1
|
Engin AB, Engin A. Obesity-Senescence-Breast Cancer: Clinical Presentation of a Common Unfortunate Cycle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:821-850. [PMID: 39287873 DOI: 10.1007/978-3-031-63657-8_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
There are few convincing studies establishing the relationship between endogenous factors that cause obesity, cellular aging, and telomere shortening. Without a functional telomerase, a cell undergoing cell division has progressive telomere shortening. While obesity influences health and longevity as well as telomere dynamics, cellular senescence is one of the major drivers of the aging process and of age-related disorders. Oxidative stress induces telomere shortening, while decreasing telomerase activity. When progressive shortening of telomere length reaches a critical point, it triggers cell cycle arrest leading to senescence or apoptotic cell death. Telomerase activity cannot be detected in normal breast tissue. By contrast, maintenance of telomere length as a function of human telomerase is crucial for the survival of breast cancer cells and invasion. Approximately three-quarters of breast cancers in the general population are hormone-dependent and overexpression of estrogen receptors is crucial for their continued growth. In obesity, increasing leptin levels enhance aromatase messenger ribonucleic acid (mRNA) expression, aromatase content, and its enzymatic activity on breast cancer cells, simultaneously activating telomerase in a dose-dependent manner. Meanwhile, applied anti-estrogen therapy increases serum leptin levels and thus enhances leptin resistance in obese postmenopausal breast cancer patients. Many studies revealed that shorter telomeres of postmenopausal breast cancer have higher local recurrence rates and higher tumor grade. In this review, interlinked molecular mechanisms are looked over between the telomere length, lipotoxicity/glycolipotoxicity, and cellular senescence in the context of estrogen receptor alpha-positive (ERα+) postmenopausal breast cancers in obese women. Furthermore, the effect of the potential drugs, which are used for direct inhibition of telomerase and the inhibition of human telomerase reverse transcriptase (hTERT) or human telomerase RNA promoters as well as approved adjuvant endocrine therapies, the selective estrogen receptor modulator and selective estrogen receptor down-regulators are discussed.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey.
| | - Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey
| |
Collapse
|
2
|
Ge Y, Ni X, Li J, Ye M, Jin X. Roles of estrogen receptor α in endometrial carcinoma (Review). Oncol Lett 2023; 26:530. [PMID: 38020303 PMCID: PMC10644365 DOI: 10.3892/ol.2023.14117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Endometrial carcinoma (EC) is a group of endometrial epithelial malignancies, most of which are adenocarcinomas and occur in perimenopausal and postmenopausal women. It is one of the most common carcinomas of the female reproductive system. It has been shown that the occurrence and development of EC is closely associated with the interaction between estrogen (estradiol, E2) and estrogen receptors (ERs), particularly ERα. As a key nuclear transcription factor, ERα is a carcinogenic factor in EC. Its interactions with upstream and downstream effectors and co-regulators have important implications for the proliferation, metastasis, invasion and inhibition of apoptosis of EC. In the present review, the structure of ERα and the regulation of ERα in multiple dimensions are described. In addition, the classical E2/ERα signaling pathway and the crosstalk between ERα and other EC regulators are elucidated, as well as the therapeutic targeting of ERα, which may provide a new direction for clinical applications of ERα in the future.
Collapse
Affiliation(s)
- Yidong Ge
- Department of Medical Oncology, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Xiaoqi Ni
- Department of Medical Oncology, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jingyun Li
- Department of Medical Oncology, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Meng Ye
- Department of Medical Oncology, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Xiaofeng Jin
- Department of Medical Oncology, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
3
|
Taheri M, Ghafouri-Fard S, Najafi S, Kallenbach J, Keramatfar E, Atri Roozbahani G, Heidari Horestani M, Hussen BM, Baniahmad A. Hormonal regulation of telomerase activity and hTERT expression in steroid-regulated tissues and cancer. Cancer Cell Int 2022; 22:258. [PMID: 35974340 PMCID: PMC9380309 DOI: 10.1186/s12935-022-02678-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/05/2022] [Indexed: 11/10/2022] Open
Abstract
Naturally, in somatic cells chromosome ends (telomeres) shorten during each cell division. This process ensures to limit proliferation of somatic cells to avoid malignant proliferation; however, it leads to proliferative senescence. Telomerase contains the reverse transcriptase TERT, which together with the TERC component, is responsible for protection of genome integrity by preventing shortening of telomeres through adding repetitive sequences. In addition, telomerase has non-telomeric function and supports growth factor independent growth. Unlike somatic cells, telomerase is detectable in stem cells, germ line cells, and cancer cells to support self-renewal and expansion. Elevated telomerase activity is reported in almost all of human cancers. Increased expression of hTERT gene or its reactivation is required for limitless cellular proliferation in immortal malignant cells. In hormonally regulated tissues as well as in prostate, breast and endometrial cancers, telomerase activity and hTERT expression are under control of steroid sex hormones and growth factors. Also, a number of hormones and growth factors are known to play a role in the carcinogenesis via regulation of hTERT levels or telomerase activity. Understanding the role of hormones in interaction with telomerase may help finding therapeutical targets for anticancer strategies. In this review, we outline the roles and functions of several steroid hormones and growth factors in telomerase regulation, particularly in hormone regulated cancers such as prostate, breast and endometrial cancer.
Collapse
Affiliation(s)
- Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Institute of Human Genetics, Jena University Hospital, 07740, Jena, Germany
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Julia Kallenbach
- Institute of Human Genetics, Jena University Hospital, 07740, Jena, Germany
| | - Elmira Keramatfar
- Institute of Human Genetics, Jena University Hospital, 07740, Jena, Germany
| | | | | | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, 07740, Jena, Germany.
| |
Collapse
|
4
|
Long Leukocyte Telomere Length Is Associated with Increased Risks of Soft Tissue Sarcoma: A Mendelian Randomization Study. Cancers (Basel) 2020; 12:cancers12030594. [PMID: 32150919 PMCID: PMC7139681 DOI: 10.3390/cancers12030594] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/24/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Leukocyte telomere length (LTL) has been associated with the risks of several cancers in observational studies. Mendelian randomization (MR) studies, using genetic variants as instrumental variables, have also shown associations of genetically predicted LTL with cancer risks. In this study, we performed the first MR analysis on soft tissue sarcoma (STS) to investigate the causal relationship between LTL and the risk of STS. Methods: Genotypes from eleven LTL-associated single nucleotide polymorphisms (SNPs) in 821 STS cases and 851 cancer-free controls were aggregated into a weighted genetic risk score (GRS) to predict LTL. Multivariate logistic regression was used to assess the association of STS risk with individual SNPs and aggregated GRS. Results: Four SNPs displayed evidence for an individual association between long LTL-conferring allele and increased STS risk: rs7675998 (odds ratio (OR) = 1.21, 95% confidence interval (CI) = 1.02–1.43), rs9420907 (OR = 1.31, 95% CI = 1.08–1.59), rs8105767 (OR = 1.18, 95% CI = 1.02–1.37), and rs412658 (OR = 1.18, 95% CI = 1.02–1.36). Moreover, longer genetically predicted LTL, calculated as GRS, was strongly associated with an increased risk of STS (OR = 1.44, 95% CI = 1.18–1.75, p < 0.001), and there was a significant dose-response association (p for trend <0.001 in tertile and quartile analyses). The association of longer LTL with higher STS risk was more evident in women than in men. In stratified analyses by major STS subtypes, longer LTL was significantly associated with higher risks of leiomyosarcoma and gastrointestinal stromal tumors. Conclusions: Longer LTL is associated with increased risks of STS.
Collapse
|
5
|
Pabona JMP, Burnett AF, Brown DM, Quick CM, Simmen FA, Montales MTE, Liu SJ, Rose T, Alhallak I, Siegel ER, Simmen RC. Metformin Promotes Anti-tumor Biomarkers in Human Endometrial Cancer Cells. Reprod Sci 2020; 27:267-277. [PMID: 32046384 PMCID: PMC7077930 DOI: 10.1007/s43032-019-00019-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/28/2019] [Indexed: 12/13/2022]
Abstract
Metformin (MET) is increasingly implicated in reducing the incidence of multiple cancer types in patients with diabetes. However, similar effects of MET in non-diabetic women with endometrial cancer (EC) remain unknown. In a pilot study, obese non-diabetic women diagnosed with type 1, grade 1/2 EC, and consenting to participate were randomly assigned to receive MET or no MET (control (CON)) during the pre-surgical window between diagnosis and hysterectomy. Endometrial tumors obtained at surgery (MET, n = 4; CON, n = 4) were analyzed for proliferation (Ki67), apoptosis (TUNEL), and nuclear expression of ERα, PGR, PTEN, and KLF9 proteins in tumor glandular epithelial (GE) and stromal (ST) cells. The percentages of immunopositive cells for PGR and for KLF9 in GE and for PTEN in ST were higher while those for ERα in GE but not ST were lower, in tumors of MET vs. CON patients. The numbers of Ki67- and TUNEL-positive cells in tumor GE and ST did not differ between groups. In human Ishikawa endometrial cancer cells, MET treatment (60 μM) decreased cell numbers and elicited distinct temporal changes in ESR1, KLF9, PGR, PGR-B, KLF4, DKK1, and other tumor biomarker mRNA levels. In the context of reduced KLF9 expression (by siRNA targeting), MET rapidly amplified PGR, PGR-B, and KLF4 transcript levels. Our findings suggest that MET acts directly in EC cells to modify steroid receptor expression and signaling network and may constitute a preventative strategy against EC in high-risk non-diabetic women.
Collapse
Affiliation(s)
- John Mark P Pabona
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Alexander F Burnett
- Department of Obstetrics & Gynecology, Division of Gynecologic Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.,The Winthrop P Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Dustin M Brown
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Charles M Quick
- The Winthrop P Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA.,Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Frank A Simmen
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.,The Winthrop P Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Maria Theresa E Montales
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Shi J Liu
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Tyler Rose
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Iad Alhallak
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Eric R Siegel
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Rosalia Cm Simmen
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA. .,The Winthrop P Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
6
|
Abstract
Telomeres are specialised structures at the end of linear chromosomes. They consist of tandem repeats of the hexanucleotide sequence TTAGGG, as well as a protein complex called shelterin. Together, they form a protective loop structure against chromosome fusion and degradation. Shortening or damage to telomeres and opening of the loop induce an uncapped state that triggers a DNA damage response resulting in senescence or apoptosis.Average telomere length, usually measured in human blood lymphocytes, was thought to be a biomarker for ageing, survival and mortality. However, it becomes obvious that regulation of telomere length is very complex and involves multiple processes. For example, the "end replication problem" during DNA replication as well as oxidative stress are responsible for the shortening of telomeres. In contrast, telomerase activity can potentially counteract telomere shortening when it is able to access and interact with telomeres. However, while highly active during development and in cancer cells, the enzyme is down-regulated in most human somatic cells with a few exceptions such as human lymphocytes. In addition, telomeres can be transcribed, and the transcription products called TERRA are involved in telomere length regulation.Thus, telomere length and their integrity are regulated at many different levels, and we only start to understand this process under conditions of increased oxidative stress, inflammation and during diseases as well as the ageing process.This chapter aims to describe our current state of knowledge on telomeres and telomerase and their regulation in order to better understand their role for the ageing process.
Collapse
|
7
|
Alnafakh RAA, Adishesh M, Button L, Saretzki G, Hapangama DK. Telomerase and Telomeres in Endometrial Cancer. Front Oncol 2019; 9:344. [PMID: 31157162 PMCID: PMC6533802 DOI: 10.3389/fonc.2019.00344] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/15/2019] [Indexed: 12/11/2022] Open
Abstract
Telomeres at the termini of human chromosomes are shortened with each round of cell division due to the “end replication problem” as well as oxidative stress. During carcinogenesis, cells acquire or retain mechanisms to maintain telomeres to avoid initiation of cellular senescence or apoptosis and halting cell division by critically short telomeres. The unique reverse transcriptase enzyme complex, telomerase, catalyzes the maintenance of telomeres but most human somatic cells do not have sufficient telomerase activity to prevent telomere shortening. Tissues with high and prolonged replicative potential demonstrate adequate cellular telomerase activity to prevent telomere erosion, and high telomerase activity appears to be a critical feature of most (80–90%) epithelial cancers, including endometrial cancer. Endometrial cancers regress in response to progesterone which is frequently used to treat advanced endometrial cancer. Endometrial telomerase is inhibited by progestogens and deciphering telomere and telomerase biology in endometrial cancer is therefore important, as targeting telomerase (a downstream target of progestogens) in endometrial cancer may provide novel and more effective therapeutic avenues. This review aims to examine the available evidence for the role and importance of telomere and telomerase biology in endometrial cancer.
Collapse
Affiliation(s)
- Rafah A A Alnafakh
- Liverpool Women's Hospital NHS Foundation Trust, Liverpool, United Kingdom.,Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Meera Adishesh
- Liverpool Women's Hospital NHS Foundation Trust, Liverpool, United Kingdom.,Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Lucy Button
- Liverpool Women's Hospital NHS Foundation Trust, Liverpool, United Kingdom.,Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Gabriele Saretzki
- The Ageing Biology Centre and Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Dharani K Hapangama
- Liverpool Women's Hospital NHS Foundation Trust, Liverpool, United Kingdom.,Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
8
|
Foroughi S, Ziamajidi N, Javid S, Abbasalipourkabir R, Aflatoonian R, Ashrafi M, Nourian A. Study of telomerase reverse transcriptase and uterine-ovarian-specific genes expression in the endometrial tissue of ovariectomized female Sprague-Dawley rats. Int J Biol Macromol 2018; 113:1302-1307. [PMID: 29471091 DOI: 10.1016/j.ijbiomac.2018.02.115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 01/30/2018] [Accepted: 02/16/2018] [Indexed: 11/15/2022]
Abstract
BACKGROUND An in vivo study was carried out to study of telomerase reverse transcriptase and Uterine-Ovarian-specific genes expression in the endometrial tissue of ovariectomized female Sprague-Dawley rats. MATERIAL AND METHODS Twenty-four female Sprague-Dawley rats divided into 4 groups of six rats. The first and second groups were ovariectomized and given tamoxifen and tamoxifen-loaded SLN respectively for six days continuously. Group 3 served as the untreated ovariectomized control group and group 4 was made up of untreated normal healthy rats. At the end of the study, the rats were sacrificed and study of the genes expression and serum zinc and copper were carried out. RESULTS The results showed that the expression of TERT in the group treated with tamoxifen, and tamoxifen-loaded solid lipid nanoparticles, significantly decreased (p<0.001) compared with ovariectomized control group. The results also revealed that the treatment with tamoxifen-loaded solid lipid nanoparticles increased expression of UO-44 gene compared to ovariectomized control group, while there was no difference between tamoxifen treated and control group. CONCLUSIONS Encapsulation of tamoxifen in solid lipid nanoparticles increased its targeting efficiency and improved the impact of the drug on the serum levels of some trace elements.
Collapse
Affiliation(s)
| | | | - Saman Javid
- Hamadan University of Medical Sciences, Hamadan, Iran
| | | | | | | | | |
Collapse
|
9
|
Fiocchetti M, Cipolletti M, Ascenzi P, Marino M. Dissecting the 17β-estradiol pathways necessary for neuroglobin anti-apoptotic activity in breast cancer. J Cell Physiol 2018; 233:5087-5103. [PMID: 29219195 DOI: 10.1002/jcp.26378] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 11/27/2017] [Indexed: 12/26/2022]
Abstract
Neuroglobin (NGB) is a relatively recent discovered monomeric heme-protein, which behave in neurons as a sensor of injuring stimuli including oxidative stress, hypoxia, and neurotoxicity. In addition, the anti-apoptotic activity of overexpressed NGB has been reported both in neurons and in cancer cell lines. We recently demonstrated that, NGB functions as a compensatory protein of the steroid hormone 17β-estradiol (E2) protecting cancer cells against the apoptotic death induced by oxidative stress. However, the E2-induced signaling pathways at the root of NGB over-expression and mitochondrial re-localization in breast cancer cells is still elusive. By using a kinase screening library, here, we report that: i) There is a strong positive correlation between NGB and ERα expression and activity in breast cancer cells; ii) The E2-activated phosphatidyl-inositol 3 kinase (PI3K)/protein kinase B (AKT) and protein kinase C (PKC) pathways are necessary to modulate the NGB protein levels; iii) The E2-induced persistent activation of AKT drive NGB to mitochondria; iv) Reactive oxygen species (ROS)-inducing compounds activating rapidly and transiently AKT does not affect the NGB mitochondrial level; and v) High level of NGB into mitochondria are necessary for the pro-survival and anti-apoptotic effect of this globin in cancer cells. As a whole, these results underline the E2 triggered pathways in E2-responsive breast cancer cells that involve NGB as a compensatory protein devoted to cancer cell survival.
Collapse
Affiliation(s)
| | | | - Paolo Ascenzi
- Department of Science, University of Roma Tre, Roma, Italy.,Interdepartmental Laboratory for Electron Microscopy, University of Roma Tre, Roma, Italy
| | - Maria Marino
- Department of Science, University of Roma Tre, Roma, Italy
| |
Collapse
|
10
|
Yip BW, Mok HO, Peterson DR, Wan MT, Taniguchi Y, Ge W, Au DW. Sex-dependent telomere shortening, telomerase activity and oxidative damage in marine medaka Oryzias melastigma during aging. MARINE POLLUTION BULLETIN 2017; 124:701-709. [PMID: 28129920 DOI: 10.1016/j.marpolbul.2017.01.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 01/05/2017] [Accepted: 01/11/2017] [Indexed: 06/06/2023]
Abstract
Marine medaka Oryzias melastigma at 4months (young), 8months (middle-aged) and 12months old (senior) were employed to determine age-associated change of sex ratios, sex hormones, telomere length (TL), telomerase activity (TA), telomerase transcription (omTERT) and oxidative damage in the liver. Overall, O. melastigma exhibited gradual senescence, sex differences in longevity (F>M), TL (F>M) and oxidative damage (F<M) during aging. In females, the plasma E2 level was positively correlated with TL (TRF>5kb), TA and omTERT expression (p≤0.01), and negatively correlated with liver DNA oxidation (p≤0.05). The results suggest high levels of E2 in female O. melastigma may retard TL shortening by enhancing TA via TERT transcription and/or reducing oxidative DNA damage. The findings support TL shortening as a biomarker of aging and further development of accelerated TL shortening, abnormal suppression of TA and excessive oxidative DNA damage as early molecular endpoints, indicative of advanced/premature aging in marine medaka/fish.
Collapse
Affiliation(s)
- Bill Wp Yip
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, China
| | - Helen Ol Mok
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, China
| | - Drew R Peterson
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, China
| | - Miles T Wan
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, China
| | - Y Taniguchi
- Department of Preventive Medicine and Public Health, School of Medicine, Kyorin University, Tokyo 181-8611, Japan
| | - Wei Ge
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China
| | - Doris Wt Au
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, China.
| |
Collapse
|
11
|
Hapangama DK, Kamal A, Saretzki G. Implications of telomeres and telomerase in endometrial pathology. Hum Reprod Update 2017; 23:166-187. [PMID: 27979878 PMCID: PMC5850744 DOI: 10.1093/humupd/dmw044] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 12/02/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Eukaryotic chromosomal ends are linear and are protected by nucleoprotein complexes known as telomeres. The complex structural anatomy and the diverse functions of telomeres as well as the unique reverse transcriptase enzyme, telomerase that maintains telomeres are under intensive scientific scrutiny. Both are involved in many human diseases including cancer, but also in ageing and chronic disease such as diabetes. Their intricate involvement in many cellular processes and pathways is being dynamically deciphered in many organs including the endometrium. This review summarizes our current knowledge on the topic of telomeres and telomerase and their potential role in providing plausible explanations for endometrial aberrations related to common gynaecological pathologies. OBJECTIVE AND RATIONALE This review outlines the recent major findings in telomere and telomerase functions in the context of endometrial biology. It highlights the contemporary discoveries in hormonal regulation, normal endometrial regeneration, stem cells and common gynaecological diseases such as endometriosis, infertility, recurrent reproductive failure and endometrial cancer (EC). SEARCH METHODS The authors carried out systematic PubMed (Medline) and Ovid searches using the key words: telomerase, telomeres, telomere length, human telomerase reverse transcriptase, telomeric RNA component, with endometrium, hormonal regulation, endometrial stem/progenitor cells, endometrial regeneration, endometriosis, recurrent miscarriage, infertility, endometrial hyperplasia, EC and uterine cancer. Publications used in this review date from 1995 until 31st June 2016. OUTCOMES The human endometrium is a unique somatic organ, which displays dynamic telomerase activity (TA) related to the menstrual cycle. Telomerase is implicated in almost all endometrial pathologies and appears to be crucial to endometrial stem cells. In particular, it is vital for normal endometrial regeneration, providing a distinct route to formulate possible curative, non-hormonal therapies to treat chronic endometrial conditions. Furthermore, our current understanding of telomere maintenance in EC is incomplete. Data derived from other malignancies on the role of telomerase in carcinogenesis cannot be extrapolated to EC because unlike in other cancers, TA is already present in proliferating healthy endometrial cells. WIDER IMPLICATIONS Since telomerase is pivotal to endometrial regeneration, further studies elucidating the role of telomeres, telomerase, their associated proteins and their regulation in normal endometrial regeneration as well as their role in endometrial pathologies are essential. This approach may allow future development of novel treatment strategies that are not only non-hormonal but also potentially curative.
Collapse
Affiliation(s)
- D K Hapangama
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, L8 7SS, UK.,Liverpool Women's Hospital NHS Foundation Trust, Crown Street, Liverpool L8 7SS, UK
| | - A Kamal
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, L8 7SS, UK.,The National Center for Early Detection of Cancer, Oncology Teaching Hospital, Baghdad Medical City, Baghdad, Iraq
| | - G Saretzki
- Institute for Ageing and Institute for Cell and Molecular Biosciences, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| |
Collapse
|
12
|
Transcription Regulation of the Human Telomerase Reverse Transcriptase (hTERT) Gene. Genes (Basel) 2016; 7:genes7080050. [PMID: 27548225 PMCID: PMC4999838 DOI: 10.3390/genes7080050] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/23/2016] [Accepted: 08/01/2016] [Indexed: 12/11/2022] Open
Abstract
Embryonic stem cells and induced pluripotent stem cells have the ability to maintain their telomere length via expression of an enzymatic complex called telomerase. Similarly, more than 85%–90% of cancer cells are found to upregulate the expression of telomerase, conferring them with the potential to proliferate indefinitely. Telomerase Reverse Transcriptase (TERT), the catalytic subunit of telomerase holoenzyme, is the rate-limiting factor in reconstituting telomerase activity in vivo. To date, the expression and function of the human Telomerase Reverse Transcriptase (hTERT) gene are known to be regulated at various molecular levels (including genetic, mRNA, protein and subcellular localization) by a number of diverse factors. Among these means of regulation, transcription modulation is the most important, as evident in its tight regulation in cancer cell survival as well as pluripotent stem cell maintenance and differentiation. Here, we discuss how hTERT gene transcription is regulated, mainly focusing on the contribution of trans-acting factors such as transcription factors and epigenetic modifiers, as well as genetic alterations in hTERT proximal promoter.
Collapse
|
13
|
Feitelson MA, Arzumanyan A, Kulathinal RJ, Blain SW, Holcombe RF, Mahajna J, Marino M, Martinez-Chantar ML, Nawroth R, Sanchez-Garcia I, Sharma D, Saxena NK, Singh N, Vlachostergios PJ, Guo S, Honoki K, Fujii H, Georgakilas AG, Bilsland A, Amedei A, Niccolai E, Amin A, Ashraf SS, Boosani CS, Guha G, Ciriolo MR, Aquilano K, Chen S, Mohammed SI, Azmi AS, Bhakta D, Halicka D, Keith WN, Nowsheen S. Sustained proliferation in cancer: Mechanisms and novel therapeutic targets. Semin Cancer Biol 2015; 35 Suppl:S25-S54. [PMID: 25892662 PMCID: PMC4898971 DOI: 10.1016/j.semcancer.2015.02.006] [Citation(s) in RCA: 439] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 02/20/2015] [Accepted: 02/23/2015] [Indexed: 02/08/2023]
Abstract
Proliferation is an important part of cancer development and progression. This is manifest by altered expression and/or activity of cell cycle related proteins. Constitutive activation of many signal transduction pathways also stimulates cell growth. Early steps in tumor development are associated with a fibrogenic response and the development of a hypoxic environment which favors the survival and proliferation of cancer stem cells. Part of the survival strategy of cancer stem cells may manifested by alterations in cell metabolism. Once tumors appear, growth and metastasis may be supported by overproduction of appropriate hormones (in hormonally dependent cancers), by promoting angiogenesis, by undergoing epithelial to mesenchymal transition, by triggering autophagy, and by taking cues from surrounding stromal cells. A number of natural compounds (e.g., curcumin, resveratrol, indole-3-carbinol, brassinin, sulforaphane, epigallocatechin-3-gallate, genistein, ellagitannins, lycopene and quercetin) have been found to inhibit one or more pathways that contribute to proliferation (e.g., hypoxia inducible factor 1, nuclear factor kappa B, phosphoinositide 3 kinase/Akt, insulin-like growth factor receptor 1, Wnt, cell cycle associated proteins, as well as androgen and estrogen receptor signaling). These data, in combination with bioinformatics analyses, will be very important for identifying signaling pathways and molecular targets that may provide early diagnostic markers and/or critical targets for the development of new drugs or drug combinations that block tumor formation and progression.
Collapse
Affiliation(s)
- Mark A Feitelson
- Department of Biology, Temple University, Philadelphia, PA, United States.
| | - Alla Arzumanyan
- Department of Biology, Temple University, Philadelphia, PA, United States
| | - Rob J Kulathinal
- Department of Biology, Temple University, Philadelphia, PA, United States
| | - Stacy W Blain
- Department of Pediatrics, State University of New York, Downstate Medical Center, Brooklyn, NY, United States
| | - Randall F Holcombe
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY, United States
| | - Jamal Mahajna
- MIGAL-Galilee Technology Center, Cancer Drug Discovery Program, Kiryat Shmona, Israel
| | - Maria Marino
- Department of Science, University Roma Tre, V.le G. Marconi, 446, 00146 Rome, Italy
| | - Maria L Martinez-Chantar
- Metabolomic Unit, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Technology Park of Bizkaia, Bizkaia, Spain
| | - Roman Nawroth
- Department of Urology, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Isidro Sanchez-Garcia
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Salamanca, Spain
| | - Dipali Sharma
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Neeraj K Saxena
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States
| | - Neetu Singh
- Tissue and Cell Culture Unit, CSIR-Central Drug Research Institute, Council of Scientific & Industrial Research, Lucknow, India
| | | | - Shanchun Guo
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Kanya Honoki
- Department of Orthopedic Surgery, Nara Medical University, Kashihara 634-8521, Japan
| | - Hiromasa Fujii
- Department of Orthopedic Surgery, Nara Medical University, Kashihara 634-8521, Japan
| | - Alexandros G Georgakilas
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou 15780, Athens, Greece
| | - Alan Bilsland
- Institute of Cancer Sciences, University of Glasgow, UK
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Amr Amin
- Department of Biology, College of Science, UAE University, Al-Ain, United Arab Emirates
| | - S Salman Ashraf
- Department of Chemistry, College of Science, UAE University, Al-Ain, United Arab Emirates
| | - Chandra S Boosani
- Department of BioMedical Sciences, Creighton University, Omaha, NE, United States
| | - Gunjan Guha
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, India
| | - Maria Rosa Ciriolo
- Department of Biology, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Katia Aquilano
- Department of Biology, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Sophie Chen
- Department of Research and Development, Ovarian and Prostate Cancer Research Trust Laboratory, Guildford, Surrey GU2 7YG, United Kingdom
| | - Sulma I Mohammed
- Department of Comparative Pathobiology, Purdue University Center for Cancer Research, West Lafayette, IN, United States
| | - Asfar S Azmi
- Department of Pathology, Karmonas Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States
| | - Dipita Bhakta
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, India
| | - Dorota Halicka
- Brander Cancer Research Institute, Department of Pathology, New York Medical College, Valhalla, NY, United States
| | - W Nicol Keith
- Institute of Cancer Sciences, University of Glasgow, UK
| | - Somaira Nowsheen
- Mayo Graduate School, Mayo Medical School, Mayo Clinic Medical Scientist Training Program, Rochester, MN, United States
| |
Collapse
|
14
|
Kong W, Lv N, Wysham WZ, Roque DR, Zhang T, Jiao S, Song D, Chen J, Bae-Jump VL, Zhou C. Knockdown of hTERT and Treatment with BIBR1532 Inhibit Cell Proliferation and Invasion in Endometrial Cancer Cells. J Cancer 2015; 6:1337-45. [PMID: 26640594 PMCID: PMC4643090 DOI: 10.7150/jca.13054] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/28/2015] [Indexed: 12/25/2022] Open
Abstract
Telomerase activity and expression of the catalytic protein hTERT are associated with cell proliferation and advanced stage in endometrial cancer. Our objective was to evaluate the effect of inhibition of hTERT by siRNA and BIBR1532 on cell growth, apoptosis and invasion in endometrial cancer cells. Knockdown of hTERT or treatment of the cells with BIBR1532 decreased telomerase activity, inhibited cell proliferation, induced apoptosis, and reduced cell invasion in Ishikawa and ECC-1 cells. Either hTERT siRNA or BIBR1532 in combination with paclitaxel promoted a synergistic inhibitory effect on cell growth through induction of Annexin V expression and a remarkable reduction in cell invasion through reduction of protein expression of MMP9, MMP2, and MMP3. Increased telomerase activity and hTERT protein expression by transfections enhanced the protein expression of MMPs and increased the cell invasion ability. BIBR1532 significantly antagonized cell invasion induced by increased hTERT expression. These findings suggest that telomerase and hTERT facilitate cell invasion via MMP family in human endometrial cancer cells.
Collapse
Affiliation(s)
- Weimin Kong
- 1. Department of Gynecological Oncology, Beijing Obstetrics and Gynecology Hospital affiliated to Capital Medical University. Beijing, P. R. China
| | - Nenan Lv
- 1. Department of Gynecological Oncology, Beijing Obstetrics and Gynecology Hospital affiliated to Capital Medical University. Beijing, P. R. China
| | - Weiya Z Wysham
- 2. Division of Gynecological Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Dario R Roque
- 2. Division of Gynecological Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Tongqing Zhang
- 1. Department of Gynecological Oncology, Beijing Obstetrics and Gynecology Hospital affiliated to Capital Medical University. Beijing, P. R. China
| | - Simeng Jiao
- 1. Department of Gynecological Oncology, Beijing Obstetrics and Gynecology Hospital affiliated to Capital Medical University. Beijing, P. R. China
| | - Dan Song
- 1. Department of Gynecological Oncology, Beijing Obstetrics and Gynecology Hospital affiliated to Capital Medical University. Beijing, P. R. China
| | - Jiao Chen
- 1. Department of Gynecological Oncology, Beijing Obstetrics and Gynecology Hospital affiliated to Capital Medical University. Beijing, P. R. China
| | - Victoria L Bae-Jump
- 2. Division of Gynecological Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America. ; 3. Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Chunxiao Zhou
- 2. Division of Gynecological Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America. ; 3. Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| |
Collapse
|
15
|
Lu J, Zhang X, Zhang R, Ge Q. MicroRNA heterogeneity in endometrial cancer cell lines revealed by deep sequencing. Oncol Lett 2015; 10:3457-3465. [PMID: 26788150 PMCID: PMC4665306 DOI: 10.3892/ol.2015.3776] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 08/05/2015] [Indexed: 11/27/2022] Open
Abstract
The aim of the present study was to obtain comprehensive microRNA (miRNA) profiles of type I [Ishikawa (ISK)] and type II (HEC-1B) human endometrial adenocarcinoma cell lines, utilizing the latest high-throughput sequencing techniques. RNA was extracted from ISK and HEC-1B cell lines. Sequencing results were obtained from a next-generation sequencing platform. Using the miRBase database and a series of software pipelines, miRNA expression was analyzed in the ISK and HEC-1B cell lines. It was revealed that the type and quantity of miRNAs in the two cell types varied significantly; 34 miRNAs were upregulated and 105 miRNAs were downregulated in HEC-1B cells compared with those of ISK cells. Furthermore, it was observed that the expression pattern of the miRNA (miR)-17-92 cluster differed between the two cell types, and the expression levels of the miR-200 family in ISK cells were markedly increased compared with those of HEC-1B cells. The present study therefore identified potential novel biomarkers, which may be useful in the differentiation between type I and type II endometrial cancer, and also revealed miRNA alterations that may be associated with endometrial cancer and its underlying pathogenic mechanisms.
Collapse
Affiliation(s)
- Jiafeng Lu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu 210096, P.R. China
| | - Xueli Zhang
- Department of Surgery, Fengxian Central Hospital, Shanghai 201400, P.R. China
| | - Rong Zhang
- Department of Obstetrics and Gynecology, Fengxian Central Hospital, Shanghai 201400, P.R. China
| | - Qinyu Ge
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu 210096, P.R. China; Research Center for Learning Science, Southeast University, Nanjing, Jiangsu 210096, P.R. China
| |
Collapse
|
16
|
Sun Y, Zhang L, Zhao L, Wu X, Gu J. Association of leukocyte telomere length in peripheral blood leukocytes with endometrial cancer risk in Caucasian Americans. Carcinogenesis 2015; 36:1327-32. [PMID: 26385889 DOI: 10.1093/carcin/bgv133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 09/10/2015] [Indexed: 01/02/2023] Open
Abstract
Telomeres are the protective structure at the ends of each chromosome and play an important role in maintaining genomic integrity. Interindividual variation of telomere length in peripheral blood leukocytes has been associated with the risks of developing many human diseases including several cancers. The association between leukocyte telomere length (LTL) and endometrial cancer risk is still inconsistent. Using a case-control study of endometrial cancer patients (n = 139) and control subjects (n = 139) in a Caucasian population, we assessed the association of relative LTL with the risk of endometrial cancer. We calculated odds ratios and 95% confidence intervals using multivariate logistic regression. We also determined the joint effects of LTL with established risk factors of endometrial cancer. The normalized LTL was significantly longer in endometrial cancer cases (median, 0.93; range, 0.19-1.62) than in controls (median, 0.70; range, 0.03-2.14) (P < 0.001). When individuals were dichotomized into long and short groups based on the median LTL value in the controls, individuals with long LTL had a significantly increased risk of endometrial cancer (adjusted OR, 3.84; 95%CI, 2.16-6.85; P < 0.001) compared to those with short LTL. When individuals were categorized into three groups or four groups according to tertile or quartile LTL value in the controls, there was a significant dose-response association between LTL and the risk of endometrial cancer (P < 0.001). Joint effects between LTL and smoking status, body mass index and a history of hypertension or diabetes in elevating endometrial cancer risk were observed. Long telomere length in peripheral blood leukocytes is associated with a significantly increased risk of endometrial cancer.
Collapse
Affiliation(s)
- Yuhui Sun
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, 1155 Pressler Street, Houston, TX 77030, USA and Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Liren Zhang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, 1155 Pressler Street, Houston, TX 77030, USA and
| | - Lina Zhao
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, 1155 Pressler Street, Houston, TX 77030, USA and
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, 1155 Pressler Street, Houston, TX 77030, USA and
| | - Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, 1155 Pressler Street, Houston, TX 77030, USA and
| |
Collapse
|
17
|
Burek M, Steinberg K, Förster CY. Mechanisms of transcriptional activation of the mouse claudin-5 promoter by estrogen receptor alpha and beta. Mol Cell Endocrinol 2014; 392:144-51. [PMID: 24846172 DOI: 10.1016/j.mce.2014.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 05/03/2014] [Accepted: 05/05/2014] [Indexed: 11/26/2022]
Abstract
Claudin-5 is an integral membrane protein and a critical component of endothelial tight junctions that control paracellular permeability. Claudin-5 is expressed at high levels in the brain vascular endothelium. Estrogens have multiple effects on vascular physiology and function. The biological actions of estrogens are mediated by two different estrogen receptor (ER) subtypes, ER alpha and ER beta. Estrogens have beneficial effects in several vascular disorders. Recently we have cloned and characterized a murine claudin-5 promoter and demonstrated 17beta-estradiol (E2)-mediated regulation of claudin-5 in brain and heart microvascular endothelium on promoter, mRNA and protein level. Sequence analysis revealed a putative estrogen response element (ERE) and a putative Sp1 transcription factor binding site in the claudin-5 promoter. The aim of the present study was to further characterize the estrogen-responsive elements of claudin-5 promoter. First, we introduced point mutations in ERE or Sp1 site in -500/+111 or in Sp1 site of -268/+111 claudin-5 promoter construct, respectively. Basal and E2-mediated transcriptional activation of mutated constructs was abrogated in the luciferase reporter gene assay. Next, we examined whether estrogen receptor subtypes bind to the claudin-5 promoter region. For this purpose we performed chromatin immunoprecipitation assays using anti-estrogen receptor antibodies and cellular lysates of E2-treated endothelial cells followed by quantitative PCR analysis. We show enrichment of claudin-5 promoter fragments containing the ERE- and Sp1-binding site in immunoprecipitates after E2 treatment. Finally, in a gel mobility shift assay, we demonstrated DNA-protein interaction of both ER subtypes at ERE. In summary, this study provides evidence that both a non-consensus ERE and a Sp1 site in the claudin-5 promoter are functional and necessary for the basal and E2-mediated activation of the promoter.
Collapse
Affiliation(s)
- Malgorzata Burek
- University of Wurzburg, Department of Anaesthesia and Critical Care, Würzburg, Germany.
| | - Katrin Steinberg
- University of Wurzburg, Department of Anaesthesia and Critical Care, Würzburg, Germany.
| | - Carola Y Förster
- University of Wurzburg, Department of Anaesthesia and Critical Care, Würzburg, Germany.
| |
Collapse
|
18
|
Zhou C, Steplowski TA, Dickens HK, Malloy KM, Gehrig PA, Boggess JF, Bae-Jump VL. Estrogen induction of telomerase activity through regulation of the mitogen-activated protein kinase (MAPK) dependent pathway in human endometrial cancer cells. PLoS One 2013; 8:e55730. [PMID: 23409030 PMCID: PMC3567109 DOI: 10.1371/journal.pone.0055730] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 12/29/2012] [Indexed: 12/21/2022] Open
Abstract
Given that prolonged exposure to estrogen and increased telomerase activity are associated with endometrial carcinogenesis, our objective was to evaluate the interaction between the MAPK pathway and estrogen induction of telomerase activity in endometrial cancer cells. Estradiol (E2) induced telomerase activity and hTERT mRNA expression in the estrogen receptor (ER)-α positive, Ishikawa endometrial cancer cell line. UO126, a highly selective inhibitor of MEK1/MEK2, inhibited telomerase activity and hTERT mRNA expression induced by E2. Similar results were also found after transfection with ERK 1/2-specific siRNA. Treatment with E2 resulted in rapid phosphorylation of p44/42 MAPK and increased MAPK activity which was abolished by UO126. The hTERT promoter contains two estrogen response elements (EREs), and luciferase assays demonstrate that these EREs are activated by E2. Exposure to UO126 or ERK 1/2-specific siRNA in combination with E2 counteracted the stimulatory effect of E2 on luciferase activity from these EREs. These findings suggest that E2-induction of telomerase activity is mediated via the MAPK pathway in human endometrial cancer cells.
Collapse
Affiliation(s)
- Chunxiao Zhou
- Division of Gynecological Oncology, Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Tara A. Steplowski
- Department of Otolaryngology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Hallum K. Dickens
- Division of Gynecological Oncology, Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Kimberly M. Malloy
- Division of Gynecological Oncology, Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Paola A. Gehrig
- Division of Gynecological Oncology, Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - John F. Boggess
- Division of Gynecological Oncology, Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Victoria L. Bae-Jump
- Division of Gynecological Oncology, Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
19
|
Yang H, Choi KC, Jung EM, An BS, Hyun SH, Jeung EB. Expression and regulation of sodium/calcium exchangers, NCX and NCKX, in reproductive tissues: do they play a critical role in calcium transport for reproduction and development? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 961:109-21. [PMID: 23224874 DOI: 10.1007/978-1-4614-4756-6_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Plasma membrane sodium/calcium (Na(+)/Ca(2+)) exchangers are an important component of intracellular calcium [Ca(2+)](i) homeostasis and electrical conduction. Na(+)/Ca(2+) exchangers, NCX and NCKX, play a critical role in the transport of one [Ca(2+)](i) and potassium ion across the cell membrane in exchange for four extracellular sodium ions [Na(+)](e). Mammalian plasma membrane Na(+)/Ca(2+) exchange proteins are divided into two families: one in which Ca(2+) flux is dependent only on sodium (NCX1-3) and another in which Ca(2+) flux is also dependent on potassium (NCKX1-4). Both molecules are capable of forward- and reverse-mode exchange. In cells and tissues, Na(+)/Ca(2+) (and K(+)) gradients localize to the cell membrane; thus, the exchangers transport ions across a membrane potential. Uterine NCKX3 has been shown to be involved in the regulation of endometrial receptivity by [Ca(2+)](i). In the uterus and placenta, NCKX3 expression is regulated by the sex steroid hormone estrogen (E2) and hypoxia stress, respectively. In this chapter, we described the expression and regulation of these proteins for reproductive functions in various tissues including uterus, placenta, and kidney of humans and rodents. Evidence to date suggests that NCKX3 and NCX1 may be regulated in a tissue-specific manner. In addition, we focused on the molecular mechanism involved in the regulation of NCKX3 and NCX1 in mammals, based upon our recent results and those of others.
Collapse
Affiliation(s)
- Hyun Yang
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | | | | | | | | | | |
Collapse
|
20
|
Zeng B, Hu J, Yuan R, Hu L, Zhong L, Kang K. Increased expression of importin13 in endometriosis and endometrial carcinoma. Med Sci Monit 2012; 18:CR361-7. [PMID: 22648251 PMCID: PMC3560734 DOI: 10.12659/msm.882879] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Background Importin13 (IPO13) is a novel potential marker of corneal epithelial progenitor cells. We investigated the expression and localization of IPO13 in endometrial, endometriotic and endometrial carcinoma tissue. Material/Methods IPO13 expression in endometrial, endometriotic and endometrial carcinoma tissue was examined by immunohistochemistry, qPCR and Western blot. Results Immunohistochemistry studies showed that IPO13 protein was expressed mainly in cytoplasm of glandular epithelial cell and stromal cells. The rate of importin13-positive cells in proliferative phase endometrium was higher (by about 6-fold) than that in secretory endometrium (P<0.05) and the rate of importin13-positive cells in endometriosis and endometrial carcinoma was higher than that in normal secretory phase endometrial tissues (by about 4- and 9-fold, respectively). Immunofluorescence microscopy revealed co-localization of IPO13 with CD34, CD45, c-kit, telomerase, CD90 and CD146. QPCR revealed significantly increased IPO13 mRNA in endometriosis and endometrial carcinoma versus secretory phase endometrium (by about 2- and 10-fold, respectively). Western blot analysis showed that IPO13 protein is enhanced in endometriosis and endometrial carcinoma versus secretory phase endometrium (p<0.05). Conclusions These results demonstrate an increased expression of IPO13 in endometriosis and endometrial carcinoma, which could be involved in the pathogenesis of endometriosis and endometrial carcinoma; IPO13 can serve as an endometrial progenitor/stem cell marker.
Collapse
Affiliation(s)
- Biao Zeng
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | | | | | | | | | | |
Collapse
|
21
|
Prescott J, Du M, Wong JYY, Han J, De Vivo I. Paternal age at birth is associated with offspring leukocyte telomere length in the nurses' health study. Hum Reprod 2012; 27:3622-31. [PMID: 22940768 DOI: 10.1093/humrep/des314] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
STUDY QUESTION Is the association between paternal age at birth and offspring leukocyte telomere length (LTL) an artifact of early life socioeconomic status (SES)? SUMMARY ANSWER Indicators of early life SES did not alter the relationship between paternal age at birth and offspring LTL among a population of white female nurses. WHAT IS KNOWN ALREADY Telomere length is considered a highly heritable trait. Recent studies report a positive correlation between paternal age at birth and offspring LTL. Maternal age at birth has also been positively associated with offspring LTL, but may stem from the strong correlation with paternal age at birth. STUDY DESIGN, SIZE AND DURATION The Nurses' Health Study (NHS) is an ongoing prospective cohort study of 121 700 female registered nurses who were enrolled in 1976. Great effort goes into maintaining a high degree of follow-up among our cohort participants (>95% of potential person-years). In 1989-1990, a subset of 32 826 women provided blood samples from which we selected participants for several nested case-control studies of telomere length and incident chronic disease. We used existing LTL data on a total of 4250 disease-free women who also reported maternal and paternal age at birth for this study. PARTICIPANTS/MATERIALS, SETTING AND METHODS Nested case-control studies of stroke, myocardial infarction, cancers of the breast, endometrium, skin, pancreas and colon, as well as colon adenoma, were conducted within the blood sub-cohort. Each study used the following study design: for each case of a disease diagnosed after blood collection, a risk-set sampling scheme was used to select from one to three controls from the remaining participants in the blood sub-cohort who were free of that disease when the case was diagnosed. Controls were matched to cases by age at blood collection (± 1 year), date of blood collection (± 3 months), menopausal status, recent postmenopausal hormone use at blood collection (within 3 months, except for the myocardial infarction case-control study), as well as other factors carefully chosen for each individual study. The current analysis was limited to healthy controls. We also included existing LTL data from a small random sample of women participating in a cognitive sub-study. LTL was measured using the quantitative PCR-based method. Exposure and covariate information are extracted from biennial questionnaires completed by the participants. MAIN RESULTS AND THE ROLE OF CHANCE We found a strong association between paternal age at birth and participant LTL (P = 1.6 × 10(-5)) that remained robust after controlling for indicators of early life SES. Maternal age at birth showed a weak inverse association with participant LTL after adjusting for age at blood collection and paternal age at birth (P = 0.01). We also noted a stronger association between paternal age at birth and participant LTL among premenopausal than among postmenopausal women (P(interaction) = 0.045). However, this observation may be due to chance as premenopausal women represented only 12.6% (N = 535) of the study population and LTL was not correlated with age at menopause, total or estrogen-only hormone therapy (HT) use suggesting that changes in in vivo estrogen exposure do not influence telomere length regulation. LIMITATIONS AND REASONS FOR CAUTION The women in our study are not representative of the general US female population, with an underrepresentation of non-white and low social class groups. Although the interaction was not significant, we noted that the paternal age at birth association with offspring LTL appeared weaker among women whose parents did not own their home at the time of the participant's birth. As telomere dynamics may differ among individuals who are most socioeconomically deprived, SES indicators may have more of an influence on the relationship between paternal age at birth and offspring LTL in such populations. WIDER IMPLICATIONS OF THE FINDINGS As of yet, our and prior studies have not identified childhood or adult characteristics that confound the paternal age at birth association with offspring LTL, supporting the hypothesis that offspring may inherit the longer telomeres found in sperm of older men. The biological implications of the paternal age effect are unknown. A recent theory proposed that the inheritance of longer telomere from older men may be an adaptive signal of reproductive lifespan, while another theory links telomere length attrition to female reproductive senescence. However, we are unaware of any data to substantiate a relationship between paternal age at birth and daughter's fertility. Generalizability of our study results to other white female populations is supported by prior reports of paternal age at birth and offspring telomere length. Furthermore, a confounding relationship between paternal or maternal age at birth and SES was not observed in a study of SES and telomere length. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the National Institutes of Health (grants numbers: CA87969, CA49449, CA065725, CA132190, CA139586, HL088521, CA140790, CA133914, CA132175, ES01664 to M.D.); and by the American Health Association Foundation. We have no competing interests to declare.
Collapse
Affiliation(s)
- J Prescott
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Ave, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
22
|
Hu J, Yuan R. The expression levels of stem cell markers importin13, c-kit, CD146, and telomerase are decreased in endometrial polyps. Med Sci Monit 2011; 17:BR221-227. [PMID: 21804459 PMCID: PMC3539613 DOI: 10.12659/msm.881901] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background To investigate the expression levels of importin13 (IPO13), c-kit, CD146, telomerase, caspase-3, bcl-2 and bax in endometrial polyps (EPs). Material/Methods We detected the mRNA expression levels of IPO13, c-kit, bcl-2 and bax in endometrial polyps (EPs) using real-time PCR. We detected the protein expression levels of IPO13, telomerase, CD146, caspase-3, bcl-2 and bax in EPs using S-P (Streptavidin-Peroxidase) immunohistochemistry. Western blotting was performed to determine the levels of importin13 and bcl-2 proteins in EPs. Results The expression levels of IPO13, c-kit, telomerase, caspase3, and bax were lower in the EP tissue compared to normal endometrial tissue during the proliferation and secretion phases of the menstrual cycle (p<0.05). The expression of CD146 was decreased in the EP tissue compared to the normal endometrial tissue during the proliferation phase of the menstrual cycle (p<0.05). The expression of bcl-2 was increased in the EP tissue compared to the normal endometrial tissue during the proliferation and secretion phases of the menstrual cycle (p<0.05). Conclusions The expression levels of IPO13, c-kit, telomerase, caspase3, and bax were decreased; however, the expression of bcl-2 was increased in the EP tissue compared to the normal endometrial tissue. These findings suggest that the development of EPs is associated with the deregulated activities of the endometrial stem/progenitor cells and the decreased apoptosis of endometrial cells, with the latter being the major factor involved in the development of EPs.
Collapse
Affiliation(s)
- Jianguo Hu
- Department of Obstetrics and Gynecology, 1st Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | | |
Collapse
|
23
|
Zhang R, He Y, Zhang X, Xing B, Sheng Y, Lu H, Wei Z. Estrogen receptor-regulated microRNAs contribute to the BCL2/BAX imbalance in endometrial adenocarcinoma and precancerous lesions. Cancer Lett 2011; 314:155-65. [PMID: 22014978 DOI: 10.1016/j.canlet.2011.09.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 09/19/2011] [Accepted: 09/20/2011] [Indexed: 11/27/2022]
Abstract
Uncontrolled estrogen exposure can induce an imbalance in BCL2/BAX expression in endometrial cells, leading to precancerous lesions and type I endometrial adenocarcinoma. This study aimed to explore the mechanism underlying this phenomenon. We show that the activated estrogen receptor can suppress the expression of BAX by upregulating a group of microRNAs including hsa-let-7 family members and hsa-miR-27a, thereby promoting an increased BCL2/BAX ratio as well as enhanced survival and proliferation in the affected cells. These ER-regulated hsa-let-7 microRNAs can be detected in most hyperplastic endometria, suggesting their potential utility as indicators of estrogen over-exposure.
Collapse
Affiliation(s)
- Rong Zhang
- Department of Obstetrics and Gynecology, Fengxian Central Hospital, Shanghai 201400, PR China.
| | | | | | | | | | | | | |
Collapse
|
24
|
Gladych M, Wojtyla A, Rubis B. Human telomerase expression regulation. Biochem Cell Biol 2011; 89:359-76. [DOI: 10.1139/o11-037] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Since telomerase has been recognized as a relevant factor distinguishing cancer cells from normal cells, it has become a very promising target for anti-cancer therapy. A correlation between short telomere length and increased mortality was revealed in many studies. The telomerase expression/activity appears to be one of the most crucial factors to study to improve cancer therapy and prevention. However, this multisubunit enzymatic complex can be regulated at various levels. Thus, several strategies have been proposed to control telomerase in cancer cells such as anti-sense technology against TR and TERT, ribozymes against TERT, anti-estrogens, progesterone, vitamin D, retinoic acid, quadruplex stabilizers, telomere and telomerase targeting agents, modulation of interaction with other proteins involved in the regulation of telomerase and telomeres, etc. However, the transcription control of key telomerase subunits seems to play the crucial role in whole complexes activity and cancer cells immortality. Thus, the research of telomerase regulation can bring significant insight into the knowledge concerning stem cells metabolism but also ageing. This review summarizes the current state of knowledge of numerous telomerase regulation mechanisms at the transcription level in human that might become attractive anti-cancer therapy targets.
Collapse
Affiliation(s)
- Marta Gladych
- Poznan University of Medical Sciences, Department of Clinical Chemistry and Molecular Diagnostics, Przybyszewskiego 49 St., 60-355 Poznan, Poland
| | - Aneta Wojtyla
- Poznan University of Medical Sciences, Department of Clinical Chemistry and Molecular Diagnostics, Przybyszewskiego 49 St., 60-355 Poznan, Poland
| | - Blazej Rubis
- Poznan University of Medical Sciences, Department of Clinical Chemistry and Molecular Diagnostics, Przybyszewskiego 49 St., 60-355 Poznan, Poland
| |
Collapse
|
25
|
Li HJ, Wang LY, Qu HN, Yu LH, Burnstock G, Ni X, Xu M, Ma B. P2Y2 receptor-mediated modulation of estrogen-induced proliferation of breast cancer cells. Mol Cell Endocrinol 2011; 338:28-37. [PMID: 21356271 DOI: 10.1016/j.mce.2011.02.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 01/28/2011] [Accepted: 02/18/2011] [Indexed: 11/30/2022]
Abstract
It is known that estrogen promotes the proliferation of breast cancer cells. Agonists to P2Y(2) receptors promote or suppress proliferation in different cancers. In the present study, the methods of methylthiazoltetrazolium (MTT) assay, real-time RT-PCR, Western blot and fluorescent calcium imaging analysis were used to investigate whether P2Y(2) receptors play a role in the effects of estrogen on the breast cancer cell lines, MCF-7 and MDA-MB-231. We found that P2Y(2) receptors were expressed in both the estrogen receptor alpha (ER(α))-positive breast cancer cell line MCF-7 and the ER(α)-negative breast cancer cell line MDA-MB-231. 17β-Estradiol (17β-E(2)) (1 pM to 1000 nM) promoted proliferation of MCF-7 cells, which was blocked by the ER antagonist ICI 182,780 (1 μM) and the ER(α) antagonist methyl-piperidino-pyrazole (MPP, 50 μM), but not by the ER(β) antagonist 4-[2-phenyl-5,7-bis(trifluoromethyl)pyrazolo[1,5-a]pyrimidin-3-yl]phenol (PHTPP, 50 μM) or ER(β) small interfering RNA. The P2Y(2) and P2Y(4) receptor agonist UTP (10-100 μM) suppressed the viability of breast cancer cells in both MCF-7 and MDA-MB-231 cells. The effect was blocked by suramin (10-100 μM), known to be an effective antagonist against P2Y(2), but not P2Y(4), receptor-mediated responses. 17β-E(2) played a more positive role in promoting proliferation in MCF-7 cells when suramin blocked the functional P2Y(2) receptors. 17β-E(2) (0.1-1000 nM) downregulated the expression of P2Y(2) receptors in terms of both mRNA and protein levels in MCF-7 cells. The effect was blocked by ICI 182,780 and MPP, but not PHTPP or ER(β) small interfering RNA. 17β-E(2) did not affect the expression of P2Y(2) receptors in MDA-MB-231. UTP (10-100 μM) led to a sharp increase in intracellular Ca(2+) in MCF-7 cells. Pre-incubation with 17β-E(2) (0.1 μM) attenuated UTP-induced [Ca(2+)](i), which was blocked by ICI182,780 and MPP, but not PHTPP. It is suggested that estrogen, via ER(α) receptors, promotes proliferation of breast cancer cells by down-regulating P2Y(2) receptor expression and attenuating P2Y(2)-induced increase of [Ca(2+)](i).
Collapse
Affiliation(s)
- Han-jun Li
- Department of Physiology and The Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
SummaryThis review summarizes the results of research on gene transfer to the mammalian genital tract. Gene transfer experiments have been developed during the last 2 decades and have been applied using in vitro, ex vivo and in vivo procedures. (i) In vitro methods have been applied to the uterine epithelial cells with the principal purpose of analysing some pathological change occurring in the uterus. In the male tract, epididymal cell lines have been used to evaluate the expression of particular genes and the function of specific proteins. (ii) Ex vivo methods have been applied to both the uterus and the vas deferens in humans, and good transgene expression has been recorded. (iii) In vivo gene transfer in the female tract has been employed in the uterus and oviduct using gene injections or electroporation methods. The glandular epithelium of both organs can be transfected efficiently, and transfection efficiency depends on the hormonal stage of the animal. The best expression occurred during pseudopregnancy and meta-estrus periods, when high progesterone and low estradiol concentrations occur. In the male tract, in vivo methods have been applied to mouse vas deferens and epididymis. In both organs, patches of epithelial regions appeared to express the transgenes. Furthermore, the secretions of both organs were also modified using gene constructions that led to the expression of some secretory proteins. In summary, gene modifications in the epithelium of the mammalian reproductive tract have been successful employing different technologies. Further improvements in transfection efficiency would help provide new insights into the physiology of these reproductive organs. Furthermore, the use of these methods could also be used to modify the fertility of mammals.
Collapse
|
27
|
Hapangama DK, Turner MA, Drury J, Heathcote L, Afshar Y, Mavrogianis PA, Fazleabas AT. Aberrant expression of regulators of cell-fate found in eutopic endometrium is found in matched ectopic endometrium among women and in a baboon model of endometriosis. Hum Reprod 2010; 25:2840-50. [PMID: 20858696 PMCID: PMC2955559 DOI: 10.1093/humrep/deq248] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 08/17/2010] [Accepted: 08/20/2010] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND We have recently shown that women with endometriosis express an increased amount of telomerase and nucleolin, with concomitant loss of γ-H2AX in eutopic endometrium. To further examine these selected factors that regulate cell fate, in the pathogenesis of endometriosis, we studied the expression of telomerase, nucleolin, proliferating cell nuclear antigen and γ-H2AX in ectopic endometriotic deposits from women, and in matched eutopic and ectopic endometrial tissue from a baboon model of endometriosis. METHODS Ectopic active peritoneal endometriotic lesions were collected from seven symptomatic women. Endometriosis was induced in six baboons by intra-peritoneal autologous inoculation of menstrual endometrium. Eutopic and matched ectopic endometrial tissues were collected prior to and 6, 12 and 15 months after the induction of endometriosis as previously described. Eutopic endometrium was also obtained from eight healthy fertile control baboons. Immunohistochemistry was performed as previously described, and telomerase activity was confirmed using the telomeric repeat amplification protocol assay. RESULTS All active human endometriotic lesions expressed the proliferative markers but showed weak or absent staining for γ-H2AX. A similar expression pattern of these markers was seen in the ectopic lesions of the baboons with induced disease. In these baboons, the eutopic endometrium also showed intense immunoreactivity for all proliferative markers 6-12 months after induction with a parallel loss of γ-H2AX. The opposite staining pattern was seen in eutopic endometrium of healthy animals and in pre-induction endometrium of animals with induced disease. CONCLUSIONS Endometriotic lesions have excess proliferative potential; in baboons, these were present within 12 months of the initiation of the disease. In eutopic tissue, these changes appear to be induced by the development of endometriosis.
Collapse
Affiliation(s)
- D K Hapangama
- Division of Perinatal and Reproductive Medicine, University of Liverpool, Liverpool Women's Hospital, Liverpool, UK.
| | | | | | | | | | | | | |
Collapse
|
28
|
Liu JP, Chen SM, Cong YS, Nicholls C, Zhou SF, Tao ZZ, Li H. Regulation of telomerase activity by apparently opposing elements. Ageing Res Rev 2010; 9:245-56. [PMID: 20362078 DOI: 10.1016/j.arr.2010.03.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 03/22/2010] [Accepted: 03/23/2010] [Indexed: 01/08/2023]
Abstract
Telomeres, the ends of chromosomes, undergo frequent remodeling events that are important in cell development, proliferation and differentiation, and neoplastic immortalization. It is not known how the cellular environment influences telomere remodeling, stability, and lengthening or shortening. Telomerase is a ribonucleoprotein complex that maintains and lengthens telomeres in the majority of cancers. Recent studies indicate that a number of factors, including hormones, cytokines, ligands of nuclear receptor, vitamins and herbal extracts have significantly influence telomerase activity and, in some instances, the remodeling of telomeres. This review summarizes the advances in understanding of the positive and negative regulation by extracellular factors of telomerase activity in cancer, stem cells and other systems in mammals.
Collapse
Affiliation(s)
- Jun-Ping Liu
- Molecular Signaling Laboratory, Department of Immunology, Central Clinical School, Monash University, Alfred Medical Research and Education Precinct (AMREP), Commercial Road, Melbourne, Victoria 3004, Australia
| | | | | | | | | | | | | |
Collapse
|
29
|
Simmons CD, Pabona JM, Zeng Z, Velarde MC, Gaddy D, Simmen FA, Simmen RCM. Response of adult mouse uterus to early disruption of estrogen receptor-alpha signaling is influenced by Krüppel-like factor 9. J Endocrinol 2010; 205:147-57. [PMID: 20164373 PMCID: PMC2972657 DOI: 10.1677/joe-09-0474] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Inappropriate early exposure of the hormone-responsive uterus to estrogenic compounds is associated with increased risk for adult reproductive diseases including endometrial cancers. While the dysregulation of estrogen receptor-alpha (ESR1) signaling is well acknowledged to mediate early events in tumor initiation, mechanisms contributing to sustained ESR1 activity later in life and leading to induction of oncogenic pathways remain poorly understood. We had shown previously that the transcription factor Krüppel-like factor 9 (KLF9) represses ESR1 expression and activity in Ishikawa endometrial glandular epithelial cells. We hypothesized that KLF9 functions as a tumor suppressor, and that loss of its expression enhances ESR1 signaling. Here, we evaluated the contribution of KLF9 to early perturbations in uterine ESR1 signaling pathways elicited by the administration of synthetic estrogen diethylstilbestrol (DES) to wild-type (WT) and Klf9 null (KO) mice on postnatal days (PNDs) 1-5. Uterine tissues collected at PND84 were subjected to histological, immunological, and molecular analyses. Compared with WT mice, KO mice demonstrated larger endometrial glands and lower endometrial gland numbers; DES exposure exacerbated these differences. Loss of KLF9 expression resulted in increased glandular ESR1 immunoreactivity with DES, without effects on serum estradiol levels. Quantitative RT-PCR analyses indicated altered expression of uterine genes commonly dysregulated in endometrial cancers (Akt1, Mmp9, Slpi, and Tgfbeta1) and of those involved in growth regulation (Fos, Myc, Tert, and Syk), with loss of Klf9, alone or in concert with DES. Our data support a molecular network between KLF9 and ESR1 in the uterus, and suggest that silencing of KLF9 may contribute to endometrial dysfunctions initiated by aberrant estrogen action.
Collapse
Affiliation(s)
| | | | | | | | | | | | - R C M Simmen
- Arkansas Children’s Nutrition Center, 15 Children’s Way, Little Rock, Arkansas 72202, USA
| |
Collapse
|
30
|
Esponda P, Carballada R. In-vivo gene transfer induces transgene expression in cells and secretions of the mouse cauda epididymis. Mol Hum Reprod 2009; 15:355-61. [PMID: 19332530 DOI: 10.1093/molehr/gap026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Mouse cauda epididymis were in-vivo transfected using the lipid FuGENE 6 as gene vector. Two gene constructions were employed: the p-GeneGRIP which codifies for the Green Fluorescent Protein (GFP) and the pSEAP-control that expresses an alkaline phosphatase as a secretion. Transfection was detected by fluorescence and appeared in the nucleus and cytoplasm of epithelial cells. Transfection was observed in 39.70% of cells after 2 days and in 31.77% after 7 days, and then diminished progressively. Moreover, the presence of the transgene in the DNA isolated from treated epididymides was observed by polymerase chain reaction. GFP gene expression appeared in large areas of the cauda epididymis and it was observed exclusively in the cytoplasm of epithelial cells. GFP gene expression occurred during 2 weeks after gene injection and occupied 32.24, 29.98 and 22.37% of the area of the tubules when analyzed 2, 7 and 15 days after gene injection. The cauda was also analyzed in toto and showed similar results. The use of the pSEAP-control gene showed that cauda epididymis secretions can also be modified by the transfection procedure. A significant increase of alkaline phosphatase activity appeared in the epididymal fluids 7 days after gene injection. These results indicate that transfection procedures could be an important tool in the future to study epididymal physiology or to change the fertilizing ability of spermatozoa.
Collapse
Affiliation(s)
- P Esponda
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | | |
Collapse
|
31
|
Mo J, Xia Y, Ning Z, Wade TJ, Mumford JL. Elevated human telomerase reverse transcriptase gene expression in blood cells associated with chronic arsenic exposure in Inner Mongolia, China. ENVIRONMENTAL HEALTH PERSPECTIVES 2009; 117:354-60. [PMID: 19337508 PMCID: PMC2661903 DOI: 10.1289/ehp.11532] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 10/01/2008] [Indexed: 05/08/2023]
Abstract
BACKGROUND Arsenic exposure is associated with human cancer. Telomerase-containing human telomerase reverse transcriptase (hTERT) can extend telomeres of chromosomes, delay senescence, and promote cell proliferation leading to tumorigenesis. OBJECTIVE The goal of this study was to investigate the effects of As on hTERT mRNA expression in humans and in vitro. METHOD A total of 324 Inner Mongolia residents who have been exposed to As via drinking water participated in this study. Water and toenail samples were collected and analyzed for As. Blood samples were quantified for hTERT mRNA expression using real-time polymerase chain reaction. The hTERT mRNA levels were linked to water and nail As concentrations and skin hyperkeratosis. Human epidermal keratinocytes were treated with arsenite to assess effects on cell viability and hTERT expression in vitro. RESULTS hTERT mRNA expression levels were significantly associated with As concentrations of water (p<0.0001) and nails (p=0.002) and also associated with severity of skin hyperkeratosis (p<0.05), adjusting for age, sex, smoking, and pesticide use. Females showed a higher slope than males (females: 0.126, p=0.0005; males: 0.079, p=0.017). In addition to water and nail As concentrations, age (p<0.0001) and pesticide use (p=0.025) also showed significant associations with hTERT expression. The hTERT expression levels decreased with age. Tobacco smoking did not affect hTERT expression (p=0.13). hTERT expression was significantly correlated with OGG1 and ERCC1 expression. The in vitro results also showed a dose-response relationship between arsenite concentrations and hTERT expression and reached the peak at 1 microM. CONCLUSIONS hTERT expression was associated with As exposure in vivo and in vitro. The increased hTERT expression may be a cellular response to genomic insults by As and may also indicate that As may function as a tumor promoter in carcinogenesis in humans.
Collapse
Affiliation(s)
- Jinyao Mo
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yajuan Xia
- Inner Mongolia Center for Endemic Disease Control and Research, Huhhot, Inner Mongolia, China
| | - Zhixiong Ning
- Ba Men Anti-epidemic Station, Lin He, Inner Mongolia, China
| | - Timothy J. Wade
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Judy L. Mumford
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
- Address correspondence to J.L. Mumford, MD 58C, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 USA. Telephone: (919) 966-0651. Fax: (919) 966-0655. E-mail:
| |
Collapse
|
32
|
Abstract
The involvement of estrogen and its receptors in the development of cancer has been known for years. However, the exact mechanism responsible is far from clear. The estrogen-mediated carcinogenic process is complicated by recent findings, which reveal that estrogens have multiple functions in cells, which can be either adverse or beneficial, and that the effects of estrogen may be cell-type or organ dependent. The estrogenic effect may be also greatly influenced by the state of two estrogen receptors, ERalpha and ERbeta. This review will discuss the role and function of estrogens and its receptors in cancers of three categories: (1) Breast cancer and gynecologic cancers, (2) Cancers of endocrine organs, (3) Lung cancer and cancers of digestive system. We will also review some novel treatments aiming to interfere with relevant pathways mediated by estrogens and its receptors.
Collapse
Affiliation(s)
- George G Chen
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T., Hong Kong SAR, China.
| | | | | |
Collapse
|
33
|
Safe S, Kim K. Non-classical genomic estrogen receptor (ER)/specificity protein and ER/activating protein-1 signaling pathways. J Mol Endocrinol 2008; 41:263-75. [PMID: 18772268 PMCID: PMC2582054 DOI: 10.1677/jme-08-0103] [Citation(s) in RCA: 244] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
17beta-estradiol binds to the estrogen receptor (ER) to activate gene expression or repression and this involves both genomic (nuclear) and non-genomic (extranuclear) pathways. Genomic pathways include the classical interactions of ligand-bound ER dimers with estrogen-responsive elements in target gene promoters. ER-dependent activation of gene expression also involves DNA-bound ER that subsequently interacts with other DNA-bound transcriptions factors and direct ER-transcription factor (protein-protein) interactions where ER does not bind promoter DNA. Ligand-induced activation of ER/specificity protein (Sp) and ER/activating protein-1 [(AP-1); consisting of jun/fos] complexes are important pathways for modulating expression of a large number of genes. This review summarizes some of the characteristics of ER/Sp- and ER/AP-1-mediated transactivation, which are dependent on ligand structure, cell context, ER-subtype (ERalpha and ERbeta), and Sp protein (SP1, SP3, and SP4) and demonstrates that this non-classical genomic pathway is also functional in vivo.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843-4466, USA.
| | | |
Collapse
|
34
|
Akbay EA, Contreras CM, Perera SA, Sullivan JP, Broaddus RR, Schorge JO, Ashfaq R, Saboorian H, Wong KK, Castrillon DH. Differential roles of telomere attrition in type I and II endometrial carcinogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:536-44. [PMID: 18599611 DOI: 10.2353/ajpath.2008.071179] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Endometrial cancer has been generally categorized into two broad groups of tumors, type I (TI) and type II (TII), with distinct epidemiological/clinical features and genetic alterations. Because telomere attrition appears to trigger genomic instability in certain cancers, we explored the role of telomere dysfunction in endometrial cancer by analyzing telomeres and other markers of telomere status in both tumor types. We describe a new method, telomere chromogenic in situ hybridization, which permitted us to detect cells with short telomeres relative to control (stromal) cells within the same tissue section. Using this method, we found that both types of tumor cells had short telomeres. However, only TII tumors were significantly associated with critical telomere shortening in adjacent, morphologically normal epithelium, suggesting that telomere shortening contributes to the initiation of TII but not TI tumors. To explore this hypothesis, we analyzed mice with critically short telomeres and documented distinctive endometrial lesions that histologically resembled the in situ precursor of TII serous carcinomas; these lesions have not been observed previously in TI mouse models of endometrial cancer. Based on this and previous studies, we propose a model in which telomere attrition contributes to the initiation of TII and progression of TI endometrial cancers.
Collapse
Affiliation(s)
- Esra A Akbay
- Department of Pathology, UT Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390-9072, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|