1
|
Zhang C, Diaz-Hernandez ME, Fukunaga T, Sreekala S, Yoon ST, Haglund L, Drissi H. Protective effects of PDGF-AB/BB against cellular senescence in human intervertebral disc. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617862. [PMID: 39416006 PMCID: PMC11482872 DOI: 10.1101/2024.10.11.617862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Cellular senescence, characterized by a permanent state of cell cycle arrest and a secretory phenotype contributing to inflammation and tissue deterioration, has emerged as a target for age-related interventions. Accumulation of senescent cells is closely linked with intervertebral disc (IVD) degeneration, a prevalent age-dependent chronic disorder causing low back pain. Previous studies have highlighted that platelet-derived growth factor (PDGF) mitigated IVD degeneration through anti-apoptosis, anti-inflammation, and pro-anabolism. However, its impact on IVD cell senescence remains elusive. In this study, human NP and AF cells derived from aged, degenerated IVDs were treated with recombinant human (rh) PDGF-AB/BB for 5 days and changes of transcriptome profiling were examined through mRNA sequencing. NP and AF cells demonstrated similar but distinct responses to the treatment. However, the effects of PDGF-AB and BB on human IVD cells were comparable. Specifically, PDGF-AB/BB treatment resulted in downregulation of gene clusters related to neurogenesis and response to mechanical stimulus in AF cells while the downregulated genes in NP cells were mainly associated with metabolic pathways. In both NP and AF cells, PDGF-AB and BB treatment upregulated the expression of genes involved in cell cycle regulation, mesenchymal cell differentiation, and response to reduced oxygen levels, while downregulating the expression of genes related to senescence associated phenotype, including oxidative stress, reactive oxygen species (ROS), and mitochondria dysfunction. Network analysis revealed that PDGFRA and IL6 were the top hub genes in treated NP cells. Furthermore, in irradiation-induced senescent NP cells, PDGFRA gene expression was significantly reduced compared to non-irradiated cells. However, rhPDGF-AB/BB treatment increased PDGFRA expression and mitigated the senescence progression through increased cell population in the S phase, reduced SA-β-Gal activity, and decreased expression of senescence related regulators including P21, P16, IL6, and NF-κB. Our findings reveal a novel anti-senescence role of PDGF in the IVD, demonstrating its ability to alleviate the senescent phenotype and protect against the progression of senescence. This makes it a promising candidate for preventing or treating IVD degeneration by targeting cellular senescence.
Collapse
Affiliation(s)
- Changli Zhang
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Decatur, GA, USA
| | - Martha Elena Diaz-Hernandez
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Decatur, GA, USA
| | - Takanori Fukunaga
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Decatur, GA, USA
| | - Shenoy Sreekala
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Decatur, GA, USA
| | | | - Lisbet Haglund
- Department of Surgery, McGill University, Montreal, Qc., Canada
| | - Hicham Drissi
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Decatur, GA, USA
| |
Collapse
|
2
|
Pomella S, Melaiu O, Cifaldi L, Bei R, Gargari M, Campanella V, Barillari G. Biomarkers Identification in the Microenvironment of Oral Squamous Cell Carcinoma: A Systematic Review of Proteomic Studies. Int J Mol Sci 2024; 25:8929. [PMID: 39201614 PMCID: PMC11354375 DOI: 10.3390/ijms25168929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
An important determinant for oral squamous cell carcinoma (OSCC) onset and outcome is the composition of the tumor microenvironment (TME). Thus, the study of the interactions occurring among cancer cells, immune cells, and cancer-associated fibroblasts within the TME could facilitate the understanding of the mechanisms underlying OSCC development and progression, as well as of its sensitivity or resistance to the therapy. In this context, it must be highlighted that the characterization of TME proteins is enabled by proteomic methodologies, particularly mass spectrometry (MS). Aiming to identify TME protein markers employable for diagnosing and prognosticating OSCC, we have retrieved a total of 119 articles spanning 2001 to 2023, of which 17 have passed the selection process, satisfying all its criteria. We have found a total of 570 proteins detected by MS-based proteomics in the TME of OSCC; among them, 542 are identified by a single study, while 28 are cited by two or more studies. These 28 proteins participate in extracellular matrix remodeling and/or energy metabolism. Here, we propose them as markers that could be used to characterize the TME of OSCC for diagnostic/prognostic purposes. Noteworthy, most of the 28 individuated proteins share one feature: being modulated by the hypoxia that is present in the proliferating OSCC mass.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier, 00133 Rome, Italy; (S.P.); (O.M.); (L.C.); (R.B.); (M.G.); (V.C.)
| |
Collapse
|
3
|
Lai F, He L, Lia T, Yang Z, Huang C. Identification and validation of basement membrane-related genes predicting prognosis and immune infiltration associated with bladder cancer. Medicine (Baltimore) 2024; 103:e38858. [PMID: 39029072 PMCID: PMC11398827 DOI: 10.1097/md.0000000000038858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/21/2024] Open
Abstract
Bladder cancer (BC) is fatal during muscle invasion and treatment progress is limited. In this study, we aimed to construct and validate basement membrane (BM)-associated gene prognosis to predict BC progression and tumor immune infiltration correlation. We choreographed BM-related genes in the Cancer Genome Atlas (TCGA) database using COX regression and least absolute shrinkage and selection operator (LASSO) analysis, and the predictive value of BM-related genes was further validated by the GSE32548, GSE129845, and immunohistochemistry staining. All analyses were performed with R-version 4.2.2, and its appropriate packages. Three genes were identified to construct a gene signature to predictive of BC prognosis. We divided the TCGA database into 2 groups, and patients in the high-risk group had worse overall survival (OS) than those in the low-risk group. In GSE32548, we confirmed that patients in the high-risk group had a poorer prognosis compared to those in the low-risk group in terms of OS. Immunohistochemical staining of EPEMP1, GPC2, and ITGA3 showed significantly higher expression at the protein level in BC tissues than in normal tissues. The Spearman analysis showed risk score was positively correlated with B cell naïve, Macrophages M2, and Mast cells resting. stromal score, immune score, and ESTIMATE scores were significantly higher in the high-risk group. drugs sensitivity analysis showed IC50 of Cisplatin, Gemcitabine, and Methotrexate in the high-risk group was significantly higher than that in the low-risk group. We identified 3 prognostic genes from a novel perspective of BM genes as effective risk stratification tools for BC patients.
Collapse
Affiliation(s)
- Fie Lai
- Department of Urology Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan, China
| | - Lin He
- Department of Pathology, Chengdu Second People's Hospital, Chengdu, Sichuan, China
| | - Thongher Lia
- Department of Urology Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan, China
| | - Zhen Yang
- Department of Urology Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan, China
| | - Chaoyou Huang
- Department of Urology Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Marrero AD, Cárdenas C, Castilla L, Ortega-Vidal J, Quesada AR, Martínez-Poveda B, Medina MÁ. Antiangiogenic Potential of an Olive Oil Extract: Insights from a Proteomic Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13023-13038. [PMID: 38809962 PMCID: PMC11181319 DOI: 10.1021/acs.jafc.3c08851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024]
Abstract
Extra virgin olive oil (EVOO), a staple of the Mediterranean diet, is rich in phenolic compounds recognized for their potent bioactive effects, including anticancer and anti-inflammatory properties. However, its effects on vascular health remain relatively unexplored. In this study, we examined the impact of a "picual" EVOO extract from Jaén, Spain, on endothelial cells. Proteomic analysis revealed the modulation of angiogenesis-related processes. In subsequent in vitro experiments, the EVOO extract inhibited endothelial cell migration, adhesion, invasion, ECM degradation, and tube formation while inducing apoptosis. These results provide robust evidence of the extract's antiangiogenic potential. Our findings highlight the potential of EVOO extracts in mitigating angiogenesis-related pathologies, such as cancer, macular degeneration, and diabetic retinopathy.
Collapse
Affiliation(s)
- Ana Dácil Marrero
- Departamento
de Biología Molecular y Bioquímica, Facultad de Ciencias,
Andalucía Tech, Universidad de Málaga, E-29071 Málaga, Spain
- Instituto
de Investigación Biomédica y Plataforma en Nanomedicina-IBIMA
Plataforma BIONAND (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER
de Enfermedades Raras (CIBERER), Instituto
de Salud Carlos III, E-28029 Madrid, Spain
| | - Casimiro Cárdenas
- Departamento
de Biología Molecular y Bioquímica, Facultad de Ciencias,
Andalucía Tech, Universidad de Málaga, E-29071 Málaga, Spain
- Servicios
Centrales de Apoyo a la Investigación (SCAI), Universidad de Málaga, E-29071 Málaga, Spain
| | - Laura Castilla
- Departamento
de Biología Molecular y Bioquímica, Facultad de Ciencias,
Andalucía Tech, Universidad de Málaga, E-29071 Málaga, Spain
- Instituto
de Investigación Biomédica y Plataforma en Nanomedicina-IBIMA
Plataforma BIONAND (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
| | - Juan Ortega-Vidal
- Departamento
de Química Inorgánica y Orgánica, Campus de Excelencia
Internacional Agroalimentaria ceiA3, Universidad
de Jaén, Jaén E- 23071, Spain
| | - Ana R. Quesada
- Departamento
de Biología Molecular y Bioquímica, Facultad de Ciencias,
Andalucía Tech, Universidad de Málaga, E-29071 Málaga, Spain
- Instituto
de Investigación Biomédica y Plataforma en Nanomedicina-IBIMA
Plataforma BIONAND (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER
de Enfermedades Raras (CIBERER), Instituto
de Salud Carlos III, E-28029 Madrid, Spain
| | - Beatriz Martínez-Poveda
- Departamento
de Biología Molecular y Bioquímica, Facultad de Ciencias,
Andalucía Tech, Universidad de Málaga, E-29071 Málaga, Spain
- Instituto
de Investigación Biomédica y Plataforma en Nanomedicina-IBIMA
Plataforma BIONAND (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER
de
Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Miguel Ángel Medina
- Departamento
de Biología Molecular y Bioquímica, Facultad de Ciencias,
Andalucía Tech, Universidad de Málaga, E-29071 Málaga, Spain
- Instituto
de Investigación Biomédica y Plataforma en Nanomedicina-IBIMA
Plataforma BIONAND (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER
de Enfermedades Raras (CIBERER), Instituto
de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
5
|
Lesovaya EA, Fetisov TI, Bokhyan BY, Maksimova VP, Kulikov EP, Belitsky GA, Kirsanov KI, Yakubovskaya MG. Genetic, Epigenetic and Transcriptome Alterations in Liposarcoma for Target Therapy Selection. Cancers (Basel) 2024; 16:271. [PMID: 38254762 PMCID: PMC10813500 DOI: 10.3390/cancers16020271] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/25/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
Liposarcoma (LPS) is one of the most common adult soft-tissue sarcomas (STS), characterized by a high diversity of histopathological features as well as to a lesser extent by a spectrum of molecular abnormalities. Current targeted therapies for STS do not include a wide range of drugs and surgical resection is the mainstay of treatment for localized disease in all subtypes, while many LPS patients initially present with or ultimately progress to advanced disease that is either unresectable, metastatic or both. The understanding of the molecular characteristics of liposarcoma subtypes is becoming an important option for the detection of new potential targets and development novel, biology-driven therapies for this disease. Innovative therapies have been introduced and they are currently part of preclinical and clinical studies. In this review, we provide an analysis of the molecular genetics of liposarcoma followed by a discussion of the specific epigenetic changes in these malignancies. Then, we summarize the peculiarities of the key signaling cascades involved in the pathogenesis of the disease and possible novel therapeutic approaches based on a better understanding of subtype-specific disease biology. Although heterogeneity in liposarcoma genetics and phenotype as well as the associated development of resistance to therapy make difficult the introduction of novel therapeutic targets into the clinic, recently a number of targeted therapy drugs were proposed for LPS treatment. The most promising results were shown for CDK4/6 and MDM2 inhibitors as well as for the multi-kinase inhibitors anlotinib and sunitinib.
Collapse
Affiliation(s)
- Ekaterina A. Lesovaya
- N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia; (E.A.L.); (T.I.F.); (B.Y.B.); (V.P.M.); (K.I.K.)
- Faculty of Oncology, I.P. Pavlov Ryazan State Medical University, Ministry of Health of Russia, 9 Vysokovol’tnaya St., Ryazan 390026, Russia;
- Laboratory of Single Cell Biology, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya St., Moscow 117198, Russia
| | - Timur I. Fetisov
- N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia; (E.A.L.); (T.I.F.); (B.Y.B.); (V.P.M.); (K.I.K.)
| | - Beniamin Yu. Bokhyan
- N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia; (E.A.L.); (T.I.F.); (B.Y.B.); (V.P.M.); (K.I.K.)
| | - Varvara P. Maksimova
- N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia; (E.A.L.); (T.I.F.); (B.Y.B.); (V.P.M.); (K.I.K.)
| | - Evgeny P. Kulikov
- Faculty of Oncology, I.P. Pavlov Ryazan State Medical University, Ministry of Health of Russia, 9 Vysokovol’tnaya St., Ryazan 390026, Russia;
| | - Gennady A. Belitsky
- N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia; (E.A.L.); (T.I.F.); (B.Y.B.); (V.P.M.); (K.I.K.)
| | - Kirill I. Kirsanov
- N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia; (E.A.L.); (T.I.F.); (B.Y.B.); (V.P.M.); (K.I.K.)
- Laboratory of Single Cell Biology, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya St., Moscow 117198, Russia
| | - Marianna G. Yakubovskaya
- N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia; (E.A.L.); (T.I.F.); (B.Y.B.); (V.P.M.); (K.I.K.)
- Laboratory of Single Cell Biology, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya St., Moscow 117198, Russia
| |
Collapse
|
6
|
Abstract
Biliary atresia (BA) is the most prevalent serious liver disease of infancy and childhood, and the principal indication for liver transplantation in pediatrics. BA is best considered as an idiopathic panbiliary cholangiopathy characterized by obstruction of bile flow and consequent cholestasis presenting during fetal and perinatal periods. While several etiologies have been proposed, each has significant drawbacks that have limited understanding of disease progression and the development of effective treatments. Recently, modern genetic analyses have uncovered gene variants contributing to BA, thereby shifting the paradigm for explaining the BA phenotype from an acquired etiology (e.g., virus, toxin) to one that results from genetically altered cholangiocyte development and function. Herein we review recently reported genetic contributions to BA, highlighting the enhanced representation of variants in biological pathways involving ciliary function, cytoskeletal structure, and inflammation. Finally, we blend these findings as a new framework for understanding the resultant BA phenotype as a developmental cholangiopathy.
Collapse
Affiliation(s)
- Dominick J Hellen
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia
| | - Saul J Karpen
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
7
|
Padežnik T, Oleksy A, Cokan A, Takač I, Sobočan M. Changes in the Extracellular Matrix in Endometrial and Cervical Cancer: A Systematic Review. Int J Mol Sci 2023; 24:ijms24065463. [PMID: 36982551 PMCID: PMC10052846 DOI: 10.3390/ijms24065463] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
Endometrial and cervical cancers are the two most common gynaecological malignancies and among the leading causes of death worldwide. The extracellular matrix (ECM) is an important component of the cellular microenvironment and plays an important role in developing and regulating normal tissues and homeostasis. The pathological dynamics of the ECM contribute to several different processes such as endometriosis, infertility, cancer, and metastasis. Identifying changes in components of ECM is crucial for understanding the mechanisms of cancer development and its progression. We performed a systematic analysis of publications on the topic of changes in the extracellular matrix in cervical and endometrial cancer. The findings of this systematic review show that matrix metalloproteinases (MMP) play an important role impacting tumour growth in both types of cancer. MMPs degrade various specific substrates (collagen, elastin, fibronectin, aggrecan, fibulin, laminin, tenascin, vitronectin, versican, nidogen) and play a crucial role in the basal membrane degradation and ECM components. Similar types of MMPs were found to be increased in both cancers, namely, MMP-1, MMP-2, MMP-9, and MMP-11. Elevated concentrations of MMP-2 and MMP-9 were correlated with the FIGO stage and are associated with poor prognosis in endometrial cancer, whereas in cervical cancer, elevated concentrations of MMP-9 have been associated with a better outcome. Elevated ADAMTS levels were found in cervical cancer tissues. Elevated disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) levels were also found in endometrial cancer, but their role is still unclear. Following these findings, this review reports on tissue inhibitors of ECM enzymes, MMPs, and ADAMTS. The present review demonstrates changes in the extracellular matrix in cervical and endometrial cancers and compared their effect on cancer development, progression, and patient prognosis.
Collapse
Affiliation(s)
- Tjaša Padežnik
- Department of Gynaecology and Obstetrics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Anja Oleksy
- Department of Gynaecology and Obstetrics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Andrej Cokan
- Department of Gynaecology and Obstetrics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Iztok Takač
- Department of Gynaecology and Obstetrics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
- Divison for Gynaecology and Perinatology, University Medical Centre Maribor, Ljubljanska Ulica 5, 2000 Maribor, Slovenia
| | - Monika Sobočan
- Department of Gynaecology and Obstetrics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
- Divison for Gynaecology and Perinatology, University Medical Centre Maribor, Ljubljanska Ulica 5, 2000 Maribor, Slovenia
- Department for Pharmacology, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
- Correspondence:
| |
Collapse
|
8
|
Roshini A, Goparaju C, Kundu S, Nandhu MS, Longo SL, Longo JA, Chou J, Middleton FA, Pass HI, Viapiano MS. The extracellular matrix protein fibulin-3/EFEMP1 promotes pleural mesothelioma growth by activation of PI3K/Akt signaling. Front Oncol 2022; 12:1014749. [PMID: 36303838 PMCID: PMC9593058 DOI: 10.3389/fonc.2022.1014749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive tumor with poor prognosis and limited therapeutic options. The extracellular matrix protein fibulin-3/EFEMP1 accumulates in the pleural effusions of MPM patients and has been proposed as a prognostic biomarker of these tumors. However, it is entirely unknown whether fibulin-3 plays a functional role on MPM growth and progression. Here, we demonstrate that fibulin-3 is upregulated in MPM tissue, promotes the malignant behavior of MPM cells, and can be targeted to reduce tumor progression. Overexpression of fibulin-3 increased the viability, clonogenic capacity and invasion of mesothelial cells, whereas fibulin-3 knockdown decreased these phenotypic traits as well as chemoresistance in MPM cells. At the molecular level, fibulin-3 activated PI3K/Akt signaling and increased the expression of a PI3K-dependent gene signature associated with cell adhesion, motility, and invasion. These pro-tumoral effects of fibulin-3 on MPM cells were disrupted by PI3K inhibition as well as by a novel, function-blocking, anti-fibulin-3 chimeric antibody. Anti-fibulin-3 antibody therapy tested in two orthotopic models of MPM inhibited fibulin-3 signaling, resulting in decreased tumor cell proliferation, reduced tumor growth, and extended animal survival. Taken together, these results demonstrate for the first time that fibulin-3 is not only a prognostic factor of MPM but also a relevant molecular target in these tumors. Further development of anti-fibulin-3 approaches are proposed to increase early detection and therapeutic impact against MPM.
Collapse
Affiliation(s)
- Arivazhagan Roshini
- Department of Neuroscience and Physiology, State University of New York - Upstate Medical University, Syracuse, NY, United States
| | - Chandra Goparaju
- Department of Cardiothoracic Surgery, Langone Medical Center, New York University School of Medicine, New York, NY, United States
| | - Somanath Kundu
- Department of Neuroscience and Physiology, State University of New York - Upstate Medical University, Syracuse, NY, United States
| | - Mohan S. Nandhu
- Department of Neuroscience and Physiology, State University of New York - Upstate Medical University, Syracuse, NY, United States
| | - Sharon L. Longo
- Department of Neurosurgery, State University of New York - Upstate Medical University, Syracuse, NY, United States
| | - John A. Longo
- Department of Neuroscience and Physiology, State University of New York - Upstate Medical University, Syracuse, NY, United States
| | - Joan Chou
- Department of Neuroscience and Physiology, State University of New York - Upstate Medical University, Syracuse, NY, United States
- Department of Neurosurgery, State University of New York - Upstate Medical University, Syracuse, NY, United States
| | - Frank A. Middleton
- Department of Neuroscience and Physiology, State University of New York - Upstate Medical University, Syracuse, NY, United States
| | - Harvey I. Pass
- Department of Cardiothoracic Surgery, Langone Medical Center, New York University School of Medicine, New York, NY, United States
| | - Mariano S. Viapiano
- Department of Neuroscience and Physiology, State University of New York - Upstate Medical University, Syracuse, NY, United States
- Department of Neurosurgery, State University of New York - Upstate Medical University, Syracuse, NY, United States
- *Correspondence: Mariano S. Viapiano,
| |
Collapse
|
9
|
Thampi P, Dubey R, Lowney R, Adam EN, Janse S, Wood CL, MacLeod JN. Effect of Skeletal Paracrine Signals on the Proliferation of Interzone Cells. Cartilage 2021; 13:82S-94S. [PMID: 31023058 PMCID: PMC8804777 DOI: 10.1177/1947603519841680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Articular cartilage in mammals has limited intrinsic capacity to repair structural defects, a fact that contributes to the chronic and progressive nature of osteoarthritis. In contrast, Mexican axolotl salamanders have demonstrated the remarkable ability to spontaneously and completely repair large joint cartilage lesions, a healing process that involves interzone cells in the intraarticular space. Furthermore, interzone tissue transplanted into skeletal defects in the axolotl salamander demonstrates a multi-differentiation potential. Cellular and molecular mechanisms of this repair process remain unclear. The objective of this study was to examine whether paracrine mitogenic signals are an important variable in the interaction between interzone cells and the skeletal microenvironment. DESIGN The paracrine regulation of the proliferation of equine interzone cells was evaluated in an in vitro co-culture system. Cell viability and proliferation were measured in equine fetal interzone cells after exposure to conditioned medium from skeletal and nonskeletal primary cell lines. Steady-state expression was determined for genes encoding 37 putative mitogens secreted by cells that generated the conditioned medium. RESULTS All experimental groups of conditioned media elicited a mitogenic response in interzone cells. Fetal anlage chondrocytes (P < 0.0001) and dermal fibroblasts (P < 0.0001) conditioned medium showed a significantly higher mitogenic potential compared with interzone cells. Conditioned medium from bone marrow-derived cells elicited a significantly higher proliferative response relative to that from young adult articular chondrocytes (P < 0.0001) or dermal fibroblasts (P < 0.0001). Sixteen genes had expression patterns consistent with the functional proliferation assays. CONCLUSIONS The results indicate a mitogenic effect of skeletal paracrine signals on interzone cells.
Collapse
Affiliation(s)
- Parvathy Thampi
- Maxwell H. Gluck Equine Research Center,
Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Rashmi Dubey
- Maxwell H. Gluck Equine Research Center,
Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Rachael Lowney
- Maxwell H. Gluck Equine Research Center,
Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Emma N. Adam
- Maxwell H. Gluck Equine Research Center,
Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Sarah Janse
- Department of Statistics, University of
Kentucky, Lexington, KY, USA
| | - Constance L. Wood
- Department of Statistics, University of
Kentucky, Lexington, KY, USA
| | - James N. MacLeod
- Maxwell H. Gluck Equine Research Center,
Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
10
|
Mukherjee S, Biswas D, Epari S, Shetty P, Moiyadi A, Ball GR, Srivastava S. Comprehensive proteomic analysis reveals distinct functional modules associated with skull base and supratentorial meningiomas and perturbations in collagen pathway components. J Proteomics 2021; 246:104303. [PMID: 34174477 DOI: 10.1016/j.jprot.2021.104303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/31/2021] [Accepted: 06/05/2021] [Indexed: 12/18/2022]
Abstract
Meningiomas are brain tumors that originate from the meninges and has been primarily classified into three grades by the current WHO guidelines. Although widely prevalent and can be managed by surgery there are instances when the tumors are located in difficult regions. This results in considerable challenges for complete surgical resection and further clinical management. While the genetic signature of the skull base tumors is now known to be different from the non-skull base tumors, there is a lack of information at the functional aspects of these tumors at the proteomic level. Thus, the current study thereby aims to obtain mechanistic insights between the two radiologically distinct groups of meningiomas, namely the skull base & supratentorial (non-skull base-NSB) regions. We have employed a comprehensive mass spectrometry-based label-free quantitative proteomic analysis in Skull base and supratentorial meningiomas. Further, we have used an Artificial Neural Networking employing a sparse Multilayer perceptron (MLP) architecture to predict protein concordance. A patient-derived spectral library has been employed for a novel peptide-level validation of proteins that are specific to the radiological regions using the SRM assay based targeted proteomics approach. The comprehensive proteomics enabled the identification of nearly 4000 proteins with high confidence (1%FDR ≥ 2 unique peptides) among which 170 proteins were differentially abundant in Skull base vs Supratentorial tumors (p-value ≤0.05). In silico analysis enabled mapping of the major alterations and hinted towards an overall perturbation of extracellular matrix and collagen biosynthesis components in the non-skull base meningiomas and a prominent perturbation of molecular trafficking in the skull base meningiomas. Therefore, this study has yielded novel insights into the functional association of the proteins that are differentially abundant in the two radiological subgroups. SIGNIFICANCE: In the current study, we have performed label-free proteomic analysis on fresh frozen tissue of 14 Supratentorial (NSB) and 7 Skull base meningiomas to assess perturbations in the global proteome, we have further employed an in-depth in silico analysis to map the pathways that have enabled functional mapping of the differentially abundant proteins in the Skull base and Supratentorial tumors. The findings from the above were also subjected to a machine learning-based neural networking to find out the proteins that have the most concordance of occurrence to determine the most influential proteins of the network. We further validated the differential abundance of identified protein markers in a larger patient cohort of Skull base and Supratentorial employing targeted proteomics approach to validate key protein candidates emerging from ours and other recent studies. The previous studies that have explored the skull base and convexity meningiomas have been able to reveal alterations in the genetic mutations in these tumor types. However, there are not many studies that have explored the functional aspects of these tumors, especially at the proteome level. We have attempted for the first time to map the functional modules associated with altered proteins in these tumors and have been able to identify that there is a possibility that the Skull base meningiomas to be considerably different from the Non-skull base (NSB) tumors in terms of the perturbed pathways. Our study employed global as well as targeted proteomics to examine the proteomic alterations in these two tumor groups. The study indicates that proteins that were more abundant in Skull base tumors were part of molecular transport components, non-skull base proteins majorly mapped to the components of extracellular matrix remodeling pathways. In conclusion, this study substantiates the distinction in the proteomic signatures in the skull base and supratentorial meningiomas paving way for further investigation of the identified markers for determining if some of these proteins can be used for therapeutic interventions for cases that pose considerable challenges for complete resection.
Collapse
Affiliation(s)
- Shuvolina Mukherjee
- Proteomics Lab, Department of Biosciences & Bioengineering, IIT Bombay, Mumbai, 400076, Maharashtra, India; Department of Immunotechnology, Lund University, Medicon Village, 22100 Lund, Sweden
| | - Deeptarup Biswas
- Proteomics Lab, Department of Biosciences & Bioengineering, IIT Bombay, Mumbai, 400076, Maharashtra, India
| | - Sridhar Epari
- Department of Pathology, Tata Memorial Centre, Mumbai, Dr. E Borges Road, Parel, Mumbai 400 012, India
| | - Prakash Shetty
- Department of Neurosurgery, Tata Memorial Centre, Mumbai, Dr. E Borges Road, Parel, Mumbai 400 012, India
| | - Aliasgar Moiyadi
- Department of Neurosurgery, Tata Memorial Centre, Mumbai, Dr. E Borges Road, Parel, Mumbai 400 012, India
| | - Graham Roy Ball
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Sanjeeva Srivastava
- Proteomics Lab, Department of Biosciences & Bioengineering, IIT Bombay, Mumbai, 400076, Maharashtra, India.
| |
Collapse
|
11
|
Cheng L, Chen C, Guo W, Liu K, Zhao Q, Lu P, Yu F, Xu X. EFEMP1 Overexpression Contributes to Neovascularization in Age-Related Macular Degeneration. Front Pharmacol 2021; 11:547436. [PMID: 33584252 PMCID: PMC7874111 DOI: 10.3389/fphar.2020.547436] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 12/01/2020] [Indexed: 11/13/2022] Open
Abstract
Purpose: Age-related macular degeneration (AMD) is one of the leading causes of blindness, and choroidal neovascularization (CNV) in AMD can lead to serious visual impairment. Gene expression profiling of human ocular tissues have a great potential to reveal the pathophysiology of AMD. This study aimed to identify novel molecular biomarkers and gene expression signatures of AMD. Methods: We analyzed transcriptome profiles in retinal-choroid tissues derived from donor patients with AMD in comparison with those from healthy controls using a publicly available dataset (GSE29801). We focused on the EFEMP1 gene, which was found to be differentially upregulated in AMD, especially in wet AMD eyes. Serological validation analysis was carried out to verify the expression of EFEMP1 in 39 wet AMD patients and 39 age- and gender-matched cataract controls, using an enzyme-linked immunosorbent assay (ELISA). We then investigated the role of EFEMP1 in angiogenesis through in vitro experiments involving EFEMP1 overexpression (OE) and knockdown in human umbilical vein endothelial cells (HUVECs). Results: An increase in EFEMP1 expression was observed in the retinal-choroid tissues of eyes with AMD, which was more significant in wet AMD than in dry AMD. In addition, there was a significant increase in serum fibulin-3 (EFEMP1 encoded protein) concentration in patients with wet AMD compared with that in the controls. Tube formation and proliferation of EFEMP1-OE HUVECs increased significantly, whereas those of EFEMP1 knockdown HUVECs decreased significantly compared with those of the control. Additional extracellular fibulin-3 treatments did not increase tube formation and proliferation of wildtype and EFEMP1 knockdown HUVECs, indicating that the proangiogenic properties of EFEMP1 are of cell origin. We also found that vascular endothelial growth factor expression in HUVECs was upregulated by EFEMP1 overexpression and downregulated by EFEMP1 knockdown. Conclusion: Our findings demonstrate EFEMP1 as a novel biomarker for CNV in AMD, providing a new target for the development of wet AMD-directed pharmaceuticals and diagnostics.
Collapse
Affiliation(s)
- Lu Cheng
- Shanghai Key Laboratory of Ocular Fundus Diseases, Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiaotong University, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Chong Chen
- Shanghai Key Laboratory of Ocular Fundus Diseases, Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiaotong University, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Wenke Guo
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, China
| | - Kun Liu
- Shanghai Key Laboratory of Ocular Fundus Diseases, Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiaotong University, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Qianqian Zhao
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, China
| | - Ping Lu
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, China
| | - Fudong Yu
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, China
| | - Xun Xu
- Shanghai Key Laboratory of Ocular Fundus Diseases, Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiaotong University, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| |
Collapse
|
12
|
Zhang C, Yu C, Li W, Zhu Y, Ye Y, Wang Z, Lin Z. Fibulin-3 affects vascular endothelial function and is regulated by angiotensin II. Microvasc Res 2020; 132:104043. [PMID: 32707048 DOI: 10.1016/j.mvr.2020.104043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The aim of the present study was to investigate the effect of fibulin-3 on vascular endothelial function, and to explore the relevant underlying mechanism with regard to the involvement of angiotensin II (AngII). METHODS One hundred and eight patients with essential hypertension (EH) and 31 controls were included to measure the flow-mediated dilatation (FMD). Serum fibulin-3 and AngII were examined using enzyme-linked immunosorbent assay (ELISA) and radioimmunoassay. Stable transfection of fibulin-3 was conducted on human umbilical vein endothelial cells (HUVECs) and SV40T-transformed HUVECs (PUMC-HUVEC-T1 cells). Cell counting kit-8 assay, cell cycle assay, wound healing assay, Transwell assay, apoptosis assay, and tube formation assay were subsequently performed. The expression of angiogenesis-associated genes [endothelial nitric oxide synthase (eNOS) and vascular endothelial growth factor A (VEGFA)] were measured by western blot analysis. HUVECs and PUMC-HUVEC-T1 cells were treated with AngII, and with or without an inhibitor of nuclear factor κB (NF-κB), BAY 11-7082. Pro-inflammatory cytokines [interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α)] were detected by ELISA. The expression levels of fibulin-3 and p65 were then measured by western blotting. RESULTS Lower levels of serum fibulin-3 were accompanied by poorer FMD and higher levels of serum AngII in patients with EH. Fibulin-3 overexpression promoted cell proliferation, migration, and angiogenesis, but led to an inhibition of apoptosis. By contrast, fibulin-3 downregulation inhibited cell proliferation, migration and angiogenesis, but promoted apoptosis. AngII induced inflammation and inhibited the expression of fibulin-3. BAY 11-7082 eliminated the inhibitory effect of AngII on fibulin-3. CONCLUSIONS Taken together, the results of the present study have shown that serum fibulin-3 may be a predictor of vascular endothelial function in patients with EH. Fibulin-3 gene may also have a beneficial role in repairing the vascular endothelium. Furthermore, the results also suggested that fibulin-3 gene was suppressed by AngII via the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Chiming Zhang
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Chan Yu
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Wenlei Li
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Yaoyao Zhu
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Yuling Ye
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Zhuo Wang
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China.
| | - Zhongwei Lin
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, PR China.
| |
Collapse
|
13
|
Cosentino G, Romero-Cordoba S, Plantamura I, Cataldo A, Iorio MV. miR-9-Mediated Inhibition of EFEMP1 Contributes to the Acquisition of Pro-Tumoral Properties in Normal Fibroblasts. Cells 2020; 9:cells9092143. [PMID: 32972039 PMCID: PMC7565260 DOI: 10.3390/cells9092143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/11/2020] [Accepted: 09/18/2020] [Indexed: 12/24/2022] Open
Abstract
Tumor growth and invasion occurs through a dynamic interaction between cancer and stromal cells, which support an aggressive niche. MicroRNAs are thought to act as tumor messengers to “corrupt” stromal cells. We previously demonstrated that miR-9, a known metastamiR, is released by triple negative breast cancer (TNBC) cells to enhance the transition of normal fibroblasts (NFs) into cancer-associated fibroblast (CAF)-like cells. EGF containing fibulin extracellular matrix protein 1 (EFEMP1), which encodes for the ECM glycoprotein fibulin-3, emerged as a miR-9 putative target upon miRNA’s exogenous upmodulation in NFs. Here we explored the impact of EFEMP1 downmodulation on fibroblast’s acquisition of CAF-like features, and how this phenotype influences neoplastic cells to gain chemoresistance. Indeed, upon miR-9 overexpression in NFs, EFEMP1 resulted downmodulated, both at RNA and protein levels. The luciferase reporter assay showed that miR-9 directly targets EFEMP1 and its silencing recapitulates miR-9-induced pro-tumoral phenotype in fibroblasts. In particular, EFEMP1 siRNA-transfected (si-EFEMP1) fibroblasts have an increased ability to migrate and invade. Moreover, TNBC cells conditioned with the supernatant of NFs transfected with miR-9 or si-EFEMP1 became more resistant to cisplatin. Overall, our results demonstrate that miR-9/EFEMP1 axis is crucial for the conversion of NFs to CAF-like cells under TNBC signaling.
Collapse
Affiliation(s)
- Giulia Cosentino
- Molecular Targeting Unit, Research Department, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (G.C.); (S.R.-C.); (I.P.)
| | - Sandra Romero-Cordoba
- Molecular Targeting Unit, Research Department, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (G.C.); (S.R.-C.); (I.P.)
- Biochemistry Department, Instituto Nacional de Ciencias Médicas y Nutriciòn Salvador Zubirán, Mexico City 14080, Mexico
| | - Ilaria Plantamura
- Molecular Targeting Unit, Research Department, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (G.C.); (S.R.-C.); (I.P.)
| | - Alessandra Cataldo
- Molecular Targeting Unit, Research Department, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (G.C.); (S.R.-C.); (I.P.)
- Correspondence: (A.C.); (M.V.I.); Tel.: +39-022-390-5134 (M.V.I.)
| | - Marilena V. Iorio
- Molecular Targeting Unit, Research Department, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (G.C.); (S.R.-C.); (I.P.)
- Istituto FIRC Oncologia Molecolare (IFOM), 20139 Milan, Italy
- Correspondence: (A.C.); (M.V.I.); Tel.: +39-022-390-5134 (M.V.I.)
| |
Collapse
|
14
|
Ding Y, Chen Y, Wu M, Li L, Huang Y, Wang H, Wang H, Yu X, Xu N, Teng L. Identification of genes associated with gastric cancer survival and construction of a nomogram to improve risk stratification for patients with gastric cancer. Oncol Lett 2020; 20:215-225. [PMID: 32537023 PMCID: PMC7291675 DOI: 10.3892/ol.2020.11543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023] Open
Abstract
The present study aimed to identify genes associated with gastric cancer survival and improve risk stratification for patients with gastric cancer. Transcriptomic and clinicopathological data from 443 gastric cancer samples were retrieved from The Cancer Genome Atlas database. The DESeq R package was applied to screen for differentially expressed genes between Tumor-Node-Metastasis (TNM) stage (I vs. IV) and histological grade (G3 vs. G1 and G2). A total of seven genes were common to both comparisons; spondin 1 (SPON1); thrombospondin 4 (THBS4); Sushi, Von Willebrand factor type A, EGF and pentraxin domain containing 1 (SVEP1); prickle planar cell polarity protein 1 (PRICKLE1); ATP binding cassette subfamily A member 8 (ABCA8); Slit guidance ligand 2 (SLIT2); and EGF containing fibulin extracellular matrix protein 1 (EFEMP1), were selected as candidate survival-associated genes for further analysis. The prognostic value of these genes was assessed according to a literature review and Kaplan-Meier survival analysis. In addition, a multivariate Cox regression analysis revealed PRICKLE1 expression to be an independent prognostic factor for patients with gastric cancer. Furthermore, a predictive nomogram was generated using PRICKLE1 expression, patient age and TNM stage to assess overall survival (OS) rate at 1, 3 and 5 years, with an internal concordance index of 0.65. External validation was conducted in an independent cohort of 59 patients with gastric cancer, and high consistency between the predicted and observed results for OS was exhibited. Overall, the current findings suggest that PRICKLE1 expression may serve as an independent prognostic factor that can be integrated with age and TNM stage in a nomogram able to predict OS rate in patients with gastric cancer.
Collapse
Affiliation(s)
- Yongfeng Ding
- Cancer Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang 310003, P.R. China
| | - Yanyan Chen
- Cancer Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang 310003, P.R. China
| | - Mengjie Wu
- Cancer Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang 310003, P.R. China
| | - Linrong Li
- Department of Otorhinolaryngology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Yingying Huang
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang 310003, P.R. China
| | - Haiyong Wang
- Cancer Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang 310003, P.R. China
| | - Haohao Wang
- Cancer Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang 310003, P.R. China
| | - Xiongfei Yu
- Cancer Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang 310003, P.R. China
| | - Nong Xu
- Cancer Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Lisong Teng
- Cancer Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
15
|
Martinez VG, Pankova V, Krasny L, Singh T, Makris S, White IJ, Benjamin AC, Dertschnig S, Horsnell HL, Kriston-Vizi J, Burden JJ, Huang PH, Tape CJ, Acton SE. Fibroblastic Reticular Cells Control Conduit Matrix Deposition during Lymph Node Expansion. Cell Rep 2019; 29:2810-2822.e5. [PMID: 31775047 PMCID: PMC6899512 DOI: 10.1016/j.celrep.2019.10.103] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 10/09/2019] [Accepted: 10/25/2019] [Indexed: 12/11/2022] Open
Abstract
Lymph nodes (LNs) act as filters, constantly sampling peripheral cues. This is facilitated by the conduit network, a tubular structure of aligned extracellular matrix (ECM) fibrils ensheathed by fibroblastic reticular cells (FRCs). LNs undergo rapid 3- to 5-fold expansion during adaptive immune responses, but these ECM-rich structures are not permanently damaged. Whether conduit flow or filtering function is affected during LN expansion is unknown. Here, we show that conduits are partially disrupted during acute LN expansion, but FRC-FRC contacts remain connected. We reveal that polarized FRCs deposit ECM basolaterally using LL5-β and that ECM production is regulated at transcriptional and secretory levels by the C-type lectin CLEC-2, expressed by dendritic cells. Inflamed LNs maintain conduit size exclusion, and flow is disrupted but persists, indicating the robustness of this structure despite rapid tissue expansion. We show how dynamic communication between peripheral tissues and LNs provides a mechanism to prevent inflammation-induced fibrosis in lymphoid tissue.
Collapse
Affiliation(s)
- Victor G Martinez
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Valeriya Pankova
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Lukas Krasny
- Division of Molecular Pathology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Tanya Singh
- Bioinformatics Image Core, MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Spyridon Makris
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Ian J White
- Electron Microscopy Facility, MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Agnesska C Benjamin
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Simone Dertschnig
- UCL Institute of Immunity and Transplantation, University College London, London NW3 2PF, UK
| | - Harry L Horsnell
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Janos Kriston-Vizi
- Bioinformatics Image Core, MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Jemima J Burden
- Electron Microscopy Facility, MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Paul H Huang
- Division of Molecular Pathology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Christopher J Tape
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, 72 Huntley Street, London WC1E 6DD, UK
| | - Sophie E Acton
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
16
|
Fibulin-3 Has Anti-Tumorigenic Activities in Cutaneous Squamous Cell Carcinoma. J Invest Dermatol 2019; 139:1798-1808.e5. [PMID: 30738056 DOI: 10.1016/j.jid.2019.01.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 01/04/2019] [Accepted: 01/18/2019] [Indexed: 01/11/2023]
|
17
|
Hu J, Duan B, Jiang W, Fu S, Gao H, Lu L. Epidermal growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1) suppressed the growth of hepatocellular carcinoma cells by promoting Semaphorin 3B(SEMA3B). Cancer Med 2019; 8:3152-3166. [PMID: 30972979 PMCID: PMC6558597 DOI: 10.1002/cam4.2144] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 03/10/2019] [Indexed: 01/04/2023] Open
Abstract
AIM Epidermal growth factor-containing fibulin-like extracellular matrix protein 1(EFEMP1) has been found to be involved in the occurrence and development of many cancers. The relationship between EFEMP1 and the development of hepatocellular carcinoma (HCC) and the molecular mechanism are not fully understood. METHODS Real-time polymerase chain reaction (PCR) and tissue microarray were used to detect the expression of EFEMP1 in HCC cell lines and tissue. Methylation-specific PCR assay was used to measure the methylation level of EFEMP1 in HCC cell lines and tissue. To study the function of EFEMP1 on cell function, Huh7 and HepG2 were infected with lentiviral particles expressing EFEMP1. MTT assay and colony formation assay were used to examine the effect of EFEMP1 on cell proliferation. Annexin-VAPC/7-AAD double were used to detect the effect of EFEMP1 on cell apoptosis. To further detect the effect of EFEMP1 on the development of HCC in vivo, we performed the tumor formation experiment in nude mice. Gene chip was used to detect the expression profile of Huh7 and HepG2 overexpressing EFEMP1. To further screen out the differences, GO analysis and pathway analysis were performed. To study the effects of SEMA3B, specific siRNA was used to inhibit the expression of SEMA3B. Chi-squared test and rank sum test were used to analyze the relationship between EFEMP1 expression and HCC clinical characteristic. RESULTS The study found that the expression of EFEMP1 was significantly decreased in HCC cell lines and HCC tissues. The expression level of EFEMP1 was related to the TNM (the extent of the tumor, the extent of spread to the lymph nodes, the presence of metastasis) stage and the prognosis of patients with HCC. The decrease of protein expression suggested that the patient prognosis was worse, and the protein level of EFEMP1 may be an independent factor in the prognosis of HCC patients. Promoter methylation may be one of the reasons for EFEMP1 inhibition. EFEMP1 could inhibit the proliferation of HCC cells and promoted the apoptosis of HCC cells to regulate the development of HCC. And EFEMP1 promoted the apoptosis of HCC cells mainly through the mitochondrial apoptosis pathway. EFEMP1 may inhibit the proliferation of HCC cells through the SEMA3B gene in the Axon guidance pathway. CONCLUSION In summary, our research revealed the regulation of EFEMP1 on cell proliferation and apoptosis in HCC. EFEMP1 may suppress the growth of HCC cells by promoting SEMA3B.
Collapse
Affiliation(s)
- Jiangfeng Hu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bensong Duan
- Endoscopy Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Weiliang Jiang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Sengwang Fu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hengjun Gao
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lungen Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Wang X, Sun X, Qu X, Li C, Yang P, Jia J, Liu J, Zheng Y. Overexpressed fibulin‐3 contributes to the pathogenesis of psoriasis by promoting angiogenesis. Clin Exp Dermatol 2018; 44:e64-e72. [PMID: 30146751 DOI: 10.1111/ced.13720] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2018] [Indexed: 01/21/2023]
Affiliation(s)
- X. Wang
- Department of Dermatology Second Affiliated Hospital of Xi'an Jiaotong University Xi'an China
| | - X. Sun
- Department of Dermatology Shaanxi Provincial People's Hospital Xi'an China
| | - X. Qu
- Department of Dermatology Second Affiliated Hospital of Xi'an Jiaotong University Xi'an China
| | - C. Li
- Department of Dermatology Second Affiliated Hospital of Xi'an Jiaotong University Xi'an China
| | - P. Yang
- Department of Dermatology Second Affiliated Hospital of Xi'an Jiaotong University Xi'an China
| | - J. Jia
- Department of Dermatology Second Affiliated Hospital of Xi'an Jiaotong University Xi'an China
| | - J. Liu
- Center for Mitochondrial Biology and Medicine Key Laboratory of Biomedical Information Engineering of Ministry of Education Xi'an Jiaotong University Xi'an China
- School of Life Science and Technology Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an China
| | - Y. Zheng
- Department of Dermatology Second Affiliated Hospital of Xi'an Jiaotong University Xi'an China
| |
Collapse
|
19
|
Li J, Qi C, Liu X, Li C, Chen J, Shi M. Fibulin-3 knockdown inhibits cervical cancer cell growth and metastasis in vitro and in vivo. Sci Rep 2018; 8:10594. [PMID: 30006571 PMCID: PMC6045626 DOI: 10.1038/s41598-018-28906-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/29/2018] [Indexed: 12/02/2022] Open
Abstract
To explore the function of fibulin-3 in cervical carcinoma malignant cell growth and metastasis, fibulin-3 expression in normal cervical tissue, cervical intraepithelial neoplasia (CIN), and cervical carcinoma were evaluated by immunohistochemistry. Quantitative real-time-polymerase chain reaction, western blotting, and immunocytochemistry were performed to assess the expression of fibulin-3 at mRNA and protein levels in different invasive clone sublines. Fibulin-3 shRNA and fibulin-3 cDNA were used to transfect the strongly and weakly invasive clone sublines. Using in vitro and in vivo functional assays, we investigated the effects of down-regulating and up-regulating fibulin-3 expression on the proliferation and invasion of different clone sublines. Epithelial mesenchymal transition (EMT) and its signaling pathways PI3K/AKT and ERK were studied carefully in lentiviral transfection systems. Fibulin-3 was upregulated in cervical carcinoma, and its overexpression was significantly related with malignant phenotype and poor prognosis of cervical carcinoma. Fibulin-3 promoted cervical cancer cell invasive capabilities by eliciting EMT and activating the PI3K-Akt-mTOR signal transduction pathway. Fibulin-3 could facilitate the process of cervical cancer development. The results presented here will help develop novel prognostic factors and possible therapeutic options for patients with cervical cancer.
Collapse
Affiliation(s)
- Juan Li
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250021, China
| | - Chen Qi
- Department of Obstetrics and Gynecology, Shan Xian Maternal and Child Care and family planning service center, Shan Xian, 274300, China
| | - Xia Liu
- Department of Obstetrics and Gynecology, Shan Xian Maternal and Child Care and family planning service center, Shan Xian, 274300, China
| | - Changzhong Li
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250021, China
| | - Jie Chen
- Department of Maternal and Child Health, School of Public Health, Shandong University, Jinan, 250012, China
| | - Min Shi
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250021, China.
| |
Collapse
|
20
|
Yin X, Fang S, Wang M, Wang Q, Fang R, Chen J. EFEMP1 promotes ovarian cancer cell growth, invasion and metastasis via activated the AKT pathway. Oncotarget 2018; 7:47938-47953. [PMID: 27351229 PMCID: PMC5216990 DOI: 10.18632/oncotarget.10296] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/09/2016] [Indexed: 11/25/2022] Open
Abstract
EFEMP1, a kind of extracellular matrix (ECM) protein, has been suggested to correlate with the development of different types of carcinoma. However, its functions in ovarian cancer remain unclear. In our study, we performed cDNA microarray analysis and identified EFEMP1 dramatically elevated in the highly invasive subclone, compared with the low invasive subclone. Lentivirus transfection experiments were constructed afterwards. The results demonstrated that knockdown of EFEMP1 significantly inhibited ovarian cancer cell proliferation and induced cell cycle arrest at the G1/G0 phase. We also found that decreased the activity of phospho-AKT could suppress cell invasion and metastasis. Meanwhile, the increased phospho-AKT activity induced by the overexpression of EFEMP1 had significantly enhanced the abilities of ovarian cancer cells to invade and migrate. In addition, the vivo nude mice model confirmed that EFEMP1 was tightly correlated with the development of tumor. The results of RT2 Profiler EMT PCR array further indicated that decreased EFEMP1 suppressed epithelial-to-mesenchymal transition (EMT). Collectively, by activating AKT signaling pathway, EFEMP1 contributed to ovarian cancer invasion and metastasis as a positive regulator. Overall, EFEMP1 had showed the potential use in the development of new therapeutic strategies for ovarian cancer.
Collapse
Affiliation(s)
- Xiuxiu Yin
- Department of Maternal and Child Health, School of Public Health, Shandong University, Jinan, 250012, China.,The No.1 People's Hospital of Jining, Jining 272000, China
| | - Shuang Fang
- Biochemistry and Molecular Biology, Georgetown University, Georgetown, Washington D.C, 20057, USA
| | - Mei Wang
- Pharmacy Department, Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250012, China
| | - Qiang Wang
- Department of Obstetrics and Gynecology, the Second Hospital affiliated to Jilin University, Jilin, 130000, China
| | - Rui Fang
- Clinical Medicine, School of Medicine, Shandong University, Jinan 250012, China
| | - Jie Chen
- Department of Maternal and Child Health, School of Public Health, Shandong University, Jinan, 250012, China
| |
Collapse
|
21
|
Yang T, Zhang H, Qiu H, Li B, Wang J, Du G, Ren C, Wan X. EFEMP1 is repressed by estrogen and inhibits the epithelial-mesenchymal transition via Wnt/β-catenin signaling in endometrial carcinoma. Oncotarget 2017; 7:25712-25. [PMID: 27015552 PMCID: PMC5041938 DOI: 10.18632/oncotarget.8263] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/02/2016] [Indexed: 01/06/2023] Open
Abstract
Epidermal growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1) acted as a tumor suppressor in endometrial carcinoma (EC). However, the correlation between EFEMP1 and estrogen is unknown. Here, we reported that the expression of EFEMP1 was conversely associated with ERα in endometrial carcinoma tissues. In endometrial carcinoma cells, estrogen/ERα signaling significantly suppressed the expression of EFEMP1. Moreover, chromatin immunoprecipitation (CHIP) and dual-luciferase reporter assays demonstrate that estrogen/ERα bound to the estrogen response element (ERE) located in EFEMP1 promoter and repressed its expression. Besides, in vitro and in vivo, EFEMP1 could remarkably suppress the expression of epithelial-mesenchymal transition (EMT) markers such as Vimentin, Snail and the Wnt/β-catenin target genes like Cyclin-D1 and c-Myc, which could be restored when EFEMP1 was silenced. In addition, XAV93920 (the inhibitor of the Wnt/β-catenin pathway) blocked and LiCl (the activator of the Wnt/β-catenin pathway) enhanced the effect of EFEMP1 on EMT. In conclusion, we demonstrated that estrogen/ERα signal suppresses EFEMP1. Besides, EFEMP1 inhibits EMT via interfering the Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Tingting Yang
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital Affiliated to Nanjing Medical University, Nanjing, China.,Center for Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Huilin Zhang
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital Affiliated to Nanjing Medical University, Nanjing, China.,Department of Gynecology and Obstetrics, Nanjing Maternal and Children Care Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Haifeng Qiu
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Bilan Li
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jingyun Wang
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guiqiang Du
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chune Ren
- Center for Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiaoping Wan
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital Affiliated to Nanjing Medical University, Nanjing, China.,Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
22
|
Hu J, Dong D, Lu D. The associations between common SNPs of EFEMP1 gene and glioma risk in Chinese population. Onco Targets Ther 2017; 10:5297-5302. [PMID: 29158681 PMCID: PMC5683781 DOI: 10.2147/ott.s143610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background Although the associations between common single nucleotide polymorphisms (SNPs) of EFEMP1 gene and glioma risk have been investigated in Chinese population-based case–control studies, investigation results for several SNPs are inconsistent. In addition, the single-center study has a poor statistical power due to finite sample size. Therefore, a meta-analysis was conducted to comprehensively determine the associations. Methods All eligible case–control studies were obtained by searching PubMed, EMBASE, Web of Science, and Chinese National Knowledge Infrastructure. Pooled odds ratio (OR) with 95% confidence interval (CI) was used to assess the strength of the associations in fixed- or random-effects model. Results EFEMP1 rs1346787 polymorphism was significantly associated with glioma risk in Chinese population under all genetic models (GG vs AA, OR =2.22, 95% CI =1.46–3.36; AG vs AA, OR =1.54, 95% CI =1.27–1.87; (GG+AG) vs AA, OR =1.60, 95% CI =1.34–1.93; GG vs (AG+AA), OR =1.86, 95% CI =1.24–2.78; G vs A, OR =1.54, 95% CI =1.32–1.79). However, the significant association of EFEMP1 rs1346786 with glioma risk in Chinese population was observed only under heterozygous model of AG vs AA (OR =1.34, 95% CI =1.10–1.62), dominant model of (GG+AG) vs AA (OR =1.36, 95% CI =1.13–1.63), and allelic model of G vs A (OR =1.28, 95% CI =1.10–1.50). Conclusion Our study demonstrated that EFEMP1 polymorphisms, especially rs1346787 and rs1346786, might predict glioma risk in Chinese population. However, high-quality case–control studies with larger sample sizes are warranted to confirm the above-mentioned findings.
Collapse
Affiliation(s)
- Jun Hu
- Research Centre of Biomedical Technology Co., Ltd., Jiangsu Vocational College of Medicine, Yancheng, Jiangsu
| | - Dong Dong
- Department of Pharmacy, Women and Infants Hospital of Zhengzhou, Zhengzhou, Henan
| | - Dandan Lu
- Department of Dermatology, The Third Hospital of Jinan, Jinan, Shandong, China
| |
Collapse
|
23
|
Nandhu MS, Behera P, Bhaskaran V, Longo SL, Barrera-Arenas LM, Sengupta S, Rodriguez-Gil DJ, Chiocca EA, Viapiano MS. Development of a Function-Blocking Antibody Against Fibulin-3 as a Targeted Reagent for Glioblastoma. Clin Cancer Res 2017; 24:821-833. [PMID: 29146721 DOI: 10.1158/1078-0432.ccr-17-1628] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/10/2017] [Accepted: 11/08/2017] [Indexed: 12/23/2022]
Abstract
Purpose: We sought a novel approach against glioblastomas (GBM) focused on targeting signaling molecules localized in the tumor extracellular matrix (ECM). We investigated fibulin-3, a glycoprotein that forms the ECM scaffold of GBMs and promotes tumor progression by driving Notch and NFκB signaling.Experimental Design: We used deletion constructs to identify a key signaling motif of fibulin-3. An mAb (mAb428.2) was generated against this epitope and extensively validated for specific detection of human fibulin-3. mAb428.2 was tested in cultures to measure its inhibitory effect on fibulin-3 signaling. Nude mice carrying subcutaneous and intracranial GBM xenografts were treated with the maximum achievable dose of mAb428.2 to measure target engagement and antitumor efficacy.Results: We identified a critical 23-amino acid sequence of fibulin-3 that activates its signaling mechanisms. mAb428.2 binds to that epitope with nanomolar affinity and blocks the ability of fibulin-3 to activate ADAM17, Notch, and NFκB signaling in GBM cells. mAb428.2 treatment of subcutaneous GBM xenografts inhibited fibulin-3, increased tumor cell apoptosis, and enhanced the infiltration of inflammatory macrophages. The antibody reduced tumor growth and extended survival of mice carrying GBMs as well as other fibulin-3-expressing tumors. Locally infused mAb428.2 showed efficacy against intracranial GBMs, increasing tumor apoptosis and reducing tumor invasion and vascularization, which are enhanced by fibulin-3.Conclusions: To our knowledge, this is the first rationally developed, function-blocking antibody against an ECM target in GBM. Our results offer a proof of principle for using "anti-ECM" strategies toward more efficient targeted therapies for malignant glioma. Clin Cancer Res; 24(4); 821-33. ©2017 AACR.
Collapse
Affiliation(s)
- Mohan S Nandhu
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.,Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York
| | - Prajna Behera
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.,Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York
| | - Vivek Bhaskaran
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Sharon L Longo
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, New York
| | - Lina M Barrera-Arenas
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York
| | - Sadhak Sengupta
- Brain Tumor Laboratory, Roger Williams Medical Center, Providence, Rhode Island
| | - Diego J Rodriguez-Gil
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee
| | - E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Mariano S Viapiano
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts. .,Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York.,Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, New York
| |
Collapse
|
24
|
Cardiovascular homeostasis dependence on MICU2, a regulatory subunit of the mitochondrial calcium uniporter. Proc Natl Acad Sci U S A 2017; 114:E9096-E9104. [PMID: 29073106 PMCID: PMC5664535 DOI: 10.1073/pnas.1711303114] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hypertension increases the risk for development of abdominal aortic aneurysms, a silent pathology that is prone to rupture and cause sudden cardiac death. Male gender, smoking, and hypertension appear to increase risk for development of abdominal aortic aneurysms by provoking oxidative stress responses in cardiovascular tissues. Here we uncovered unexpected linkages between the calcium-sensing regulatory subunit MICU2 of the mitochondrial calcium uniporter and stress responses. We show that naive Micu2−/− mice had abnormalities of cardiac relaxation but, with modest blood pressure elevation, developed abdominal aortic aneurysms with spontaneous rupture. These findings implicate mitochondrial calcium homeostasis as a critical pathway involved in protecting cardiovascular tissues from oxidative stress. Comparative analyses of transcriptional profiles from humans and mice with cardiovascular pathologies revealed consistently elevated expression of MICU2, a regulatory subunit of the mitochondrial calcium uniporter complex. To determine if MICU2 expression was cardioprotective, we produced and characterized Micu2−/− mice. Mutant mice had left atrial enlargement and Micu2−/− cardiomyocytes had delayed sarcomere relaxation and cytosolic calcium reuptake kinetics, indicating diastolic dysfunction. RNA sequencing (RNA-seq) of Micu2−/− ventricular tissues revealed markedly reduced transcripts encoding the apelin receptor (Micu2−/− vs. wild type, P = 7.8 × 10−40), which suppresses angiotensin II receptor signaling via allosteric transinhibition. We found that Micu2−/− and wild-type mice had comparable basal blood pressures and elevated responses to angiotensin II infusion, but that Micu2−/− mice exhibited systolic dysfunction and 30% lethality from abdominal aortic rupture. Aneurysms and rupture did not occur with norepinephrine-induced hypertension. Aortic tissue from Micu2−/− mice had increased expression of extracellular matrix remodeling genes, while single-cell RNA-seq analyses showed increased expression of genes related to reactive oxygen species, inflammation, and proliferation in fibroblast and smooth muscle cells. We concluded that Micu2−/− mice recapitulate features of diastolic heart disease and define previously unappreciated roles for Micu2 in regulating angiotensin II-mediated hypertensive responses that are critical in protecting the abdominal aorta from injury.
Collapse
|
25
|
Wang S, Zhang D, Han S, Gao P, Liu C, Li J, Pan X. Fibulin-3 promotes osteosarcoma invasion and metastasis by inducing epithelial to mesenchymal transition and activating the Wnt/β-catenin signaling pathway. Sci Rep 2017; 7:6215. [PMID: 28740094 PMCID: PMC5524709 DOI: 10.1038/s41598-017-06353-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/08/2017] [Indexed: 11/09/2022] Open
Abstract
This study explored the role of fibulin-3 in osteosarcoma progression and the possible signaling pathway involved. Fibulin-3 mRNA and protein expression in normal tissue, benign fibrous dysplasia, osteosarcoma, osteosarcoma cell lines (HOS and U-2OS), the normal osteoblastic cell line hFOB, and different invasive subclones was evaluated by immunohistochemistry (IHC) or immunocytochemistry (ICC) and real time reverse transcriptase-polymerase chain reaction (real time qRT-PCR). To assess the role of fibulin-3 in the invasion and metastasis of osteosarcoma cells, lentiviral vectors with fibulin-3 small hairpin RNA (shRNA) and pLVX-fibulin-3 were constructed and used to infect the highly invasive and low invasive subclones. The effects of fibulin-3 knockdown and upregulation on the biological behavior of osteosarcoma cells were investigated by functional in vitro and in vivo assays. The results revealed that fibulin-3 expression was upregulated in osteosarcoma, and was positively correlated with low differentiation, lymph node metastasis, and poor prognosis. Fibulin-3 could promote osteosarcoma cell invasion and metastasis by inducing EMT and activating the Wnt/β-catenin signaling pathway. Collectively, our findings demonstrate that fibulin-3 is a promoter of osteosarcoma development and progression, and suggest a novel therapeutic target for future studies.
Collapse
Affiliation(s)
- Songgang Wang
- Department of orthopedics, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Dong Zhang
- Department of orthopedics, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Shasha Han
- Department of orthopedics, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Peng Gao
- Department of orthopedics, People's Hospital of zhangqiu, Zhangqiu, 250200, China
| | - Changying Liu
- Department of orthopedics, People's Hospital of Yinan, linyi, 276000, China
| | - Jianmin Li
- Department of orthopedics, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Xin Pan
- Department of orthopedics, Qilu Hospital, Shandong University, Jinan, 250012, China.
| |
Collapse
|
26
|
Short interfering RNA targeting Net1 reduces the angiogenesis and tumor growth of in vivo cervical squamous cell carcinoma through VEGF down-regulation. Hum Pathol 2017; 65:113-122. [DOI: 10.1016/j.humpath.2017.04.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/18/2017] [Accepted: 04/29/2017] [Indexed: 12/22/2022]
|
27
|
Rapisarda V, Caltabiano R, Musumeci G, Castrogiovanni P, Ferrante M, Ledda C, Lombardo C, Graziano ACE, Cardile V, Loreto C. Analysis of fibulin-3 after exposure to asbestos-like fibers. ENVIRONMENTAL RESEARCH 2017; 156:381-387. [PMID: 28395242 DOI: 10.1016/j.envres.2017.03.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 06/07/2023]
Abstract
A significantly increased incidence of malignant mesothelioma in Biancavilla (Sicily, Italy) has been ascribed to exposure to fluoro-edenite, a fibrous amphibole extracted from a local stone quarry. Fibulin-3 is a highly conserved glycoprotein proposed as a biomarker for malignant mesothelioma that belongs to the family of extracellular matrix proteins. Previous studies demonstrated high Fibulin-3 plasma levels in workers with pleural plaques exposed to fluoro-edenite. Therefore, in order to gain insight into the biomolecular mechanisms of fluoro-edenite toxicity, we performed the analysis of Fibulin-3 expression by immunohistochemistry in the lung samples derived from sheep belonging to the area of Biancavilla. Furthermore, an in vitro model of exposed fluoro-edenite fibroblasts was used to perform functional experiments to better understand the modulation of Fibulin-3 expression. The percentage of immunostained area by Fibulin-3 was very much higher in exposed lungs compared with non-exposed ones. The Fibulin-3 protein level was significantly expressed in primary human lung fibroblasts exposed to 50 and 100µg/ml of fluoro-edenite fibers for 72h, compared to the unexposed controls. The results from the present study further demonstrate the implication of Fibulin-3 during fluoro-edenite exposure. This would endorse our previous results regarding the use of Fibulin-3 as a possible screening biomarker for fluoro-edenite exposed individuals, thereby contributing to the monitoring of the population at risk. The present study also suggested that the Fibulin-3 overexpression may reflect a defensive response of the tissues after exogenous stimuli and may be implicated in cancer development, especially in the context of fluoro-edenite contamination. However, further studies are necessary in order to make Fibulin-3 a customized screening tool.
Collapse
Affiliation(s)
- Venerando Rapisarda
- Department of Clinical and Experimental Medicine, Section of Occupational Medicine, University of Catania, Italy
| | - Rosario Caltabiano
- Department "G.F. Ingrassia", Section of Hygiene and Public Health, University of Catania, Italy
| | - Giuseppe Musumeci
- Department of Biomedical Sciences and Biotechnologies, Anatomy and Histology Section, School of Medicine, University of Catania, Italy
| | - Paola Castrogiovanni
- Department of Biomedical Sciences and Biotechnologies, Anatomy and Histology Section, School of Medicine, University of Catania, Italy
| | - Margherita Ferrante
- Department of Biomedical Sciences and Biotechnologies, Physiology Section, School of Medicine, University of Catania, Italy
| | - Caterina Ledda
- Department of Clinical and Experimental Medicine, Section of Occupational Medicine, University of Catania, Italy.
| | - Claudia Lombardo
- Department of Biomedical Sciences and Biotechnologies, Anatomy and Histology Section, School of Medicine, University of Catania, Italy
| | | | - Venera Cardile
- Department of Biomedical Sciences and Biotechnologies, Physiology Section, School of Medicine, University of Catania, Italy
| | - Carla Loreto
- Department of Biomedical Sciences and Biotechnologies, Anatomy and Histology Section, School of Medicine, University of Catania, Italy
| |
Collapse
|
28
|
Han AL, Veeneman BA, El-Sawy L, Day KC, Day ML, Tomlins SA, Keller ET. Fibulin-3 promotes muscle-invasive bladder cancer. Oncogene 2017; 36:5243-5251. [DOI: 10.1038/onc.2017.149] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/27/2017] [Accepted: 04/14/2017] [Indexed: 12/20/2022]
|
29
|
MiR-338-5p suppresses proliferation, migration, invasion, and promote apoptosis of glioblastoma cells by directly targeting EFEMP1. Biomed Pharmacother 2017; 89:957-965. [DOI: 10.1016/j.biopha.2017.01.137] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/11/2017] [Accepted: 01/24/2017] [Indexed: 11/21/2022] Open
|
30
|
Nandhu MS, Kwiatkowska A, Bhaskaran V, Hayes J, Hu B, Viapiano MS. Tumor-derived fibulin-3 activates pro-invasive NF-κB signaling in glioblastoma cells and their microenvironment. Oncogene 2017; 36:4875-4886. [PMID: 28414309 PMCID: PMC5570669 DOI: 10.1038/onc.2017.109] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/19/2017] [Accepted: 03/04/2017] [Indexed: 12/19/2022]
Abstract
Molecular profiling of glioblastomas has revealed the presence of key signaling hubs that contribute to tumor progression and acquisition of resistance. One of these main signaling mechanisms is the NF-κB pathway, which integrates multiple extracellular signals into transcriptional programs for tumor growth, invasion, and maintenance of the tumor-initiating population. We show here that an extracellular protein released by glioblastoma cells, fibulin-3, drives oncogenic NF-κB in the tumor and increases NF-κB activation in peritumoral astrocytes. Fibulin-3 expression correlates with a NF-κB-regulated “invasive signature” linked to poorer survival, being a possible tissue marker for regions of active tumor progression. Accordingly, fibulin-3 promotes glioblastoma invasion in a manner that requires NF-κB activation both in the tumor cells and their microenvironment. Mechanistically, we found that fibulin-3 activates the metalloprotease ADAM17 by competing with its endogenous inhibitor, TIMP3. This results in sustained release of soluble TNFα by ADAM17, which in turn activates TNF receptors and canonical NF-κB signaling. Taken together, our results underscore fibulin-3 as a novel extracellular signal with strong activating effect on NF-κB in malignant gliomas. Because fibulin-3 is produced de novo in these tumors and is absent from normal brain we propose that targeting the fibulin-3/NF-κB axis may provide a novel avenue to disrupt oncogenic NF-κB signaling in combination therapies for malignant brain tumors.
Collapse
Affiliation(s)
- M S Nandhu
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Neuroscience and Physiology, State University of New York, Upstate Medical University, Syracuse, NY, USA
| | - A Kwiatkowska
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - V Bhaskaran
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - J Hayes
- Department of Neurological Surgery, Helen Diller Family Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - B Hu
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA
| | - M S Viapiano
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Neuroscience and Physiology, State University of New York, Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
31
|
Zhang D, Wang S, Chen J, Liu H, Lu J, Jiang H, Huang A, Chen Y. Fibulin-4 promotes osteosarcoma invasion and metastasis by inducing epithelial to mesenchymal transition via the PI3K/Akt/mTOR pathway. Int J Oncol 2017; 50:1513-1530. [PMID: 28339091 PMCID: PMC5403358 DOI: 10.3892/ijo.2017.3921] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/13/2017] [Indexed: 01/01/2023] Open
Abstract
This study explored the role of fibulin-4 in osteosarcoma progression and the possible signaling pathway involved. Fibulin-4 mRNA and protein expression in normal tissue, benign fibrous dysplasia, osteosarcoma, osteosarcoma cell lines, the normal osteoblastic cell line hFOB, and different invasive subclones were evaluated by immunohistochemistry (IHC) or immunocytochemistry (ICC) and real-time reverse transcriptase-polymerase chain reaction (real-time qRT-PCR). Using in vitro functional assays, we analyzed the invasive and proliferative abilities of different osteosarcoma cell lines and subclones with differing invasive potential. To assess the role of fibulin-4 in the invasion and metastasis of osteosarcoma cells, lentiviral vectors with fibulin-4 small hairpin RNA (shRNA) and pLVX-fibulin-4 were constructed and used to infect the highly invasive and low invasive subclones and osteosarcoma cell lines. The effects of fibulin-4 knockdown and upregulation on the biological behavior of osteosarcoma cells were investigated by functional in vitro and in vivo assays. The results revealed that fibulin-4 expression was upregulated in osteosarcoma, and was positively correlated with low differentiation, lymph node metastasis, and poor prognosis. Fibulin-4 was also found to be over-expressed in highly invasive cell lines and in the highly invasive subclones. Fibulin-4 could promote osteosarcoma cell invasion and metastasis by inducing EMT via the PI3K/AKT/mTOR pathway. Collectively, our findings demonstrate that fibulin-4 is a promoter of osteosarcoma development and progression, and suggest a novel therapeutic target for future studies.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Songgang Wang
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jie Chen
- Department of Maternal and Child Health, School of Public Health, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Haitao Liu
- Department of Orthopedics, Xiangcheng No. 2 People's Hospital, Suzhou, Jiangsu 215143, P.R. China
| | - Jinfa Lu
- Department of Orthopedics, Xiangcheng No. 2 People's Hospital, Suzhou, Jiangsu 215143, P.R. China
| | - Hua Jiang
- Department of Orthopedics, Xiangcheng No. 2 People's Hospital, Suzhou, Jiangsu 215143, P.R. China
| | - Aimin Huang
- Department of Orthopedics, Xiangcheng No. 2 People's Hospital, Suzhou, Jiangsu 215143, P.R. China
| | - Yunzhen Chen
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
32
|
Vert A, Castro J, Ribó M, Benito A, Vilanova M. A nuclear-directed human pancreatic ribonuclease (PE5) targets the metabolic phenotype of cancer cells. Oncotarget 2017; 7:18309-24. [PMID: 26918450 PMCID: PMC4951290 DOI: 10.18632/oncotarget.7579] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/11/2016] [Indexed: 12/18/2022] Open
Abstract
Ribonucleases represent a new class of antitumor RNA-damaging drugs. However, many wild-type members of the vertebrate secreted ribonuclease family are not cytotoxic because they are not able to evade the cytosolic ribonuclease inhibitor. We previously engineered the human pancreatic ribonuclease to direct it to the cell nucleus where the inhibitor is not present. The best characterized variant is PE5 that kills cancer cells through apoptosis mediated by the p21WAF1/CIP1 induction and the inactivation of JNK. Here, we have used microarray-derived transcriptional profiling to identify PE5 regulated genes on the NCI/ADR-RES ovarian cancer cell line. RT-qPCR analyses have confirmed the expression microarray findings. The results show that PE5 cause pleiotropic effects. Among them, it is remarkable the down-regulation of multiple genes that code for enzymes involved in deregulated metabolic pathways in cancer cells.
Collapse
Affiliation(s)
- Anna Vert
- Laboratori d'Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Girona, Spain.,Institut d'Investigació Biomèdica de Girona Josep Trueta, (IdIBGi), Girona, Spain
| | - Jessica Castro
- Laboratori d'Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Girona, Spain.,Institut d'Investigació Biomèdica de Girona Josep Trueta, (IdIBGi), Girona, Spain
| | - Marc Ribó
- Laboratori d'Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Girona, Spain.,Institut d'Investigació Biomèdica de Girona Josep Trueta, (IdIBGi), Girona, Spain
| | - Antoni Benito
- Laboratori d'Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Girona, Spain.,Institut d'Investigació Biomèdica de Girona Josep Trueta, (IdIBGi), Girona, Spain
| | - Maria Vilanova
- Laboratori d'Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Girona, Spain.,Institut d'Investigació Biomèdica de Girona Josep Trueta, (IdIBGi), Girona, Spain
| |
Collapse
|
33
|
Dou CY, Cao CJ, Wang Z, Zhang RH, Huang LL, Lian JY, Xie WL, Wang LT. EFEMP1 inhibits migration of hepatocellular carcinoma by regulating MMP2 and MMP9 via ERK1/2 activity. Oncol Rep 2016; 35:3489-95. [PMID: 27108677 DOI: 10.3892/or.2016.4733] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 12/27/2015] [Indexed: 11/06/2022] Open
Abstract
The role of epidermal growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1) inhibiting migration in hepatocellular carcinoma (HCC) remains unknown. Expression of EFEMP1 in HCC cell lines were quantified by western blotting and real-time PCR. The role of EFEMP1 in HCC cell migration was explored in vitro via siRNA and adding purified EFEMP1 protein. The associated molecule expression was detected by western blotting after downregulation of EFEMP1 and also tested by immunohistochemistry. Eight pairs of HCC non-HCC liver samples and 215 HCC samples were subjected to immunohistochemistry. EFEMP1 was highly expressed in 7,721 and HepG2 HCC cell lines while HuH7 HCC cell line expressed the lowest level of EFEMP1 compared with the others. Downregulating EFEMP1 by siRNA markedly increased the migration ability of HCC cells while adding purified EFEMP1 protein inhibited HCC cell migration. Downregulation of EFEMP1 increased the expression of ERK1/2, MMP2 and MMP9. Furthermore, U0126 (a highly selective and potent inhibitor of pERK1/2) could abrogate the migration ability enhanced by siRNA. Accordingly, MMP2 and MMP9 were inversely expressed with EFEMP1 expression by immunohistochemistry. EFEMP1 downregulated in HCC tissues, and lower EFEMP1 expression was significantly associated with HCC patients with ascites (P=0.050), vascular invasion (P=0.044), poorer differentiation (P=0.002) and higher clinical stage (P=0.003).
Collapse
Affiliation(s)
- Cheng-Yun Dou
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Chuang-Jie Cao
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zhuo Wang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Ru-Hua Zhang
- Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510080, P.R. China
| | - Lei-Lei Huang
- Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510080, P.R. China
| | - Jia-Yan Lian
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Wen-Lin Xie
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Lian-Tang Wang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
34
|
Marsh EE, Chibber S, Wu J, Siegersma K, Kim J, Bulun S. Epidermal growth factor-containing fibulin-like extracellular matrix protein 1 expression and regulation in uterine leiomyoma. Fertil Steril 2015; 105:1070-5. [PMID: 26702771 DOI: 10.1016/j.fertnstert.2015.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/03/2015] [Accepted: 12/04/2015] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To determine the presence, differential expression, and regulation of epidermal growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1) in uterine leiomyomas. DESIGN Laboratory in vivo and in vitro study with the use of human leiomyoma and myometrial tissue and primary cells. SETTING Academic medical center. SAMPLE(S) Leiomyoma and myometrial tissue samples and cultured cells. INTERVENTION(S) 5-Aza-2'-deoxycytidine (5-aza-dC) treatment. MAIN OUTCOME MEASURE(S) Fold-change difference between EFEMP1 and fibulin-3 expression in leiomyoma tissue and cells compared with matched myometrial samples, and fold-change difference in EFEMP1 expression with 5-Aza-dC treatment. RESULT(S) In vivo, EFEMP1 expression was 3.19-fold higher in myometrial tissue than in leiomyoma tissue. EFEMP1 expression in vitro was 5.03-fold higher in myometrial cells than in leiomyoma cells. Western blot and immunohistochemistry staining of tissue and cells confirmed similar findings in protein expression. Treatment of leiomyoma cells with 5-Aza-dC resulted in increased expression of EFEMP1 in vitro. CONCLUSION(S) The EFEMP1 gene and its protein product, fibulin-3, are both significantly down-regulated in leiomyoma compared with myometrium when studied both in vivo and in vitro. The increase in EFEMP1 expression in leiomyoma cells with 5-Aza-dC treatment suggest that differential methylation is responsible, in part, for the differences seen in gene expression.
Collapse
Affiliation(s)
- Erica E Marsh
- Division of Reproductive Science and Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.
| | - Shani Chibber
- Division of Reproductive Science and Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; University of Illinois College of Medicine, Chicago, Illinois
| | - Ju Wu
- Division of Reproductive Science and Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Kendra Siegersma
- Division of Reproductive Science and Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Julie Kim
- Division of Reproductive Science and Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Serdar Bulun
- Division of Reproductive Science and Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
35
|
Liu H, Wu L, Ji K, Wang W. Prognostic value of several biomarkers for the patients with malignant pleural mesothelioma. Tumour Biol 2015; 36:7375-84. [PMID: 26361957 DOI: 10.1007/s13277-015-4063-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/04/2015] [Indexed: 01/02/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a highly aggressive tumor of the pleura closely related to asbestos exposure. Rare as it is, the incidence of MPM is predicted to increase mainly as a result of a lengthy latency period from the initial asbestos exposure, making it a public health concern for the next decades. Moreover, the patients with MPM have an extremely poor prognosis due to its high resistance to conventional oncologic treatments and delayed diagnosis. Although the result of current therapeutic modalities based on patient features and clinical stages is very frustrating, great advances have been shown in the knowledge of molecular biology of MPM in recent years. This is accompanied by dozens of putative prognostic biomarkers that are actively involved in tumor biological activities. These prognostic candidates can offer us a new insight into the biological characteristics of MPM, contributing to development of individualized therapeutic strategies directed against oncogenesis and tumor progression. Thus, personalized approaches based on the molecular biology of the patient's tissue or body fluid will potentially improve the present disappointing outcome, bringing new hope for patients with MPM. This article reviews the principal and several novel biomarkers that can have an influence on prognosis, in the hope that they can provide us with a more profound understanding of the biology of this lethal disease.
Collapse
Affiliation(s)
- Hui Liu
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan, 250033, People's Republic of China
| | - Licun Wu
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Kai Ji
- Department of Endocrinology, Shengli Oilfield Central Hospital, Dongying, 257034, People's Republic of China
| | - Wei Wang
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan, 250033, People's Republic of China.
| |
Collapse
|
36
|
Atilano SR, Malik D, Chwa M, Cáceres-Del-Carpio J, Nesburn AB, Boyer DS, Kuppermann BD, Jazwinski SM, Miceli MV, Wallace DC, Udar N, Kenney MC. Mitochondrial DNA variants can mediate methylation status of inflammation, angiogenesis and signaling genes. Hum Mol Genet 2015; 24:4491-503. [PMID: 25964427 PMCID: PMC4512622 DOI: 10.1093/hmg/ddv173] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/05/2015] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial (mt) DNA can be classified into haplogroups representing different geographic and/or racial origins of populations. The H haplogroup is protective against age-related macular degeneration (AMD), while the J haplogroup is high risk for AMD. In the present study, we performed comparison analyses of human retinal cell cybrids, which possess identical nuclei, but mtDNA from subjects with either the H or J haplogroups, and demonstrate differences in total global methylation, and expression patterns for two genes related to acetylation and five genes related to methylation. Analyses revealed that untreated-H and -J cybrids have different expression levels for nuclear genes (CFH, EFEMP1, VEGFA and NFkB2). However, expression levels for these genes become equivalent after treatment with a methylation inhibitor, 5-aza-2'-deoxycytidine. Moreover, sequencing of the entire mtDNA suggests that differences in epigenetic status found in cybrids are likely due to single nucleotide polymorphisms (SNPs) within the haplogroup profiles rather than rare variants or private SNPs. In conclusion, our findings indicate that mtDNA variants can mediate methylation profiles and transcription for inflammation, angiogenesis and various signaling pathways, which are important in several common diseases.
Collapse
Affiliation(s)
| | | | | | | | - Anthony B Nesburn
- Gavin Herbert Eye Institute and Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - David S Boyer
- Retina-Vitreous Associates Medical Group, Beverly Hills, CA 90211, USA
| | | | - S Michal Jazwinski
- Tulane Center for Aging and Department of Medicine, Tulane University, New Orleans, LA 70118, USA and
| | - Michael V Miceli
- Tulane Center for Aging and Department of Medicine, Tulane University, New Orleans, LA 70118, USA and
| | - Douglas C Wallace
- Center of Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | - M Cristina Kenney
- Gavin Herbert Eye Institute and Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA 92697, USA,
| |
Collapse
|
37
|
Fibulin-3 levels in malignant pleural mesothelioma are associated with prognosis but not diagnosis. Br J Cancer 2015; 113:963-9. [PMID: 26263483 PMCID: PMC4578085 DOI: 10.1038/bjc.2015.286] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 07/10/2015] [Accepted: 07/14/2015] [Indexed: 12/23/2022] Open
Abstract
Background: Fibulin-3 (FBLN3) was recently presented as a promising novel biomarker for malignant pleural mesothelioma (MPM), warranting independent validation studies. Methods: ELISA was used to measure cellular and secreted FBLN3 in cell lines, in plasma of xenograft tumour-bearing mice, in plasma from two independent series of MPM and non-MPM patients and in pleural fluid from a third series. Diagnostic and prognostic potential of FBLN3 was assessed by receiver operating characteristics curve analysis and Kaplan–Meier method, respectively. Results: FBLN3 was expressed in all MPM and benign mesothelial cell lines tested, and a correlation was observed between cellular protein expression and secreted levels. Human FBLN3 was detectable in plasma of tumour-bearing mice, suggesting that MPM cells contribute to levels of circulating FBLN3. Plasma FBLN3 was significantly elevated in MPM patients from the Sydney cohort, but not the Vienna cohort, but the diagnostic accuracy was low (63%, (95% CI: 50.1–76.4) and 56% (95% CI: 41.5–71.0), respectively). Although FBLN3 levels in pleural effusions were not significantly different between cases and controls, FBLN3 levels in pleural effusion fluid were found to be independently associated with prognosis (hazard ratio of 9.92 (95% CI: 2.14–45.93)). Conclusions: These data confirm the potential prognostic value of pleural effusion FBLN3, but question the diagnostic value of this protein in MPM patients.
Collapse
|
38
|
Wang Z, Cao CJ, Huang LL, Ke ZF, Luo CJ, Lin ZW, Wang F, Zhang YQ, Wang LT. EFEMP1 promotes the migration and invasion of osteosarcoma via MMP-2 with induction by AEG-1 via NF-κB signaling pathway. Oncotarget 2015; 6:14191-208. [PMID: 25987128 PMCID: PMC4546460 DOI: 10.18632/oncotarget.3691] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 03/03/2014] [Indexed: 12/19/2022] Open
Abstract
The role of epidermal growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1) in osteosarcoma remains unknown. Then applying EFEMP1 siRNA, plasmids transfection and adding purified EFEMP1 protein in human osteosarcoma cell lines, and using immunohistochemistry on 113 osteosarcoma tissues, demonstrated that EFEMP1 was a poor prognostic indicator of osteosarcoma; EFEMP1 was specifically upregulated in osteosarcoma and associated with invasion and metastasis in vitro and in vivo. At the same time, we found a direct regulatory effect of EFEMP1 on MMP-2. Moreover, we firstly found the marked induction of EFEMP1 by oncogenic AEG-1. And EFEMP1 expression was inhibited by the selective inhibitor of NF-κB (PDTC) in osteosarcoma cells. Then we thought that NF-κB pathways might be one of the effective ways which EFEMP1 was induced by AEG-1. Thus, we suggested that EFEMP1 played a part as the mediator between AEG-1 and MMP-2. And NF-κB signaling pathway played an important role in this process. In summary, EFEMP1 was associated with invasion, metastasis and poor prognosis of osteosarcoma patients. EFEMP1 might indirectly enhance the expression of MMP-2, providing a potential explanation for the role of AEG-1 in metastasis. NF-κB pathways might be one of the effective ways which EFEMP1 was induced by AEG-1.
Collapse
Affiliation(s)
- Zhuo Wang
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chuang-Jie Cao
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lei-Lei Huang
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zun-Fu Ke
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Can-Jiao Luo
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhong-Wei Lin
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Fen Wang
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuan-Qi Zhang
- Department of Vascular Surgery, Affiliated Hospital of Guangdong Medical College, Zhanjiang, China
| | - Lian-Tang Wang
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
39
|
Chen J, Liu Z, Fang S, Fang R, Liu X, Zhao Y, Li X, Huang L, Zhang J. Fibulin-4 is associated with tumor progression and a poor prognosis in ovarian carcinomas. BMC Cancer 2015; 15:91. [PMID: 25885889 PMCID: PMC4359517 DOI: 10.1186/s12885-015-1100-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 02/20/2015] [Indexed: 12/16/2022] Open
Abstract
Background Fibulin-4, a member of the fibulin family of extracellular glycoproteins, is implicated in the progressions of some cancers. However, no information has been available to date regarding the function of fibulin-4 in ovarian carcinoma progression. Methods In this study, fibulin-4 mRNA and protein expression in normal ovarian tissue, ovarian tumor, high invasive subclones and low invasive subclones were evaluated by immunohistochemistry and real time reverse transcriptase-polymerase chain reaction (RT-PCR). The serum levels of fibulin-4, cancer antigen 125 (CA-125) and cerbohydrate antigen 199 (CA19-9) in patients with ovarian tumor were measured by enzyme-linked immunosorbent assay and electrochemiluminescent immunoassay. To assess the angiogenic properties of fibulin-4, vascular endothelial growth factor (VEGF) expression and tumor microvessel density were analyzed in ovarian carcinoma by immunohistochemistry. Results Fibulin-4 expression was upregulated in ovarian carcinoma, and positively correlated with MVD and VEGF expression. Fibulin-4 overexpression was significantly associated with advanced stage, low differentiation, lymph node metastasis and poor prognosis in patients with ovarian cancer. The serum levels of fibulin-4, CA-125 and CA19-9 in patients with ovarian carcinoma were much higher than those with benign ovarian tumors and normal controls. Compared to CA-125 and CA19-9, fibulin-4 had better diagnostic sensitivity and specificity. Conclusions Fibulin-4 is a novel gene that is found overexpressed in ovarian cancer and associated with poor prognostic clinicopathologic features. This study shows that fibulin-4 may serve as a new prognostic factor and as a potential therapeutic target for patients with ovarian cancer in the future.
Collapse
Affiliation(s)
- Jie Chen
- Department of Maternal and Child Health Care, School of Public Health, Shandong University, Jinan, 250012, China.
| | - Zhao Liu
- Hepatobiliary and Pancreatic Surgery, Jinan Central Hospital affiliated to Shandong University, Jinan, 250013, China.
| | - Shuang Fang
- Biochemistry & Molecular Biology, Georgetown University, Georgetown, Washington D.C, 20057, USA.
| | - Rui Fang
- Grade 2011, Clinical Medicine, School of Medicine, Shandong University, Jinan, 250012, China.
| | - Xi Liu
- Grade 2011, Clinical Medicine, School of Medicine, Shandong University, Jinan, 250012, China.
| | - Yueran Zhao
- Central Laboratory, Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250021, China.
| | - XiangXin Li
- Department of Haematology, QiLu Hospital of Shandong University, Jinan, 250012, China.
| | - Lei Huang
- Department of Pediatrics, Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250021, China.
| | - Jie Zhang
- Central Laboratory, Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250021, China.
| |
Collapse
|
40
|
Lang Y, Meng J, Song X, Chen X. [EFEMP1 suppresses growth and invasion of lung cancer cells
by downregulating matrix metalloproteinase-7 expression]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2015; 18:92-7. [PMID: 25676403 PMCID: PMC5999848 DOI: 10.3779/j.issn.1009-3419.2015.02.08] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
背景与目的 EFEMP1属于fibulin家族成员,是一种与细胞代谢密切相关的重要的细胞外基质蛋白,其在肿瘤的发生发展中的作用尚不清楚。本研究旨在探讨EFEMP1影响肺癌细胞生长和侵袭转移的生物学作用及其机制。 方法 Western blot方法检测肺癌细胞中EFEMP1表达,甲基化特异性PCR(methylation-specific PCR, MSP)方法检测EFEMP1在肺癌细胞中启动子区甲基化状态。肺癌细胞中转染EFEMP1后,检测细胞克隆形成及侵袭能力变化,并用Western blot及实时定量PCR检测MMP-7表达,Luciferase实验检测EFEMP1对基质金属蛋白酶7(matrix metalloproteinase-7, MMP-7)报告质粒的影响。 结果 Western blot结果显示肺癌细胞中EFEMP1表达下降,MSP分析结果说明A549和H1299中EFEMP1启动子区存在甲基化位点,5-aza-2’-deoxycytidine处理后,EFEMP1表达升高。A549和H1299转染EFEMP1后细胞克隆形成能力以及侵袭活性明显下降,MMP-7蛋白表达下调。Luciferase实验结果显示EFEMP1可以抑制MMP-7报告质粒的表达活性。 结论 EFEMP1是一种肺癌生长和侵袭的抑制因子,由于表观遗传学的改变,其在肺癌细胞中表达下降,通过上调MMP-7的表达促进肺癌细胞的侵袭转移。
Collapse
Affiliation(s)
- Yuanyuan Lang
- Department of Clinical Laboratory, Tianjin Children's Hospital, Tianjin 300074, China
| | - Jie Meng
- Department of Immunology, Basic Medical College, Tianjin Medical University, Tianjin 300070, China
| | - Xiaomeng Song
- Department of Immunology, Basic Medical College, Tianjin Medical University, Tianjin 300070, China
| | - Xiaojun Chen
- Department of Immunology, Basic Medical College, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
41
|
Li S, Jiang S, Jiang W, Zhou Y, Shen XY, Luo T, Kong LP, Wang HQ. Anticancer effects of crocetin in human esophageal squamous cell carcinoma KYSE-150 cells. Oncol Lett 2015; 9:1254-1260. [PMID: 25663893 PMCID: PMC4315057 DOI: 10.3892/ol.2015.2869] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 12/09/2014] [Indexed: 12/01/2022] Open
Abstract
Crocetin is the main pharmacologically-active component of saffron and has been considered as a promising candidate for cancer chemoprevention. The purpose of the present study was to investigate the anticancer effects of crocetin and the possible mechanisms of these properties in the esophageal squamous cell carcinoma cell line KYSE-150. The KYSE-150 cells were cultured in Dulbecco’s modified Eagle’s medium and incubated with 0, 12.5, 25, 50, 100 or 200 μmol/l crocetin for 48 h. Cell proliferation was measured using an MTT assay. Hoechst 33258 staining and observation under fluorescent microscopy were used to analyze the proapoptotic effects of crocetin. The migration rate was assessed by a wound-healing assay. The cell cycle distribution was analyzed using flow cytometry analysis subsequent to propidium iodide staining. The expression of B-cell lymphoma-2-associated X protein (Bax) and cleaved caspase 3 was determined by western blot analysis. It was found that treatment of KYSE-150 cells with crocetin for 48 h significantly inhibited the proliferation of the cells in a concentration-dependent manner, and the inhibition of proliferation was associated with S phase arrest. Crocetin was also found to induce morphological changes and cell apoptosis in a dose-dependent manner through increased expression of proapoptotic Bax and activated caspase 3. In addition, crocetin suppressed the migration of KYSE-150 cells. The present study provides evidence that crocetin exerts a prominent chemopreventive effect against esophageal cancer through the inhibition of cell proliferation, migration and induction of apoptosis. These findings reveal that crocetin may be considered to be a promising future chemotherapeutic agent for esophageal cancer therapy.
Collapse
Affiliation(s)
- Sheng Li
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Sheng Jiang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China ; Department of Cardiothoracic Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, Guangdong 515000, P.R. China
| | - Wei Jiang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yue Zhou
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xiu-Yin Shen
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Tao Luo
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Ling-Ping Kong
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Hua-Qiao Wang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
42
|
Hiddingh L, Tannous BA, Teng J, Tops B, Jeuken J, Hulleman E, Boots-Sprenger SH, Vandertop WP, Noske DP, Kaspers GJL, Wesseling P, Wurdinger T. EFEMP1 induces γ-secretase/Notch-mediated temozolomide resistance in glioblastoma. Oncotarget 2015; 5:363-74. [PMID: 24495907 PMCID: PMC3964213 DOI: 10.18632/oncotarget.1620] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Glioblastoma is the most common malignant primary brain tumor. Temozolomide (TMZ) is the standard chemotherapeutic agent for this disease. However, intrinsic and acquired TMZ-resistance represents a major obstacle for this therapy. In order to identify factors involved in TMZ-resistance, we engineered different TMZ-resistant glioblastoma cell lines. Gene expression analysis demonstrated that EFEMP1, an extracellular matrix protein, is associated with TMZ-resistant phenotype. Silencing of EFEMP1 in glioblastoma cells resulted in decreased cell survival following TMZ treatment, whereas overexpression caused TMZ-resistance. EFEMP1 acts via multiple signaling pathways, including γ-secretase-mediated activation of the Notch pathway. We show that inhibition of γ-secretase by RO4929097 causes at least partial sensitization of glioblastoma cells to temozolomide in vitro and in vivo. In addition, we show that EFEMP1 expression levels correlate with survival in TMZ-treated glioblastoma patients. Altogether our results suggest EFEMP1 as a potential therapeutic target to overcome TMZ-resistance in glioblastoma.
Collapse
Affiliation(s)
- Lotte Hiddingh
- Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Nandhu MS, Hu B, Cole SE, Erdreich-Epstein A, Rodriguez-Gil DJ, Viapiano MS. Novel paracrine modulation of Notch-DLL4 signaling by fibulin-3 promotes angiogenesis in high-grade gliomas. Cancer Res 2014; 74:5435-5448. [PMID: 25139440 DOI: 10.1158/0008-5472.can-14-0685] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
High-grade gliomas are characterized by exuberant vascularization, diffuse invasion, and significant chemoresistance, resulting in a recurrent phenotype that makes them impossible to eradicate in the long term. Targeting protumoral signals in the glioma microenvironment could have significant impact against tumor cells and the supporting niche that facilitates their growth. Fibulin-3 is a protein secreted by glioma cells, but absent in normal brain, that promotes tumor invasion and survival. We show here that fibulin-3 is a paracrine activator of Notch signaling in endothelial cells and promotes glioma angiogenesis. Fibulin-3 overexpression increased tumor VEGF levels, microvascular density, and vessel permeability, whereas fibulin-3 knockdown reduced vessel density in xenograft models of glioma. Fibulin-3 localization in human glioblastomas showed dense fiber-like condensations around tumor blood vessels, which were absent in normal brain, suggesting a remarkable association of this protein with tumor endothelium. At the cellular level, fibulin-3 enhanced endothelial cell motility and association to glioma cells, reduced endothelial cell sprouting, and increased formation of endothelial tubules in a VEGF-independent and Notch-dependent manner. Fibulin-3 increased ADAM10/17 activity in endothelial cells by inhibiting the metalloprotease inhibitor TIMP3; this resulted in increased Notch cleavage and increased expression of DLL4 independently of VEGF signaling. Inhibition of ADAM10/17 or knockdown of DLL4 reduced the proangiogenic effects of fibulin-3 in culture. Taken together, these results reveal a novel, proangiogenic role of fibulin-3 in gliomas, highlighting the relevance of this protein as an important molecular target in the tumor microenvironment.
Collapse
Affiliation(s)
- Mohan S Nandhu
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, The Ohio State University
| | - Bin Hu
- Department of Neurological Surgery, The Ohio State University
| | - Susan E Cole
- Department of Molecular Genetics, The Ohio State University
| | - Anat Erdreich-Epstein
- Departments of Pediatrics and Pathology, Children's Hospital Los Angeles, Keck School of Medicine and the University of South California
| | | | - Mariano S Viapiano
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, The Ohio State University
| |
Collapse
|
44
|
Sutinen P, Malinen M, Heikkinen S, Palvimo JJ. SUMOylation modulates the transcriptional activity of androgen receptor in a target gene and pathway selective manner. Nucleic Acids Res 2014; 42:8310-9. [PMID: 24981513 PMCID: PMC4117771 DOI: 10.1093/nar/gku543] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Androgen receptor (AR) plays an important regulatory role in prostate cancer. AR's transcriptional activity is regulated by androgenic ligands, but also by post-translational modifications, such as SUMOylation. To study the role of AR SUMOylation in genuine chromatin environment, we compared androgen-regulated gene expression and AR chromatin occupancy in PC-3 prostate cancer cell lines stably expressing wild-type (wt) or doubly SUMOylation site-mutated AR (AR-K386R,K520R). Our genome-wide gene expression analyses reveal that the SUMOylation modulates the AR function in a target gene and pathway selective manner. The transcripts that are differentially regulated by androgen and SUMOylation are linked to cellular movement, cell death, cellular proliferation, cellular development and cell cycle. Fittingly, SUMOylation mutant AR cells proliferate faster and are more sensitive to apoptosis. Moreover, ChIP-seq analyses show that the SUMOylation can modulate the chromatin occupancy of AR on many loci in a fashion that parallels their differential androgen-regulated expression. De novo motif analyses reveal that FOXA1, C/EBP and AP-1 motifs are differentially enriched at the wtAR- and the AR-K386R,K520R-preferred genomic binding positions. Taken together, our data indicate that SUMOylation does not simply repress the AR activity, but it regulates AR's interaction with the chromatin and the receptor's target gene selection.
Collapse
Affiliation(s)
- Päivi Sutinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, PO Box 1627, FI-70211 Kuopio, Finland
| | - Marjo Malinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, PO Box 1627, FI-70211 Kuopio, Finland
| | - Sami Heikkinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, PO Box 1627, FI-70211 Kuopio, Finland
| | - Jorma J Palvimo
- Institute of Biomedicine, University of Eastern Finland, Kuopio, PO Box 1627, FI-70211 Kuopio, Finland Department of Pathology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
45
|
Malik D, Hsu T, Falatoonzadeh P, Cáceres-del-Carpio J, Tarek M, Chwa M, Atilano SR, Ramirez C, Nesburn AB, Boyer DS, Kuppermann BD, Jazwinski SM, Miceli MV, Wallace DC, Udar N, Kenney MC. Human retinal transmitochondrial cybrids with J or H mtDNA haplogroups respond differently to ultraviolet radiation: implications for retinal diseases. PLoS One 2014; 9:e99003. [PMID: 24919117 PMCID: PMC4053329 DOI: 10.1371/journal.pone.0099003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 05/08/2014] [Indexed: 01/04/2023] Open
Abstract
Background It has been recognized that cells do not respond equally to ultraviolet (UV) radiation but it is not clear whether this is due to genetic, biochemical or structural differences of the cells. We have a novel cybrid (cytoplasmic hybrids) model that allows us to analyze the contribution of mitochondrial DNA (mtDNA) to cellular response after exposure to sub-lethal dose of UV. mtDNA can be classified into haplogroups as defined by accumulations of specific single nucleotide polymorphisms (SNPs). Recent studies have shown that J haplogroup is high risk for age-related macular degeneration while the H haplogroup is protective. This study investigates gene expression responses in J cybrids versus H cybrids after exposure to sub-lethal doses of UV-radiation. Methodology/Principal Findings Cybrids were created by fusing platelets isolated from subjects with either H (n = 3) or J (n = 3) haplogroups with mitochondria-free (Rho0) ARPE-19 cells. The H and J cybrids were cultured for 24 hours, treated with 10 mJ of UV-radiation and cultured for an additional 120 hours. Untreated and treated cybrids were analyzed for growth rates and gene expression profiles. The UV-treated and untreated J cybrids had higher growth rates compared to H cybrids. Before treatment, J cybrids showed lower expression levels for CFH, CD55, IL-33, TGF-A, EFEMP-1, RARA, BCL2L13 and BBC3. At 120 hours after UV-treatment, the J cybrids had decreased CFH, RARA and BBC3 levels but increased CD55, IL-33 and EFEMP-1 compared to UV-treated H cybrids. Conclusion/Significance In cells with identical nuclei, the cellular response to sub-lethal UV-radiation is mediated in part by the mtDNA haplogroup. This supports the hypothesis that differences in growth rates and expression levels of complement, inflammation and apoptosis genes may result from population-specific, hereditary SNP variations in mtDNA. Therefore, when analyzing UV-induced damage in tissues, the mtDNA haplogroup background may be important to consider.
Collapse
Affiliation(s)
- Deepika Malik
- Gavin Herbert Eye Institute, University California Irvine, Irvine, California, United States of America
| | - Tiffany Hsu
- Gavin Herbert Eye Institute, University California Irvine, Irvine, California, United States of America
| | - Payam Falatoonzadeh
- Gavin Herbert Eye Institute, University California Irvine, Irvine, California, United States of America
| | - Javier Cáceres-del-Carpio
- Gavin Herbert Eye Institute, University California Irvine, Irvine, California, United States of America
| | - Mohamed Tarek
- Gavin Herbert Eye Institute, University California Irvine, Irvine, California, United States of America
- Department of Ophthalmology, El-Minya University, El-Minya, Egypt
| | - Marilyn Chwa
- Gavin Herbert Eye Institute, University California Irvine, Irvine, California, United States of America
| | - Shari R. Atilano
- Gavin Herbert Eye Institute, University California Irvine, Irvine, California, United States of America
| | - Claudio Ramirez
- Gavin Herbert Eye Institute, University California Irvine, Irvine, California, United States of America
| | - Anthony B. Nesburn
- Gavin Herbert Eye Institute, University California Irvine, Irvine, California, United States of America
- Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - David S. Boyer
- Retina-Vitreous Associates Medical Group; Beverly Hills, California, United States of America
| | - Baruch D. Kuppermann
- Gavin Herbert Eye Institute, University California Irvine, Irvine, California, United States of America
| | - S. Michal Jazwinski
- Tulane Center for Aging, Tulane University, New Orleans, Louisiana, United States of America
| | - Michael V. Miceli
- Tulane Center for Aging, Tulane University, New Orleans, Louisiana, United States of America
| | - Douglas C. Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia and Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Nitin Udar
- Gavin Herbert Eye Institute, University California Irvine, Irvine, California, United States of America
| | - M. Cristina Kenney
- Gavin Herbert Eye Institute, University California Irvine, Irvine, California, United States of America
- Department of Pathology and Laboratory Medicine, University California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
46
|
Morales M, Ávila J, González-Fernández R, Boronat L, Soriano ML, Martín-Vasallo P. Differential transcriptome profile of peripheral white cells to identify biomarkers involved in oxaliplatin induced neuropathy. J Pers Med 2014; 4:282-96. [PMID: 25563226 PMCID: PMC4263976 DOI: 10.3390/jpm4020282] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/21/2014] [Accepted: 05/28/2014] [Indexed: 12/26/2022] Open
Abstract
Anticancer chemotherapy (CT) produces non-desirable effects on normal healthy cells and tissues. Oxaliplatin is widely used in the treatment of colorectal cancer and responsible for the development of sensory neuropathy in varying degrees, from complete tolerance to chronic neuropathic symptoms. We studied the differential gene expression of peripheral leukocytes in patients receiving oxaliplatin-based chemotherapy to find genes and pathways involved in oxaliplatin-induced peripheral neuropathy. Circulating white cells were obtained prior and after three cycles of FOLFOX or CAPOX chemotherapy from two groups of patients: with or without neuropathy. RNA was purified, and transcriptomes were analyzed. Differential transcriptomics revealed a total of 502 genes, which were significantly up- or down-regulated as a result of chemotherapy treatment. Nine of those genes were expressed in only one of two situations: CSHL1, GH1, KCMF1, IL36G and EFCAB8 turned off after CT, and CSRP2, IQGAP1, GNRH2, SMIM1 and C5orf17 turned on after CT. These genes are likely to be associated with the onset of oxaliplatin-induced peripheral neuropathy. The quantification of their expression in peripheral white cells may help to predict non-desirable side effects and, consequently, allow a better, more personalized chemotherapy.
Collapse
Affiliation(s)
- Manuel Morales
- Service of Oncology, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, 38010 Tenerife, Spain.
| | - Julio Ávila
- Developmental Biology Laboratory, Department of Biochemistry and Molecular Biology, University of La Laguna, Av. Astrofísico Sánchez s/n, 38206 La Laguna, Spain.
| | - Rebeca González-Fernández
- Developmental Biology Laboratory, Department of Biochemistry and Molecular Biology, University of La Laguna, Av. Astrofísico Sánchez s/n, 38206 La Laguna, Spain.
| | - Laia Boronat
- Service of Oncology, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, 38010 Tenerife, Spain.
| | - María Luisa Soriano
- Service of Oncology, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, 38010 Tenerife, Spain.
| | - Pablo Martín-Vasallo
- Developmental Biology Laboratory, Department of Biochemistry and Molecular Biology, University of La Laguna, Av. Astrofísico Sánchez s/n, 38206 La Laguna, Spain.
| |
Collapse
|
47
|
Chen J, Zhang J, Liu X, Fang R, Zhao Y, Ma D. Overexpression of fibulin-4 is associated with tumor progression and poor prognosis in patients with cervical carcinoma. Oncol Rep 2014; 31:2601-10. [PMID: 24737201 DOI: 10.3892/or.2014.3139] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/03/2014] [Indexed: 11/06/2022] Open
Abstract
Fibulin-4, a member of the fibulin family of extracellular glycoproteins, is implicated in the progression of a number of types of cancer. However, the function of fibulin-4 in cervical cancer progression remains unexplored. Fibulin-4 mRNA and protein expression levels in normal cervical tissue, cervical intraepithelial neoplasia (CIN), cervical carcinoma, highly invasive subclones and low-invasive subclones were evaluated by real-time reverse transcriptase-polymerase chain reaction and immunohistochemistry. Serum fibulin-4 levels in patients with CIN and cervical carcinoma were measured by enzyme-linked immunosorbent assay. To assess the angiogenic properties of fibulin-4, vascular endothelial growth factor (VEGF) expression and tumor microvessel density (MVD) were analyzed in the cervical carcinoma cases by immunohistochemistry. Fibulin-4 expression was upregulated in the cervical carcinoma cases, and was positively correlated with MVD and VEGF expression. Fibulin-4 overexpression and high serum levels were significantly associated with advanced stage, low differentiation, lymph node metastasis, and poor prognosis in patients with cervical cancer. Fibulin-4 expression was also found to be overexpressed in highly invasive subclones when compared with the low-invasive subclones. Fibulin-4 is a newly identified glycoprotein that is overexpressed in cervical carcinoma. Fibulin-4 promotes angiogenesis and is associated with poor prognostic clinicopathologic features. This study demonstrated that fibulin-4 may serve as a new prognostic factor and as a potential therapeutic target for patients with cervical carcinoma.
Collapse
Affiliation(s)
- Jie Chen
- Department of Maternal and Child Health Care, School of Public Health, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jie Zhang
- Central Laboratory, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xi Liu
- Clinical Medicine, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Rui Fang
- Clinical Medicine, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yueran Zhao
- Central Laboratory, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Demei Ma
- Department of Obstetrics and Gynecology, Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
48
|
Extracellular matrix proteins expression profiling in chemoresistant variants of the A2780 ovarian cancer cell line. BIOMED RESEARCH INTERNATIONAL 2014; 2014:365867. [PMID: 24804215 PMCID: PMC3996316 DOI: 10.1155/2014/365867] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 02/24/2014] [Indexed: 02/03/2023]
Abstract
Ovarian cancer is the leading cause of death among gynaecological malignancies. Extracellular matrix (ECM) can affect drug resistance by preventing the penetration of the drug into cancer cells and increased resistance to apoptosis. This study demonstrates alterations in the expression levels of ECM components and related genes in cisplatin-, doxorubicin-, topotecan-, and paclitaxel-resistant variants of the A2780 ovarian cancer cell line. Affymetrix Gene Chip Human Genome Array Strips were used for hybridisations. The genes that had altered expression levels in drug-resistant sublines were selected and filtered by scatter plots. The genes that were up- or downregulated more than fivefold were selected and listed. Among the investigated genes, 28 genes were upregulated, 10 genes were downregulated, and two genes were down- or upregulated depending on the cell line. Between upregulated genes 12 were upregulated very significantly—over 20-fold. These genes included COL1A2, COL12A1, COL21A1, LOX, TGFBI, LAMB1, EFEMP1, GPC3, SDC2, MGP, MMP3, and TIMP3. Four genes were very significantly downregulated: COL11A1, LAMA2, GPC6, and LUM. The expression profiles of investigated genes provide a preliminary insight into the relationship between drug resistance and the expression of ECM components. Identifying correlations between investigated genes and drug resistance will require further analysis.
Collapse
|
49
|
Chen X, Meng J, Yue W, Yu J, Yang J, Yao Z, Zhang L. Fibulin-3 suppresses Wnt/β-catenin signaling and lung cancer invasion. Carcinogenesis 2014; 35:1707-16. [PMID: 24480807 DOI: 10.1093/carcin/bgu023] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The 5 year survival rate of lung cancer is <20%, with most patients dying from distant metastasis. However, the molecular mechanisms underlying lung cancer invasion and metastasis have not been fully characterized. In this study, we found that fibulin-3, a fibulin family extracellular matrix protein, functions as a suppressor of lung cancer invasion and metastasis. Fibulin-3 was downregulated in large fractions of lung tumors and cell lines, and inhibited lung cancer cell invasion and the expression of matrix metalloproteinase-7 (MMP-7), a promoter of lung cancer invasion. The expression levels of fibulin-3 and MMP-7 were inversely correlated in lung tumors. Fibulin-3 inhibited extracellular signal-regulated kinase (ERK) to activate glycogen synthase kinase 3β and suppress Wnt/β-catenin signaling, which induces MMP-7 expression in lung cancer cells. Furthermore, fibulin-3 expression impeded the growth and metastasis of lung tumors in mice. Collectively, these results suggest that downregulation of fibulin-3 contributes to lung cancer invasion and metastasis by activating Wnt/β-catenin signaling and MMP-7 expression.
Collapse
Affiliation(s)
- Xiaojun Chen
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry, Tianjin Medical University, Tianjin 300070, China and Departments of Pharmacology and Chemical Biology and Pathology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jie Meng
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry, Tianjin Medical University, Tianjin 300070, China and
| | - Wen Yue
- Departments of Pharmacology and Chemical Biology and Pathology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jian Yu
- Departments of Pharmacology and Chemical Biology and Pathology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jie Yang
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry, Tianjin Medical University, Tianjin 300070, China and
| | - Zhi Yao
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry, Tianjin Medical University, Tianjin 300070, China and
| | - Lin Zhang
- Departments of Pharmacology and Chemical Biology and Pathology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
50
|
Renner M, Wolf T, Meyer H, Hartmann W, Penzel R, Ulrich A, Lehner B, Hovestadt V, Czwan E, Egerer G, Schmitt T, Alldinger I, Renker EK, Ehemann V, Eils R, Wardelmann E, Büttner R, Lichter P, Brors B, Schirmacher P, Mechtersheimer G. Integrative DNA methylation and gene expression analysis in high-grade soft tissue sarcomas. Genome Biol 2013; 14:r137. [PMID: 24345474 PMCID: PMC4054884 DOI: 10.1186/gb-2013-14-12-r137] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 12/17/2013] [Indexed: 12/13/2022] Open
Abstract
Background High-grade soft tissue sarcomas are a heterogeneous, complex group of aggressive malignant tumors showing mesenchymal differentiation. Recently, soft tissue sarcomas have increasingly been classified on the basis of underlying genetic alterations; however, the role of aberrant DNA methylation in these tumors is not well understood and, consequently, the usefulness of methylation-based classification is unclear. Results We used the Infinium HumanMethylation27 platform to profile DNA methylation in 80 primary, untreated high-grade soft tissue sarcomas, representing eight relevant subtypes, two non-neoplastic fat samples and 14 representative sarcoma cell lines. The primary samples were partitioned into seven stable clusters. A classification algorithm identified 216 CpG sites, mapping to 246 genes, showing different degrees of DNA methylation between these seven groups. The differences between the clusters were best represented by a set of eight CpG sites located in the genes SPEG, NNAT, FBLN2, PYROXD2, ZNF217, COL14A1, DMRT2 and CDKN2A. By integrating DNA methylation and mRNA expression data, we identified 27 genes showing negative and three genes showing positive correlation. Compared with non-neoplastic fat, NNAT showed DNA hypomethylation and inverse gene expression in myxoid liposarcomas, and DNA hypermethylation and inverse gene expression in dedifferentiated and pleomorphic liposarcomas. Recovery of NNAT in a hypermethylated myxoid liposarcoma cell line decreased cell migration and viability. Conclusions Our analysis represents the first comprehensive integration of DNA methylation and transcriptional data in primary high-grade soft tissue sarcomas. We propose novel biomarkers and genes relevant for pathogenesis, including NNAT as a potential tumor suppressor in myxoid liposarcomas.
Collapse
|