1
|
Zhang H, Yang Y, Xing W, Li Y, Zhang S. Expression and gene regulatory network of S100A16 protein in cervical cancer cells based on data mining. BMC Cancer 2023; 23:1124. [PMID: 37978469 PMCID: PMC10656989 DOI: 10.1186/s12885-023-11574-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023] Open
Abstract
S100A16 protein belongs to the S100 family of calcium-binding proteins, which is widely distributed in human tissues and highly conserved. S100 calcium-binding proteins possess broad biological functions, such as cancer cell proliferation, apoptosis, tumor metastasis, and inflammation (Nat Rev Cancer 15:96-109, 2015). The S100A16 protein was initially isolated from a cell line derived from astrocytoma. The S100A16 protein, consisting of 103 amino acids, is a small acidic protein with a molecular weight of 11,801.4 Da and an isoelectric point (pI) of 6.28 (Biochem Biophys Res Commun 313:237-244, 2004). This protein exhibits high conservation among mammals and is widely expressed in various human tissues (Biochem Biophys Res Commun 322:1111-1122, 2004). Like other S100 proteins, S100A16 contains two EF-hand motifs that form a helix-loop-helix structural domain. The N-terminal domain and the C-terminal domain of S100A16 are connected by a "hinge" linker.S100A16 protein exhibits distinct characteristics that distinguish it from other S100 proteins. A notable feature is the presence of a single functional Ca2 + binding site located in the C-terminal EF-hand, consisting of 12 amino acids per protein monomer (J Biol Chem 281:38905-38917, 2006). In contrast, the N-terminal EF-hand of S100A16 comprises 15 amino acids instead of the typical 14, and it lacks the conserved glutamate residue at the final position. This unique attribute may contribute to the impaired Ca2 + binding capability in the N-terminal region (J Biol Chem 281:38905-38917, 2006). Studies have shown an integral role of S100 calcium-binding proteins in the diagnosis, treatment, and prognosis of certain diseases (Cancers 12:2037, 2020). Abnormal expression of S100A16 protein is implicated in the progression of breast and prostate cancer, but an inhibitor of oral cancer and acute lymphoblastic leukemia tumor cell proliferation (BMC Cancer 15:53, 2015; BMC Cancer 15:631, 2015). Tu et al. (Front Cell Dev Biol 9:645641, 2021) indicate that the overexpression of S100A16 mRNA in cervical cancer(CC) such as cervical squamous cell carcinoma and endocervical adenocarcinoma as compared to the control specimens. Tomiyama N. and co-workers (Oncol Lett 15:9929-9933, 2018) (Tomiyama, N) investigated the role of S100A16 in cancer stem cells using Yumoto cells (a CC cell line),The authors found upregulation of S100A16 in Yumoto cells following sphere formation as compared to monolayer culture.Despite a certain degree of understanding, the exact biological function of S100A16 in CC is still unclear. This article explores the role of S100A16 in CC through a bioinformatics analysis. Referencing the mRNA expression and SNP data of cervical cancer available through The Cancer Genome Atlas (TCGA) database, we analyzed S100A16 and its associated regulatory gene expression network in cervical cancer. We further screened genes co-expressed with S100A16 to hypothesize their function and relationship to the S100A16 cervical cancer phenotype.Our results showed that data mining can effectively elucidate the expression and gene regulatory network of S100A16 in cervical cancer, laying the foundation for further investigations into S100A16 cervical tumorigenesis.
Collapse
Affiliation(s)
- Haibin Zhang
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, 730013, Gansu Province, China
- Department of Gynecology, the Second Hospital of Lanzhou University, Lanzhou, 730013, Gansu Province, China
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Lanzhou, 730013, Gansu Province, China
- The Key Laboratory of Gynecological Tumors in Gansu Province, Lanzhou, 730013, Gansu Province, China
| | - Yongxiu Yang
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, 730013, Gansu Province, China.
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Lanzhou, 730013, Gansu Province, China.
- The Key Laboratory of Gynecological Tumors in Gansu Province, Lanzhou, 730013, Gansu Province, China.
| | - Wenhu Xing
- Department of Gynecology, the Second Hospital of Lanzhou University, Lanzhou, 730013, Gansu Province, China
| | - Yufeng Li
- Department of Gynecology, the Second Hospital of Lanzhou University, Lanzhou, 730013, Gansu Province, China
| | - Shan Zhang
- The Second School of Clinical Medicine of Lanzhou University, Lanzhou, 730013, Gansu Province, China
| |
Collapse
|
2
|
Human Papillomavirus 16 E6 and E7 Oncoproteins Alter the Abundance of Proteins Associated with DNA Damage Response, Immune Signaling and Epidermal Differentiation. Viruses 2022; 14:v14081764. [PMID: 36016386 PMCID: PMC9415472 DOI: 10.3390/v14081764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
The high-risk human papillomaviruses are oncogenic viruses associated with almost all cases of cervical carcinomas, and increasing numbers of anal, and oral cancers. Two oncogenic HPV proteins, E6 and E7, are capable of immortalizing keratinocytes and are required for HPV associated cell transformation. Currently, the influence of these oncoproteins on the global regulation of the host proteome is not well defined. Liquid chromatography coupled with quantitative tandem mass spectrometry using isobaric-tagged peptides was used to investigate the effects of the HPV16 oncoproteins E6 and E7 on protein levels in human neonatal keratinocytes (HEKn). Pathway and gene ontology enrichment analyses revealed that the cells expressing the HPV oncoproteins have elevated levels of proteins related to interferon response, inflammation and DNA damage response, while the proteins related to cell organization and epithelial development are downregulated. This study identifies dysregulated pathways and potential biomarkers associated with HPV oncoproteins in primary keratinocytes which may have therapeutic implications. Most notably, DNA damage response pathways, DNA replication, and interferon signaling pathways were affected in cells transduced with HPV16 E6 and E7 lentiviruses. Moreover, proteins associated with cell organization and differentiation were significantly downregulated in keratinocytes expressing HPV16 E6 + E7. High-risk HPV E6 and E7 oncoproteins are necessary for the HPV-associated transformation of keratinocytes. However their influence on the global dysregulation of keratinocyte proteome is not well documented. Here shotgun proteomics using TMT-labeling detected over 2500 significantly dysregulated proteins associated with E6 and E7 expression. Networks of proteins related to interferon response, inflammation and DNA damage repair pathways were altered.
Collapse
|
3
|
Deepti P, Pasha A, Kumbhakar DV, Doneti R, Heena SK, Bhanoth S, Poleboyina PK, Yadala R, S D A, Pawar SC. Overexpression of Secreted Phosphoprotein 1 (SPP1) predicts poor survival in HPV positive cervical cancer. Gene X 2022; 824:146381. [PMID: 35271951 DOI: 10.1016/j.gene.2022.146381] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/24/2022] [Accepted: 02/24/2022] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer (CC) is the most prevalent malignant gynecological tumor with limited treatments. The present study describes the role of SPP1 in cancer progression, SPP1 emerged as one of the most overexpressed genes identified through clariom D transcriptome microarray. This investigation aims towards identifying a potential gene with significant prognostic value for detection and early diagnosis of cervical cancer. The elevated expression of SPP1 in cervical squamous cell carcinoma tissue was validated across GEO (Gene Expression Omnibus) microarray data sets, TCGA (The Cancer Genome Atlas), and Oncomine databases. SPP1 expression was found to be prognostically significant, showing association with poor survival rate of the patients. Our study intended to assess the expression of secreted phosphoprotein (SPP1) gene at mRNA and protein levels, and to explore the association of single nucleotide polymorphisms of SPP1 with risk of CC. Further, receiver operating characteristics (ROC) curve was plotted to determine the levels of SPP1 to differentiate CC against control. Results revealed significant (p < 0.01) stage-wise upregulation of SPP1 in CC compared to the normal cervical tissue and this was further confirmed using Immunohistochemistry and real-time PCR. The ROC for SPP1 demonstrated good selective power to differentiate malignant CC and non-malignant cervical tissues. The SPP1 gene -443 T > C promoter polymorphisms are found to be significantly predominant in the disease group and Insilico analysis by the TRANSFAC software confirms its association with loss of STAT6 transcription factor binding site leading to overexpression of the SPP1.
Collapse
Affiliation(s)
- Pasumarthi Deepti
- Department of Genetics & Biotechnology, University College of Science, Osmania University, Hyderabad 500007, Telangana, India
| | - Akbar Pasha
- Department of Genetics & Biotechnology, University College of Science, Osmania University, Hyderabad 500007, Telangana, India
| | - Divya Vishambhar Kumbhakar
- Department of Genetics & Biotechnology, University College of Science, Osmania University, Hyderabad 500007, Telangana, India
| | - Ravinder Doneti
- Department of Genetics & Biotechnology, University College of Science, Osmania University, Hyderabad 500007, Telangana, India
| | - S K Heena
- Department of Pathology, Osmania Medical College, Hyderabad, 500095 Telangana, India
| | - Shivaji Bhanoth
- Department of Genetics & Biotechnology, University College of Science, Osmania University, Hyderabad 500007, Telangana, India
| | - Pavan Kumar Poleboyina
- Department of Genetics & Biotechnology, University College of Science, Osmania University, Hyderabad 500007, Telangana, India
| | - Rajesh Yadala
- Department of Genetics & Biotechnology, University College of Science, Osmania University, Hyderabad 500007, Telangana, India
| | - Annapurna S D
- Department of Genetics & Biotechnology, University College of Science, Osmania University, Hyderabad 500007, Telangana, India
| | - Smita C Pawar
- Department of Genetics & Biotechnology, University College of Science, Osmania University, Hyderabad 500007, Telangana, India.
| |
Collapse
|
4
|
Johnson M, Mowa CN. Transcriptomic profile of VEGF-regulated genes in human cervical epithelia. Cell Tissue Res 2021; 384:771-788. [PMID: 33511468 DOI: 10.1007/s00441-020-03354-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 11/17/2020] [Indexed: 11/26/2022]
Abstract
Cervical epithelial cells play a central role in cervical remodeling (CR) during pregnancy and cervical events during menstrual cycle, including mounting physical and immunological barriers, proliferation and differentiation, maintenance of fluid balance, and likely in withstanding the mechanical force exerted by the growing fetus prior to term. In the present study, we attempt to decipher the specific roles of VEGF in fetal human cervical epithelial cells by delineating VEGF signature genes using RNA sequencing in order to characterize the specific biological effects of VEGF in these cells.Out of a total of 25,000 genes screened, 162 genes were found to be differentially expressed in human cervical epithelial cells, of which 12 genes were found to be statistically significantly differentially expressed. The differentially expressed genes (162) were categorized by biological function, which included (1) proliferation, (2) immune response, (3) structure/matrix, (4) mitochondrial function, and (5) cell adhesion/communication and others (pseudogenes, non-coding RNA, miscellaneous genes, and uncharacterized genes). We conclude that VEGF plays a key role in CR by altering the expression of genes that regulate proliferation, immune response, energy metabolism and cell structure, and biological processes that are essential to development and likely CR.
Collapse
|
5
|
Boukhaled GM, Harding S, Brooks DG. Opposing Roles of Type I Interferons in Cancer Immunity. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2021; 16:167-198. [PMID: 33264572 DOI: 10.1146/annurev-pathol-031920-093932] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The immune system is tasked with identifying malignant cells to eliminate or prevent cancer spread. This involves a complex orchestration of many immune cell types that together recognize different aspects of tumor transformation and growth. In response, tumors have developed mechanisms to circumvent immune attack. Type I interferons (IFN-Is) are a class of proinflammatory cytokines produced in response to viruses and other environmental stressors. IFN-Is are also emerging as essential drivers of antitumor immunity, potently stimulating the ability of immune cells to eliminate tumor cells. However, a more complicated role for IFN-Is has arisen, as prolonged stimulation can promote feedback inhibitory mechanisms that contribute to immune exhaustion and other deleterious effects that directly or indirectly permit cancer cells to escape immune clearance. We review the fundamental and opposing functions of IFN-Is that modulate tumor growth and impact immune function and ultimately how these functions can be harnessed for the design of new cancer therapies.
Collapse
Affiliation(s)
- Giselle M Boukhaled
- Princess Margaret Cancer Centre, University Health Network Toronto, Ontario M5G 2M9, Canada; .,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Shane Harding
- Princess Margaret Cancer Centre, University Health Network Toronto, Ontario M5G 2M9, Canada; .,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Departments of Medical Biophysics and Radiation Oncology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - David G Brooks
- Princess Margaret Cancer Centre, University Health Network Toronto, Ontario M5G 2M9, Canada; .,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
6
|
Wang CY, Gao YL, Liu JX, Dai LY, Shang J. Sparse robust graph-regularized non-negative matrix factorization based on correntropy. J Bioinform Comput Biol 2021; 19:2050047. [PMID: 33410727 DOI: 10.1142/s021972002050047x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Non-negative Matrix Factorization (NMF) is a popular data dimension reduction method in recent years. The traditional NMF method has high sensitivity to data noise. In the paper, we propose a model called Sparse Robust Graph-regularized Non-negative Matrix Factorization based on Correntropy (SGNMFC). The maximized correntropy replaces the traditional minimized Euclidean distance to improve the robustness of the algorithm. Through the kernel function, correntropy can give less weight to outliers and noise in data but give greater weight to meaningful data. Meanwhile, the geometry structure of the high-dimensional data is completely preserved in the low-dimensional manifold through the graph regularization. Feature selection and sample clustering are commonly used methods for analyzing genes. Sparse constraints are applied to the loss function to reduce matrix complexity and analysis difficulty. Comparing the other five similar methods, the effectiveness of the SGNMFC model is proved by selection of differentially expressed genes and sample clustering experiments in three The Cancer Genome Atlas (TCGA) datasets.
Collapse
Affiliation(s)
- Chuan-Yuan Wang
- School of Computer Science, Qufu Normal University, Rizhao, Shandong, P. R. China
| | - Ying-Lian Gao
- Qufu Normal University Library, Qufu Normal University, Rizhao, Shandong, P. R. China
| | - Jin-Xing Liu
- School of Computer Science, Qufu Normal University, Rizhao, Shandong, P. R. China
| | - Ling-Yun Dai
- School of Computer Science, Qufu Normal University, Rizhao, Shandong, P. R. China
| | - Junliang Shang
- School of Computer Science, Qufu Normal University, Rizhao, Shandong, P. R. China
| |
Collapse
|
7
|
Identification of the possible therapeutic targets in the insulin-like growth factor 1 receptor pathway in a cohort of Egyptian hepatocellular carcinoma complicating chronic hepatitis C type 4. Drug Target Insights 2020; 14:1-11. [PMID: 33132693 PMCID: PMC7597224 DOI: 10.33393/dti.2020.1548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 01/20/2020] [Indexed: 11/24/2022] Open
Abstract
Background: Molecular targeted drugs are the first line of treatment of advanced hepatocellular carcinoma (HCC) due to its chemo- and radioresistant nature. HCC has several well-documented etiologic factors that drive hepatocarcinogenesis through different molecular pathways. Currently, hepatitis C virus (HCV) is a leading cause of HCC. Therefore, we included a unified cohort of HCV genotype 4-related HCCs to study the expression levels of genes involved in the insulin-like growth factor 1 receptor (IGF1R) pathway, which is known to be involved in all aspects of cancer growth and progression. Aim: Determine the gene expression patterns of IGF1R pathway genes in a cohort of Egyptian HCV-related HCCs. Correlate them with different patient/tumor characteristics. Determine the activity status of involved pathways. Methods: Total ribonucleic acid (RNA) was extracted from 32 formalin-fixed paraffin-embedded tissues of human HCV-related HCCs and 6 healthy liver donors as controls. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) using RT2 Profiler PCR Array for Human Insulin Signaling Pathway was done to determine significantly up- and downregulated genes with identification of most frequently coregulated genes, followed by correlation of gene expression with different patient/tumor characteristics. Finally, canonical pathway analysis was performed using the Ingenuity Pathway Analysis software. Results: Six genes – AEBP1, AKT2, C-FOS, PIK3R1, PRKCI, SHC1 – were significantly overexpressed. Thirteen genes – ADRB3, CEBPA, DUSP14, ERCC1, FRS3, IGF2, INS, IRS1, JUN, MTOR, PIK3R2, PPP1CA, RPS6KA1 – were significantly underexpressed. Several differentially expressed genes were related to different tumor/patient characteristics. Nitric oxide and reactive oxygen species production pathway was significantly activated in the present cohort, while the growth hormone signaling pathway was inactive. Conclusions: The gene expression patterns identified in this study may serve as possible therapeutic targets in HCV-related HCCs. The most frequently coregulated genes may serve to guide combined molecular targeted therapies. The IGF1R pathway showed evidence of inactivity in the present cohort of HCV-related HCCs, so targeting this pathway in therapy may not be effective.
Collapse
|
8
|
Zhang H, Yang Y, Ma X, Xin W, Fan X. S100A16 Regulates HeLa Cell through the Phosphatidylinositol 3 Kinase (PI3K)/AKT Signaling Pathway. Med Sci Monit 2020; 26:e919757. [PMID: 31894756 PMCID: PMC6977613 DOI: 10.12659/msm.919757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background S100 calcium-binding protein A16 (S100A16) is closely related to the onset and progression of tumors. Material/Methods In the research, the mainly purpose was to investigate the effect of S100A16 on the proliferation ability, invasion, and angiogenesis of HeLa cells. An adenoviral vector overexpressing S100A16 (Ad-S100A16) was constructed and transfected into HeLa cells, forming a stable cells line of overexpression. The effect of S100A16 on the proliferative capacity of HeLa cells was evaluated by a Cell Counting Kit-8 (CCK-8) assay. Cell migration capacity was determined by a Transwell migration assay. Changes in matrix metalloproteinase-2 (MMP-2), MMP-9, E-cadherin, and vimentin expression were evaluated by a cell-based immunofluorescence assay. The effect of S100A16 on angiogenesis was verified by knockout experiment. Results Overexpression of S100A16 significantly enhanced the proliferative and migratory capacities of HeLa cells (P<0.05), upregulated expression of matrix MMP-2, MMP-9, vimentin, phosphatidylinositol 3 kinase, and phosphorylated protein kinase B, and downregulated expression of E-cadherin. Vascular endothelial growth factor expression increased, phosphatase and tensin homolog expression decreased, and angiogenesis was positively correlated with S100A16 expression. These effects were largely mediated by the activation of the phosphatidylinositol 3 kinase/protein kinase B pathways. Conclusions S100A16 could promote the proliferation, migration, and tumor angiogenesis of HeLa cells by regulating the phosphatidylinositol 3 kinase/protein kinase B signaling pathways.
Collapse
Affiliation(s)
- Haibin Zhang
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, Gansu, China (mainland).,Department of Gynecology, Lanzhou University Second Hospital, Lanzhou, Gansu, China (mainland)
| | - Yongxiu Yang
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, Gansu, China (mainland).,Department of Obstetrics, The First Hospital of Lanzhou University, Lanzhou, Gansu, China (mainland).,The Key Laboratory of Gynecological Tumors in Gansu Province, Lanzhou, Gansu, China (mainland)
| | - Xueyao Ma
- Department of Gynecology, Lanzhou University Second Hospital, Lanzhou, Gansu, China (mainland)
| | - Wenhu Xin
- Department of Gynecology, Lanzhou University Second Hospital, Lanzhou, Gansu, China (mainland)
| | - Xuefen Fan
- The Second School of Clinical Medicine of Lanzhou University, Lanzhou, Gansu, China (mainland)
| |
Collapse
|
9
|
Shanmugapriya, Othman N, Sasidharan S. Prediction of genes and protein-protein interaction networking for miR-221-5p using bioinformatics analysis. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
10
|
Mandal P, Saha SS, Sen S, Bhattacharya A, Bhattacharya NP, Bucha S, Sinha M, Chowdhury RR, Mondal NR, Chakravarty B, Chatterjee T, Roy S, Chattapadhyay A, Sengupta S. Cervical cancer subtypes harbouring integrated and/or episomal HPV16 portray distinct molecular phenotypes based on transcriptome profiling of mRNAs and miRNAs. Cell Death Discov 2019; 5:81. [PMID: 30937183 PMCID: PMC6433907 DOI: 10.1038/s41420-019-0154-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/03/2019] [Accepted: 02/13/2019] [Indexed: 12/12/2022] Open
Abstract
Heterogeneity in cervical cancers (CaCx) in terms of HPV16 physical status prompted us to investigate the mRNA and miRNA signatures among the different categories of CaCx samples. We performed microarray-based mRNA expression profiling and quantitative real-time PCR-based expression analysis of some prioritised miRNAs implicated in cancer-related pathways among various categories of cervical samples. Such samples included HPV16-positive CaCx cases that harboured either purely integrated HPV16 genomes (integrated) and those that harboured episomal viral genomes, either pure or concomitant with integrated viral genomes (episomal), which were compared with normal cervical samples that were either HPV negative or positive for HPV16. The mRNA expression profile differed characteristically between integrated and episomal CaCx cases for enriched biological pathways. miRNA expression profiles also differed among CaCx cases compared with controls (upregulation—miR-21, miR-16, miR-205, miR-323; downregulation—miR-143, miR-196b, miR-203, miR-34a; progressive upregulation—miR-21 and progressive downregulation—miR-143, miR-34a, miR-196b and miR-203) in the order of HPV-negative controls, HPV16-positive non-malignant samples and HPV16-positive CaCx cases. miR-200a was upregulated in HPV16-positive cervical tissues irrespective of histopathological status. Expression of majority of the predicted target genes was negatively correlated with their corresponding miRNAs, irrespective of the CaCx subtypes. E7 mRNA expression correlated positively with miR-323 expression among episomal cases and miR-203, among integrated cases. miR-181c expression was downregulated only among the episomal CaCx cases and negatively correlated with protein coding transcript of the proliferative target gene, CKS1B of the significantly enriched “G2/M DNA Damage Checkpoint Regulation” pathway among CaCx cases. Thus, the two CaCx subtypes are distinct entities at the molecular level, which could be differentially targeted for therapy. In fact, availability of a small molecule inhibitor of CKS1B, suggests that drugging CKS1B could be a potential avenue of treating the large majority of CaCx cases harbouring episomal HPV16.
Collapse
Affiliation(s)
- Paramita Mandal
- 1National Institute of Biomedical Genomics, Kalyani, West Bengal India.,6Present Address: Department of Zoology, The University of Burdwan, Burdwan, West Bengal India
| | - Sweta Sharma Saha
- 1National Institute of Biomedical Genomics, Kalyani, West Bengal India.,Present Address: Section of Haematology/Oncology, Department of Medicine, university of Chicago, 5841 S Maryland Ave MC 2115, Chicago, IL 60637 USA
| | - Shrinka Sen
- 1National Institute of Biomedical Genomics, Kalyani, West Bengal India.,8Present Address: Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka 560064 India
| | | | - Nitai P Bhattacharya
- 2Crystallography & Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064 India
| | - Sudha Bucha
- 2Crystallography & Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064 India
| | - Mithun Sinha
- 2Crystallography & Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064 India.,9Present Address: Comprehensive Wound Center, Center for Regenerative Medicine and Cell Based Therapies, The Ohio State University, Columbus, OH USA
| | - Rahul Roy Chowdhury
- 3Department of Gynecology, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| | - Nidhu Ranjan Mondal
- 3Department of Gynecology, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| | - Biman Chakravarty
- 3Department of Gynecology, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| | - Tanmay Chatterjee
- 3Department of Gynecology, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| | - Sudipta Roy
- Sri Aurobindo Seva Kendra, 1H, Gariahat Road (S) Jodhpur Park, Kolkata, 700068 West Bengal India
| | | | - Sharmila Sengupta
- 1National Institute of Biomedical Genomics, Kalyani, West Bengal India
| |
Collapse
|
11
|
Minchenko OH, Tsymbal DO, Minchenko DO, Kubaychuk OO. Hypoxic regulation of MYBL1, MEST, TCF3, TCF8, GTF2B, GTF2F2 and SNAI2 genes expression in U87 glioma cells upon IRE1 inhibition. UKRAINIAN BIOCHEMICAL JOURNAL 2018; 88:52-62. [PMID: 29235836 DOI: 10.15407/ubj88.06.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We investigated the impact of IRE1/ERN1 (inositol requiring enzyme 1/endoplasmic reticulum to nucleus signaling 1) knockdown on hypoxic regulation of the expression of a subset of proliferation and migration-related genes in U87 glioma cells. It was shown that hypoxia leads to up-regulation of the expression of MEST and SNAI2, to down-regulation – of MYBL1, TCF8 and GTF2F2 genes at the mRNA level in control glioma cells. At the same time hypoxia did not affect the expression of TCF3 and GTF2B transcription factor genes. In turn, inhibition of IRE1 modified the effect of hypoxia on the expression of all studied genes, except MYBL1 and GTF2B. For instance, IRE1 knockdown decreased sensitivity to hypoxia of the expression of MEST, TCF8 and SNAI2 genes and increased sensitivity to hypoxia of GTF2F2 expression. At the same time, IRE1 inhibition introduced sensitivity to hypoxia of the expression of TCF3 gene in glioma cells. The present study demonstrated that the inhibition of IRE1 in glioma cells affected the hypoxic regulation of the expression of studied genes in various directions, though hypoxic conditions did not abolish the effect of IRE1 inhibition on the expression of respective genes. To the contrary, in case of SNAI2, GTF2F2 and MEST hypoxic conditions magnified the effect of IRE1 inhibition on the expression of respective genes in glioma cells.
Collapse
|
12
|
Yu XP, Wu YM, Liu Y, Tian M, Wang JD, Ding KK, Ma T, Zhou PK. IER5 is involved in DNA Double-Strand Breaks Repair in Association with PAPR1 in Hela Cells. Int J Med Sci 2017; 14:1292-1300. [PMID: 29104487 PMCID: PMC5666564 DOI: 10.7150/ijms.21510] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 09/01/2017] [Indexed: 12/01/2022] Open
Abstract
The immediate early response gene 5 (IER5) is a radiation response gene induced in a dose-independent manner, and has been suggested to be a molecular biomarker for biodosimetry purposes upon radiation exposure. Here, we investigated the function of IER5 in DNA damage response and repair. We found that interference on IER5 expression significantly decreased the efficiency of repair of DNA double-strand breaks induced by ionizing radiations in Hela cells. We found that IER5 participates in the non-homologous end-joining pathway of DNA breaks repair. Additionally, we identified a number of potential IER5-interacting proteins through mass spectrometry-based protein assays. The interaction of IER5 protein with poly(ADP-Ribose) polymerase 1 (PARP1) and Ku70 was further confirmed by immunoprecipitation assays. We also found that Olaparib, a PARP1 inhibitor, affected the stability of IER5. These results indicate that targeting of IER5 may be a novel DNA damage response-related strategy to use during cervical cancer radiotherapy or chemotherapy.
Collapse
Affiliation(s)
- Xin-Ping Yu
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100006, China
| | - Yu-Mei Wu
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100006, China
| | - Yang Liu
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100006, China
| | - Ming Tian
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100006, China
| | - Jian-Dong Wang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100006, China
| | - Ku-Ke Ding
- National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing ,100088, China
| | - Teng Ma
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Ping-Kun Zhou
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| |
Collapse
|
13
|
Zhu XL, Wen SY, Ai ZH, Wang J, Xu YL, Teng YC. Screening for characteristic microRNAs between pre-invasive and invasive stages of cervical cancer. Mol Med Rep 2015; 12:55-62. [PMID: 25695263 PMCID: PMC4438941 DOI: 10.3892/mmr.2015.3363] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 12/12/2014] [Indexed: 12/31/2022] Open
Abstract
The aim of the present study was to investigate the characteristic microRNAs (miRNAs) expressed during the pre-invasive and invasive stages of cervical cancer. A gene expression profile (GSE7803) containing 21 invasive squamous cell cervical carcinoma samples, 10 normal squamous cervical epithelium samples and seven high-grade squamous intraepithelial cervical lesion samples, was obtained from the Gene Expression Omnibus. Differentially expressed genes (DEGs) were identified using significance analysis of microarray software, and a Gene Ontology (GO) enrichment analysis was conducted using the Database for Annotation, Visualization and Integrated Discovery. The miRNAs that interacted with the identified DEGs were selected, based on the TarBase v5.0 database. Regulatory networks were constructed from these selected miRNAs along with their corresponding target genes among the DEGs. The regulatory networks were visualized using Cytoscape. A total of 1,160 and 756 DEGs were identified in the pre-invasive and invasive stages of cervical cancer, respectively. The results of the GO enrichment demonstrated that the DEGs were predominantly involved in the immune response and the cell cycle, in the pre-invasive and invasive stages, respectively. Furthermore, a total of 18 and 26 characteristic miRNAs were screened in the pre-invasive and invasive stages, respectively. These miRNAs may be potential biomarkers and targets for the diagnosis and treatment of the different stages of cervical cancer.
Collapse
Affiliation(s)
- Xiao-Lu Zhu
- Department of Obstetrics and Gynecology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai 200233, P.R. China
| | - Shang-Yun Wen
- Department of Obstetrics and Gynecology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai 200233, P.R. China
| | - Zhi-Hong Ai
- Department of Obstetrics and Gynecology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai 200233, P.R. China
| | - Juan Wang
- Department of Obstetrics and Gynecology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai 200233, P.R. China
| | - Yan-Li Xu
- Department of Obstetrics and Gynecology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai 200233, P.R. China
| | - Yin-Cheng Teng
- Department of Obstetrics and Gynecology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai 200233, P.R. China
| |
Collapse
|
14
|
Sun L, Miyoshi H, Origanti S, Nice TJ, Barger AC, Manieri NA, Fogel LA, French AR, Piwnica-Worms D, Piwnica-Worms H, Virgin HW, Lenschow DJ, Stappenbeck TS. Type I interferons link viral infection to enhanced epithelial turnover and repair. Cell Host Microbe 2015; 17:85-97. [PMID: 25482432 PMCID: PMC4297260 DOI: 10.1016/j.chom.2014.11.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/30/2014] [Accepted: 11/05/2014] [Indexed: 02/06/2023]
Abstract
The host immune system functions constantly to maintain chronic commensal and pathogenic organisms in check. The consequences of these immune responses on host physiology are as yet unexplored, and may have long-term implications in health and disease. We show that chronic viral infection increases epithelial turnover in multiple tissues, and the antiviral cytokines type I interferons (IFNs) mediate this response. Using a murine model with persistently elevated type I IFNs in the absence of exogenous viral infection, the Irgm1(-/-) mouse, we demonstrate that type I IFNs act through nonepithelial cells, including macrophages, to promote increased epithelial turnover and wound repair. Downstream of type I IFN signaling, the highly related IFN-stimulated genes Apolipoprotein L9a and b activate epithelial proliferation through ERK activation. Our findings demonstrate that the host immune response to chronic viral infection has systemic effects on epithelial turnover through a myeloid-epithelial circuit.
Collapse
Affiliation(s)
- Lulu Sun
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hiroyuki Miyoshi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sofia Origanti
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Timothy J Nice
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alexandra C Barger
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nicholas A Manieri
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Leslie A Fogel
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Anthony R French
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David Piwnica-Worms
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Helen Piwnica-Worms
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Herbert W Virgin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Deborah J Lenschow
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Thaddeus S Stappenbeck
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
15
|
Royse KE, Zhi D, Conner MG, Clodfelder-Miller B, Srinivasasainagendra V, Vaughan LK, Skibola CF, Crossman DK, Levy S, Shrestha S. Differential Gene Expression Landscape of Co-Existing Cervical Pre-Cancer Lesions Using RNA-seq. Front Oncol 2014; 4:339. [PMID: 25505737 PMCID: PMC4244708 DOI: 10.3389/fonc.2014.00339] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/11/2014] [Indexed: 01/08/2023] Open
Abstract
Genetic changes occurring in different stages of pre-cancer lesions reflect causal events initiating and promoting the progression to cancer. Co-existing pre-cancerous lesions including low- and high-grade squamous intraepithelial lesion (LGSIL and HGSIL), and adjacent “normal” cervical epithelium from six formalin-fixed paraffin-embedded samples were selected. Tissues from these 18 samples were isolated using laser-capture microdissection, RNA was extracted and sequenced. RNA-sequencing generated 2.4 billion raw reads in 18 samples, of which ~50.1% mapped to known and annotated genes in the human genome. There were 40 genes up-regulated and 3 down-regulated (normal to LGSIL) in at least one-third of the sample pairs (same direction and FDR p < 0.05) including S100A7 and KLK6. Previous studies have shown that S110A7 and KLK7 are up-regulated in several other cancers, whereas CCL18, CFTR, and SLC6A14, also differentially expressed in two samples, are up-regulated specifically in cervical cancer. These differentially expressed genes in normal to LGSIL progression were enriched in pathways related to epithelial cell differentiation, keratinocyte differentiation, peptidase, and extracellular activities. In progression from LGSIL to HGSIL, two genes were up-regulated and five down-regulated in at least two samples. Further investigations using co-existing samples, which account for all internal confounders, will provide insights to better understand progression of cervical pre-cancer.
Collapse
Affiliation(s)
- Kathryn E Royse
- Department of Epidemiology, University of Alabama at Birmingham , Birmingham, AL , USA
| | - Degui Zhi
- Department of Biostatistics, University of Alabama at Birmingham , Birmingham, AL , USA
| | - Michael G Conner
- Department of Pathology, University of Alabama at Birmingham , Birmingham, AL , USA
| | - Buffie Clodfelder-Miller
- Cellular and Molecular Neuropathology Core, University of Alabama at Birmingham , Birmingham, AL , USA
| | | | - Laura Kelly Vaughan
- Department of Biostatistics, University of Alabama at Birmingham , Birmingham, AL , USA
| | - Christine F Skibola
- Department of Epidemiology, University of Alabama at Birmingham , Birmingham, AL , USA
| | - David K Crossman
- Department of Genetics, University of Alabama at Birmingham , Birmingham, AL , USA
| | - Shawn Levy
- Hudson Alpha Institute for Biotechnology , Huntsville, AL , USA
| | - Sadeep Shrestha
- Department of Epidemiology, University of Alabama at Birmingham , Birmingham, AL , USA
| |
Collapse
|
16
|
Apolipoprotein L2 contains a BH3-like domain but it does not behave as a BH3-only protein. Cell Death Dis 2014; 5:e1275. [PMID: 24901046 PMCID: PMC4611713 DOI: 10.1038/cddis.2014.237] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/14/2014] [Accepted: 04/22/2014] [Indexed: 11/08/2022]
Abstract
Apolipoproteins of the L family are lipid-binding proteins whose function is largely unknown. Apolipoprotein L1 and apolipoprotein L6 have been recently described as novel pro-death BH3-only proteins that are also capable of regulating autophagy. In an in-silico screening to discover novel putative BH3-only proteins, we identified yet another member of the apolipoprotein L family, apolipoprotein L2 (ApoL2), as a BH3 motif-containing protein. ApoL2 has been suggested to behave as a BH3-only protein and mediate cell death induced by interferon-gamma or viral infection. As previously described, we observed that ApoL2 protein was induced by interferon-gamma. However, knocking down its expression in HeLa cells did not regulate cell death induced by interferon-gamma. Overexpression of ApoL2 did not induce cell death on its own. ApoL2 did not sensitize or protect cells from overexpression of the BH3-only proteins Bmf or Noxa. Furthermore, siRNA against ApoL2 did not alter sensitivity to a variety of death stimuli. We could, however, detect a weak interaction between ApoL2 and Bcl-2 by immunoprecipitation of the former, suggesting a role of ApoL2 in a Bcl-2-regulated process like autophagy. However, in contrast to what has been described about its homologs ApoL1 and ApoL6, ApoL2 did not regulate autophagy. Thus, the role, if any, of ApoL2 in cell death remains to be clarified.
Collapse
|
17
|
Molecular fixative enables expression microarray analysis of microdissected clinical cervical specimens. Exp Mol Pathol 2014; 96:168-77. [PMID: 24412268 DOI: 10.1016/j.yexmp.2013.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 12/06/2013] [Indexed: 11/21/2022]
Abstract
Formalin-fixed tissue has been a mainstay of clinical pathology laboratories, but formalin alters many biomolecules, including nucleic acids and proteins. Meanwhile, frozen tissues contain better-preserved biomolecules, but tissue morphology is affected, limiting their diagnostic utility. Molecular fixatives promise to bridge this gap by simultaneously preserving morphology and biomolecules, enabling clinical diagnosis and molecular analyses on the same specimen. While previous reports have broadly evaluated the use of molecular fixative in various human tissues, we present here the first detailed assessment of the applicability of molecular fixative to both routine histopathological diagnosis and molecular analysis of cervical tissues. Ten specimens excised via the loop electrosurgical excision procedure, which removes conical tissue samples from the cervix, were cut into alternating pieces preserved in either formalin or molecular fixative. Cervical specimens preserved in molecular fixative were easily interpretable, despite featuring more eosinophilic cytoplasm and more recognizable chromatin texture than formalin-fixed specimens. Immunohistochemical staining patterns of p16 and Ki-67 were similar between fixatives, although Ki-67 staining was stronger in the molecular fixative specimens. The RNA of molecular fixative specimens from seven cases representing various dysplasia grades was assessed for utility in expression microarray analysis. Cluster analysis and scatter plots of duplicate samples suggest that data of sufficient quality can be obtained from as little as 50ng of RNA from molecular fixative samples. Taken together, our results show that molecular fixative may be a more versatile substitute for formalin, simultaneously preserving tissue morphology for clinical diagnosis and biomolecules for immunohistochemistry and gene expression analysis.
Collapse
|
18
|
Gómez-Gómez Y, Organista-Nava J, Gariglio P. Deregulation of the miRNAs expression in cervical cancer: human papillomavirus implications. BIOMED RESEARCH INTERNATIONAL 2013; 2013:407052. [PMID: 24490161 PMCID: PMC3899709 DOI: 10.1155/2013/407052] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 09/17/2013] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are a class of small non coding RNAs of 18-25 nucleotides in length. The temporal or short-lived expression of the miRNAs modulates gene expression post transcriptionally. Studies have revealed that miRNAs deregulation correlates and is involved with the initiation and progression of human tumors. Cervical cancer (CC) displays notably increased or decreased expression of a large number of cellular oncogenic or tumor suppressive miRNAs, respectively. However, understanding the potential role of miRNAs in CC is still limited. In CC, the high-risk human papillomaviruses (HR-HPVs) infection can affect the miRNAs expression through oncoprotein E6 and E7 that contribute to viral pathogenesis, although other viral proteins might also be involved. This deregulation in the miRNAs expression has an important role in the hallmarks of CC. Interestingly, the miRNA expression profile in CC can discriminate between normal and tumor tissue and the extraordinary stability of miRNAs makes it suitable to serve as diagnostic and prognostic biomarkers of cancer. In this review, we will summarize the role of the HR-HPVs in miRNA expression, the role of miRNAs in the hallmarks of CC, and the use of miRNAs as potential prognostic biomarkers in CC.
Collapse
Affiliation(s)
- Yazmín Gómez-Gómez
- Instituto de Fisiología Celular (IFC), Universidad Nacional Autónoma de México (UNAM), 04510 México, DF, Mexico
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios, Avanzados, 07360 México, DF, Mexico
| | - Jorge Organista-Nava
- Instituto de Fisiología Celular (IFC), Universidad Nacional Autónoma de México (UNAM), 04510 México, DF, Mexico
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios, Avanzados, 07360 México, DF, Mexico
| | - Patricio Gariglio
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios, Avanzados, 07360 México, DF, Mexico
| |
Collapse
|
19
|
Thomas A, Mahantshetty U, Kannan S, Deodhar K, Shrivastava SK, Kumar-Sinha C, Mulherkar R. Expression profiling of cervical cancers in Indian women at different stages to identify gene signatures during progression of the disease. Cancer Med 2013; 2:836-48. [PMID: 24403257 PMCID: PMC3892388 DOI: 10.1002/cam4.152] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/20/2013] [Accepted: 09/27/2013] [Indexed: 11/24/2022] Open
Abstract
Cervical cancer is the second most common cancer among women worldwide, with developing countries accounting for >80% of the disease burden. Although in the West, active screening has been instrumental in reducing the incidence of cervical cancer, disease management is hampered due to lack of biomarkers for disease progression and defined therapeutic targets. Here we carried out gene expression profiling of 29 cervical cancer tissues from Indian women, spanning International Federation of Gynaecology and Obstetrics (FIGO) stages of the disease from early lesion (IA and IIA) to progressive stages (IIB and IIIA–B), and identified distinct gene expression signatures. Overall, metabolic pathways, pathways in cancer and signaling pathways were found to be significantly upregulated, while focal adhesion, cytokine–cytokine receptor interaction and WNT signaling were downregulated. Additionally, we identified candidate biomarkers of disease progression such as SPP1, proliferating cell nuclear antigen (PCNA), STK17A, and DUSP1 among others that were validated by quantitative real-time polymerase chain reaction (qRT-PCR) in the samples used for microarray studies as well in an independent set of 34 additional samples. Integrative analysis of our results with other cervical cancer profiling studies could facilitate the development of multiplex diagnostic markers of cervical cancer progression.
Collapse
Affiliation(s)
- Asha Thomas
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | | | | | | | | | | | | |
Collapse
|
20
|
Liao W, Goh FY, Betts RJ, Kemeny DM, Tam J, Bay BH, Wong WF. A novel anti-apoptotic role for apolipoprotein L2 in IFN-γ-induced cytotoxicity in human bronchial epithelial cells. J Cell Physiol 2010; 226:397-406. [DOI: 10.1002/jcp.22345] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
21
|
Choi EA, Kim KH, Yoo BC, Yoo HS. Induction of Apoptotic Cell Death by Egg white combined-Chalcanthite on NCI-H460 Human Lung Cancer Cells. J Pharmacopuncture 2009. [DOI: 10.3831/kpi.2009.12.3.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
22
|
Smith EE, Malik HS. The apolipoprotein L family of programmed cell death and immunity genes rapidly evolved in primates at discrete sites of host-pathogen interactions. Genome Res 2009; 19:850-8. [PMID: 19299565 DOI: 10.1101/gr.085647.108] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Apolipoprotein L1 (APOL1) is a human protein that confers immunity to Trypanosoma brucei infections but can be countered by a trypanosome-encoded antagonist SRA. APOL1 belongs to a family of programmed cell death genes whose proteins can initiate host apoptosis or autophagic death. We report here that all six members of the APOL gene family (APOL1-6) present in humans have rapidly evolved in simian primates. APOL6, furthermore, shows evidence of an adaptive sweep during recent human evolution. In each APOL gene tested, we found rapidly evolving codons in or adjacent to the SRA-interacting protein domain (SID), which is the domain of APOL1 that interacts with SRA. In APOL6, we also found a rapidly changing 13-amino-acid cluster in the membrane-addressing domain (MAD), which putatively functions as a pH sensor and regulator of cell death. We predict that APOL genes are antagonized by pathogens by at least two distinct mechanisms: SID antagonists, which include SRA, that interact with the SID of various APOL proteins, and MAD antagonists that interact with the MAD hinge base of APOL6. These antagonists either block or prematurely cause APOL-mediated programmed cell death of host cells to benefit the infecting pathogen. These putative interactions must occur inside host cells, in contrast to secreted APOL1 that trafficks to the trypanosome lysosome. Hence, the dynamic APOL gene family appears to be an important link between programmed cell death of host cells and immunity to pathogens.
Collapse
Affiliation(s)
- Eric E Smith
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | |
Collapse
|
23
|
Wan F, Miao X, Quraishi I, Kennedy V, Creek KE, Pirisi L. Gene expression changes during HPV-mediated carcinogenesis: a comparison between an in vitro cell model and cervical cancer. Int J Cancer 2008; 123:32-40. [PMID: 18398830 DOI: 10.1002/ijc.23463] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We used oligonucleotide microarrays to investigate gene expression changes associated with multi-step human papillomavirus type 16 (HPV16)-mediated carcinogenesis in vitro. Gene expression profiles in 4 early passage HPV16-immortalized human keratinocyte (HKc) lines derived from different donors were compared with their corresponding 4 late-passage, differentiation-resistant cell lines, and to 4 pools of normal HKc, each composed of 3 individual HKc strains, on Agilent 22 k human oligonucleotide microarrays. The resulting data were analyzed using a modified T-test coded in R to obtain lists of differentially expressed genes. Gene expression changes identified in this model system were then compared with gene expression changes described in published studies of cervical intraepithelial neoplasia (CIN) and cervical cancer. Common genes in these lists were further studied by cluster analysis. Genes whose expression changed in the same direction as in CIN or cervical cancer (concordant) at late stages of HPV16-mediated transformation in vitro formed one major cluster, while those that changed in the opposite direction (discordant) formed a second major cluster. Further annotation found that many discordant expression changes involved gene products with an extracellular localization. Two novel genes were selected for further study: overexpression of SIX1 and GDF15, observed during in vitro progression in our model system, was confirmed in tissue arrays of cervical cancer. These microarray-based studies show that our in vitro model system reflects many cellular and molecular alterations characteristic of cervical cancer, and identified SIX1 and GDF15 as 2 novel potential biomarkers of cervical cancer progression.
Collapse
Affiliation(s)
- Fang Wan
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | | | | | | | | | | |
Collapse
|
24
|
Zempolich K, Fuhrman C, Milash B, Flinner R, Greven K, Ryu J, Forbes A, Kerlin K, Nichols RC, Gaffney DK. Changes in gene expression induced by chemoradiation in advanced cervical carcinoma: a microarray study of RTOG C-0128. Gynecol Oncol 2008; 109:275-9. [PMID: 18299147 DOI: 10.1016/j.ygyno.2008.01.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 01/15/2008] [Accepted: 01/22/2008] [Indexed: 11/30/2022]
Abstract
PURPOSE To evaluate gene expression patterns in patients with advanced cervix cancer before and during chemoradiation in a multi-institutional cooperative group setting. METHODS RTOG C0128 was designed as a Phase II trial of radiation therapy with concomitant chemotherapy and Celecoxib at 400 mg twice daily for one year. Tumor samples were obtained for microarray gene expression analysis before treatment and at the time of the first implant (paired sample). RNA was extracted, linearly amplified, and purity was assessed by gel electrophoresis. Each sample was hybridized against a universal RNA mixture on a customized spotted array consisting of >10,000 genes. Gene expression pre-treatment was compared with clinical characteristics. Changes in gene expression following radiation were assessed within the paired samples (same patient) and then compared across all paired samples. Data were normalized using the AROMA software, and clustering analysis was performed using Ward's method in Spotfire. Differences in paired samples were calculated with Significance Analysis of Microarrays (SAM). RESULTS From August 2001 to March 2004, 84 patients were accrued to the trial. Tissue was obtained prior to initiation of therapy from 34 patients (40%). FIGO stages of the patients providing tissue were IB (23%), II (57%), and IIIA-IVA (20%). RNA quality was sufficient in 22 pre-treatment and 14 post-treatment samples. Among pre-treatment samples, no significant differences in gene expression were observed by FIGO stage, age, or race. However, between comparison of histologic subtypes (adenocarcinoma, n=5; squamous cell carcinoma, n=17) demonstrated 45 genes differentially expressed with a false discovery rate of 0.018. Cluster analysis segregated unpaired samples into 2 groups: 18/22 comprising pre-treatment samples and 10/14 in group 2 representing post-treatment samples. In all 13 paired samples, gene expression after chemoradiation was significantly upregulated in 91 genes and downregulated in 251 genes (false discovery rate of 0.0018). Genes significantly upregulated included bax, cdk inhibitor 1, MMP2, and adhesion molecules PECAM1, VCAM1, and ICAM2. Genes significantly downregulated included topoisomerase II alpha, myc, H2AX, MSH2, RAD51, RAD53, PCNA, and cell cycle-regulating molecules chk1, CDK2, cyclinB1, cyclin D3, cdc2, and cdc25. CONCLUSIONS Microarray analysis was successfully performed in a multi-institutional cooperative group trial. Gene expression significantly correlated with histology, but not stage, age or race. Cluster analysis identified two groups of gene expression profiles correlating with pre or post-treatment acquisition of tissue. Notably, paired samples showed significant changes in gene expression following chemoradiation, including several downregulated radiation response genes. Further analysis comparing gene expression to clinical outcomes, acute and late toxicities awaits maturation of clinical data. Hopefully, this data will lead to the development of molecularly based therapies.
Collapse
Affiliation(s)
- K Zempolich
- University of Utah and Huntsman Cancer Institute, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Biewenga P, Buist MR, Moerland PD, Ver Loren van Themaat E, van Kampen AHC, ten Kate FJW, Baas F. Gene expression in early stage cervical cancer. Gynecol Oncol 2008; 108:520-6. [PMID: 18191186 DOI: 10.1016/j.ygyno.2007.11.024] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 11/20/2007] [Accepted: 11/26/2007] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Pelvic lymph node metastases are the main prognostic factor for survival in early stage cervical cancer, yet accurate detection methods before surgery are lacking. In this study, we examined whether gene expression profiling can predict the presence of lymph node metastasis in early stage squamous cell cervical cancer before treatment. In addition, we examined gene expression in cervical cancer compared to normal cervical tissue. METHODS Tumour samples of 35 patients with early stage cervical cancer who underwent radical hysterectomy and pelvic lymph node dissection, 16 with and 19 without lymph node metastasis, were analysed. Also five normal cervical tissues samples were analysed. We investigated differential expression and prediction of patient status for lymph node positive versus lymph node negative tumours and for healthy versus cancer tissue. Classifiers were built by using a multiple validation strategy, enabling the assessment of both classifier accuracy and variability. RESULTS Five genes (BANF1, LARP7, SCAMP1, CUEDC1 and PEBP1) showed differential expression between tumour samples from patients with and without lymph node metastasis. Mean accuracy of class prediction is 64.5% with a 95% confidence interval (CI) of 40-90%. For healthy cervical tissue versus early stage cervical cancer, the mean accuracy of class prediction is 99.5% (95% CI of 90-100%). A subset of genes involved in cervical cancer was identified. CONCLUSION No accurate class prediction for lymph node status in early stage cervical cancer was obtained. Replication studies are needed to determine the relevance of the differentially expressed genes according to lymph node status. Early stage cervical cancer can be perfectly differentiated from healthy cervical tissue by means of gene expression profiling.
Collapse
Affiliation(s)
- Petra Biewenga
- Department of Gynaecologic Oncology, Academic Medical Center, Meibergdreef 9, 1100 AZ Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
26
|
Bachtiary B, Boutros PC, Pintilie M, Shi W, Bastianutto C, Li JH, Schwock J, Zhang W, Penn LZ, Jurisica I, Fyles A, Liu FF. Gene expression profiling in cervical cancer: an exploration of intratumor heterogeneity. Clin Cancer Res 2006; 12:5632-40. [PMID: 17020965 DOI: 10.1158/1078-0432.ccr-06-0357] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To explore intratumor heterogeneity in gene expression profiles from patients with cervical cancer. EXPERIMENTAL DESIGN A total of 33 biopsies were obtained from 11 patients, sampling between two and five different areas for each tumor. The extracted RNA was hybridized onto the Affymetrix U133 Plus 2.0 oligonucleotide chip. The variance of expression within a patient (W), between patients (B) and the total variance (T = W + B) were calculated for each ProbeSet, and the ratio W/T was used as a measure of intratumor heterogeneity. Gene Ontology functional analysis was done to assess the function of genes that had high W/T (top 10%) and low W/T (bottom 10%) values. RESULTS In total, 448 ProbeSets (2.2% of the total) had W/T < 0.10, indicating low intratumor heterogeneity, and 537 ProbeSets (2.7% of the total) had W/T > 0.90, indicating high intratumor heterogeneity. In total 14,473 ProbeSets (72.4%) had higher intertumor than intratumor heterogeneity (W/T < 0.5). Genes with low intratumor heterogeneity were characterized by a statistically significant enrichment of immune-related functions (P < 0.0001). Genes with high intratumor heterogeneity were characterized by a significant tendency towards nuclear localization and nucleic acid binding (both P < 0.0001). For genes with W/T > 0.5, more than six biopsies would be required to minimize the intratumoral heterogeneity to <0.15; if W/T is 0.3 to 0.4, four biopsies are required; and for low W/T of 0.16 to 0.3, only two to three biopsies would be needed. CONCLUSION Although the intratumor heterogeneity was low for the majority of the tested ProbeSets, for many genes, multiple biopsies are required to obtain a reliable estimate of gene expression.
Collapse
Affiliation(s)
- Barbara Bachtiary
- Department of Radiation Oncology, Clinical Study Coordination and Biostatistics, Division of Cancer Genomics and Proteomics, Princess Margaret Hospital, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Grigsby PW, Watson M, Powell MA, Zhang Z, Rader JS. Gene expression patterns in advanced human cervical cancer. Int J Gynecol Cancer 2006; 16:562-7. [PMID: 16681726 DOI: 10.1111/j.1525-1438.2006.00389.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The purpose of this study was to evaluate gene expression patterns in human cervical tumors by extent of lymph node metastases at diagnosis. Pretreatment whole-body fluorodeoxyglucose-positron emission tomography (FDG-PET) imaging was performed in eight patients with invasive squamous cell carcinoma of the cervix to evaluate the extent of lymph nodes metastases. Pretreatment tumor tissue samples were subjected to laser-capture microdissection, and isolated RNA was linearly amplified and hybridized to Affymetrix Human U95A GeneChip microarrays. Molecular FDG-PET imaging revealed that three patients had lymph node involvement in the supraclavicular region and five patients did not. Microarray data were segregated into two groups based on the extent of regional lymph node involvement. Supervised clustering analysis identified 75 of about 12,000 gene transcripts represented on the array whose average expression was at least threefold different. We identified 12 of the 75 transcripts that demonstrated a statistically significant difference in expression between the two patient groups (P < 0.05). Five transcripts were upregulated and seven downregulated. Both overall and cause-specific survivals were different between these two patient groups (P= 0.006). This limited data set identified candidate biomarkers of extent of lymph node metastases that correlated with poor survival outcome.
Collapse
Affiliation(s)
- P W Grigsby
- Department of Radiation Oncology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA.
| | | | | | | | | |
Collapse
|
28
|
Silva-Filho AL, Traiman P, Triginelli SA, Reis FM, Pedrosa MS, Miranda D, Abreu ES, Macarenco R, Cunha-Melo JR. Association between CD31 expression and histopathologic features in stage IB squamous cell carcinoma of the cervix. Int J Gynecol Cancer 2006; 16:757-62. [PMID: 16681757 DOI: 10.1111/j.1525-1438.2006.00362.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
This study was undertaken to evaluate the association between the expression of CD31 in the tumor and the histopathologic findings in patients with carcinoma of the cervix. This study included prospectively 30 women, aged 46.6 +/- 10.7 years, with stage IB squamous cell carcinoma of the cervix submitted to radical hysterectomy from November 2001 to September 2002. Samples from the tumor were taken and immunohistochemically evaluated by a monoclonal antibody for CD31. Clinicopathologic characteristics such as stage, tumor size, grade of differentiation, lymphatic vascular space invasion (LVSI), parametrial involvement, and status of pelvic lymph nodes were also recorded. The clinical stage (FIGO) was IB1 in 22 patients (73.3%) and IB2 in 8 patients (26.7%). The expression of CD31 was significantly associated with tumor size and the presence of LVSI, but not with grade of differentiation and vaginal or parametrial involvement (P= 0.03, P= 0.032, P= 0.352, P= 0.208, and P= 0.242, respectively). On univariate analysis, the presence of pelvic lymph node metastasis was influenced by LVSI (P= 0.003) and CD31 expression (P= 0.032). However, on multivariate analysis, the presence of LVSI (P= 0.007) was the only independent predictor of pelvic lymph node metastasis. The CD31 expression in tumor is significantly associated with LVSI and tumor size in patients with early-stage squamous cell carcinoma of the cervix.
Collapse
Affiliation(s)
- A L Silva-Filho
- Department of Obstetrics and Gynecology, Paulista State University, Botucatu, São Paulo, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Wong YF, Cheung TH, Tsao GSW, Lo KWK, Yim SF, Wang VW, Heung MMS, Chan SCS, Chan LKY, Ho TWF, Wong KWY, Li C, Guo Y, Chung TKH, Smith DI. Genome-wide gene expression profiling of cervical cancer in Hong Kong women by oligonucleotide microarray. Int J Cancer 2006; 118:2461-9. [PMID: 16353136 DOI: 10.1002/ijc.21660] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An analysis of gene expression profiles obtained from cervical cancers was performed to find those genes most aberrantly expressed. Total RNA was prepared from 29 samples of cervical squamous cell carcinoma and 18 control samples, and hybridized to Affymetrix oligonucleotide microarrays with probe sets complementary to over 20,000 transcripts. Unsupervised hierarchical clustering of the expression data readily distinguished normal cervix from cancer. Supervised analysis of gene expression data identified 98 and 139 genes that exhibited >2-fold upregulation and >2-fold downregulation, respectively, in cervical cancer compared to normal cervix. Several of the genes that were differentially regulated included SPP1 (Osteopontin), CDKN2A (p16), RPL39L, Clorf1, MAL, p11, ARS and NICE-1. These were validated by quantitative RT-PCR on an independent set of cancer and control specimens. Gene Ontology analysis showed that the list of differentially expressed genes included ones that were involved in multiple biological processes, including cell proliferation, cell cycle and protein catabolism. Immunohistochemical staining of cancer specimens further confirmed differential expression of SPP1 in cervical cancer cells vs. nontumor cells. In addition, 2 genes, CTGF and RGS1 were found to be upregulated in late stage cancer compared to early stage cancer, suggesting that they might be involved in cancer progression. The pathway analysis of expression data showed that the SPP1, VEGF, CDC2 and CKS2 genes were coordinately differentially regulated between cancer and normal. The present study is promising and provides potential new insights into the extent of expression differences underlying the development and progression of cervical squamous cell cancer. This study has also revealed several genes that may be highly attractive candidate molecular markers/targets for cervical cancer diagnosis, prognosis and therapy.
Collapse
Affiliation(s)
- Yick-Fu Wong
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, and Department of Obstetrics, Gynecology and Reproductive Medicine, Brigham and Women's Hospital, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Tewari D, Monk BJ, Al-Ghazi MS, Parker R, Heck JD, Burger RA, Fruehauf JP. Gene expression profiling of in vitro radiation resistance in cervical carcinoma: a feasibility study. Gynecol Oncol 2005; 99:84-91. [PMID: 16109440 DOI: 10.1016/j.ygyno.2005.05.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Revised: 05/09/2005] [Accepted: 05/18/2005] [Indexed: 10/25/2022]
Abstract
OBJECTIVE(S) To determine the feasibility of integrating an in vitro chemo-radiation response assay (IVRRA) with a gene microarray system to investigate the molecular patterns of expression that contribute to radiation resistance in cervical cancer. METHODS Viable primary untreated cervical cancer specimens were obtained and exposed to gamma irradiation at a dose of 3 Gy in the IVRRA to determine in vitro radiation sensitivity. RNA was purified for microarray analysis with the Affymetrix Human Genome U95A Array carrying more than 12,000 gene probes. Gene expression analysis was performed, and specimen transcript patterns were correlated with radiation response using an iteration analysis model and Pearson's correlation coefficient. RESULTS A feasibility set of eight tumor specimens was studied. Tumors were classified into 4 extreme (ERR), 2 intermediate (IRR) and 2 low radiation resistance (LRR) categories. An intrinsic radiation response gene set of 54 genes transcripts with 100% accuracy for the classification of each tumor's radiation response category was identified. CONCLUSION(S) Gene sets associated with in vitro radiation response profiles in cervical cancer can be generated using the IVRRA and microarray technology. This has direct applications to the study of the biological pathways contributing to radiation resistance and may lead to the development of alternative treatment modalities. The potential of these technologies for cancers in which radiotherapy is employed warrants further investigation.
Collapse
Affiliation(s)
- Devansu Tewari
- Division of Gynecologic Oncology, University of California Irvine Medical Center, 101 The City Drive South, Orange, CA 92868, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Pappa KI, Anagnou NP. Emerging issues of the expression profiling technologies for the study of gynecologic cancer. Am J Obstet Gynecol 2005; 193:908-18. [PMID: 16157086 DOI: 10.1016/j.ajog.2005.01.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Revised: 12/30/2004] [Accepted: 01/11/2005] [Indexed: 10/25/2022]
Abstract
Evaluation of the prognostic parameters of gynecologic cancer has shown their failure for classification according to the clinical behavior or the prediction of its outcome. This weakness has important implications on prognosis and treatment. The increasing understanding of the complexity of the human genome, coupled with the development of high throughput analysis techniques and bioinformatics tools, has changed our concepts on cancer biology, by shifting our targets to a global analysis of the transcriptome and the proteome, linking genes and their products into functional pathways. These approaches permit the documentation of expression patterns of thousands of genes within a cell. With the use of DNA microarray technology, it is feasible to identify signature patterns of expression in tumor samples that faithfully correlate with its biology, providing accurate prognosis for each cancer patient and thus a rational customized treatment. At this stage, there is a need for systematic studies for the validation of these novel approaches. In this review, we provide a basic background of the concept of the technology, highlight several emerging issues from their applications on gynecologic cancer, discuss a series of important themes and problems regarding their interpretation and relevance for the clinicians, and comment on future areas of research.
Collapse
Affiliation(s)
- Kalliopi I Pappa
- First Department of Obstetrics and Gynecology, University of Athens School of Medicine, Athens, Greece.
| | | |
Collapse
|
32
|
Gaffney DK, Winter K, Fuhrman C, Flinner R, Greven K, Ryu J, Forbes A, Kerlin K, Nichols RC, Zempolich K. Feasibility of RNA collection for micro-array gene expression analysis in the treatment of cervical carcinoma: a scientific correlate of RTOG C-0128. Gynecol Oncol 2005; 97:607-11. [PMID: 15863167 DOI: 10.1016/j.ygyno.2005.01.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Revised: 01/08/2005] [Accepted: 01/11/2005] [Indexed: 11/24/2022]
Abstract
PURPOSE To determine the feasibility of RNA collection in a multi-institutional cooperative group setting to be utilized for micro-array gene expression analysis, and to describe the methodology. METHODS RTOG C0128, a phase I-II, protocol was designed to look at the safety and efficacy of external beam radiation therapy to 45 Gy with concomitant 5-FU and cisplatin chemotherapy, brachytherapy to deliver 85 Gy to point A, and Celecoxib at 400 mg twice daily for 1 year. Patients had the option of participating in a tissue collection portion of the protocol to be utilized for micro-array gene expression analysis before treatment and at the time of the first implant. RNA quality was determined by two parameters: the absorbance ratio at 260 nm/280 nm, and by the ratio of the integrated peak of 28S RNA to 18S RNA after gel electrophoresis. RESULTS From August 2001 to March 2004, 84 patients were accrued to the trial, and tissue was obtained prior to initiation of therapy on 34 patients (40%). FIGO stages for the patients who provided tissue were IB (23%), II (57%), and IIIA-IVA (20%). Additionally, biopsies were obtained at the time of the first implant from 22 of the accrued patients making paired samples available on 26% for RNA extraction and micro-array gene expression analysis. The mean +/- SEM amount of tissue obtained pretreatment was 97 +/- 13 mg compared with 51 +/- 8 mg for tissue obtained at the time of the first implant (P = 0.009). The mean total RNA extracted from the samples prior to treatment was 119 +/- 19 microg versus 35 +/- 6 microg at the time of the first procedure (P = 0.001). The RNA quality was assessed via the absorbance ratio at 260 nm divided by 280 nm. The mean values pretreatment and at first implant were 1.87 +/- 0.07 versus 1.66 +/- 0.11, respectively (P = 0.002); however, the integrated peak of 28S RNA to 18S RNA after gel electrophoresis was not significantly different (P = 0.26). CONCLUSIONS RNA extraction for gene expression analysis can be successfully performed in the multi-institutional cooperative group setting. Fresh tissue samples were obtained on 40% of accrued patients prior to treatment. The amount of biopsy material and the quantity of RNA extracted were greater prior to treatment compared with the first implant. The quality of RNA was superior prior to treatment as measured by the ratio of absorbance at 260/280 nm. These results indicate that gene expression analysis is feasible in the cooperative group setting utilizing amplification techniques for the RNA. Hopefully, this will allow for improvement in prognosis, therapeutic development, and correlation with acute and late toxicities in patients with cancer.
Collapse
Affiliation(s)
- D K Gaffney
- University of Utah and Huntsman Cancer Institute, Salt Lake City, UT 84108, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Seo MJ, Bae SM, Kim YW, Kim YW, Hur SY, Ro DY, Lee JM, Namkoong SE, Kim CK, Ahn WS. New approaches to pathogenic gene function discovery with human squamous cell cervical carcinoma by gene ontology. Gynecol Oncol 2005; 96:621-9. [PMID: 15721403 DOI: 10.1016/j.ygyno.2004.11.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2004] [Indexed: 11/25/2022]
Abstract
PURPOSE This study utilized mRNA differential display and the Gene Ontology (GO) analysis to characterize the multiple interactions of a number of genes with gene expression profile involved in squamous cell cervical carcinoma. METHODS mRNA differential displays were used to identify potential transcripts that were differentially expressed between cervix cancers of 13 patients (invasive cancer stages Ib-IIb) and universal reference RNAs comprised of 17 different normal cervixes. Aberrant bands were excised and used to make cDNA, which was sequenced. DNA sequences were compared to other nucleic acids in the NCBR database for homology. Transcript expression was verified in select samples using RT-PCR and North blotting. The specific functions were correlated with gene expression patterns via gene ontology. RESULTS Fifty-eight genes were up- or down-regulated above 2-fold and organized into reciprocally dependent sub-function sets depending on the cervical cancer pathway. The GO analysis showed that squamous cell cervical carcinogenesis underwent complete up-regulation of cell cycle, transport, epidermal differentiation, protein biosynthesis, and RNA metabolism. Also, genes belonging to protein metabolism and catabolism activity were significantly up-regulated. In contrast, significant down-regulation was shown in muscle development, cell adhesion, and damaged DNA binding activity. CONCLUSION The GO analysis can overcome the complexity of the gene expression profile of the squamous cell cervical carcinoma-associated pathway and identify several cancer-specific cellular processes as well as genes of unknown function. Also, GO analysis can serve as a powerful basis for a molecular classification of carcinogenesis.
Collapse
Affiliation(s)
- Min-Jae Seo
- Catholic Research Institutes of Medical Science, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW The aim of this review is to present for gynaecologists new information on human papillomavirus infections, their spontaneous evolution, and their consequences on the transformation of target tissues. It emphasizes the need for vaccination, both as a preventive tool and therapeutic agent, and reports the progress made so far. RECENT FINDINGS Human papillomavirus infection is often transient and spontaneously reversible. High-risk human papillomavirus persistence is the major cause of cancerous transformation in several tissues. Preventive vaccination has already demonstrated remarkable efficacy against the development of some human papillomavirus type related anogenital lesions. Therapeutic vaccination has now also been developed to cure pre-existing lesions. Some new screening protocols can be derived from these experiments. SUMMARY Both preventive and therapeutic human papillomavirus vaccinations will probably change our approach to the screening and therapy of human papillomavirus-related diseases in the next few years. The mass vaccination of adolescent patients should lower the frequency of these very frequently lethal infections.
Collapse
Affiliation(s)
- Philippe Simon
- Department of Obstetrics and Gynaecology, CUB Hopital Erasme, Brussels, Belgium.
| |
Collapse
|