pathogen, paving the way for researchers to better control this destructive plant virus.
Collapse
|
6
|
Yan Y, Huang M, Wang L, Xue W, Xie X, Li X. Insights into a rapid screening method for anti-cucumber mosaic virus compounds. J Virol Methods 2022; 301:114402. [PMID: 34871628 DOI: 10.1016/j.jviromet.2021.114402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/09/2021] [Accepted: 12/02/2021] [Indexed: 11/18/2022]
Abstract
Cucumber mosaic virus (CMV) is a detrimental plant virus in agricultural production. Traditionally, the half-leaf method using Nicotiana glutinosa has been used for screening agrochemicals to control CMV. However, this forms a time-consuming experimental bottleneck. In this study, we constructed a rapid screening model for anti-CMV compounds using CMV. In short, purified CMV particles were labeled through amine reactions and then subjected to binding studies with commercial compounds. The relative gene expression levels were then confirmed. Additionally, the rapid screening model results were verified using synthesized compounds. The commercial compounds ningnanmycin, ribavirin, and moroxydine hydrochloride bound to CMV with dissociation constants of 0.012, 2.870, and 0.069 μM, respectively, and they significantly inhibited expression of the gene for the CMV coat protein in CMV-infected tobacco leaves. This rapid screening model was assessed using our synthetic compounds N12, N16, and N18 through binding, which were shown to have dissociation constants 0.008, 0.025, and 70.800 μM, respectively, as well as via gene expression studies. Thus, a rapid method for screening anti-CMV commercial compounds and our synthetic compounds was constructed and confirmed.
Collapse
Affiliation(s)
- Yunlong Yan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China; College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Maoxi Huang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Li Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China; College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Xin Xie
- College of Agriculture, Guizhou University, Guiyang 550025, PR China.
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
7
|
Turan N, Tanış E, Buldurun K, Çolak N. Synthesis, Structure, DFT Calculations, and In Silico Toxic Potential of Ni(II), Zn(II), and Fe(II) Complexes with a Tridentate Schiff Base. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s107036322108020x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Singh R, Bhardwaj VK, Das P, Purohit R. A computational approach for rational discovery of inhibitors for non-structural protein 1 of SARS-CoV-2. Comput Biol Med 2021; 135:104555. [PMID: 34144270 PMCID: PMC8184359 DOI: 10.1016/j.compbiomed.2021.104555] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 12/21/2022]
Abstract
Background Non-structural protein 1 (Nsp1), a virulence agent of SARS-CoV-2, has emerged as an important target for drug discovery. Nsp1 shuts down the host gene function by associating with the 40S ribosomal subunit. Methods Molecular interactions, drug-likeness, physiochemical property predictions, and robust molecular dynamics (MD) simulations were employed to discover novel Nsp1 inhibitors. In this study, we evaluated a series of molecules based on the plant (Cedrus deodara) derived α,β,γ-Himachalenes scaffolds. Results The results obtained from estimated affinity and ligand efficiency suggested that BCH10, BCH15, BCH16, and BCH17 could act as potential inhibitors of Nsp1. Moreover, MD simulations comprising various MD driven time-dependent analyses and thermodynamic free energy calculations also suggested stable protein-ligand complexes and strong interactions with the binding site. Furthermore, the selected molecules passed drug likeliness parameters and the physiochemical property analysis showed acceptable bioactivity scores. Conclusion The structural parameters of dynamic simulations revealed that the reported molecules could act as lead compounds against SARS-CoV-2 Nsp1 protein.
Collapse
Affiliation(s)
- Rahul Singh
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP, 176061, India; Biotechnology Division, CSIR-IHBT, Palampur, HP, 176061, India
| | - Vijay Kumar Bhardwaj
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP, 176061, India; Biotechnology Division, CSIR-IHBT, Palampur, HP, 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pralay Das
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India; Natural Product Chemistry and Process Development, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palam-pur, India
| | - Rituraj Purohit
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP, 176061, India; Biotechnology Division, CSIR-IHBT, Palampur, HP, 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
9
|
Sharma J, Bhardwaj VK, Das P, Purohit R. Plant-based analogues identified as potential inhibitor against tobacco mosaic virus: A biosimulation approach. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 175:104858. [PMID: 33993976 DOI: 10.1016/j.pestbp.2021.104858] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/10/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Benzosuberene compounds with a pyrrolone group adhered to it are compounds extracted from the oils of Cedrus deodara plant, that bear inhibitory capabilities. Tobacco mosaic virus is known to affect crop production every year. The currently known inhibitors against TMV have a weak inhibition effect and also tend to be toxic towards non-target living organisms as well as the environment. Thus, the requirement of non-toxic potent inhibitors is the need of the hour, which led us to test our benzosuberene molecules on the binding site of TMV and check their affinity as well as stability. The non-toxic nature of these molecules has already been experimentally established. Through in-silico analysis involving docking and simulation experiments, we compared the interaction pattern of these ligand molecules with the already present inhibitors. Our investigation proved that the reported ligands (ligands 3, 7, 9, and 17 obtained -177.103, -228.632, -184.134, and - 188.075 kJ/mol binding energies, respectively) interacted with the binding site of TMV much efficiently than the known inhibitors (Ribavirin and Zhao et al. 2020 obtained 121.561 and - 221.393 kJ/mol binding energies, respectively). Moreover, they acquired a stable conformation inside the binding pocket, where a higher number of binding site residues contributed towards interaction. Thus, their structural framework can be optimized for the exploration of their antiviral properties to develop potent botanical viricides against plant virus infection.
Collapse
Affiliation(s)
- Jatin Sharma
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP 176061, India; Biotechnology division, CSIR-IHBT, Palampur, HP 176061, India
| | - Vijay Kumar Bhardwaj
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP 176061, India; Biotechnology division, CSIR-IHBT, Palampur, HP 176061, India
| | - Pralay Das
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India; Natural Product Chemistry and Process Development, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Rituraj Purohit
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP 176061, India; Biotechnology division, CSIR-IHBT, Palampur, HP 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
10
|
Çankaya N, Azarkan SY, Tanış E. The molecular interaction of human anti-apoptotic proteins and in silico ADMET, drug-likeness and toxicity computation of N-cyclohexylmethacrylamide. Drug Chem Toxicol 2021; 45:1963-1970. [PMID: 33771072 DOI: 10.1080/01480545.2021.1894711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Cancer is an uncontrolled growth of normal cells and apoptosis has an important role in cancer progression and cancer treatment. Antiapoptotic proteins are overexpressed in several tumors including breast, brain, lung cancer cells. The protein-ligand interaction has a critical role in drug designing. The present study aims to evaluate the interaction of synthesized N-cyclohexylmethacrylamide (NCMA) with proteins using in silico molecular docking and toxicity analyses. The NCMA monomer was synthesized and characterized by our team, previously. Kinetics stability, binding affinities and toxic potential of protein-NCMA complex were examined with the aid of molecular simulation. The toxicity results of this study indicate that NCMA is a sample with low toxic potential. According to the docking results, NCMA may be a drug active substance with chemical modifications and toxicity results support this situation. The drug-likeness and ADMET parameters were screened properties of NCMA.
Collapse
Affiliation(s)
- Nevin Çankaya
- Department of Chemistry, Usak University, Uşak, Turkey
| | - Serap Yalçın Azarkan
- Department of Molecular Biology and Genetic, Kırşehir Ahi Evran University, Kırşehir, Turkey
| | - Emine Tanış
- Department of Electrical Electronics Engineering, Kırşehir Ahi Evran University, Kırsehir, Turkey
| |
Collapse
|
11
|
Rakshit G, Dagur P, Satpathy S, Patra A, Jain A, Ghosh M. Flavonoids as potential therapeutics against novel coronavirus disease-2019 (nCOVID-19). J Biomol Struct Dyn 2021; 40:6989-7001. [PMID: 33682606 DOI: 10.1080/07391102.2021.1892529] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Since time immemorial natural products have been a great source of medicine to mankind. The anti-viral activities from several ayurvedic herbal medicines (in the form of crude extract or fraction or isolated compounds) have been established but their effectiveness against coronavirus still needs to be explored. They can provide a rich resource of anti-SARS-CoV-2 drug candidates. In this paper, in-silico techniques have been used to identify the potential lead molecules against SARS-CoV-2. A list of flavonoids having anti-viral activity was prepared and evaluated against the selected target. Rhoifolin, 5,7-dimethoxyflavanone-4'-O-β-d-glucopyranoside, baicalin, astragalin, luteolin, and kaempferol showed good binding affinity and thus these could be promising compounds. In-silico screening such as ADMET prediction has been performed which predicted that the selected flavonoids have good pharmacokinetics and pharmacodynamics properties. Molecular dynamics simulation studies and MM-PBSA binding free energy calculations showed luteolin to be a more effective candidate against viral protein Mpro. The novelty of the approach mainly rests in the identification of potent anti-viral natural molecules from natural products flavonoid group of molecules to be effective against the latest coronavirus infection.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Gourav Rakshit
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Ranchi, Jharkhand, India
| | - Pankaj Dagur
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Ranchi, Jharkhand, India
| | - Swaha Satpathy
- Department of Biotechnology and Bioinformatics, Sambalpur University, Sambalpur, Odisha, India
| | - Arjun Patra
- Department of Pharmacy, Guru Ghasidas University, Bilaspur, Chhattisgarh, India
| | - Alok Jain
- Department of Bio-Engineering, Birla Institute of Technology, Ranchi, Jharkhand, India
| | - Manik Ghosh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Ranchi, Jharkhand, India
| |
Collapse
|
12
|
Shojapour M, Fatemi F, Farahmand S, Shasaltaneh MD. Investigation of Cyc 1 protein structure stability after H53I mutation using computational approaches to improve redox potential. J Mol Graph Model 2021; 105:107864. [PMID: 33647753 DOI: 10.1016/j.jmgm.2021.107864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/13/2021] [Accepted: 02/05/2021] [Indexed: 10/22/2022]
Abstract
Acidithiobacillus ferrooxidans (Af) is an acidophilic bacterium that grows in rigid surroundings and gets its own energy from the oxidation of Fe2+ to Fe3+. These bacteria are involved in the bioleaching process. Cyc1 is a periplasmic protein with a crucial role in electron transportation in the respiratory chain. His53 of the Cyc1 protein, involved in electron transfer to CoxB, was selected for mutation and bioinformatics studies. His53 was substituted by Ile using PyMol software. Molecular dynamics simulations were performed for wild and mutant types of Cyc1 protein. The conformational changes of mutated protein were studied by analyzing RMSD, RMSF, SASA, Rg, H Bond, and DSSP. The results of the RMSF analysis indicated an increase in the flexibility of the ligand in the mutant. Finally, active site instability leads to an increase in the value of E0 at the mutation point and improving electron transfer. On the other, His53 in Cyc1 is interconnected to Glu126 in CoxB through the water molecule (W76) and hydrogen bonding. In the H53I mutation, there was a decrease in the distance between H2O 2030, 2033, and isoleucine 53, and subsequently, the distance to the water molecule 76 between the two proteins was reduced and strengthens the hydrogen bond between Cyc1 and CoxB, finally improves electron transfer and the bioleaching process.
Collapse
Affiliation(s)
- Mahnaz Shojapour
- Department of Biology, Faculty of Sciences, Payame Noor University, Tehran, Iran.
| | - Faezeh Fatemi
- Materials and Nuclear Fuel Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Somayeh Farahmand
- Department of Biology, Faculty of Sciences, Payame Noor University, Tehran, Iran
| | | |
Collapse
|
13
|
Song G, Luo BH. Effects of the association of the α v β 8 lower legs on integrin ligand binding. J Cell Biochem 2021; 122:801-813. [PMID: 33619784 DOI: 10.1002/jcb.29912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/18/2022]
Abstract
Many integrins transmit signals through global conformational changes. However, it is unclear whether integrin αv β8 adopts a similar mechanism during integrin activation and signaling on the cell surface. Here, we showed that disulfide-bonded mutants, which prevented integrin αv β8 lower leg dissociation, bound ligands with similar level as the wild-type protein, suggesting that αv β8 ligand binding did not require lower leg disassociation. We further showed that the N-glycosylation mutant at the interface between the β I and hybrid domains did not affect ligand binding, suggesting that the αv β8 open headpiece was not present on the cell surface. We proposed that αv β8 integrin may adopt only one state, that is, the extended conformation with a closed headpiece. Our results showed that two lower legs retained heterodimeric interfaces, and this association might be important for stabilizing integrin in the extended conformation. Therefore, αv β8 may not transmit bidirectional signals across the plasma membrane but instead may serve as an anchoring site with high affinity and high accessibility for extracellular ligands.
Collapse
Affiliation(s)
- Guannan Song
- Department of Life Science, University of Louisiana State University, Baton Rouge, Louisiana, USA
| | - Bing-Hao Luo
- Department of Life Science, University of Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
14
|
Cui J, Zheng L, Zhang Y, Xue M. Bioinformatics analysis of DNMT1 expression and its role in head and neck squamous cell carcinoma prognosis. Sci Rep 2021; 11:2267. [PMID: 33500531 PMCID: PMC7838186 DOI: 10.1038/s41598-021-81971-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/14/2021] [Indexed: 12/11/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common type of malignancy in the world. DNA cytosine-5-methyltransferase 1 (DNMT1) play key roles in carcinogenesis and regulation of the immune micro-environment, but the gene expression and the role of DNMT1 in HNSCC is unknown. In this study, we utilized online tools and databases for pan-cancer and HNSCC analysis of DNMT1 expression and its association with clinical cancer characteristics. We also identified genes that positively and negatively correlated with DNMT1 expression and identified eight hub genes based on protein–protein interaction (PPI) network analysis. Enrichment analyses were performed to explore the biological functions related with of DNMT1. The Tumor Immune Estimation Resource (TIMER) database was performed to explore the relationship between DNMT1 expression and immune-cell infiltration. We demonstrated that DNMT1 gene expression was upregulated in HNSCC and associated with poor prognosis. Based on analysis of the eight hub genes, we determined that DNMT1 may be involved in cell cycle, proliferation and metabolic related pathways. We also found that significant difference of B cells infiltration based on TP 53 mutation. These findings suggest that DNMT1 related epigenetic alterations have close relationship with HNSCC progression, and DNMT1 could be a novel diagnostic biomarker and a promising therapeutic target for HNSCC.
Collapse
Affiliation(s)
- Jili Cui
- Department of General Dentistry, The First Affiliated Hospital, Zhengzhou University, No. 1 Jianshe Road, Zhengzhou, 450052, Henan, China.,Key Laboratory of Clinical Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Lian Zheng
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan, China.,Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yuanyuan Zhang
- Department of General Dentistry, The First Affiliated Hospital, Zhengzhou University, No. 1 Jianshe Road, Zhengzhou, 450052, Henan, China. .,Key Laboratory of Clinical Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Miaomiao Xue
- Department of General Dentistry, The First Affiliated Hospital, Zhengzhou University, No. 1 Jianshe Road, Zhengzhou, 450052, Henan, China. .,Key Laboratory of Clinical Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
15
|
Khan T, Khan A, Ali SS, Ali S, Wei DQ. A computational perspective on the dynamic behaviour of recurrent drug resistance mutations in the pncA gene from Mycobacterium tuberculosis. RSC Adv 2021; 11:2476-2486. [PMID: 35424144 PMCID: PMC8693711 DOI: 10.1039/d0ra09326b] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis is still one of the top 10 causes of death worldwide, particularly with the emergence of multidrug-resistant tuberculosis. As the most effective first-line anti-tuberculosis drug, pyrazinamide also develops resistance due to the mutation in the pncA gene. Among these mutations, seven mutations at positions F94L, F94S, K96N, K96R, G97C, G97D, and G97S are classified as high-level resistance mutations. However, the resistance mechanism of Mtb to PZA (pyrazinamide) caused by these mutations is still unclear. In this work, we combined molecular dynamics simulation, molecular mechanics/generalized-Born surface area calculation, principal component analysis, and free energy landscape analysis to explore the resistance mechanism of Mtb to PZA due to F94L, F94S, K96N, K96R, G97C, G97D, and G97S mutations, as well as compare interaction changes in wild-type and mutant PZA-bound complexes. The results of molecular mechanics/generalized-Born surface area calculations indicated that the binding free energy of PZA with seven mutants decreased. In mutant systems, the most significant interactions with His137 and Cys138 were lost. Besides, PCA and FEL confirmed significant variations in the protein dynamics during the simulation specifically by altering the Fe2+ binding and its destabilization. Furthermore, mutants also flipped the β-sheet 2, which also affects the binding of Fe2+ and PZA. In the G97D mutant, reported as most lethal, mutation causes the binding pocket to change considerably, so that the position of PZA has a large movement in the binding pocket. In this study, the resistance mechanism of PZA at the atomic level is proposed. The proposed drug-resistance mechanism will provide valuable guidance for the design of anti-tuberculosis drugs.
Collapse
Affiliation(s)
- Taimoor Khan
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai 200240 P.R. China
| | - Abbas Khan
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai 200240 P.R. China
| | - Syed Shujait Ali
- Center for Biotechnology and Microbiology, University of Swat Swat KP Pakistan
| | - Shahid Ali
- Center for Biotechnology and Microbiology, University of Swat Swat KP Pakistan
| | - Dong-Qing Wei
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai 200240 P.R. China
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai 200030 P.R. China
- Peng Cheng Laboratory Vanke Cloud City Phase I Building 8, Xili Street, Nashan District Shenzhen Guangdong 518055 P.R. China
| |
Collapse
|
16
|
Kumar Bhardwaj V, Purohit R, Kumar S. Himalayan bioactive molecules as potential entry inhibitors for the human immunodeficiency virus. Food Chem 2020; 347:128932. [PMID: 33465692 DOI: 10.1016/j.foodchem.2020.128932] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/01/2020] [Accepted: 12/21/2020] [Indexed: 12/26/2022]
Abstract
The human immunodeficiency virus interacts with the cluster of differentiation 4 receptors and one of the two chemokine receptors (CCR5 and CXCR4) to gain entry in human cells. Both the co-receptors are essential for viral entry, replication, and are considered critical targets for antiviral drugs. In this study, bioactive molecules from different Himalayan plants were screened considering their potential to bind with the CCR5 and CXCR4 co-receptors. We utilized computational and thermodynamic parameters to validate the binding of the selected biomolecules to the active site of the co-receptors. The molecules Butyl 2-ethylhexyl phthalate and Dactylorhin-A showed a higher binding affinity with CCR5 co-receptor than the standard antagonist Maraviroc. Moreover, Pseudohypericin, Amarogentin, and Dactylorhin-E exhibited stronger interactions with CXCR4 than the co-crystallized inhibitor Isothiourea-1 t. Hence, we suggest that these molecules could be developed as potential inhibitors of the CCR5 and CXCR4 co-receptors. However, this require further in-vitro and in-vivo validation.
Collapse
Affiliation(s)
- Vijay Kumar Bhardwaj
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP, 176061, India; Biotechnology Division, CSIR-IHBT, Palampur, HP, 176061, India; Academy of Scientific & Innovative Research (AcSIR), CSIR-IHBT Campus, Palampur, HP, 176061, India
| | - Rituraj Purohit
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP, 176061, India; Biotechnology Division, CSIR-IHBT, Palampur, HP, 176061, India; Academy of Scientific & Innovative Research (AcSIR), CSIR-IHBT Campus, Palampur, HP, 176061, India.
| | - Sanjay Kumar
- Biotechnology Division, CSIR-IHBT, Palampur, HP, 176061, India
| |
Collapse
|
17
|
Lv K, Shao W, Pedroso MM, Peng J, Wu B, Li J, He B, Schenk G. Enhancing the catalytic activity of a GH5 processive endoglucanase from Bacillus subtilis BS-5 by site-directed mutagenesis. Int J Biol Macromol 2020; 168:442-452. [PMID: 33310097 DOI: 10.1016/j.ijbiomac.2020.12.060] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 11/16/2022]
Abstract
Processive endoglucanases possess both endo- and exoglucanase activity, making them attractive discovery and engineering targets. Here, a processive endoglucanase EG5C-1 from Bacillus subtilis was employed as the starting point for enzyme engineering. Referring to the complex structure information of EG5C-1 and cellohexaose, the amino acid residues in the active site architecture were identified and subjected to alanine scanning mutagenesis. The residues were chosen for a saturation mutagenesis since their variants showed similar activities to EG5C-1. Variants D70Q and S235W showed increased activity towards the substrates CMC and Avicel, an increase was further enhanced in D70Q/S235W double mutant, which displayed a 2.1- and 1.7-fold improvement in the hydrolytic activity towards CMC and Avicel, respectively. In addition, kinetic measurements showed that double mutant had higher substrate affinity (Km) and a significantly higher catalytic efficiency (kcat/Km). The binding isotherms of wild-type EG5C-1 and double mutant D70Q/S235W suggested that the binding capability of EG5C-1 for the insoluble substrate was weaker than that of D70Q/S235W. Molecular dynamics simulations suggested that the collaborative substitutions of D70Q and S235W altered the hydrogen bonding network within the active site architecture and introduced new hydrogen bonds between the enzyme and cellohexaose, thus enhancing both substrate affinity and catalytic efficiency.
Collapse
Affiliation(s)
- Kemin Lv
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan road, Nanjing 211816, Jiangsu, China
| | - Wenyu Shao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan road, Nanjing 211816, Jiangsu, China
| | - Marcelo Monteiro Pedroso
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Jiayu Peng
- School of Pharmaceutical Sciences, Nanjing Tech University, 30 Puzhunan road, Nanjing 211816, Jiangsu, China
| | - Bin Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan road, Nanjing 211816, Jiangsu, China.
| | - Jiahuang Li
- School of Life Science, Nanjing University, Nanjing 210023, Jiangsu, China.
| | - Bingfang He
- School of Pharmaceutical Sciences, Nanjing Tech University, 30 Puzhunan road, Nanjing 211816, Jiangsu, China
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| |
Collapse
|
18
|
Bhardwaj VK, Singh R, Das P, Purohit R. Evaluation of acridinedione analogs as potential SARS-CoV-2 main protease inhibitors and their comparison with repurposed anti-viral drugs. Comput Biol Med 2020; 128:104117. [PMID: 33217661 PMCID: PMC7659809 DOI: 10.1016/j.compbiomed.2020.104117] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/01/2020] [Accepted: 11/07/2020] [Indexed: 12/11/2022]
Abstract
Background The main protease (Mpro) of SARS-CoV-2 is involved in the processing of vital polypeptides required for viral genome replication and transcription and is one of the best-characterized targets to inhibit the progression of SARS-CoV-2 in infected individuals. Methods We screened a set of novel classes of acridinediones molecules to efficiently bind and inhibit the activity of the SARS-CoV-2 by targeting the Mpro. The repurposed FDA-approved antivirals were taken as standard molecules for this study. Long term (1.1 μs) MD simulations were performed to analyze the conformational space of the binding pocket of Mpro bound to the selected molecules. Results The molecules DSPD-2 and DSPD-6 showed more favorable MM-PBSA interaction energies and were seated more deeply inside the binding pocket of Mpro than the topmost antiviral drug (Saquinavir). Moreover, DSPD-5 also exhibited comparable binding energy to Saquinavir. The analysis of per residue contribution energy and SASA studies indicated that the molecules showed efficient binding by targeting the S1 subsite of the Mpro binding pocket. Conclusion The DSPD-2, DSPD-6, and DSPD-5 could be developed as potential inhibitors of SARS-CoV-2. Moreover, we suggest that targeting molecules to bind effectively to the S1 subsite could potentially increase the binding of molecules to the SARS-CoV-2 Mpro. A robust computational strategy applied to identify the potential lead for COVID-19. Repurposed FDA approved antiviral drugs were compared with a set of acridinedione analogs against Mpro of SARS-CoV-2. The acridinedione analogs have acceptable ADMET values and low toxicity profile. In-house synthesized acridinedione analogs showed good amount of interaction with Mpro of SARS-CoV-2.
Collapse
Affiliation(s)
- Vijay Kumar Bhardwaj
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP, 176061, India; Biotechnology Division, CSIR-IHBT, Palampur, HP, 176061, India; Academy of Scientific & Innovative Research (AcSIR), CSIR-IHBT Campus, Palampur, HP, 176061, India
| | - Rahul Singh
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP, 176061, India; Biotechnology Division, CSIR-IHBT, Palampur, HP, 176061, India
| | - Pralay Das
- Academy of Scientific & Innovative Research (AcSIR), CSIR-IHBT Campus, Palampur, HP, 176061, India; Natural Product Chemistry and Process Development, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP, India
| | - Rituraj Purohit
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP, 176061, India; Biotechnology Division, CSIR-IHBT, Palampur, HP, 176061, India; Academy of Scientific & Innovative Research (AcSIR), CSIR-IHBT Campus, Palampur, HP, 176061, India.
| |
Collapse
|
19
|
Singh R, Bhardwaj VK, Sharma J, Das P, Purohit R. Discovery and in silico evaluation of aminoarylbenzosuberene molecules as novel checkpoint kinase 1 inhibitor determinants. Genomics 2020; 113:707-715. [PMID: 33065246 DOI: 10.1016/j.ygeno.2020.10.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/16/2020] [Accepted: 10/01/2020] [Indexed: 01/12/2023]
Abstract
Checkpoint kinase 1 (CHK1) is an essential kinase with a critical function in cell cycle arrest. Several potent inhibitors targeting CHK1 have been published, but most of them have failed in clinical trials. Acknowledging the emerging consequence of CHK1 inhibitors in medication of cancer, there is a demand for widening the chemical range of CHK1 inhibitors. In this research, we considered a set of in-house plant based semi-synthetic aminoarylbenzosuberene molecules as potential CHK1 inhibitors. Based on a combined computational research that consolidates molecular docking and binding free energy computations we recognized the crucial determinants for their receptor binding. The drug likeness of these molecules were also scrutinized based on their toxicity and bioavailibilty profile. The computational strategy indicates that the Bch10 could be regarded as a potential CHK1 inhibitor in comparison with top five co-crystallize molecules. Bch10 signifies a promising outlet for the development of potent inhibitors for CHK1.
Collapse
Affiliation(s)
- Rahul Singh
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP 176061, India; Biotechnology division, CSIR-IHBT, Palampur, HP 176061, India
| | - Vijay Kumar Bhardwaj
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP 176061, India; Biotechnology division, CSIR-IHBT, Palampur, HP 176061, India; Academy of Scientific & Innovative Research (AcSIR), CSIR-IHBT Campus, Palampur, HP 176061, India
| | - Jatin Sharma
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP 176061, India; Biotechnology division, CSIR-IHBT, Palampur, HP 176061, India
| | - Pralay Das
- Academy of Scientific & Innovative Research (AcSIR), CSIR-IHBT Campus, Palampur, HP 176061, India; Natural Product Chemistry and Process Development, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Rituraj Purohit
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP 176061, India; Biotechnology division, CSIR-IHBT, Palampur, HP 176061, India; Academy of Scientific & Innovative Research (AcSIR), CSIR-IHBT Campus, Palampur, HP 176061, India.
| |
Collapse
|