1
|
Wei K, Tang J, Yang L, Chen S, Cheng Z, Yang Y, Xu C, Wu S, Zhao Y, Di H, Li L, Sun D, Li J, Sun B. Preharvest Application of Exogenous 2,4-Epibrassinolide and Melatonin Enhances the Maturity and Flue-Cured Quality of Tobacco Leaves. PLANTS (BASEL, SWITZERLAND) 2024; 13:3266. [PMID: 39683059 DOI: 10.3390/plants13233266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024]
Abstract
Tobacco (Nicotiana tabacum) is a globally cultivated crop, with its quality closely associated with the color and chemical composition of cured tobacco leaves. In this experiment, the effects of spraying exogenous 2, 4-epibrassinolide (EBR) and melatonin (MT) on the development of tobacco leaves at maturity stage and the quality after curing were investigated. Both EBR and MT treatments significantly enhanced the appearance quality of tobacco leaves at the stem-drying stage. Following preharvest applications, the sugar-to-alkali ratio and potassium content increased, while the contents of starch, total alkaloids, and proteins decreased. The levels of conventional chemical components were improved, enhancing the overall coordination of the tobacco. Transcriptome analysis revealed that EBR treatment down-regulated the chlorophyll biosynthetic genes hemA, MgPEC, and ChlD, while up-regulating the chlorophyll degradation genes CHL2, SGR, and PAOs. Similarly, MT treatment down-regulated the chlorophyll biosynthetic genes FC2 and MgPEC and up-regulated the degradation genes CHL2 and SGR, thus promoting chlorophyll degradation. Furthermore, in the downstream carotenoid biosynthetic pathway, both EBR and MT treatments regulated abscisic acid-related genes, with NCEDs being up-regulated and CYP707A1s down-regulated, thereby promoting the leaf ripening. Metabolomics analysis indicated that EBR treatment primarily regulated alkaloids, terpenoids, and flavonoids, while MT treatment mainly affected flavonoids. Both treatments also reduced the accumulation of the harmful substance aristolochic acid B. Comprehensive evaluations of appearance quality, physiological parameters, transcriptome, and metabolomics analyses demonstrated that exogenous spraying of EBR and MT treatments improved the maturity and quality of cured tobacco leaves, with EBR treatment exhibiting a greater effect than MT treatment.
Collapse
Affiliation(s)
- Kesu Wei
- Guizhou Academy of Tobacco Science, Guizhou Provincial Academician Workstation of Microbiology and Health, Guiyang 550081, China
| | - Jiayi Tang
- Guizhou Academy of Tobacco Science, Guizhou Provincial Academician Workstation of Microbiology and Health, Guiyang 550081, China
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Yang
- Guizhou Academy of Tobacco Science, Guizhou Provincial Academician Workstation of Microbiology and Health, Guiyang 550081, China
| | - Shaopeng Chen
- Chongqing Tobacco Science Institute, Chongqing 409199, China
| | - Zhijun Cheng
- Guizhou Academy of Tobacco Science, Guizhou Provincial Academician Workstation of Microbiology and Health, Guiyang 550081, China
| | - Yijun Yang
- Guizhou Academy of Tobacco Science, Guizhou Provincial Academician Workstation of Microbiology and Health, Guiyang 550081, China
| | - Chen Xu
- Chongqing Tobacco Science Institute, Chongqing 409199, China
| | - Shengjiang Wu
- Guizhou Academy of Tobacco Science, Guizhou Provincial Academician Workstation of Microbiology and Health, Guiyang 550081, China
| | - Yuhang Zhao
- Guizhou Academy of Tobacco Science, Guizhou Provincial Academician Workstation of Microbiology and Health, Guiyang 550081, China
| | - Hongmei Di
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Ling Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Dongyang Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jianwei Li
- Guizhou Academy of Tobacco Science, Guizhou Provincial Academician Workstation of Microbiology and Health, Guiyang 550081, China
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
2
|
Sun J, Li X, Qu Z, Wang H, Cheng Y, Dong S, Zhao H. Comparative proteomic analysis reveals novel insights into the continuous cropping induced response in Scrophularia ningpoensis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1832-1845. [PMID: 36271763 DOI: 10.1002/jsfa.12284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/23/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Scrophularia ningpoensis is a well-known medicinal crop. Continuous cropping seriously affects the yield and quality, but little is known about the influence of continuous cropping on metabolic pathways. In this study, the difference in protein abundance between continuous cropping and non-continuous cropping of S. ningpoensis roots was studied by proteomics, and the molecular mechanism that protects S. ningpoensis against continuous cropping was explored. RESULTS The results suggested that continuous cropping in S, ningpoensis altered the expression of proteins related to starch and sucrose metabolism, glycolysis/gluconeogenesis, pentose phosphate pathway, citric acid cycle, phenylalanine, tyrosine and tryptophan biosynthesis, phenylpropanoid biosynthesis, terpenoid backbone biosynthesis, monoterpenoid biosynthesis, sesquiterpenoid and triterpenoid biosynthesis, and steroid biosynthesis. Among these processes, the most affected were phenylpropanoid biosynthesis and starch and sucrose metabolism, which may be important for continuous cropping resistance. CONCLUSION The effect of continuous cropping on S. ningpoensis was demonstrated at the proteome level in this work, and identified candidate proteins that may cause continuous cropping reactions. The paper provides the theoretical foundation and scientific reference for enhancing the continuous cropping resistance of S. ningpoensis. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiachen Sun
- Tianjin Key Laboratory of Food and Biotechnology, State Experimental and Training Centre of Food and Drug, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Xuejiao Li
- Endocrine and Metabolic Disease Center, Medical Key Laboratory of Hereditary Rare Diseases of Henan, Luoyang Sub-Center of National Clinical Research Center for Metabolic Diseases, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Zhuo Qu
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Huairui Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Yao Cheng
- Tianjin Key Laboratory of Food and Biotechnology, State Experimental and Training Centre of Food and Drug, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Shengjie Dong
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Faculty of Education and Sports, Guangdong Baiyun University, Guangzhou, China
| | - Hui Zhao
- Tianjin Key Laboratory of Food and Biotechnology, State Experimental and Training Centre of Food and Drug, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| |
Collapse
|
3
|
Yue-han Z, Yi-peng C, Zhao-hua H. Effect of different drying techniques on rose ( Rosa rugosa cv. Plena) proteome based on label-free quantitative proteomics. Heliyon 2023; 9:e13158. [PMID: 36747566 PMCID: PMC9898662 DOI: 10.1016/j.heliyon.2023.e13158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023] Open
Abstract
To explore the molecular mechanisms of different processing technologies on rose tea (Rosa rugosa cv. Plena), we investigated the rose tea proteome (fresh rose tea [CS], vacuum freeze-drying rose tea [FD], and vacuum microwave rose tea [VD]) using label-free quantification proteomics (LFQ). A total of 2187 proteins were identified, with 1864, 1905, and 1660 proteins identified in CS, FD, and VD, respectively. Of those, 1500 proteins were quantified. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation and enrichment analysis of differential expression proteins (DEPs) in VD vs. CS, FD vs. CS, and FD vs. VD showed that these pathways were associated with energy metabolism, the metabolic breakdown of energy substances and protein biosynthesis, such as oxidative phosphorylation, citrate cycle, carbon metabolism pathways, and ribosome and protein processing in endoplasmic reticulum. FD could ensure the synthesis of protein translation and energy metabolism, thereby maintaining the high quality of rose tea.
Collapse
|
4
|
Liu A, Yuan K, Li Q, Liu S, Li Y, Tao M, Xu H, Tian J, Guan S, Zhu W. Metabolomics and proteomics revealed the synthesis difference of aroma precursors in tobacco leaves at various growth stages. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 192:308-319. [PMID: 36288661 DOI: 10.1016/j.plaphy.2022.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/29/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Tobacco has a high economic value as the largest cash crop worldwide. The quality of flue-cured tobacco is closely related to the overall status of compounds in fresh tobacco leaves, and the aroma precursor plays a key role in the aroma quality of flue-cured tobacco. The untargeted metabolomics and label-free quantitative proteomics analysis of tobacco leaves in three growth stages (root stretching, prosperous growth, and maturation) retrieved 243 metabolites and 4313 proteins (944 differentially expressed proteins), which showed that carbohydrate, amino acid, and fatty acid metabolism varies among the three growth stages. Also, the most of amino acids, organic acids, fatty acids, and polyphenols reduced in the vegetative growth stage, while increased in the reproductive growth stage. On the other hand, alkaloids such as nicotine, nornicotine, and anatabine increased continuously in tobacco leaves during the three growth stages. This study helps us understand the growth and development characteristics of Yun87 flue-cured tobacco in the field before harvest, and it provides a certain omics basis for the industrial crop flue-cured tobacco.
Collapse
Affiliation(s)
- Amin Liu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027, PR China
| | - Kailong Yuan
- China Tobacco Zhejiang Industrial Co.,Ltd., Hangzhou, 310008, PR, China
| | - Qi Li
- China Tobacco Zhejiang Industrial Co.,Ltd., Hangzhou, 310008, PR, China
| | - Shengzhi Liu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027, PR China
| | - Yaohan Li
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027, PR China
| | - Minglei Tao
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027, PR China
| | - Haiqing Xu
- Anhui Wannan Tobacco Co., Ltd., Xuancheng, 242000, PR, China
| | - Jingkui Tian
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310002, PR, China
| | - Shishuan Guan
- China Tobacco Shandong Industrial Co., Ltd., Jinan, 250014, PR, China.
| | - Wei Zhu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310002, PR, China.
| |
Collapse
|
5
|
Ahmad A, Liu Y, Ge Q. Assessing environmental thresholds in relation to plant structure and nutritional value for improved maize calendar ensuring food security. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155120. [PMID: 35398424 DOI: 10.1016/j.scitotenv.2022.155120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
The environment has been continuously changed, and it's a bitter truth that we can't minimize anthropogenic activities to mitigate harmful impacts on the environment. The changing environment is a great threat to food security by affecting crop yields. However, there is no comprehensive study to assess the environmental impact on the nutritional quality of the crops. In this study, we have investigated the nutritional profile and yield of maize crops around the globe and synchronized the findings with physiological reasoning. The study enlightens the time-scale activities of maize plant enzymes and describes their response to changing environments. The study also explained time-scale-based changes in the physiological conditions of maize crops against environmental dynamics around the globe. It also detected the impact of climate change on the deterioration of the nutritional quality of maize. The current study reports the activities of three different enzyme classes. It was noted that the photosynthesis-related enzyme activities were boosted after a sudden increase in carbon dioxide concentration. However, the drought years (2005-2010) decreased photosynthesis and increased oxidative enzyme activities. Overall, the glycemic index of the maize crop has been increased during the last four decades. However, the crop production threshold levels have been raised more quickly. The nutritional index values are alarming and have frequently been recorded under the threshold levels in recent years. The study paves a path for maize toward nutritional contents richness, ensuring food security and nutritional security in the future.
Collapse
Affiliation(s)
- Aqeel Ahmad
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujie Liu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Quansheng Ge
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Song R, Tan Y, Ahmed W, Zhou G, Zhao Z. Unraveling the expression of differentially expressed proteins and enzymatic activity in response to Phytophthora nicotianae across different flue-cured tobacco cultivars. BMC Microbiol 2022; 22:112. [PMID: 35461247 PMCID: PMC9034580 DOI: 10.1186/s12866-022-02531-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 04/11/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Black shank disease caused by Phytophthora nicotianae is a serious threat to flue-cured tobacco production. Whole-plant resistance is characterized by the expression of a number of pathogenesis-related proteins, genes, and the activity of different defense-related enzymes. In this study, we investigated the activity of defense-related enzymes and expression of differentially expressed proteins through the iTRAQ technique across two flue-cured tobacco cultivars, i.e., K326 and Hongda, in response to the black shank pathogen. RESULTS Results showed that the highest disease incidence was recorded in flue-cured tobacco cultivar Hongda compared with K326, which shows that Hongda is more susceptible to P. nicotianae than K326. A total of 4274 differentially expressed proteins were detected at 0 h and after 24 h, 72 h of post-inoculation with P. nicotianae. We found that 17 proteins induced after inoculation with P. nicotianae, including pathogenesis (5), photosynthesis (3), oxidative phosphorylation (6), tricarboxylic acid cycle (1), heat shock (1), and 14-3-3 (1) and were involved in the resistance of flue-cured tobacco against black shank disease. The expression of 5 pathogenesis-related proteins and the activities of defense-related enzymes (PPO, POD, SOD, and MDA) were significantly higher in the leaves of K326 than Hongda after inoculation with P. nicotianae. CONCLUSION These results provide new molecular insights into flue-cured tobacco responses to P. nicotianae. It is concluded that differences in protein expressions and defense-related enzymes play an important role in developing resistance in flue-cured tobacco cultivars against black shank disease.
Collapse
Affiliation(s)
- Ruifang Song
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Yujiao Tan
- College of Tobacco Science, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Waqar Ahmed
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Guisu Zhou
- College of Tobacco Science, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Zhengxiong Zhao
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| |
Collapse
|
7
|
Yadav MR, Choudhary M, Singh J, Lal MK, Jha PK, Udawat P, Gupta NK, Rajput VD, Garg NK, Maheshwari C, Hasan M, Gupta S, Jatwa TK, Kumar R, Yadav AK, Prasad PVV. Impacts, Tolerance, Adaptation, and Mitigation of Heat Stress on Wheat under Changing Climates. Int J Mol Sci 2022; 23:2838. [PMID: 35269980 PMCID: PMC8911405 DOI: 10.3390/ijms23052838] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 12/14/2022] Open
Abstract
Heat stress (HS) is one of the major abiotic stresses affecting the production and quality of wheat. Rising temperatures are particularly threatening to wheat production. A detailed overview of morpho-physio-biochemical responses of wheat to HS is critical to identify various tolerance mechanisms and their use in identifying strategies to safeguard wheat production under changing climates. The development of thermotolerant wheat cultivars using conventional or molecular breeding and transgenic approaches is promising. Over the last decade, different omics approaches have revolutionized the way plant breeders and biotechnologists investigate underlying stress tolerance mechanisms and cellular homeostasis. Therefore, developing genomics, transcriptomics, proteomics, and metabolomics data sets and a deeper understanding of HS tolerance mechanisms of different wheat cultivars are needed. The most reliable method to improve plant resilience to HS must include agronomic management strategies, such as the adoption of climate-smart cultivation practices and use of osmoprotectants and cultured soil microbes. However, looking at the complex nature of HS, the adoption of a holistic approach integrating outcomes of breeding, physiological, agronomical, and biotechnological options is required. Our review aims to provide insights concerning morpho-physiological and molecular impacts, tolerance mechanisms, and adaptation strategies of HS in wheat. This review will help scientific communities in the identification, development, and promotion of thermotolerant wheat cultivars and management strategies to minimize negative impacts of HS.
Collapse
Affiliation(s)
- Malu Ram Yadav
- Division of Agronomy, Rajasthan Agricultural Research Institute, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, India; (M.R.Y.); (J.S.); (N.K.G.); (N.K.G.); (S.G.); (T.K.J.); (A.K.Y.)
| | - Mukesh Choudhary
- School of Agriculture and Environment, The University of Western Australia, Perth 6009, Australia;
| | - Jogendra Singh
- Division of Agronomy, Rajasthan Agricultural Research Institute, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, India; (M.R.Y.); (J.S.); (N.K.G.); (N.K.G.); (S.G.); (T.K.J.); (A.K.Y.)
| | - Milan Kumar Lal
- Division of Crop Physiology, Biochemistry and Post-Harvest Technology, Indian Council of Agricultural Research (ICAR)-Central Potato Research Institute, Shimla 171001, India;
| | - Prakash Kumar Jha
- Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, KS 66506, USA;
| | - Pushpika Udawat
- Janardan Rai Nagar Rajasthan Vidyapeeth, Udaipur 313001, India;
| | - Narendra Kumar Gupta
- Division of Agronomy, Rajasthan Agricultural Research Institute, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, India; (M.R.Y.); (J.S.); (N.K.G.); (N.K.G.); (S.G.); (T.K.J.); (A.K.Y.)
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia;
| | - Nitin Kumar Garg
- Division of Agronomy, Rajasthan Agricultural Research Institute, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, India; (M.R.Y.); (J.S.); (N.K.G.); (N.K.G.); (S.G.); (T.K.J.); (A.K.Y.)
| | - Chirag Maheshwari
- Division of Biochemistry, Indian Council of Agricultural Research, Indian Agricultural Research Institute, New Delhi 110012, India;
| | - Muzaffar Hasan
- Division of Agro Produce Processing, Central Institute of Agricultural Engineering, Bhopal 462038, India;
| | - Sunita Gupta
- Division of Agronomy, Rajasthan Agricultural Research Institute, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, India; (M.R.Y.); (J.S.); (N.K.G.); (N.K.G.); (S.G.); (T.K.J.); (A.K.Y.)
| | - Tarun Kumar Jatwa
- Division of Agronomy, Rajasthan Agricultural Research Institute, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, India; (M.R.Y.); (J.S.); (N.K.G.); (N.K.G.); (S.G.); (T.K.J.); (A.K.Y.)
| | - Rakesh Kumar
- Division of Agronomy, Indian Council of Agricultural Research, National Dairy Research Institute, Karnal 132001, India;
| | - Arvind Kumar Yadav
- Division of Agronomy, Rajasthan Agricultural Research Institute, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, India; (M.R.Y.); (J.S.); (N.K.G.); (N.K.G.); (S.G.); (T.K.J.); (A.K.Y.)
| | - P. V. Vara Prasad
- Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, KS 66506, USA;
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
8
|
Sagonda T, Adil MF, Sehar S, Rasheed A, Joan HI, Ouyang Y, Shamsi IH. Physio-ultrastructural footprints and iTRAQ-based proteomic approach unravel the role of Piriformospora indica-colonization in counteracting cadmium toxicity in rice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112390. [PMID: 34098428 DOI: 10.1016/j.ecoenv.2021.112390] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/23/2021] [Accepted: 05/28/2021] [Indexed: 05/25/2023]
Abstract
Due to its immense capability to concentrate in rice grain and ultimately in food chain, cadmium (Cd) has become the cause of an elevated concern among agriculturists, scientists and the environmental activists. Symbiotic association of Piriformospora indica (P. indica) has been characterized as a potential aid in combating heavy metal stress in plants for sustainable crop production but our scant knowledge regarding ameliorative tendency of P. indica against Cd, specifically in rice, necessitates an in-depth investigation. This study aimed at elaborating the underlying mechanisms involved in P. indica-mediated tolerance against Cd stress in two rice genotypes, IR8 and ZX1H, varying in Cd accumulation pattern. Either colonized or un-inoculated with P. indica, seedlings of both genotypes were subjected to Cd stress. The results showed that P. indica colonization significantly supported plant biomass, photosynthetic attributes and chlorophyll contents in Cd stressed plants. P. indica colonization sustained chloroplast integrity and reduced Cd translocation (46% and 64%), significantly lowering malondialdehyde (MDA) content (11.3% and 50.4%) compared to uninoculated roots under Cd stress in IR8 and ZX1H, respectively. A genotypic difference was evident when a 2-fold enhancement in root peroxidase (POD) activity was recorded in P. indica colonized IR8 plants as compared to ZX1H. The root proteomic analysis was performed using isobaric tags for relative and absolute quantification (iTRAQ) and the results showed that P. indica alleviates Cd stress in rice via down-regulation of key glycolysis cycle enzymes in a bid to reduce energy consumption by the plants and possibly re-directing it to Cd defense response pathways; and up-regulation of glutamine synthetase, a key enzyme in the L-Arg-dependent pathway for nitric oxide (NO) production, which acts as a stress signaling molecule, thus conferring tolerance by reduction of NO-mediated modification of essential proteins in response to Cd stress. Conclusively, both the tested genotypes benefited from P. indica symbiosis at varying levels by an enhanced detoxification capacity and signaling efficiency in response to stress. Hence, a step forward towards the employment of an environmentally sound and self-renewing approach holding the hope for a healthy future.
Collapse
Affiliation(s)
- Tichaona Sagonda
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Muhammad Faheem Adil
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Shafaque Sehar
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Adeela Rasheed
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Heren Issaka Joan
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Younan Ouyang
- China National Rice Research Institute (CNRRI), Fuyang 311400, PR China
| | - Imran Haider Shamsi
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
9
|
Ahmad A, Yasin NA, Khan WU, Akram W, Wang R, Shah AA, Akbar M, Ali A, Wu T. Silicon assisted ameliorative effects of iron nanoparticles against cadmium stress: Attaining new equilibrium among physiochemical parameters, antioxidative machinery, and osmoregulators of Phaseolus lunatus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:874-886. [PMID: 34237605 DOI: 10.1016/j.plaphy.2021.06.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/10/2021] [Indexed: 05/28/2023]
Abstract
Currently, producing safe agricultural commodities from the crop plants cultivated in the soil with increasing heavy metal toxicity is a gigantic challenge in front of researchers. Heavy metals are absorbed and translocated in the crop plants and then transferred to every downstream consumer of the food chain, including humans, causing serious disorders and ailments. The current research presents a combined schematic application of iron nanoparticles (Fe-NPs) and/or silicon (Si), to mitigate cadmium (Cd) stress in Lima bean (Phaseolus lunatus). It was noted that Cd-induced toxicity curtailed growth, antioxidative machinery, glyoxalase system and nutrient uptake of the plants. Furthermore, the physiochemical features of Cd stressed plants, including carotenoids, chlorophyll, photochemical quenching, photosynthetic efficiency, and leaf relative water contents, were improved by the combined application of Si and Fe-NPs. Moreover, higher levels of malondialdehyde (MDA), methylglyoxal (MG), hydrogen peroxide (H2O2), and electrolyte leakage (EL) were observed in Cd stressed plants. Nevertheless, the independent treatment or combined application of Si and/or Fe-NPs attenuated the adversative effects of Cd on the aforementioned growth attributes. Furthermore, Si and Fe-NPs defended plants from the injurious effects of MG by improving the activities of the glyoxalase enzyme. The Si and Fe-NPs reduced Cd contents but at the same time improved uptake and accumulation of nutrients in treated plants exposed to the Cd regime. This study highlights that Si and Fe-NPs have enormous potential to mitigate Cd-induced phytotoxicity by declining Cd uptake and improving the growth attributes of plants if applied in combination.
Collapse
Affiliation(s)
- Aqeel Ahmad
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | | | - Waheed Ullah Khan
- Department of Environmental Science, The Islamia University of Bahawalpur, Pakistan
| | - Waheed Akram
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | - Rui Wang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | - Anis Ali Shah
- Department of Botany, University of Narowal, Narowal, Pakistan
| | - Muhammad Akbar
- Department of Botany, University of Gujrat, Gujrat, Pakistan
| | - Aamir Ali
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | - Tingquan Wu
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China.
| |
Collapse
|
10
|
Liang W, Chen Y, Li X, Guo F, Sun J, Zhang X, Xu B, Gao W. Label-Free Proteomic Analysis of Smoke-Drying and Shade-Drying Processes of Postharvest Rhubarb: A Comparative Study. FRONTIERS IN PLANT SCIENCE 2021; 12:663180. [PMID: 34140961 PMCID: PMC8205111 DOI: 10.3389/fpls.2021.663180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Postharvest processing plays a very important role in improving the quality of traditional Chinese medicine. According to previous studies, smoke-drying could significantly promote the accumulation of the bioactive components and pharmacological activities of rhubarb, but so far, the molecular mechanism has not been studied yet. In this research, to study the molecular mechanisms of postharvest processing for rhubarb during shade-drying and smoke-drying, label-free proteomic analyses were conducted. In total, 1,927 differentially abundant proteins (DAPs) were identified from rhubarb samples treated by different drying methods. These DAPs were mainly involved in response and defense, signal transduction, starch, carbohydrate and energy metabolism, and anthraquinone and phenolic acid biosynthesis. Smoke-drying significantly enhanced the expression of proteins involved in these metabolic pathways. Accordingly, the molecular mechanism of the accumulation of effective ingredients of rhubarb was clarified, which provided a novel insight into the biosynthesis of active ingredients that occur during the rhubarb dry process.
Collapse
Affiliation(s)
- Wei Liang
- Gansu Provincial Key Lab of Arid Land Crop Science, College of Agronomy, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yuan Chen
- Gansu Provincial Key Lab of Arid Land Crop Science, College of Agronomy, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xia Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Fengxia Guo
- Gansu Provincial Key Lab of Arid Land Crop Science, College of Agronomy, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiachen Sun
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Xuemin Zhang
- Key Laboratory of Modern Chinese Medicine Resources Research Enterprises, Tianjin, China
| | - Bo Xu
- Key Laboratory of Modern Chinese Medicine Resources Research Enterprises, Tianjin, China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
11
|
Chen L, Xia F, Wang M, Mao P. Physiological and proteomic analysis reveals the impact of boron deficiency and surplus on alfalfa (Medicago sativa L.) reproductive organs. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 214:112083. [PMID: 33676054 DOI: 10.1016/j.ecoenv.2021.112083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Boron (B), an essential element for increasing seed yield and germinability in alfalfa (Medicago sativa L.), plays a vital role in its reproductive processes. However, effects of B stress on physiological and proteomic changes in reproductive organs related to alfalfa seed yield and germinability are poorly understood. In order to gain a better insight into B response or tolerance mechanisms, field trials were designed for B deficiency (0 mg B L-1), B sufficiency (800 mg B L-1), and B surplus (1600 mg B L-1) application during alfalfa flowering to analyze the proteomics and physiological responses of alfalfa 'Aohan' reproductive organs. Results showed that B deficiency weakened the stress-responsive ability in these organs, while B surplus reduced the sugar utilization of 'Aohan' flowers and caused lipid membrane peroxidation in 'Aohan' seeds. In addition, four upregulated stress responsive proteins (ADF-like protein, IMFP, NAD(P)-binding Rossmann-fold protein and NAD-dependent ALDHs) might play pivotal roles in the response of 'Aohan' reproductive organs to conditions of B deficiency and B surplus. All of the above results would be helpful to understand the tolerance mechanisms of alfalfa reproductive organs to both B deficiency and B surplus conditions, and also to give insight into the regulatory role of B in improving seed yield and germinability in alfalfa seed production. In summary, B likely plays a structural and regulatory role in relation to lipid metabolism, carbohydrate metabolism, amino acid metabolism, and signal transduction, thus regulates alfalfa reproductive processes eventually affecting the seed yield and germinability of alfalfa seeds.
Collapse
Affiliation(s)
- Lingling Chen
- Forage Seed Lab, College of Grassland Science and Technology, China Agricultural University, Beijing 100193, PR China; Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, College of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China
| | - Fangshan Xia
- Forage Seed Lab, College of Grassland Science and Technology, China Agricultural University, Beijing 100193, PR China; College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, PR China
| | - Mingya Wang
- Forage Seed Lab, College of Grassland Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Peisheng Mao
- Forage Seed Lab, College of Grassland Science and Technology, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
12
|
Raza A, Tabassum J, Kudapa H, Varshney RK. Can omics deliver temperature resilient ready-to-grow crops? Crit Rev Biotechnol 2021; 41:1209-1232. [PMID: 33827346 DOI: 10.1080/07388551.2021.1898332] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Plants are extensively well-thought-out as the main source for nourishing natural life on earth. In the natural environment, plants have to face several stresses, mainly heat stress (HS), chilling stress (CS) and freezing stress (FS) due to adverse climate fluctuations. These stresses are considered as a major threat for sustainable agriculture by hindering plant growth and development, causing damage, ultimately leading to yield losses worldwide and counteracting to achieve the goal of "zero hunger" proposed by the Food and Agricultural Organization (FAO) of the United Nations. Notably, this is primarily because of the numerous inequities happening at the cellular, molecular and/or physiological levels, especially during plant developmental stages under temperature stress. Plants counter to temperature stress via a complex phenomenon including variations at different developmental stages that comprise modifications in physiological and biochemical processes, gene expression and differences in the levels of metabolites and proteins. During the last decade, omics approaches have revolutionized how plant biologists explore stress-responsive mechanisms and pathways, driven by current scientific developments. However, investigations are still required to explore numerous features of temperature stress responses in plants to create a complete idea in the arena of stress signaling. Therefore, this review highlights the recent advances in the utilization of omics approaches to understand stress adaptation and tolerance mechanisms. Additionally, how to overcome persisting knowledge gaps. Shortly, the combination of integrated omics, genome editing, and speed breeding can revolutionize modern agricultural production to feed millions worldwide in order to accomplish the goal of "zero hunger."
Collapse
Affiliation(s)
- Ali Raza
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Javaria Tabassum
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Science (CAAS), Hangzhou, China
| | - Himabindu Kudapa
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Rajeev K Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India.,The UWA Institute of Agriculture, The University of Western Australia, Perth, Australia
| |
Collapse
|