1
|
Corre PHC, Mainwaring JM, Peralta KKZ, Lokman PM, Porteous R, Wibowo E. Low dose of propyl-pyrazole-triol, an agonist of estrogen receptor alpha, administration stimulates the Coolidge effect in fadrozole-treated male rats. Horm Behav 2024; 161:105520. [PMID: 38447331 DOI: 10.1016/j.yhbeh.2024.105520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/08/2024]
Abstract
Estrogen receptor (ER) α is involved in male sexual function. Here, we aim to investigate how ERα activation influences sexual satiety and the Coolidge effect (i.e., when a rat, that has reached sexual satiety, experiences an increased arousal after exposure to a novel sexual partner) in estrogen-deprived male rats. Male rats (8 per group) were treated daily for 29 days with either saline (Control group) or fadrozole dissolved in saline (1 mg/kg/day) 1 h before mating. On Days 13 and 29, rats treated with fadrozole received either no additional treatment (fadrozole group) or a single injection of propyl-pyrazole-triol (ERα-agonist group, dissolved in sesame oil, 1 mg/kg). Rats mated until reaching sexual satiety on Days 13 and 29. In these sessions, the Control group displayed higher frequency of intromission and ejaculation than the other groups. The ERα-agonist group mounted more frequently but reached sexual satiety sooner than the Control group. On Day 29, when exposed to a new sexual partner, the fadrozole-treated rats were less likely to display intromission than the other groups, or ejaculation than the Control group, or mounting than the ERα-agonist group. The Control group showed more ejaculatory behavior and shorter ejaculation latency than the other groups. Body weights, testosterone levels, estradiol levels, and ERα-immunoreactive cell counts in brain regions for sexual behavior were comparable between groups after 29 days of treatments. Our data suggest that estrogen helps regulate sexual satiety and the Coolidge effect in male rats.
Collapse
Affiliation(s)
- P Hanna C Corre
- Department of Anatomy, University of Otago, Dunedin 9016, New Zealand.
| | | | - K Kenn Z Peralta
- Department of Anatomy, University of Otago, Dunedin 9016, New Zealand.
| | - P Mark Lokman
- Department of Zoology, University of Otago, Dunedin 9016, New Zealand.
| | - Robert Porteous
- Otago Micro and Nanoscale Imaging, University of Otago, Dunedin 9016, New Zealand.
| | - Erik Wibowo
- Department of Anatomy, University of Otago, Dunedin 9016, New Zealand.
| |
Collapse
|
2
|
Ågmo A. Androgen receptors and sociosexual behaviors in mammals: The limits of generalization. Neurosci Biobehav Rev 2024; 157:105530. [PMID: 38176634 DOI: 10.1016/j.neubiorev.2023.105530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
Circulating testosterone is easily aromatized to estradiol and reduced to dihydrotestosterone in target tissues and elsewhere in the body. Thus, the actions of testosterone can be mediated either by the estrogen receptors, the androgen receptor or by simultaneous action at both receptors. To determine the role of androgens acting at the androgen receptor, we need to eliminate actions at the estrogen receptors. Alternatively, actions at the androgen receptor itself can be eliminated. In the present review, I will analyze the specific role of androgen receptors in male and female sexual behavior as well as in aggression. Some comments about androgen receptors and social recognition are also made. It will be shown that there are important differences between species, even between strains within a species, concerning the actions of the androgen receptor on the behaviors mentioned. This fact makes generalizations from one species to another or from one strain to another very risky. The existence of important species differences is often ignored, leading to many misunderstandings and much confusion.
Collapse
Affiliation(s)
- Anders Ågmo
- Department of Psychology, University of Tromsø, Norway.
| |
Collapse
|
3
|
Ventura-Aquino E, Ågmo A. The elusive concept of sexual motivation: can it be anchored in the nervous system? Front Neurosci 2023; 17:1285810. [PMID: 38046659 PMCID: PMC10691110 DOI: 10.3389/fnins.2023.1285810] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/16/2023] [Indexed: 12/05/2023] Open
Abstract
Sexual motivation is an abstract concept referring to the mechanisms determining the responsivity to sexually relevant stimuli. This responsivity determines the likelihood of producing a sexual response and the intensity of that response. Both responsivity to stimuli and the likelihood of making a response as well as the intensity of response are characteristics of an individual. Therefore, we need to assume that the concept of sexual motivation materializes in physiological mechanisms within the individual. The aim of the present communication is to analyze the requisites for the endeavor to materialize sexual motivation. The first requisite is to provide an operational definition, making the concept quantifiable. We show that parameters of copulatory behavior are inappropriate. We argue that the intensity of sexual approach behaviors provides the best estimate of sexual motivation in non-human animals, whereas the magnitude of genital responses is an exquisite indicator of human sexual motivation. Having assured how to quantify sexual motivation, we can then proceed to the search for physiological or neurobiological underpinnings. In fact, sexual motivation only manifests itself in animals exposed to appropriate amounts of gonadal hormones. In female rats, the estrogen receptor α in the ventrolateral part of the ventromedial nucleus of the hypothalamus is necessary for the expression of sexual approach behaviors. In male rats, androgen receptors within the medial preoptic area are crucial. Thus, in rats sexual motivation can be localized to specific brain structures, and even to specific cells within these structures. In humans, it is not even known if sexual motivation is materialized in the brain or in peripheral structures. Substantial efforts have been made to determine the relationship between the activity of neurotransmitters and the intensity of sexual motivation, particularly in rodents. The results of this effort have been meager. Likewise, efforts of finding drugs to stimulate sexual motivation, particularly in women complaining of low sexual desire, have produced dismal results. In sum, it appears that the abstract concept of sexual motivation can be reliably quantified, and the neurobiological bases can be described in non-human animals. In humans, objective quantification is feasible, but the neurobiological substrate remains enigmatic.
Collapse
Affiliation(s)
- Elisa Ventura-Aquino
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla, UNAM, Juriquilla, Mexico
| | - Anders Ågmo
- Department of Psychology, University of Tromsø, Tromsø, Norway
| |
Collapse
|
4
|
Ågmo A, Laan E. The Sexual Incentive Motivation Model and Its Clinical Applications. JOURNAL OF SEX RESEARCH 2023; 60:969-988. [PMID: 36378887 DOI: 10.1080/00224499.2022.2134978] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Sexual motivation (desire) requires the simultaneous presence of an active central motive state and a stimulus with sexual significance. Once activated, sexual motivation leads to visceral responses and approach behaviors directed toward the emitter of the sexual stimulus. In humans, such behaviors follow cognitive evaluation of the context, including predictions of the approached individual's response. After successful approach and establishment of physical contact, manifest sexual activities may be initiated. Sexual interaction is associated with and followed by a state of positive affect in most animals, whereas aversive consequences may be experienced by humans. The affective reactions may become associated with stimuli present during sexual interaction, and these stimuli may thereby alter their incentive properties. Here we show how the incentive motivation model can be used to explain the origins and possible treatments of sexual dysfunctions, notably disorders of desire. We propose that associations formed between negative outcomes of sexual interaction and the salient stimuli, for example, the partner, underlies hypoactive desire disorder. Highly positive outcomes of sexual interaction enhance the incentive value of the stimuli present, and eventually lead to hyperactive sexual desire. Treatments aim to alter the impact of sexual incentives, mainly by modifying cognitive processes.
Collapse
Affiliation(s)
- Anders Ågmo
- Department of Psychology, University of Tromsø
| | - Ellen Laan
- Department of Sexology and Psychosomatic Gynaecology, Amsterdam UMC, University of Amsterdam
| |
Collapse
|
5
|
Arteaga-Silva M, Limón-Morales O, Bonilla-Jaime H, Vigueras-Villaseñor RM, Rojas-Castañeda J, Hernández-Rodríguez J, Montes S, Hernández-González M, Ríos C. Effects of postnatal exposure to cadmium on male sexual incentive motivation and copulatory behavior: Estrogen and androgen receptors expression in adult brain rat. Reprod Toxicol 2023; 120:108445. [PMID: 37482142 DOI: 10.1016/j.reprotox.2023.108445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
There are numerous evidence showing that cadmium (Cd) is an endocrine disruptor that exerts multiple toxic effects at different reproductive levels, including male sexual behavior (MSB). The effect of early exposure to Cd on sexual incentive motivation (SIM) and MSB in adult stage, and the immunoreactivity of receptors for hormones such as estrogens and androgens in brain regions that are relevant for the SIM and MSB display, have not been studied until now. The present study evaluated the effects of 0.5 and 1 mg/kg CdCl2 from day 1-56 of postnatal life on SIM and MSB in adults rats, as well as serum testosterone concentrations, Cd concentration in blood, testis, and brain areas, and the immunoreactivity in estrogen receptors (ER-α and -β), and androgen receptor (AR) in the olfactory bulbs (OB), medial preoptic area (mPOA), and medial amygdala (MeA). Our results showed that both doses of Cd decreased SIM and MSB, accompanied by low serum concentrations of testosterone. Also, there was a significant reduction in immunoreactivity of ER-α and AR in mPOA, and a significant reduction in AR in MeA on male rats treated with Cd 1 mg/kg. These results show that exposure to high doses of Cd in early postnatal life could alter the correct integration of hormonal signals in the brain areas that regulate and display SIM and MSB in adult male rats.
Collapse
Affiliation(s)
- Marcela Arteaga-Silva
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco No. 186, Col. Leyes de Reforma 1ª, Sección, Alcaldía Iztapalapa, C.P. 09340, A.P. 55-535, Ciudad de México, México.
| | - Ofelia Limón-Morales
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco No. 186, Col. Leyes de Reforma 1ª, Sección, Alcaldía Iztapalapa, C.P. 09340, A.P. 55-535, Ciudad de México, México
| | - Herlinda Bonilla-Jaime
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco No. 186, Col. Leyes de Reforma 1ª, Sección, Alcaldía Iztapalapa, C.P. 09340, A.P. 55-535, Ciudad de México, México
| | - Rosa María Vigueras-Villaseñor
- Instituto Nacional de Pediatría, Calzada México Xochimilco No. 101, Colonia San Lorenzo Huipulco, Tlalpan, CP 14370 Ciudad de México, México
| | - Julio Rojas-Castañeda
- Instituto Nacional de Pediatría, Calzada México Xochimilco No. 101, Colonia San Lorenzo Huipulco, Tlalpan, CP 14370 Ciudad de México, México
| | - Joel Hernández-Rodríguez
- Cuerpo Académico de Investigación en Salud de la Licenciatura en Quiropráctica (CA-UNEVE-01), Universidad Estatal del Valle de Ecatepec, Estado de México 55210, México
| | - Sergio Montes
- Unidad Académica Multidisciplinaria Reynosa-Aztlán, Universidad Autónoma de Tamaulipas, Lago de Chapala y Calle 16, Aztlán, Reynosa 88740, México
| | - Marisela Hernández-González
- Instituto de Neurociencias, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Francisco de Quevedo No. 180, Col. Arcos Vallarta, 44130 Guadalajara, Jalisco, México
| | - Camilo Ríos
- Dirección de Investigación, Instituto Nacional de Rehabilitación, Secretaría de Salud, Ciudad de México 14389, México
| |
Collapse
|
6
|
Ågmo A, Laan E. Sexual incentive motivation, sexual behavior, and general arousal: Do rats and humans tell the same story? Neurosci Biobehav Rev 2022; 135:104595. [PMID: 35231490 DOI: 10.1016/j.neubiorev.2022.104595] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/28/2022] [Accepted: 02/24/2022] [Indexed: 12/13/2022]
Abstract
Sexual incentive stimuli activate sexual motivation and heighten the level of general arousal. The sexual motive may induce the individual to approach the incentive, and eventually to initiate sexual acts. Both approach and the ensuing copulatory interaction further enhance general arousal. We present data from rodents and humans in support of these assertions. We then suggest that orgasm is experienced when the combined level of excitation surpasses a threshold. In order to analyze the neurobiological bases of sexual motivation, we employ the concept of a central motive state. We then discuss the mechanisms involved in the long- and short-term control of that state as well as those mediating the momentaneous actions of sexual incentive stimuli. This leads to an analysis of the neurobiology behind the interindividual differences in responsivity of the sexual central motive state. Knowledge is still fragmentary, and many contradictory observations have been made. Nevertheless, we conclude that the basic mechanisms of sexual motivation and the role of general arousal are similar in rodents and humans.
Collapse
Affiliation(s)
- Anders Ågmo
- Department of Psychology, University of Tromsø, Norway.
| | - Ellen Laan
- Department of Sexology and Psychosomatic Gynaecology, Amsterdam UMC, University of Amsterdam, The Netherlands
| |
Collapse
|
7
|
Jean A, Mhaouty-Kodja S, Hardin-Pouzet H. Hypothalamic cellular and molecular plasticity linked to sexual experience in male rats and mice. Front Neuroendocrinol 2021; 63:100949. [PMID: 34687674 DOI: 10.1016/j.yfrne.2021.100949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
Abstract
Male sexual behavior is subject to learning, resulting in increased efficiency of experienced males compared to naive ones. The improvement in behavioral parameters is underpinned by cellular and molecular changes in the neural circuit controlling sexual behavior, particularly in the hypothalamic medial preoptic area. This review provides an update on the mechanisms related to the sexual experience in male rodents, emphasizing the differences between rats and mice.
Collapse
Affiliation(s)
- Arnaud Jean
- Sorbonne Université - Faculté de Sciences et Ingénierie, Neuroplasticité des Comportements de la Reproduction, Neurosciences Paris Seine, UM119 - CNRS UMR 8246 - INSERM UMRS 1130, 7 quai Saint Bernard, 75 005 Paris, France
| | - Sakina Mhaouty-Kodja
- Sorbonne Université - Faculté de Sciences et Ingénierie, Neuroplasticité des Comportements de la Reproduction, Neurosciences Paris Seine, UM119 - CNRS UMR 8246 - INSERM UMRS 1130, 7 quai Saint Bernard, 75 005 Paris, France
| | - Hélène Hardin-Pouzet
- Sorbonne Université - Faculté de Sciences et Ingénierie, Neuroplasticité des Comportements de la Reproduction, Neurosciences Paris Seine, UM119 - CNRS UMR 8246 - INSERM UMRS 1130, 7 quai Saint Bernard, 75 005 Paris, France.
| |
Collapse
|
8
|
Chu X, Snoeren E, Södersten P, Ågmo A. Sexual incentive motivation and male and female copulatory behavior in female rats given androgen from postnatal day 20. Physiol Behav 2021; 237:113460. [PMID: 33991538 DOI: 10.1016/j.physbeh.2021.113460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/03/2021] [Accepted: 05/03/2021] [Indexed: 11/20/2022]
Abstract
Masculinization and feminization of rat sexual behavior has been supposed to occur during a short postnatal period. However, much data have made it evident that these processes may continue until adolescence. In the present study, we evaluated whether androgen treatment of females from postnatal day 20 and onwards could alter sexual motivation and behavior in a male direction. Juveniles were ovariectomized on day 20 and concurrently implanted with Silastic capsules containing either testosterone or dihydrotestosterone. Controls were implanted with an empty capsule. Tests for sexual incentive motivation and male sexual behavior were performed every fifth day when the females were between 50 and 75 days of age. At day 80, a test for female sexual behavior was performed. Females treated with testosterone approached a female sexual incentive far more than a male incentive, showing that sexual motivation had been changed in a male-like direction. Dihydrotestosterone had a similar, albeit smaller, effect. Females implanted with an empty capsule approached both incentives equally. Testosterone produced a high level of mounting behavior, whereas intromission-like behavioral patterns were rare and ejaculation-like behavior was absent. In the test for female sexual behavior, the testosterone-treated animals displayed a relatively high lordosis quotient, far above that displayed in females implanted with dihydrotestosterone or an empty capsule. It is concluded that treatment with an aromatizable androgen during the peripubertal-adolescent period masculinizes sexual motivation and partly sexual behavior. A non-aromatizable androgen weakly masculinize sexual motivation without enhancing male sexual behavior. It appears that simultaneous actions on androgen and estrogen receptors are needed for significant masculinization during the period studied here. Since the testosterone-treated females displayed lordosis, sexual behavior was not defeminized. In sum, these results suggest that sexual differentiation continues well into the peripubertal and adolescent periods.
Collapse
Affiliation(s)
- Xi Chu
- Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Eelke Snoeren
- Department of Psychology, University of Tromsø, 9037 Tromsø, Norway
| | - Per Södersten
- Karolinska Institutet, Novum, S-141 01 Hudddinge, Sweden
| | - Anders Ågmo
- Department of Psychology, University of Tromsø, 9037 Tromsø, Norway.
| |
Collapse
|
9
|
Sexual Motivation and Sexual Reward in Male Rats are Attenuated by the Gonadotropin-Releasing Hormone Receptor Antagonist Degarelix. J Sex Med 2021; 18:240-255. [PMID: 33419705 DOI: 10.1016/j.jsxm.2020.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Preclinical studies that have examined the effects of androgen deprivation therapies (ADTs) on sexual outcomes have either relied on a surgical castration model of ADTs or have largely focused on consummatory sexual behaviors. AIM The aim of this study was to examine the effects of a single administration of the gonadotropin-releasing hormone receptor antagonist, degarelix, on sexual incentive motivation (SIM), sexual reward, consummatory sexual behaviors, anxiety-like behavior, and androgen receptor signaling in male rats, and to determine if sexual stimulation attenuates the effects of degarelix on SIM. METHODS Male rats were treated with degarelix, or vehicle, and half of the rats in each condition were briefly exposed to a sexually receptive female immediately before SIM trials (experiment 1). Rats treated with degarelix or vehicle were also given a sex-conditioned place preference test (experiment 2A), weekly mating tests (experiment 2B), and an elevated zero maze test (experiment 3). Androgen-sensitive tissues were excised upon completion of testing. OUTCOMES SIM was indicated by the percentage of time spent near a sexually receptive female on the SIM tests. The percentage of time spent in the chamber of a conditioned place preference maze associated with sexual experience was indicative of sexual reward. The percentage of trials in which a mount, intromission, and ejaculation occurred was indicative of copulatory ability. Sexual performance was characterized by the average latencies to first exhibit these behaviors, as well as the average frequency of these behaviors. Anxiety-like behavior was indicated by the percentage of time in the open zones of an elevated zero maze. Relative weights of the seminal vesicles and bulbourethral glands were used to quantify androgen activity. RESULTS Rats treated with degarelix exhibited lower levels of SIM. In rats treated with degarelix, contact with a female immediately before SIM testing increased activity, but not SIM. Treatment with degarelix reduced the rewarding aspects of sexual behavior, as well as most aspects of copulatory ability and sexual performance. Degarelix treatment reduced androgen signaling, but did not impact anxiety-like behavior. CLINICAL IMPLICATIONS The behavioral side effects associated with the use of degarelix may be restricted to sexual behaviors. STRENGTHS & LIMITATIONS Strengths include the objective measurement of sexual behaviors. The study is limited in that only one ADT was examined. CONCLUSION These findings serve as an extension of previous preclinical studies as they indicate that gonadotropin-releasing hormone receptor antagonism in male rats also attenuates sexual motivation and sexual reward, in addition to copulatory ability and sexual performance. Hawley WR, Kapp LE, Green PA, et al. Sexual Motivation and Reward in Male Rats are Attenuated by the Gonadotropin-Releasing Hormone Receptor Antagonist Degarelix. J Sex Med 2021;18:240-255.
Collapse
|
10
|
Huijgens PT, Snoeren EMS, Meisel RL, Mermelstein PG. Effects of gonadectomy and dihydrotestosterone on neuronal plasticity in motivation and reward related brain regions in the male rat. J Neuroendocrinol 2021; 33:e12918. [PMID: 33340384 DOI: 10.1111/jne.12918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/25/2020] [Accepted: 11/02/2020] [Indexed: 12/22/2022]
Abstract
Gonadal hormones affect neuronal morphology to ultimately regulate behaviour. In female rats, oestradiol mediates spine plasticity in hypothalamic and limbic brain structures, contributing to long-lasting effects on motivated behaviour. Parallel effects of androgens in male rats have not been extensively studied. Here, we investigated the effect of both castration and androgen replacement on spine plasticity in the nucleus accumbens shell and core (NAcSh and NAcC), caudate putamen (CPu), medial amygdala (MeA) and medial preoptic nucleus (MPN). Intact and castrated (gonadectomy [GDX]) male rats were treated with dihydrotestosterone (DHT, 1.5 mg) or vehicle (oil) in three experimental groups: intact-oil, GDX-oil and GDX-DHT. Spine density and morphology, measured 24 hours after injection, were determined through three-dimensional reconstruction of confocal z-stacks of DiI-labelled dendritic segments. We found that GDX decreased spine density in the MPN, which was rescued by DHT treatment. DHT also increased spine density in the MeA in GDX animals compared to intact oil-treated animals. By contrast, DHT decreased spine density in the NAcSh compared to GDX males. No effect on spine density was observed in the NAcC or CPu. Spine length and spine head diameter were unaffected by GDX and DHT in the investigated brain regions. In addition, immunohistochemistry revealed that DHT treatment of GDX animals rapidly increased the number of cell bodies in the NAcSh positive for phosphorylated cAMP response-element binding protein, a downstream messenger of the androgen receptor. These findings indicate that androgen signalling plays a role in the regulation of spine plasticity within neurocircuits involved in motivated behaviours.
Collapse
Affiliation(s)
- Patty T Huijgens
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Department of Psychology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Eelke M S Snoeren
- Department of Psychology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Robert L Meisel
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Paul G Mermelstein
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
11
|
Le Moëne O, Ågmo A. Modeling Human Sexual Motivation in Rodents: Some Caveats. Front Behav Neurosci 2019; 13:187. [PMID: 31507386 PMCID: PMC6719563 DOI: 10.3389/fnbeh.2019.00187] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/05/2019] [Indexed: 01/03/2023] Open
Abstract
Sexual behavior is activated by motivation. An overwhelming majority of experimental studies of the intricacies of sexual motivation has been performed in rodents, most of them in rats. Sometimes it is desirable to generalize results obtained in this species to other species, particularly the human. It is hoped that studies of the neurobiology of rodent sexual behavior may shed light on the central nervous mechanisms operating in the human, and the search for efficient pharmacological treatments of human sexual dysfunctions relies partly on studies performed in rodents. Then the issue of generalizability of the rodent data to the human becomes crucial. We emphasize the importance of distinguishing between copulatory acts, behavior involving the genitals, and the preceding event, the establishment of physical contact with a potential mate. Comparisons between the structure of copulatory behavior in rats and humans show abysmal differences, but there may be some similarity in the underlying mechanisms. The endocrine control of sex behavior is shortly mentioned, and we also compare the effects of the few drugs known to affect both rodent and human copulatory behavior. The stimuli activating sexual motivation, often called desire in the human literature, are examined, and the sexual approach behaviors in rats and humans are compared. There is a striking similarity between these species in how these behaviors respond to drugs. It is then shown that the intensity of sexual approach is unrelated to the intensity of copulatory behavior. Even though the approach is a requisite for copulation, an activity that requires at least two individuals in close physical contact, these two aspects of sexuality do not covary. This is similar to the role of the testosterone in men and male rats: although the hormone is needed for sex behavior, there is no correlation between serum testosterone concentration and the intensity of copulation. It is also pointed out that human sexual behavior is mostly determined by social conventions, whereas this is not the case in rats and other rodents. It is concluded that some observations in rats can be generalized to the human, but extreme caution must be exercised.
Collapse
Affiliation(s)
- Olivia Le Moëne
- Department of Psychology, University of Tromsø, Tromsø, Norway
| | - Anders Ågmo
- Department of Psychology, University of Tromsø, Tromsø, Norway
| |
Collapse
|
12
|
Molina-Jiménez T, Jiménez-Tlapa M, Brianza-Padilla M, Zepeda RC, Hernández-González M, Bonilla-Jaime H. The neonatal treatment with clomipramine decreases sexual motivation and increases estrogen receptors expression in the septum of male rats: Effects of the apomorphine. Pharmacol Biochem Behav 2019; 180:83-91. [DOI: 10.1016/j.pbb.2019.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/20/2019] [Accepted: 03/19/2019] [Indexed: 02/08/2023]
|
13
|
Le Moëne O, Ågmo A. The neuroendocrinology of sexual attraction. Front Neuroendocrinol 2018; 51:46-67. [PMID: 29288076 DOI: 10.1016/j.yfrne.2017.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/21/2017] [Accepted: 12/24/2017] [Indexed: 01/23/2023]
Abstract
Sexual attraction has two components: Emission of sexually attractive stimuli and responsiveness to these stimuli. In rodents, olfactory stimuli are necessary but not sufficient for attraction. We argue that body odors are far superior to odors from excreta (urine, feces) as sexual attractants. Body odors are produced by sebaceous glands all over the body surface and in specialized glands. In primates, visual stimuli, for example the sexual skin, are more important than olfactory. The role of gonadal hormones for the production of and responsiveness to odorants is well established. Both the androgen and the estrogen receptor α are important in male as well as in female rodents. Also in primates, gonadal hormones are necessary for the responsiveness to sexual attractants. In males, the androgen receptor is sufficient for sustaining responsiveness. In female non-human primates, estrogens are needed, whereas androgens seem to contribute to responsiveness in women.
Collapse
Affiliation(s)
| | - Anders Ågmo
- Department of Psychology, University of Tromsø, Norway.
| |
Collapse
|
14
|
Violante‐Soria V, Cruz SL, Rodríguez‐Manzo G. Sexual behaviour is impaired by the abused inhalant toluene in adolescent male rats. Eur J Neurosci 2018; 50:2113-2123. [DOI: 10.1111/ejn.13969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/06/2018] [Accepted: 05/17/2018] [Indexed: 12/16/2022]
Affiliation(s)
| | - Silvia L. Cruz
- Departamento de Farmacobiología Cinvestav‐Sede Sur Mexico City Mexico
| | | |
Collapse
|
15
|
Nutsch VL, Will RG, Tobiansky DJ, Reilly MP, Gore AC, Dominguez JM. Age-related changes in sexual function and steroid-hormone receptors in the medial preoptic area of male rats. Horm Behav 2017; 96:4-12. [PMID: 28882473 PMCID: PMC5722693 DOI: 10.1016/j.yhbeh.2017.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 08/07/2017] [Accepted: 08/31/2017] [Indexed: 12/15/2022]
Abstract
Testosterone is the main circulating steroid hormone in males, and acts to facilitate sexual behavior via both reduction to dihydrotestosterone (DHT) and aromatization to estradiol. The mPOA is a key site involved in mediating actions of androgens and estrogens in the control of masculine sexual behavior, but the respective roles of these hormones is not fully understood. As males age they show impairments in sexual function, and a decreased facilitation of behavior by steroid hormones compared to younger animals. We hypothesized that an anatomical substrate for these behavioral changes is a decline in expression and/or activation of hormone receptor-sensitive cells in the mPOA. We tested this by quantifying and comparing numbers of AR- and ERα-containing cells, and Fos as a marker of activated neurons, in the mPOA of mature (4-5months) and aged (12-13months) male rats, assessed one hour after copulation to one ejaculation. Numbers of AR- and ERα cells did not change with age or after sex, but the percentage of AR- and ERα-cells that co-expressed Fos were significantly up-regulated by sex, independent of age. Age effects were found for the percentage of Fos cells that co-expressed ERα (up-regulated in the central mPOA) and the percentage of Fos cells co-expressing AR in the posterior mPOA. Interestingly, serum estradiol concentrations positively correlated with intromission latency in aged but not mature animals. These data show that the aging male brain continues to have high expression and activation of both AR and ERα in the mPOA with copulation, raising the possibility that differences in relationships between hormones, behavior, and neural activation may underlie some age-related impairments.
Collapse
Affiliation(s)
- Victoria L Nutsch
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Ryan G Will
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - Daniel J Tobiansky
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - Michael P Reilly
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX, USA
| | - Andrea C Gore
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA; Department of Psychology, The University of Texas at Austin, Austin, TX, USA; Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX, USA.
| | - Juan M Dominguez
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA; Department of Psychology, The University of Texas at Austin, Austin, TX, USA; Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
16
|
Hawley W, Battista C, Divack S, Morales Núñez N. The role of estrogen G-protein coupled receptor 30 (GPR30) and sexual experience in sexual incentive motivation in male rats. Physiol Behav 2017; 177:176-181. [DOI: 10.1016/j.physbeh.2017.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/23/2017] [Accepted: 05/01/2017] [Indexed: 01/26/2023]
|
17
|
Blitzer DS, Wells TE, Hawley WR. Administration of an oxytocin receptor antagonist attenuates sexual motivation in male rats. Horm Behav 2017; 94:33-39. [PMID: 28596135 DOI: 10.1016/j.yhbeh.2017.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 03/20/2017] [Accepted: 06/03/2017] [Indexed: 01/23/2023]
Abstract
In male rats, oxytocin impacts both sexual arousal and certain types of consummatory sexual behaviors. However, the role of oxytocin in the motivational aspects of sexual behavior has received limited attention. Given the role that oxytocin signaling plays in consummatory sexual behaviors, it was hypothesized that pharmacological attenuation of oxytocin signaling would reduce sexual motivation in male rats. Sexually experienced Long-Evans male rats were administered either an oxytocin receptor antagonist (L368,899 hydrochloride; 1mg/kg) or vehicle control into the intraperitoneal cavity 40min prior to placement into the center chamber of a three-chambered arena designed to assess sexual motivation. During the 20-minute test, a sexually experienced stimulus male rat and a sexually receptive stimulus female rat were separately confined to smaller chambers that were attached to the larger end chambers of the arena. However, physical contact between test and stimulus rats was prevented by perforated dividers. Immediately following the sexual motivation test, test male rats were placed with a sexually receptive female to examine consummatory sexual behaviors. Although both drug and vehicle treated rats exhibited a preference for the female, treatment with an oxytocin receptor antagonist decreased the amount of time spent with the female. There were no differences between drug and vehicle treated rats in either general activity, exploratory behaviors, the amount of time spent near the stimulus male rat, or consummatory sexual behaviors. Extending previous findings, these results indicate that oxytocin receptors are involved in sexual motivation in male rats.
Collapse
Affiliation(s)
- D S Blitzer
- Franklin and Marshall College, Department of Psychology, United States
| | - T E Wells
- Franklin and Marshall College, Department of Psychology, United States
| | - W R Hawley
- Franklin and Marshall College, Department of Psychology, United States; Edinboro University of Pennsylvania, Department of Psychology, United States.
| |
Collapse
|
18
|
Jean A, Trouillet AC, Andrianarivelo NA, Mhaouty-Kodja S, Hardin-Pouzet H. Phospho-ERK and sex steroids in the mPOA: involvement in male mouse sexual behaviour. J Endocrinol 2017; 233:257-267. [PMID: 28356400 DOI: 10.1530/joe-17-0025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 03/29/2017] [Indexed: 12/20/2022]
Abstract
This paper aimed to investigate the mechanisms triggering ERK phosphorylation and its functional role in male sexual behaviour. ERK1/2-phosphorylated form was detected in the medial preoptic area of the hypothalamus (mPOA) during the sexual stimulation of naive and sexually experienced males who were killed 5 min after the first intromission. This mating-induced ERK phosphorylation was increased in sexually experienced males compared to that in naive mice. The functional role of the ERK1/2 pathway activation during sexual behaviour was explored with the administration of a MEK inhibitor, SL-327 (30 mg/kg, i.p.), 45 min before the contact with a receptive female. Inhibition of ERK phosphorylation was found to decrease sexual motivation in both naive and experienced males without altering their copulatory ability. The mechanisms potentially involved in this rapid ERK1/2 pathway activation were specified ex vivo on hypothalamic slices. A thirty-minute incubation with 100 nM of testosterone (T), dihydrotestosterone (DHT) or oestradiol (E2) led to ERK phosphorylation. No changes were observed after incubation with testosterone 3-(O-carboxymethyl)oxime-BSA (T-BSA), an impermeable to the plasma membrane form of testosterone. All these results indicate that ERK phosphorylation within the mPOA could be a key player in the motivational signalling pathway and considered as an index of sexual motivation. They also demonstrate the involvement of oestrogen receptor (ER) and androgen receptor (AR) transduction pathways in steroid-dependent ERK activation.
Collapse
Affiliation(s)
- Arnaud Jean
- Sorbonne UniversitésUPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris - Seine; Institut de Biologie Paris Seine, Paris, France
| | - Anne-Charlotte Trouillet
- Sorbonne UniversitésUPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris - Seine; Institut de Biologie Paris Seine, Paris, France
| | - Njiva Andry Andrianarivelo
- Sorbonne UniversitésUPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris - Seine; Institut de Biologie Paris Seine, Paris, France
| | - Sakina Mhaouty-Kodja
- Sorbonne UniversitésUPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris - Seine; Institut de Biologie Paris Seine, Paris, France
| | - Hélène Hardin-Pouzet
- Sorbonne UniversitésUPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris - Seine; Institut de Biologie Paris Seine, Paris, France
| |
Collapse
|
19
|
Limón-Morales O, Soria-Fregozo C, Arteaga-Silva M, González MH, Vázquez-Palacios G, Bonilla-Jaime H. Hormone replacement with 17β-estradiol plus dihydrotestosterone restores male sexual behavior in rats treated neonatally with clomipramine. Horm Behav 2014; 66:820-7. [PMID: 25449595 DOI: 10.1016/j.yhbeh.2014.09.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 09/18/2014] [Accepted: 09/23/2014] [Indexed: 11/25/2022]
Abstract
Male sexual behavior (MSB) in rodents, in both its consummatory and motivational components, is regulated by hormones such as testosterone, 17β-estradiol and 5-α-dihydrotestosterone. In experiments, neonatal treatment with clomipramine (CMI; a serotonin reuptake inhibitor) reproduces some of the signs of depression in adult age, including reduced sexual behavior manifested in a lower percentage of subjects that mount, intromit and ejaculate, although their testosterone levels were not altered. However, the effect of this treatment on estrogen levels and the consequences of hormone substitution using 17β-estradiol and 5-α-dihydrotestosterone on the expression of male sexual behavior are still unknown. Therefore, the objective of the present study was to analyze the effect of neonatal treatment with CMI on plasma testosterone and 17β-estradiol levels, and the role of testosterone, 17β-estradiol and 5-α-dihydrotestosterone in altering the consummatory and motivational components of sexual behavior in male rats. To this end, it analyzed the copulatory parameters and sexual incentive motivation (SIM) of rats treated with CMI under two conditions: basal and post-hormone replacements. Neonatal treatment with CMI did not affect plasma testosterone or 17β-estradiol concentrations, but did decrease both the consummatory component and sexual motivation according to the results of the SIM test. These aspects were recovered after administering 17β-estradiol +5-α-dihydrotestosterone, but not testosterone.
Collapse
Affiliation(s)
- Ofelia Limón-Morales
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa. Apartado, Postal 55 535, C.P. 09340, D.F. México
| | - Cesar Soria-Fregozo
- Laboratorio de Psicobiologia, Centro Universitario de los Lagos, Universidad de Guadalajara, México
| | - Marcela Arteaga-Silva
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa. Apartado Postal 55 535, C.P. 09340, D.F. México
| | - Marisela Hernández González
- Instituto de Neurociencias, Universidad de Guadalajara, Francisco de Quevedo 180, Col. Arcos de Vallarta, CP 44130, Guadalajara, Jalisco, México
| | - Gonzalo Vázquez-Palacios
- Colegio De Ciencia y Tecnología, Universidad Autónoma de la Ciudad de México-San Lorenzo Tezonco, Av. Prolongación San Isidro 151, Col. San Lorenzo Tezonco, Deleg, Iztapalapa CP 09790, México
| | - Herlinda Bonilla-Jaime
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa. Apartado Postal 55 535, C.P. 09340, D.F. México.
| |
Collapse
|
20
|
Wibowo E, Wassersug RJ. The effect of estrogen on the sexual interest of castrated males: Implications to prostate cancer patients on androgen-deprivation therapy. Crit Rev Oncol Hematol 2013; 87:224-38. [DOI: 10.1016/j.critrevonc.2013.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 12/09/2012] [Accepted: 01/16/2013] [Indexed: 11/30/2022] Open
|
21
|
To throw or to place: does onward intention affect how a child reaches for an object? Exp Brain Res 2013; 226:421-9. [PMID: 23455727 DOI: 10.1007/s00221-013-3453-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 02/12/2013] [Indexed: 12/23/2022]
Abstract
Picking up an object is a seemingly simple and isolated task; however, research has demonstrated that adults plan a reach-to-grasp movement on the basis of forthcoming actions. For example a greater deceleration period is seen in an initial reach movement which precedes a place movement compared to a throw movement. This task-specific or second-order motor planning is also seen in infants and toddlers; however, the developmental progression is unclear. Reach-to-grasp movements of 48 children, split into four age groups (4-5, 6-7, 8-9 and 10-11 years) were recorded. These movements preceded a tight place, a loose place or a throw action. All the children showed some degree of tailoring kinematics to the onward action. In the 4-5 year-old group, this was demonstrated by a longer movement duration in the place actions compared to the throw action. In the older children the proportion of time spent decelerating increased as the precision requirements of the task increased. These results demonstrate that all children are able to use second-order planning to integrate onward task demands into their movements. The capacity for this increases with age but is not fully mature at 11 years. These developmental effects may be explained by the relative weighting of costs involved in tailoring a reach action compared to the benefits of producing a more efficient onward action.
Collapse
|
22
|
Bacchi AD, Ponte B, Vieira ML, de Paula JCC, Mesquita SFP, Gerardin DCC, Moreira EG. Developmental exposure to Passiflora incarnata induces behavioural alterations in the male progeny. Reprod Fertil Dev 2013; 25:782-9. [DOI: 10.1071/rd11307] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 06/25/2012] [Indexed: 12/18/2022] Open
Abstract
Passiflora incarnata is marketed in many countries as a phytomedicine and is prescribed mainly as a sedative and anxiolytic. Even though the directions of most marketed phytomedicines recommend them to be used under medical supervision, reproductive and developmental studies are sparse and not mandatory for regulatory purposes. To evaluate the reproductive and developmental toxicity of P. incarnata, Wistar female rats were gavaged with 30 or 300 mg kg–1 of this herb from gestational Day (GD) 0 to postnatal Day (PND) 21. P. incarnata treatment did not influence dams’ bodyweight or food intake or their reproductive performance (post-implantation loss, litter size, litter weight). There was also no influence on the physical development of pups (bodyweight gain, day of vaginal opening or preputial separation) or their behaviour in the open-field at PND 22, 35 and 75. Sexual behaviour was disrupted in adult male pups exposed to 300 mg kg–1 of P. incarnata; in this group, only 3 out of 11 pups were sexually competent. This behavioural disruption was not accompanied by alterations in plasma testosterone levels, reproductive-related organs and glands weights or sperm count. It is hypothesised that aromatase inhibition may be involved in the observed effect.
Collapse
|
23
|
Antonio-Cabrera E, Paredes RG. Effects of chronic estradiol or testosterone treatment upon sexual behavior in sexually sluggish male rats. Pharmacol Biochem Behav 2012; 101:336-41. [DOI: 10.1016/j.pbb.2012.01.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 01/10/2012] [Accepted: 01/24/2012] [Indexed: 11/26/2022]
|
24
|
Agmo A. On the intricate relationship between sexual motivation and arousal. Horm Behav 2011; 59:681-8. [PMID: 20816969 DOI: 10.1016/j.yhbeh.2010.08.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Revised: 08/25/2010] [Accepted: 08/25/2010] [Indexed: 10/19/2022]
Abstract
Sexual motivation and sexual arousal are widely used concepts. While there seem to be considerable agreement as to the meaning of sexual motivation, there is certain confusion about the exact meaning of sexual arousal. Some use it as a synonym to sexual motivation and others make it equivalent to erection or vaginal lubrication. An unresolved question is the relationship between sexual arousal and general arousal as well as that between arousal and motivation. I present arguments for the view that arousal refers to the general state of alertness of the organism. Consequently, there is no such thing as a specific sexual arousal. I suggest that this term should be abandoned, or if that is not feasible, to make it a synonym to enhanced genital blood flow. The notion of a subjective sexual arousal, some kind of vaguely described mental state, seems to lack all explanatory value. I then show that general arousal is an important determinant of sexual motivation, and that the execution of copulatory acts leads to increased general arousal. This increase leads to enhanced sexual motivation, making the activation of sexual reflexes requiring high levels of motivation possible. Examples of such reflexes may be ejaculation in males of many species, and perhaps the psychic state of orgasm in women.
Collapse
Affiliation(s)
- Anders Agmo
- Department of Psychology, University of Tromsø, 9037 Tromsø, Norway.
| |
Collapse
|