1
|
Monari PK, Hammond ER, Zhao X, Maksimoski AN, Petric R, Malone CL, Riters LV, Marler CA. Conditioned preferences: Gated by experience, context, and endocrine systems. Horm Behav 2024; 161:105529. [PMID: 38492501 DOI: 10.1016/j.yhbeh.2024.105529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024]
Abstract
Central to the navigation of an ever-changing environment is the ability to form positive associations with places and conspecifics. The functions of location and social conditioned preferences are often studied independently, limiting our understanding of their interplay. Furthermore, a de-emphasis on natural functions of conditioned preferences has led to neurobiological interpretations separated from ecological context. By adopting a naturalistic and ethological perspective, we uncover complexities underlying the expression of conditioned preferences. Development of conditioned preferences is a combination of motivation, reward, associative learning, and context, including for social and spatial environments. Both social- and location-dependent reward-responsive behaviors and their conditioning rely on internal state-gating mechanisms that include neuroendocrine and hormone systems such as opioids, dopamine, testosterone, estradiol, and oxytocin. Such reinforced behavior emerges from mechanisms integrating past experience and current social and environmental conditions. Moreover, social context, environmental stimuli, and internal state gate and modulate motivation and learning via associative reward, shaping the conditioning process. We highlight research incorporating these concepts, focusing on the integration of social neuroendocrine mechanisms and behavioral conditioning. We explore three paradigms: 1) conditioned place preference, 2) conditioned social preference, and 3) social conditioned place preference. We highlight nonclassical species to emphasize the naturalistic applications of these conditioned preferences. To fully appreciate the complex integration of spatial and social information, future research must identify neural networks where endocrine systems exert influence on such behaviors. Such research promises to provide valuable insights into conditioned preferences within a broader naturalistic context.
Collapse
Affiliation(s)
- Patrick K Monari
- University of Wisconsin-Madison, Department of Psychology, Madison, WI, USA.
| | - Emma R Hammond
- University of Wisconsin-Madison, Department of Psychology, Madison, WI, USA
| | - Xin Zhao
- University of Wisconsin-Madison, Department of Psychology, Madison, WI, USA
| | - Alyse N Maksimoski
- University of Wisconsin-Madison, Department of Integrative Biology, Madison, WI, USA
| | - Radmila Petric
- University of Wisconsin-Madison, Department of Psychology, Madison, WI, USA; Institute for the Environment, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
| | - Candice L Malone
- University of Wisconsin-Madison, Department of Psychology, Madison, WI, USA
| | - Lauren V Riters
- University of Wisconsin-Madison, Department of Integrative Biology, Madison, WI, USA
| | - Catherine A Marler
- University of Wisconsin-Madison, Department of Psychology, Madison, WI, USA; University of Wisconsin-Madison, Department of Integrative Biology, Madison, WI, USA.
| |
Collapse
|
2
|
Vaiana AM, Chen Y, Gelfond J, Johnson-Pais TL, Leach RJ, Ramamurthy C, Thompson IM, Morilak DA. Effects of vortioxetine on hippocampal-related cognitive impairment induced in rats by androgen deprivation as a model of prostate cancer treatment. Transl Psychiatry 2023; 13:307. [PMID: 37788996 PMCID: PMC10547695 DOI: 10.1038/s41398-023-02600-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/05/2023] Open
Abstract
Advances in prostate cancer treatment have significantly improved survival, but quality of life for survivors remains an under-studied area of research. Androgen deprivation therapy (ADT) is a foundational treatment for advanced prostate cancer and is used as an adjuvant for prolonged periods in many high-risk, localized tumors. More than half of patients treated with ADT experience debilitating cognitive impairments in domains such as spatial learning and working memory. In this study, we investigated the effects of androgen deprivation on hippocampal-mediated cognition in rats. Vortioxetine, a multimodal antidepressant, has been shown to improve cognition in depressed patients. Thus, we also tested the potential efficacy of vortioxetine in restoring impaired cognition after ADT. We further investigated mechanisms that might contribute to these effects, measuring changes in the circuitry and gene expression within the dorsal hippocampus. ADT via surgical castration induced impairments in visuospatial cognition on the novel object location test and attenuated afferent-evoked local field potentials recorded in the CA1 region of the dorsal hippocampus. Chronic dietary administration of vortioxetine effectively reversed these deficits. Castration significantly altered gene expression in the hippocampus, whereas vortioxetine had little effect. Pathway analysis revealed that androgen depletion altered pathways related to synaptic plasticity. These results suggest that the hippocampus may be vulnerable to ADT, contributing to cognitive impairment in prostate cancer patients. Further, vortioxetine may be a candidate to improve cognition in patients who experience cognitive decline after androgen deprivation therapy for prostate cancer and may do so by restoring molecular and circuit-level plasticity-related mechanisms compromised by ADT.
Collapse
Affiliation(s)
- Alexandra M Vaiana
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Yidong Chen
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Department of Population Health Sciences, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Jonathan Gelfond
- Department of Population Health Sciences, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Teresa L Johnson-Pais
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Department of Urology, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Robin J Leach
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Department of Cell Systems & Anatomy, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Chethan Ramamurthy
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Ian M Thompson
- Department of Urology, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - David A Morilak
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX, 78229, USA.
- Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, 78229, USA.
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, 78229, USA.
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA.
| |
Collapse
|
3
|
Koszałka A, Lustyk K, Pytka K. Sex-dependent differences in animal cognition. Neurosci Biobehav Rev 2023; 153:105374. [PMID: 37634555 DOI: 10.1016/j.neubiorev.2023.105374] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
The differences in cognitive processes driven by biological sex are the issues that have gotten growing attention recently. Considering the increasing population suffering from various cognitive impairments and the development of therapeutic strategies, it is essential that we recognize the mechanisms responsible for discrepancies observed in male and female learning and memory functions. In this review, we discuss recent reports from preclinical studies on rodents regarding selected cognitive domains to explore the state of knowledge on sex-dependent differences and point to challenges encountered during such research. We focus on spatial, recognition, and emotional memory, as well as on executive functions, such as attention, cognitive flexibility, and working memory. This review will help to acknowledge sex-related differences in cognition and indicate some fields that lack sufficient data.
Collapse
Affiliation(s)
- Aleksandra Koszałka
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmacodynamics, Medyczna 9, 30-688 Krakow, Poland; Jagiellonian University Medical College, Doctoral School of Medical and Health Sciences, Św. Łazarza 16, 31-530 Krakow, Poland
| | - Klaudia Lustyk
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmacodynamics, Medyczna 9, 30-688 Krakow, Poland
| | - Karolina Pytka
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmacodynamics, Medyczna 9, 30-688 Krakow, Poland.
| |
Collapse
|
4
|
Song L, Chen H, Qiao D, Zhang B, Guo F, Zhang Y, Wang C, Li S, Cui H. ZIP9 mediates the effects of DHT on learning, memory and hippocampal synaptic plasticity of male Tfm and APP/PS1 mice. Front Endocrinol (Lausanne) 2023; 14:1139874. [PMID: 37305050 PMCID: PMC10248430 DOI: 10.3389/fendo.2023.1139874] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/15/2023] [Indexed: 06/13/2023] Open
Abstract
Androgens are closely associated with functions of hippocampal learning, memory, and synaptic plasticity. The zinc transporter ZIP9 (SLC39A9) regulates androgen effects as a binding site distinct from the androgen receptor (AR). However, it is still unclear whether androgens regulate their functions in hippocampus of mice through ZIP9. Compared with wild-type (WT) male mice, we found that AR-deficient male testicular feminization mutation (Tfm) mice with low androgen levels had learning and memory impairment, decreased expression of hippocampal synaptic proteins PSD95, drebrin, SYP, and dendritic spine density. Dihydrotestosterone (DHT) supplementation significantly improved these conditions in Tfm male mice, although the beneficial effects disappeared after hippocampal ZIP9 knockdown. To explore the underlying mechanism, we first detected the phosphorylation of ERK1/2 and eIF4E in the hippocampus and found that it was lower in Tfm male mice than in WT male mice, it upregulated with DHT supplementation, and it downregulated after hippocampal ZIP9 knockdown. Next, we found that the expression of PSD95, p-ERK1/2, and p-eIF4E increased in DHT-treated mouse hippocampal neuron HT22 cells, and ZIP9 knockdown or overexpression inhibited or further enhanced these effects. Using the ERK1/2 specific inhibitor SCH772984 and eIF4E specific inhibitor eFT508, we found that DHT activated ERK1/2 through ZIP9, resulting in eIF4E phosphorylation, thus promoting PSD95 protein expression in HT22 cells. Finally, we found that ZIP9 mediated the effects of DHT on the expression of synaptic proteins PSD95, drebrin, SYP, and dendritic spine density in the hippocampus of APP/PS1 mice through the ERK1/2-eIF4E pathway and affected learning and memory. This study demonstrated that androgen affected learning and memory in mice through ZIP9, providing new experimental evidence for improvement in learning and memory in Alzheimer's disease with androgen supplementation.
Collapse
Affiliation(s)
- Leigang Song
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Sports Human Science, Hebei Sport University, Shijiazhuang, Hebei, China
| | - Huan Chen
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Dan Qiao
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Bohan Zhang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Fangzhen Guo
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yizhou Zhang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Chang Wang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Sha Li
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Huixian Cui
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
5
|
Cunliffe G, Lim YT, Chae W, Jung S. Alternative Pharmacological Strategies for the Treatment of Alzheimer's Disease: Focus on Neuromodulator Function. Biomedicines 2022; 10:3064. [PMID: 36551821 PMCID: PMC9776382 DOI: 10.3390/biomedicines10123064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, comprising 70% of dementia diagnoses worldwide and affecting 1 in 9 people over the age of 65. However, the majority of its treatments, which predominantly target the cholinergic system, remain insufficient at reversing pathology and act simply to slow the inevitable progression of the disease. The most recent neurotransmitter-targeting drug for AD was approved in 2003, strongly suggesting that targeting neurotransmitter systems alone is unlikely to be sufficient, and that research into alternate treatment avenues is urgently required. Neuromodulators are substances released by neurons which influence neurotransmitter release and signal transmission across synapses. Neuromodulators including neuropeptides, hormones, neurotrophins, ATP and metal ions display altered function in AD, which underlies aberrant neuronal activity and pathology. However, research into how the manipulation of neuromodulators may be useful in the treatment of AD is relatively understudied. Combining neuromodulator targeting with more novel methods of drug delivery, such as the use of multi-targeted directed ligands, combinatorial drugs and encapsulated nanoparticle delivery systems, may help to overcome limitations of conventional treatments. These include difficulty crossing the blood-brain-barrier and the exertion of effects on a single target only. This review aims to highlight the ways in which neuromodulator functions are altered in AD and investigate how future therapies targeting such substances, which act upstream to classical neurotransmitter systems, may be of potential therapeutic benefit in the sustained search for more effective treatments.
Collapse
Affiliation(s)
- Grace Cunliffe
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Yi Tang Lim
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
- Faculty of Science, National University of Singapore, Singapore 117546, Singapore
| | - Woori Chae
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Seongnam-si 13120, Republic of Korea
| | - Sangyong Jung
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| |
Collapse
|
6
|
Bowman R, Frankfurt M, Luine V. Sex differences in cognition following variations in endocrine status. Learn Mem 2022; 29:234-245. [PMID: 36206395 PMCID: PMC9488023 DOI: 10.1101/lm.053509.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/03/2022] [Indexed: 11/24/2022]
Abstract
Spatial memory, mediated primarily by the hippocampus, is responsible for orientation in space and retrieval of information regarding location of objects and places in an animal's environment. Since the hippocampus is dense with steroid hormone receptors and is capable of robust neuroplasticity, it is not surprising that changes in spatial memory performance occur following a variety of endocrine alterations. Here, we review cognitive changes in both spatial and nonspatial memory tasks following manipulations of the hypothalamic-pituitary-adrenal and gonadal axes and after exposure to endocrine disruptors in rodents. Chronic stress impairs male performance on numerous behavioral cognitive tasks and enhances or does not impact female cognitive function. Sex-dependent changes in cognition following stress are influenced by both organizational and activational effects of estrogen and vary depending on the developmental age of the stress exposure, but responses to gonadal hormones in adulthood are more similar than different in the sexes. Also discussed are possible underlying neural mechanisms for these steroid hormone-dependent, cognitive effects. Bisphenol A (BPA), an endocrine disruptor, given at low levels during adolescent development, impairs spatial memory in adolescent male and female rats and object recognition memory in adulthood. BPA's negative effects on memory may be mediated through alterations in dendritic spine density in areas that mediate these cognitive tasks. In summary, this review discusses the evidence that endocrine status of an animal (presence or absence of stress hormones, gonadal hormones, or endocrine disruptors) impacts cognitive function and, at times, in a sex-specific manner.
Collapse
Affiliation(s)
- Rachel Bowman
- Department of Psychology, Sacred Heart University, Fairfield, Connecticut 06825, USA
| | - Maya Frankfurt
- Department of Psychology, Sacred Heart University, Fairfield, Connecticut 06825, USA
- Hofstra Northwell School of Nursing and Physician Assistant Studies, Hofstra University, Hempstead, New York 11549, USA
| | - Victoria Luine
- Department of Psychology, Hunter College of City University of New York, New York, New York 10065, USA
| |
Collapse
|
7
|
Lucon-Xiccato T. The contribution of executive functions to sex differences in animal cognition. Neurosci Biobehav Rev 2022; 138:104705. [PMID: 35605792 DOI: 10.1016/j.neubiorev.2022.104705] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/22/2022] [Accepted: 05/17/2022] [Indexed: 01/17/2023]
Abstract
Cognitive sex differences have been reported in several vertebrate species, mostly in spatial abilities. Here, I review evidence of sex differences in a family of general cognitive functions that control behaviour and cognition, i.e., executive functions such as cognitive flexibility and inhibitory control. Most of this evidence derives from studies in teleost fish. However, analysis of literature from other fields (e.g., biomedicine, genetic, ecology) concerning mammals and birds reveals that more than 40% of species investigated exhibit sex differences in executive functions. Among species, the direction and magnitude of these sex differences vary greatly, even within the same family, suggesting sex-specific selection due to species' reproductive systems and reproductive roles of males and females. Evidence also suggests that sex differences in executive functions might provide males and females highly differentiated cognitive phenotypes. To understand the evolution of cognitive sex differences in vertebrates, future research should consider executive functions.
Collapse
Affiliation(s)
- Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Borsari 46, 44121 Ferrara, Italy.
| |
Collapse
|
8
|
Luine V, Mohan G, Attalla S, Jacome L, Frankfurt M. Androgens Enhance Recognition Memory and Dendritic Spine Density in the Hippocampus and Prefrontal Cortex of Ovariectomized Female Rats. Neuroscience 2022:S0306-4522(22)00287-1. [PMID: 35671881 PMCID: PMC9719572 DOI: 10.1016/j.neuroscience.2022.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/28/2022] [Accepted: 06/01/2022] [Indexed: 12/28/2022]
Abstract
Estrogen replacement has been repeatedly shown to enhance memory and increase dendritic spine density in the hippocampus and prefrontal cortex of ovariectomized (OVX) female rats. Given the potential deleterious effects of chronic estrogen administration, the present study assessed cognitive function using recognition memory tasks and measured dendritic spine density in the CA1 region of the hippocampus and medial prefrontal cortex after subchronic androgen replacement to adult OVX female rats. All androgens enhanced recognition memory in OVX rats, but object placement (OP) and object recognition (OR) results differed. Only testosterone enhanced OR. Testosterone had no effect on OP while dehydroepiandrosterone (DHEA), dihydrotestosterone (DHT) and androstenedione (AD) enhanced OP. Dendritic spine density was increased by both TP and DHEA in both brain areas (DHT and AD were not tested). Lastly, we used the aromatase inhibitor, letrozole, to discriminate between potential androgenic and estrogenic effects of androgens on behavior. Letrozole alone did not alter recognition memory in OVX rats and did not block the effects of either TP or DHEA on recognition memory suggesting that effects were mediated via androgenic mechanisms. The present results expand previous information on gonadal hormone actions and show that, in addition to estrogens, androgens also improve memory and increase spine density in brains of OVX female rats. While requiring further investigation, these observations provide a basis for therapeutic interventions in the treatment of menopausal, age or disease related memory loss.
Collapse
Affiliation(s)
- Victoria Luine
- Department of Psychology, Hunter College, 695 Park Avenue, New York, NY 10065, United States.
| | - Govini Mohan
- Department of Psychology, Hunter College, 695 Park Avenue, New York, NY 10065, United States
| | - Sara Attalla
- Department of Psychology, Hunter College, 695 Park Avenue, New York, NY 10065, United States
| | - Luis Jacome
- Department of Psychology, Hunter College, 695 Park Avenue, New York, NY 10065, United States
| | - Maya Frankfurt
- Hofstra Northwell School of Nursing and Physician Assistant Studies, 160 Hofstra University, 400A Shapiro Family Hall, Hempstead, NY 11549, United States
| |
Collapse
|
9
|
Androgen Affects the Inhibitory Avoidance Memory by Primarily Acting on Androgen Receptor in the Brain in Adolescent Male Rats. Brain Sci 2021; 11:brainsci11020239. [PMID: 33672867 PMCID: PMC7918178 DOI: 10.3390/brainsci11020239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 11/17/2022] Open
Abstract
Adolescence is the critical postnatal stage for the action of androgen in multiple brain regions. Androgens can regulate the learning/memory functions in the brain. It is known that the inhibitory avoidance test can evaluate emotional memory and is believed to be dependent largely on the amygdala and hippocampus. However, the effects of androgen on inhibitory avoidance memory have never been reported in adolescent male rats. In the present study, the effects of androgen on inhibitory avoidance memory and on androgen receptor (AR)-immunoreactivity in the amygdala and hippocampus were studied using behavioral analysis, Western blotting and immunohistochemistry in sham-operated, orchiectomized, orchiectomized + testosterone or orchiectomized + dihydrotestosterone-administered male adolescent rats. Orchiectomized rats showed significantly reduced time spent in the illuminated box after 30 min (test 1) or 24 h (test 2) of electrical foot-shock (training) and reduced AR-immunoreactivity in amygdala/hippocampal cornu Ammonis (CA1) in comparison to those in sham-operated rats. Treatment of orchiectomized rats with either non-aromatizable dihydrotestosterone or aromatizable testosterone were successfully reinstated these effects. Application of flutamide (AR-antagonist) in intact adolescent rats exhibited identical changes to those in orchiectomized rats. These suggest that androgens enhance the inhibitory avoidance memory plausibly by binding with AR in the amygdala and hippocampus.
Collapse
|
10
|
Sexual Motivation and Sexual Reward in Male Rats are Attenuated by the Gonadotropin-Releasing Hormone Receptor Antagonist Degarelix. J Sex Med 2021; 18:240-255. [PMID: 33419705 DOI: 10.1016/j.jsxm.2020.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Preclinical studies that have examined the effects of androgen deprivation therapies (ADTs) on sexual outcomes have either relied on a surgical castration model of ADTs or have largely focused on consummatory sexual behaviors. AIM The aim of this study was to examine the effects of a single administration of the gonadotropin-releasing hormone receptor antagonist, degarelix, on sexual incentive motivation (SIM), sexual reward, consummatory sexual behaviors, anxiety-like behavior, and androgen receptor signaling in male rats, and to determine if sexual stimulation attenuates the effects of degarelix on SIM. METHODS Male rats were treated with degarelix, or vehicle, and half of the rats in each condition were briefly exposed to a sexually receptive female immediately before SIM trials (experiment 1). Rats treated with degarelix or vehicle were also given a sex-conditioned place preference test (experiment 2A), weekly mating tests (experiment 2B), and an elevated zero maze test (experiment 3). Androgen-sensitive tissues were excised upon completion of testing. OUTCOMES SIM was indicated by the percentage of time spent near a sexually receptive female on the SIM tests. The percentage of time spent in the chamber of a conditioned place preference maze associated with sexual experience was indicative of sexual reward. The percentage of trials in which a mount, intromission, and ejaculation occurred was indicative of copulatory ability. Sexual performance was characterized by the average latencies to first exhibit these behaviors, as well as the average frequency of these behaviors. Anxiety-like behavior was indicated by the percentage of time in the open zones of an elevated zero maze. Relative weights of the seminal vesicles and bulbourethral glands were used to quantify androgen activity. RESULTS Rats treated with degarelix exhibited lower levels of SIM. In rats treated with degarelix, contact with a female immediately before SIM testing increased activity, but not SIM. Treatment with degarelix reduced the rewarding aspects of sexual behavior, as well as most aspects of copulatory ability and sexual performance. Degarelix treatment reduced androgen signaling, but did not impact anxiety-like behavior. CLINICAL IMPLICATIONS The behavioral side effects associated with the use of degarelix may be restricted to sexual behaviors. STRENGTHS & LIMITATIONS Strengths include the objective measurement of sexual behaviors. The study is limited in that only one ADT was examined. CONCLUSION These findings serve as an extension of previous preclinical studies as they indicate that gonadotropin-releasing hormone receptor antagonism in male rats also attenuates sexual motivation and sexual reward, in addition to copulatory ability and sexual performance. Hawley WR, Kapp LE, Green PA, et al. Sexual Motivation and Reward in Male Rats are Attenuated by the Gonadotropin-Releasing Hormone Receptor Antagonist Degarelix. J Sex Med 2021;18:240-255.
Collapse
|
11
|
Conner MR, Jang D, Anderson BJ, Kritzer MF. Biological Sex and Sex Hormone Impacts on Deficits in Episodic-Like Memory in a Rat Model of Early, Pre-motor Stages of Parkinson's Disease. Front Neurol 2020; 11:942. [PMID: 33041964 PMCID: PMC7527538 DOI: 10.3389/fneur.2020.00942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/21/2020] [Indexed: 01/30/2023] Open
Abstract
Episodic memory deficits are among the earliest appearing and most commonly occurring examples of cognitive impairment in Parkinson's disease (PD). These enduring features can also predict a clinical course of rapid motor decline, significant cognitive deterioration, and the development of PD-related dementia. The lack of effective means to treat these deficits underscores the need to better understand their neurobiological bases. The prominent sex differences that characterize episodic memory in health, aging and in schizophrenia and Alzheimer's disease suggest that neuroendocrine factors may also influence episodic memory dysfunction in PD. However, while sex differences have been well-documented for many facets of PD, sex differences in, and sex hormone influences on associated episodic memory impairments have been less extensively studied and have never been examined in preclinical PD models. Accordingly, we paired bilateral neostriatal 6-hydroxydopamine (6-OHDA) lesions with behavioral testing using the What-Where-When Episodic-Like Memory (ELM) Task in adult rats to first determine whether episodic-like memory is impaired in this model. We further compared outcomes in gonadally intact female and male subjects, and in male rats that had undergone gonadectomy—with and without hormone replacement, to determine whether biological sex and/or sex hormones influenced the expression of dopamine lesioned-induced memory deficits. These studies showed that 6-OHDA lesions profoundly impaired recall for all memory domains in male and female rats. They also showed that in males, circulating gonadal hormones powerfully modulated the negative impacts of 6-OHDA lesions on What, Where, and When discriminations in domain-specific ways. Specifically, the absence of androgens was shown to fully attenuate 6-OHDA lesion-induced deficits in ELM for “Where” and to partially protect against lesion-induced deficits in ELM for “What.” In sum, these findings show that 6-OHDA lesions in rats recapitulate the vulnerability of episodic memory seen in early PD. Together with similar evidence recently obtained for spatial working memory, the present findings also showed that diminished androgen levels provide powerful, highly selective protections against the harmful effects that 6-OHDA lesions have on memory functions in male rats.
Collapse
Affiliation(s)
- Meagan R Conner
- Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY, United States.,Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, United States
| | - Doyeon Jang
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, United States
| | - Brenda J Anderson
- Department of Psychology, Stony Brook University, Stony Brook, NY, United States
| | - Mary F Kritzer
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
12
|
Jiménez-Rubio G, Herrera-Pérez JJ, Martínez-Becerril HA, Márquez-Baltazar MS, Martínez-Mota L. Age-dependent effects of testosterone on spatial memory in male rats. Horm Behav 2020; 122:104748. [PMID: 32222529 DOI: 10.1016/j.yhbeh.2020.104748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 03/20/2020] [Accepted: 03/22/2020] [Indexed: 11/21/2022]
Abstract
Decreased spatial memory is common in aging populations and reduces their quality of life. Although its role is still controversial, low testosterone (T) may contribute to impaired cognition in aged men. This study aimed to identify the role of T in age-related deficiencies in spatial memory among male rats. Young adult (3 months old) and aged (21 months old) Wistar rats were assigned to independent groups: intact, orchidectomized, or orchidectomized + subcutaneous pellets of T propionate. The phases of spatial memory acquisition (4 daily trials/4 days) and spatial memory retention (1 trial/day, 3 and 12 days after acquisition) were evaluated using the Barnes maze. Compared with young adults, aged intact rats took longer to find the goal, made more mistakes, and showed only slight improvements in goal sector exploration across the acquisition period. The young orchidectomized rats showed no improvement in performance over the days during the acquisition phase. T treatment in hormonally deprived old rats produced a small improvement in goal sector exploration and number of errors during the acquisition phase. Meanwhile, in young adults, this treatment improved the goal sector searching in the retention phase (12 days after acquisition training). Our results suggested that age-related spatial memory deficits cannot be entirely explained by the decline in T levels; however, this androgen produced subtle and mild beneficial effects on spatial memory in young and old males. Taken together, our findings suggest age differences in the role of T on spatial memory in males.
Collapse
Affiliation(s)
- Graciela Jiménez-Rubio
- Laboratorio de Farmacología Conductual, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Delegación Tlalpan, 14370 Ciudad de México, Mexico
| | - José Jaime Herrera-Pérez
- Laboratorio de Farmacología Conductual, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Delegación Tlalpan, 14370 Ciudad de México, Mexico
| | - Hilda Angélica Martínez-Becerril
- Laboratorio de Farmacología Conductual, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Delegación Tlalpan, 14370 Ciudad de México, Mexico
| | - Martín Sergio Márquez-Baltazar
- Laboratorio de Farmacología Conductual, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Delegación Tlalpan, 14370 Ciudad de México, Mexico
| | - Lucía Martínez-Mota
- Laboratorio de Farmacología Conductual, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Delegación Tlalpan, 14370 Ciudad de México, Mexico.
| |
Collapse
|
13
|
Islam MN, Sakimoto Y, Jahan MR, Ishida M, Tarif AMM, Nozaki K, Masumoto KH, Yanai A, Mitsushima D, Shinoda K. Androgen Affects the Dynamics of Intrinsic Plasticity of Pyramidal Neurons in the CA1 Hippocampal Subfield in Adolescent Male Rats. Neuroscience 2020; 440:15-29. [PMID: 32450298 DOI: 10.1016/j.neuroscience.2020.05.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/18/2022]
Abstract
Androgen receptor (AR) is abundantly expressed in the preoptico-hypothalamic area, bed nucleus of stria terminalis, and medial amygdala of the brain where androgen plays an important role in regulating male sociosexual, emotional and aggressive behaviors. In addition to these brain regions, AR is also highly expressed in the hippocampus, suggesting that the hippocampus is another major target of androgenic modulation. It is known that androgen can modulate synaptic plasticity in the CA1 hippocampal subfield. However, to date, the effects of androgen on the intrinsic plasticity of hippocampal neurons have not been clearly elucidated. In this study, the effects of androgen on the expression of AR in the hippocampus and on the dynamics of intrinsic plasticity of CA1 pyramidal neurons were examined using immunohistochemistry, Western blotting and whole-cell current-clamp recording in unoperated, sham-operated, orchiectomized (OCX), OCX + testosterone (T) or OCX + dihydrotestosterone (DHT)-primed adolescent male rats. Orchiectomy significantly decreased AR-immunoreactivity, resting membrane potential, action potential numbers, afterhyperpolarization amplitude and membrane resistance, whereas it significantly increased action potential threshold and membrane capacitance. These effects were successfully reversed by treatment with either aromatizable androgen T or non-aromatizable androgen DHT. Furthermore, administration of the AR-antagonist flutamide in intact rats showed similar changes to those in OCX rats, suggesting that androgens affect the excitability of CA1 pyramidal neurons possibly by acting on the AR. Our current study potentially clarifies the role of androgen in enhancing the basal excitability of the CA1 pyramidal neurons, which may influence selective neuronal excitation/activation to modulate certain hippocampal functions.
Collapse
Affiliation(s)
- Md Nabiul Islam
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan
| | - Yuya Sakimoto
- Department of Physiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan
| | - Mir Rubayet Jahan
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan; Department of Anatomy and Histology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mako Ishida
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan
| | - Abu Md Mamun Tarif
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan
| | - Kanako Nozaki
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan
| | - Koh-Hei Masumoto
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan
| | - Akie Yanai
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan; Department of Basic Laboratory Sciences, Faculty of Medicine and Health Sciences, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan
| | - Dai Mitsushima
- Department of Physiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan
| | - Koh Shinoda
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan.
| |
Collapse
|
14
|
Conner MR, Adeyemi OM, Anderson BJ, Kritzer MF. Domain-specific contributions of biological sex and sex hormones to what, where and when components of episodic-like memory in adult rats. Eur J Neurosci 2020; 52:2705-2723. [PMID: 31943448 DOI: 10.1111/ejn.14676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 12/21/2022]
Abstract
Episodic memory involves the integration and recall of discrete events that include information about what happened, where it happened and when it occurred. Episodic memory function is critical to daily life, and its dysfunction is both a first identifiable indicator and an enduring core feature of cognitive decline in ageing and in neuropsychiatric disorders including Alzheimer's disease and schizophrenia. Available evidence from human studies suggests that biological sex and sex hormones modulate episodic memory function in health and disease. However, knowledge of how this occurs is constrained by the limited availability and underutilization of validated animal models in investigating hormone impacts on episodic-like memory function. Here, adult female, adult male and gonadally manipulated adult male rats were tested on the what-where-when episodic-like memory task to determine whether rats model human sex differences in episodic memory and how the hormonal milieu impacts episodic-like memory processes in this species. These studies revealed salient ways in which rats model human sex differences in episodic memory, including a male advantage in spatial episodic memory performance. They also identified domain-specific roles for oestrogens and androgens in modulating what, where and when discriminations in male rats that were unlike those engaged in corresponding novel object recognition and novel object location tasks. These studies thus identify rats and the what-where-when task as suitable for investigating the neuroendocrine bases of episodic-like memory, and provide new information about the unique contributions that sex and sex hormones make to this complex mnemonic process.
Collapse
Affiliation(s)
- Meagan R Conner
- Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY, USA.,Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
| | | | - Brenda J Anderson
- Department of Psychology, Stony Brook University, Stony Brook, NY, USA
| | - Mary F Kritzer
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
15
|
Smith C, Contreras-Garza J, Cunningham RL, Wong JM, Vann PH, Metzger D, Kasanga E, Oppong-Gyebi A, Sumien N, Schreihofer DA. Chronic Testosterone Deprivation Sensitizes the Middle-Aged Rat Brain to Damaging Effects of Testosterone Replacement. Neuroendocrinology 2020; 110:914-928. [PMID: 31671430 DOI: 10.1159/000504445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/30/2019] [Indexed: 11/19/2022]
Abstract
INTRODUCTION An increasing number of middle-aged men are being screened for low testosterone levels and the number of prescriptions for various forms of testosterone replacement therapy (TRT) has increased dramatically over the last 10 years. However, the safety of TRT has come into question with some studies suggesting increased morbidity and mortality. OBJECTIVE Because the benefits of estrogen replacement in postmenopausal women and ovariectomized rodents are lost if there is an extended delay between estrogen loss and replacement, we hypothesized that TRT may also be sensitive to delayed replacement. METHODS We compared the effects of testosterone replacement after short-term (2 weeks) and long-term testosterone deprivation (LTTD; 10 weeks) in middle-aged male rats on cerebral ischemia, oxidative stress, and cognitive function. We hypothesized that LTTD would increase oxidative stress levels and abrogate the beneficial effects of TRT. RESULTS Hypogonadism itself and TRT after short-term castration did not affect stroke outcome compared to intact rats. However, after long-term hypogonadism in middle-aged male Fischer 344 rats, TRT exacerbated the detrimental behavioral effects of experimental focal cerebral ischemia, whereas this detrimental effect was prevented by administration of the free-radical scavenger tempol, suggesting that TRT exacerbates oxidative stress. In contrast, TRT improved cognitive performance in non-stroked rats regardless of the length of hypogonadism. In the Morris water maze, peripheral oxidative stress was highly associated with decreased cognitive ability. CONCLUSIONS Taken together, these data suggest that TRT after long-term hypogonadism can exacerbate functional recovery after focal cerebral ischemia, but in the absence of injury can enhance cognition. Both of these effects are modulated by oxidative stress levels.
Collapse
Affiliation(s)
- Charity Smith
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Jo Contreras-Garza
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
- Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Rebecca L Cunningham
- Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, Texas, USA
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Jessica M Wong
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
- Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Philip H Vann
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
- Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Daniel Metzger
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
- Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Ella Kasanga
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
- Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Anthony Oppong-Gyebi
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
- Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Nathalie Sumien
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
- Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Derek A Schreihofer
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA,
- Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, Texas, USA,
| |
Collapse
|
16
|
Sharp AM, Lertphinyowong S, Yee SS, Paredes D, Gelfond J, Johnson-Pais TL, Leach RJ, Liss M, Risinger AL, Sullivan AC, Thompson IM, Morilak DA. Vortioxetine reverses medial prefrontal cortex-mediated cognitive deficits in male rats induced by castration as a model of androgen deprivation therapy for prostate cancer. Psychopharmacology (Berl) 2019; 236:3183-3195. [PMID: 31139875 PMCID: PMC6832770 DOI: 10.1007/s00213-019-05274-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/10/2019] [Indexed: 01/10/2023]
Abstract
RATIONALE Androgen deprivation therapy (ADT) is an effective treatment for prostate cancer, but induces profound cognitive impairment. Little research has addressed mechanisms underlying these deficits or potential treatments. This is an unmet need to improve quality of life for prostate cancer survivors. OBJECTIVES We investigated mechanisms of cognitive impairment after ADT in rats and potential utility of the multimodal serotonin-targeting drug, vortioxetine, to improve the impairment, as vortioxetine has specific efficacy against cognitive impairment in depression. METHODS Male Sprague-Dawley rats were surgically castrated. Vortioxetine (28 mg/kg/day) was administered in the diet. The attentional set-shifting test was used to assess medial prefrontal cortex (mPFC) executive function. Afferent-evoked field potentials were recorded in the mPFC of anesthetized rats after stimulating the ventral hippocampus (vHipp) or medial dorsal thalamus (MDT). Gene expression changes were assessed by microarray. Effects of vortioxetine on growth of prostate cancer cells were assessed in vitro. RESULTS ADT impaired cognitive set shifting and attenuated responses evoked in the mPFC by the vHipp afferent, but not the MDT. Both the cognitive impairment and attenuated vHipp-evoked responses were reversed by chronic vortioxetine treatment. Preliminary investigation of gene expression in the mPFC indicates that factors involved in neuronal plasticity and synaptic transmission were down-regulated by castration and up-regulated by vortioxetine in castrated animals. Vortioxetine neither altered the growth of prostate cancer cells in vitro nor interfered with the antiproliferative effects of the androgen antagonist, enzalutamide. CONCLUSIONS These results suggest that vortioxetine may be useful in mitigating cognitive impairment associated with ADT for prostate cancer.
Collapse
Affiliation(s)
- Alexandra M Sharp
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Suphada Lertphinyowong
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Samantha S Yee
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Denisse Paredes
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Jonathan Gelfond
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Teresa L Johnson-Pais
- Department of Urology, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Robin J Leach
- Department of Urology, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Department of Cell Systems & Anatomy, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Michael Liss
- Department of Urology, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care Service, San Antonio, TX, 78229, USA
| | - April L Risinger
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Anna C Sullivan
- Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Department of Neurology, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Ian M Thompson
- Department of Urology, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- CHRISTUS Santa Rosa Hospital, San Antonio, TX, 78229, USA
| | - David A Morilak
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX, 78229, USA.
- Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, 78229, USA.
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, 78229, USA.
- South Texas Veterans Health Care Service, San Antonio, TX, 78229, USA.
| |
Collapse
|
17
|
Long-term Surgical and Chemical Castration Deteriorates Memory Function Through Downregulation of PKA/CREB/BDNF and c-Raf/MEK/ERK Pathways in Hippocampus. Int Neurourol J 2019; 23:116-124. [PMID: 31260611 PMCID: PMC6606934 DOI: 10.5213/inj.1938103.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 06/04/2019] [Indexed: 12/14/2022] Open
Abstract
Purpose Goserelin is a drug used for chemical castration. In a rat model, we investigated whether surgical and chemical castration affected memory ability through the protein kinase A (PKA)/cyclic adenosine monophosphate response element-binding protein (CREB)/brain-derived neurotrophic factor (BDNF) and c-Raf/mitogen-activated protein kinases-extracellular signal–regulated kinases (MEK)/extracellular signal–regulated kinases (ERK) pathways in the hippocampus. Methods Orchiectomy was performed for surgical castration and goserelin acetate was subcutaneously transplanted into the anterior abdominal wall for chemical castration. Immunohistochemistry was done to quantify neurogenesis. To assess the involvement of the PKA/CREB/BDNF and c-Raf/MEK/ERK pathways in the memory process, western blots were used. Results The orchiectomy group and the goserelin group showed less neurogenesis and impaired short-term and spatial memory. Phosphorylation of PKA/CREB/BDNF and phosphorylation of c-Raf/MEK/ERK decreased in the orchiectomy and goserelin groups. Conclusions Short-term memory and spatial memory were affected by surgical and chemical castration via the PKA/CREB/BDNF and c-Raf/MEK/ERK signaling pathways.
Collapse
|
18
|
Kaufman MJ, Kanayama G, Hudson JI, Pope HG. Supraphysiologic-dose anabolic-androgenic steroid use: A risk factor for dementia? Neurosci Biobehav Rev 2019; 100:180-207. [PMID: 30817935 PMCID: PMC6451684 DOI: 10.1016/j.neubiorev.2019.02.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/13/2019] [Accepted: 02/17/2019] [Indexed: 02/06/2023]
Abstract
Supraphysiologic-dose anabolic-androgenic steroid (AAS) use is associated with physiologic, cognitive, and brain abnormalities similar to those found in people at risk for developing Alzheimer's Disease and its related dementias (AD/ADRD), which are associated with high brain β-amyloid (Aβ) and hyperphosphorylated tau (tau-P) protein levels. Supraphysiologic-dose AAS induces androgen abnormalities and excess oxidative stress, which have been linked to increased and decreased expression or activity of proteins that synthesize and eliminate, respectively, Aβ and tau-P. Aβ and tau-P accumulation may begin soon after initiating supraphysiologic-dose AAS use, which typically occurs in the early 20s, and their accumulation may be accelerated by other psychoactive substance use, which is common among non-medical AAS users. Accordingly, the widespread use of supraphysiologic-dose AAS may increase the numbers of people who develop dementia. Early diagnosis and correction of sex-steroid level abnormalities and excess oxidative stress could attenuate risk for developing AD/ADRD in supraphysiologic-dose AAS users, in people with other substance use disorders, and in people with low sex-steroid levels or excess oxidative stress associated with aging.
Collapse
Affiliation(s)
- Marc J Kaufman
- McLean Imaging Center, McLean Hospital, 115 Mill St., Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA.
| | - Gen Kanayama
- Biological Psychiatry Laboratory, McLean Hospital, 115 Mill St., Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - James I Hudson
- Biological Psychiatry Laboratory, McLean Hospital, 115 Mill St., Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Harrison G Pope
- Biological Psychiatry Laboratory, McLean Hospital, 115 Mill St., Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
19
|
Chunchai T, Apaijai N, Keawtep P, Mantor D, Arinno A, Pratchayasakul W, Chattipakorn N, Chattipakorn SC. Testosterone deprivation intensifies cognitive decline in obese male rats via glial hyperactivity, increased oxidative stress, and apoptosis in both hippocampus and cortex. Acta Physiol (Oxf) 2019; 226:e13229. [PMID: 30506942 DOI: 10.1111/apha.13229] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/24/2018] [Accepted: 11/24/2018] [Indexed: 12/15/2022]
Abstract
AIM The study hypothesized that testosterone deprivation aggravates cognitive decline in obesity through increasing oxidative stress, glial activation, and apoptosis. METHODS Male Wistar rats (n = 24) were fed with either normal-diet (ND) or high-fat diet (HFD) for 24 weeks. At week 13, ND-fed rats and HFD-fed rats were randomly assigned to two subgroups to receive either a sham-operation or bilateral-orchiectomy (ORX). Rats were evaluated for metabolic parameters and cognition at 4, 8, and 12 weeks after the operation. At the end of protocol, the reactive oxygen species (ROS), glial morphology, and cell apoptosis were determined in hippocampus and cortex. RESULTS Both HFD-fed groups developed obese-insulin resistance, but ND-fed rats did not. HFD-fed rats with sham-operation showed cognitive decline, when compared to ND-fed rats with sham-operation at all time points. At 4- and 8-week after ORX, the cognitive impairment of ND-fed rats and both HFD-fed groups was not different. However, 12-week after ORX, cognitive decline and of glial hyperactivity of HFD-fed rats had the greatest increase among all groups. Hippocampal ROS levels and apoptotic cells in both HFD-fed groups were equally increased, but the cortical ROS levels and apoptotic cells of HFD-fed rats with ORX were the highest ones. CONCLUSIONS These findings suggest that testosterone deprivation aggravates cognitive decline in obesity via increasing oxidative stress, glial activity and apoptosis.
Collapse
Affiliation(s)
- Titikorn Chunchai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine Chiang Mai University Chiang Mai Thailand
- Cardiac Electrophysiology Unit, Department of Physiology Faculty of Medicine Chiang Mai University Chiang Mai Thailand
| | - Nattayaporn Apaijai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine Chiang Mai University Chiang Mai Thailand
- Cardiac Electrophysiology Unit, Department of Physiology Faculty of Medicine Chiang Mai University Chiang Mai Thailand
| | - Puntarik Keawtep
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine Chiang Mai University Chiang Mai Thailand
- Cardiac Electrophysiology Unit, Department of Physiology Faculty of Medicine Chiang Mai University Chiang Mai Thailand
| | - Duangkamol Mantor
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine Chiang Mai University Chiang Mai Thailand
- Cardiac Electrophysiology Unit, Department of Physiology Faculty of Medicine Chiang Mai University Chiang Mai Thailand
| | - Apiwan Arinno
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine Chiang Mai University Chiang Mai Thailand
- Cardiac Electrophysiology Unit, Department of Physiology Faculty of Medicine Chiang Mai University Chiang Mai Thailand
| | - Wasana Pratchayasakul
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine Chiang Mai University Chiang Mai Thailand
- Cardiac Electrophysiology Unit, Department of Physiology Faculty of Medicine Chiang Mai University Chiang Mai Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine Chiang Mai University Chiang Mai Thailand
- Cardiac Electrophysiology Unit, Department of Physiology Faculty of Medicine Chiang Mai University Chiang Mai Thailand
| | - Siriporn C. Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine Chiang Mai University Chiang Mai Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry Chiang Mai University Chiang Mai Thailand
| |
Collapse
|
20
|
Wibowo E. Cognitive Impacts of Estrogen Treatment in Androgen-Deprived Males: What Needs to be Resolved. Curr Neuropharmacol 2018; 15:1043-1055. [PMID: 28294068 PMCID: PMC5652012 DOI: 10.2174/1570159x15666170313122555] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 02/10/2017] [Accepted: 03/08/2017] [Indexed: 12/13/2022] Open
Abstract
Background: Many prostate cancer (PCa) patients are on androgen deprivation therapy (ADT) as part of their cancer treatments but ADT may lead to cognitive impairments. ADT depletes men of both androgen and estrogen. Whether estradiol supplementation can improve cognitive impairments in patients on ADT is understudied. Objective: To summarize data on the effects of estradiol treatment on cognitive function of androgen-deprived genetic male populations (PCa patients and male-to-female transsexuals) and castrated male animals. Method: Publications were identified by a literature search on PubMed and Google Scholar. Results: While some studies showed that estradiol improves cognitive function (most notably, spatial ability) for castrated rats, what remains uninvestigated are: 1) whether estradiol can improve cognition after long-term androgen deprivation, 2) how estradiol affects memory retention, and 3) how early vs. delayed estradiol treatment after castration influences cognition. For androgen-deprived genetic males, estradiol treatment may improve some cognitive functions (e.g., verbal and visual memory), but the findings are not consistent due to large variability in the study design between studies. Conclusion: Future studies are required to determine the best estradiol treatment protocol to maximize cognitive benefits for androgen-deprived genetic males. Tests that assess comparable cognitive domains in human and rodents are needed. What particularly under-investigated is how the effects of estradiol on cognitive ability intersect with other parameters; sleep, depression and physical fatigue. Such studies have clinical implications to improve the quality of life for both PCa patients on ADT as well as for male-to-female transsexuals.
Collapse
Affiliation(s)
- Erik Wibowo
- Level 6, 2775 Laurel Street, Gordon & Leslie Diamond Health Care Centre, Vancouver, British Columbia, V5Z 1M9. Canada
| |
Collapse
|
21
|
Zhao J, Bian C, Liu M, Zhao Y, Sun T, Xing F, Zhang J. Orchiectomy and letrozole differentially regulate synaptic plasticity and spatial memory in a manner that is mediated by SRC-1 in the hippocampus of male mice. J Steroid Biochem Mol Biol 2018; 178:354-368. [PMID: 29452160 DOI: 10.1016/j.jsbmb.2018.02.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/07/2018] [Accepted: 02/12/2018] [Indexed: 11/23/2022]
Abstract
Hippocampal synaptic plasticity is the basis of spatial memory and cognition and is strongly regulated by both testicular androgens (testosterone, T) and hippocampal estrogens (17β-estradiol, E2) converted from T by aromatase, which is inhibited by letrozole (LET), but the contribution of each pathway to spatial memory and the associated mechanisms are unclear. In this study, we first used orchiectomy (ORX) and LET injection to investigate the effects of T and hippocampal E2 on spatial memory and hippocampal synaptic plasticity. Next, we examined the changes in steroid receptors and steroid receptor coactivator-1 (SRC-1) under these treatments. Finally, we constructed an SRC-1 RNA interference lentivirus and an AROM overexpression lentivirus to explore the roles of SRC-1 under T replacement and AROM overexpression. The results revealed spatial memory impairment only after LET. LET induced more actin depolymerization and greater losses of spines, synapses, and postsynaptic proteins compared with ORX. Moreover, although ERα and ERβ were affected by LET and ORX at similar levels, AR, GPR30, and SRC-1 were dramatically decreased by LET compared with ORX. Finally, the T and AROM overexpression-induced changes in synaptic proteins and actin polymerization were blocked by SRC-1 inhibition. These results demonstrate that testicular androgens play a limited role, whereas local E2 is more important for cognition, which may explain why castrated men such as eunuchs usually do not have cognitive disorders. These results also suggest a pivotal role of SRC-1 in the action of steroids; thus, SRC-1 may serve as a novel therapeutic target for cognitive disorders.
Collapse
Affiliation(s)
- Jikai Zhao
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing, 400038, China
| | - Chen Bian
- Department of Military Psychology, College of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Mengying Liu
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing, 400038, China
| | - Yangang Zhao
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing, 400038, China
| | - Tao Sun
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing, 400038, China
| | - Fangzhou Xing
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing, 400038, China; School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jiqiang Zhang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
22
|
Wagner BA, Braddick VC, Batson CG, Cullen BH, Miller LE, Spritzer MD. Effects of testosterone dose on spatial memory among castrated adult male rats. Psychoneuroendocrinology 2018; 89:120-130. [PMID: 29414025 PMCID: PMC5878712 DOI: 10.1016/j.psyneuen.2017.12.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 12/22/2017] [Accepted: 12/28/2017] [Indexed: 12/20/2022]
Abstract
Previous research on the activational effects of testosterone on spatial memory has produced mixed results, possibly because such effects are dose-dependent. We tested a wide range of testosterone doses using two spatial memory tasks: a working-reference memory version of the radial-arm maze (RAM) and an object location memory task (OLMT). Adult male Sprague-Dawley rats were castrated or sham-castrated and given daily injections of drug vehicle (Oil Sham and Oil GDX) or one of four doses of testosterone propionate (0.125, 0.250, 0.500, and 1.000 mg T) beginning seven days before the first day of behavioral tests and continuing throughout testing. For the RAM, four arms of the maze were consistently baited on each day of testing. Testosterone had a significant effect on working memory on the RAM, with the Oil Sham, 0.125 mg T, and 0.500 mg T groups performing better than the Oil GDX group. In contrast, there was no significant effect of testosterone on spatial reference memory on the RAM. For the OLMT, we tested long-term memory using a 2 h inter-trial interval between first exposure to two identical objects and re-exposure after one object had been moved. Only the 0.125 and 0.500 mg T groups showed a significant increase in exploration of the moved object during the testing trials, indicating better memory than all other groups. Testosterone replacement restored spatial memory among castrated male rats on both behavioral tasks, but there was a complex dose-response relationship; therefore, the therapeutic value of testosterone is likely sensitive to dose.
Collapse
Affiliation(s)
- Benjamin A. Wagner
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753, U.S.A
| | | | | | - Brendan H. Cullen
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753, U.S.A
| | - L. Erin Miller
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753, U.S.A
| | - Mark D. Spritzer
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753, U.S.A,Department of Biology, Middlebury College, Middlebury, VT 05753, U.S.A,Corresponding author: Mark Spritzer, Department of Biology, McCardell Bicentennial Hall, Middlebury College, Middlebury, VT 05753, USA, phone: 802-443-5676, FAX: 802-443-2072
| |
Collapse
|
23
|
Fang Z, Zhu Q, Gu T, Shen X, Yang Y, Liang Y, Zhang Z, Xu X. Anti-androgenic effects of bisphenol-A on spatial memory and synaptic plasticity of the hippocampus in mice. Horm Behav 2017; 93:151-158. [PMID: 28576649 DOI: 10.1016/j.yhbeh.2017.05.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 05/19/2017] [Accepted: 05/28/2017] [Indexed: 12/31/2022]
Abstract
Bisphenol-A (BPA) is a common environmental endocrine disruptor. Our recent studies found that exposure to BPA in both adolescent and adulthood sex-specifically impaired spatial memory in male mice. In this study, 11-week-old gonadectomied (GDX) male mice daily received subcutaneous injections of testosterone propionate (TP, 0.5mg/kg), TP and BPA (0.4 and 4mg/kg), or vehicle for 45days. The results of Morris water maze task showed that exposure to BPA did not affect the spatial memory of GDX mice but impaired that of sham (4mg/kg/day) and TP-treated GDX mice (0.4mg/kg/day). In addition, BPA reduced the level of testosterone (T) in the serum and brain of sham and TP-treated GDX mice. Exposure to BPA decreased the synaptic density and had an adverse effect on the synaptic interface of the hippocampus in sham and TP-treated GDX mice. The results of western blot analysis further showed that BPA (4mg/kg) reduced the levels of synaptic proteins (synapsin I and PSD-95) and NMDA receptor subunit NR2B in sham and TP-treated GDX mice. BPA decreased the phosphorylation of ERK1/2 but increased the phosphorylation of p38 in sham and TP-treated GDX mice. These results suggest that impairment of spatial memory and adverse effects on synaptic remodeling of hippocampal neurons in males after long-term BPA exposure is related to the anti-androgen effect of BPA. These effects of BPA may be associated with downregulated synaptic proteins and NMDA receptor through inhibiting ERKs and promoting the p38 pathways.
Collapse
Affiliation(s)
- Zhaoqing Fang
- Chemistry and Life Sciences College, Xingzhi College, Zhejiang Provincial Key Laboratory of Ecology, Key laboratory of wildlife biotechnology and conservation and utilization of Zhejiang Province, Zhejiang Normal University, China
| | - Qingjie Zhu
- Chemistry and Life Sciences College, Xingzhi College, Zhejiang Provincial Key Laboratory of Ecology, Key laboratory of wildlife biotechnology and conservation and utilization of Zhejiang Province, Zhejiang Normal University, China
| | - Ting Gu
- Chemistry and Life Sciences College, Xingzhi College, Zhejiang Provincial Key Laboratory of Ecology, Key laboratory of wildlife biotechnology and conservation and utilization of Zhejiang Province, Zhejiang Normal University, China
| | - Xiuying Shen
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Yang Yang
- Chemistry and Life Sciences College, Xingzhi College, Zhejiang Provincial Key Laboratory of Ecology, Key laboratory of wildlife biotechnology and conservation and utilization of Zhejiang Province, Zhejiang Normal University, China
| | - Yufeng Liang
- Chemistry and Life Sciences College, Xingzhi College, Zhejiang Provincial Key Laboratory of Ecology, Key laboratory of wildlife biotechnology and conservation and utilization of Zhejiang Province, Zhejiang Normal University, China
| | - Zigui Zhang
- Chemistry and Life Sciences College, Xingzhi College, Zhejiang Provincial Key Laboratory of Ecology, Key laboratory of wildlife biotechnology and conservation and utilization of Zhejiang Province, Zhejiang Normal University, China
| | - Xiaohong Xu
- Chemistry and Life Sciences College, Xingzhi College, Zhejiang Provincial Key Laboratory of Ecology, Key laboratory of wildlife biotechnology and conservation and utilization of Zhejiang Province, Zhejiang Normal University, China.
| |
Collapse
|
24
|
Hough D, Bellingham M, Haraldsen I, McLaughlin M, Rennie M, Robinson J, Solbakk A, Evans N. Spatial memory is impaired by peripubertal GnRH agonist treatment and testosterone replacement in sheep. Psychoneuroendocrinology 2017; 75:173-182. [PMID: 27837697 PMCID: PMC5140006 DOI: 10.1016/j.psyneuen.2016.10.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/19/2016] [Accepted: 10/19/2016] [Indexed: 01/06/2023]
Abstract
Chronic gonadotropin-releasing hormone agonist (GnRHa) is used therapeutically to block activity within the reproductive axis through down-regulation of GnRH receptors within the pituitary gland. GnRH receptors are also expressed in non-reproductive tissues, including areas of the brain such as the hippocampus and amygdala. The impact of long-term GnRHa-treatment on hippocampus-dependent cognitive functions, such as spatial orientation, learning and memory, is not well studied, particularly when treatment encompasses a critical window of development such as puberty. The current study used an ovine model to assess spatial maze performance and memory of rams that were untreated (Controls), had both GnRH and testosterone signaling blocked (GnRHa-treated), or specifically had GnRH signaling blocked (GnRHa-treated with testosterone replacement) during the peripubertal period (8, 27 and 41 weeks of age). The results demonstrate that emotional reactivity during spatial tasks was compromised by the blockade of gonadal steroid signaling, as seen by the restorative effects of testosterone replacement, while traverse times remained unchanged during assessment of spatial orientation and learning. The blockade of GnRH signaling alone was associated with impaired retention of long-term spatial memory and this effect was not restored with the replacement of testosterone signaling. These results indicate that GnRH signaling is involved in the retention and recollection of spatial information, potentially via alterations to spatial reference memory, and that therapeutic medical treatments using chronic GnRHa may have effects on this aspect of cognitive function.
Collapse
Affiliation(s)
- D. Hough
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - M. Bellingham
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - I.R.H. Haraldsen
- Department of Medical Neurobiology, Division of Clinical Neuroscience, Oslo University Hospital — Rikshospitalet, 0027, Oslo, Norway
| | - M. McLaughlin
- Division of Veterinary Bioscience and Education, School of Veterinary Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - M. Rennie
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - J.E. Robinson
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - A.K. Solbakk
- Department of Medical Neurobiology, Division of Clinical Neuroscience, Oslo University Hospital — Rikshospitalet, 0027, Oslo, Norway,Department of Psychology, University of Oslo, Pb 1094 Blindern, 0317 Oslo, Norway,Department of Neuropsychology, Helgeland Hospital, Mosjøen, Norway
| | - N.P. Evans
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK,Corresponding author.
| |
Collapse
|
25
|
Heiken KH, Brusch GA, Gartland S, Escallón C, Moore IT, Taylor EN. Effects of long distance translocation on corticosterone and testosterone levels in male rattlesnakes. Gen Comp Endocrinol 2016; 237:27-33. [PMID: 27468956 DOI: 10.1016/j.ygcen.2016.07.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/03/2016] [Accepted: 07/24/2016] [Indexed: 11/18/2022]
Abstract
Translocation is an increasingly common conservation tool used to augment declining populations or to remove nuisance animals from areas of human conflict. Studies show that venomous snakes translocated long distances may wander and experience increased mortality. However, potential sub-lethal physiological effects on translocated snakes remain unknown. We conducted an experimental study on free-ranging rattlesnakes to test the hypothesis that long distance translocation is stressful. The glucocorticoid response to translocation was variable among snakes. There was some evidence that translocation may be stressful, as baseline corticosterone levels in most snakes rose following translocation, whereas levels remained consistent in control snakes. Interestingly, testosterone levels rose dramatically following translocation, possibly reflecting effects of interaction with new environmental cues and/or resident snakes, or effects of navigation in a new environment. Corticosterone and testosterone were positively correlated. Our study shows that long distance translocation can affect steroid hormone concentrations in rattlesnakes, a result that should be taken into consideration when managing nuisance snakes or repatriating animals to the wild.
Collapse
Affiliation(s)
- Kory H Heiken
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93401, USA.
| | - George A Brusch
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93401, USA.
| | - Sarah Gartland
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93401, USA
| | - Camilo Escallón
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Ignacio T Moore
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Emily N Taylor
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93401, USA.
| |
Collapse
|
26
|
Hunter DS, Hazel SJ, Kind KL, Owens JA, Pitcher JB, Gatford KL. Programming the brain: Common outcomes and gaps in knowledge from animal studies of IUGR. Physiol Behav 2016; 164:233-48. [DOI: 10.1016/j.physbeh.2016.06.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/06/2016] [Accepted: 06/06/2016] [Indexed: 12/18/2022]
|
27
|
Zhao X, Marler CA. Social and physical environments as a source of individual variation in the rewarding effects of testosterone in male California mice (Peromyscus californicus). Horm Behav 2016; 85:30-35. [PMID: 27476433 DOI: 10.1016/j.yhbeh.2016.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 07/21/2016] [Accepted: 07/27/2016] [Indexed: 11/23/2022]
Abstract
Despite extensive research revealing the occurrence of testosterone (T) pulses following social encounters, it is unclear how they lead to varied behavioral responses. We investigated the influence of residency (home versus unfamiliar environment) and social/sexual experience (pair-bonded, isolated or housed with siblings) on the plasticity of T's rewarding effects by measuring the development of conditioned place preferences (CPPs), a classical paradigm used to measure the rewarding properties of drugs. For pair-bonded males, T-induced CPPs were only produced in the environment wherein the social/sexual experience was accrued and residency status had been achieved. For isolated males, the T-induced CPPs only occurred when the environment was unfamiliar. For males housed with a male sibling, the T-induced CPPs were prevented in both the home and unfamiliar chambers. Our results reveal the plasticity of T's rewarding effects, and suggest that the behavioral functions of T-pulses can vary based on social/sexual experience and the environment in which residency was established. The formation of CPPs or reward-like properties of drugs and natural compounds can therefore exhibit malleability based on past experience and the current environment.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Psychology, University of Wisconsin, Madison, WI 53706, USA.
| | - Catherine A Marler
- Department of Psychology, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
28
|
Hamson DK, Roes MM, Galea LAM. Sex Hormones and Cognition: Neuroendocrine Influences on Memory and Learning. Compr Physiol 2016; 6:1295-337. [DOI: 10.1002/cphy.c150031] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
The impact of biological sex and sex hormones on cognition in a rat model of early, pre-motor Parkinson's disease. Neuroscience 2016; 345:297-314. [PMID: 27235739 DOI: 10.1016/j.neuroscience.2016.05.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/13/2016] [Accepted: 05/18/2016] [Indexed: 12/25/2022]
Abstract
Parkinson's disease (PD) is well known for motor deficits such as bradykinesia. However, patients often experience additional deficits in working memory, behavioral selection, decision-making and other executive functions. Like other features of PD, the incidence and severity of these cognitive symptoms differ in males and females. However, preclinical models have not been used to systematically investigate the roles that sex or sex hormones may play in these complex signs. To address this, we used a Barnes maze spatial memory paradigm to compare the effects of a bilateral nigrostriatal dopamine lesion model of early PD on cognitive behaviors in adult male and female rats and in adult male rats that were gonadectomized or gonadectomized and supplemented with testosterone or estradiol. We found that dopamine lesions produced deficits in working memory and other executive operations, albeit only in male rats where circulating androgen levels were physiological. In males where androgen levels were depleted, lesions produced no additional Barnes maze deficits and attenuated those previously linked to androgen deprivation. We also found that while most measures of Barnes maze performance were unaffected by dopamine lesions in the females, lesions did induce dramatic shifts from their preferred use of thigmotactic navigation to the use of spatially guided place strategies similar to those normally preferred by males. These and other sex- and sex hormone-specific differences in the effects of nigrostriatal dopamine lesions on executive function highlight the potential of gonadal steroids as protective and/or therapeutic for the cognitive symptoms of PD. However, their complexity also indicates the need for a more thorough understanding of androgen and estrogen effects in guiding the development of hormone therapies that might effectively address these non-motor signs.
Collapse
|
30
|
Onaolapo OJ, Onaolapo AY, Omololu TA, Oludimu AT, Segun-Busari T, Omoleke T. Exogenous Testosterone, Aging, and Changes in Behavioral Response of Gonadally Intact Male Mice. J Exp Neurosci 2016; 10:59-70. [PMID: 27158222 PMCID: PMC4854217 DOI: 10.4137/jen.s39042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/06/2016] [Accepted: 03/18/2016] [Indexed: 01/23/2023] Open
Abstract
This study tested the hypothesis that aging significantly affects the influence of exogenous testosterone on neurobehavior in gonadally intact male mice. Groups of prepubertal and aged male mice received daily vehicle or testosterone propionate (TP; 2.5 or 5.0 mg/kg intraperitoneal [i.p.]) for 21 days. Behaviors were assessed on days 1 and 21. Weight gain was significant in prepubertal mice. Locomotion and rearing increased in prepubertal mice after first dose and decreased after last dose of TP. Rearing was suppressed in aged mice throughout. Suppression of grooming occurred in both age groups at day 21. Significant increase in working memory in both age groups was seen in the radial-arm maze (at specific doses) and in prepubertal mice in the Y-maze. Elevated plus maze test showed mixed anxiolytic/anxiogenic effects. Aged mice had higher serum testosterone. In conclusion, age is an important determinant for the influence of exogenous testosterone on behavior in gonadally intact male mice.
Collapse
Affiliation(s)
- Olakunle J Onaolapo
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Ladoke Akintola University of Technology, Oshogbo, Osun State, Nigeria
| | - Adejoke Y Onaolapo
- Department of Human Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Tope A Omololu
- Department of Human Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Adedunke T Oludimu
- Department of Human Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Toluwalase Segun-Busari
- Department of Human Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Taofeeq Omoleke
- Department of Human Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| |
Collapse
|
31
|
Jacome LF, Barateli K, Buitrago D, Lema F, Frankfurt M, Luine VN. Gonadal Hormones Rapidly Enhance Spatial Memory and Increase Hippocampal Spine Density in Male Rats. Endocrinology 2016; 157:1357-62. [PMID: 26844375 PMCID: PMC4816741 DOI: 10.1210/en.2015-1959] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
17β-estradiol (E2) rapidly, within minutes, activates behaviors and cognition by binding to membrane estrogen receptors, activating cell signaling cascades and increasing dendritic spines. In female rodents, E2 enhances spatial memory within 2-4 hours, and spine density is increased in the CA1 area of the hippocampus within 30-60 minutes. Although chronic gonadal hormone treatments in male rats alter cognition and spines/spine synapses and acute hormone effects occur in hippocampal slices, effects of acute, in vivo hormone administration in males are unknown. Therefore, we assessed rapid effects of E2 (20 μg/kg) and testosterone (T) (750 μg/kg) on spatial memory using the object placement task and on hippocampal spine density using Golgi impregnation. Orchidectomized rats received hormones immediately after the training trial and were tested for retention 2 hours later. Vehicle-injected orchidectomized males spent equal time exploring objects in the old and new locations, but E2- or T-treated subjects spent more time exploring objects at the new location, suggesting enhanced memory. Both hormones also increased spine density in CA1, but not the dentate gyrus, by 20%-40% at 30 minutes and 2 hours after injections. This report is the first, to our knowledge, to show E2 and T enhancements of memory and spine density within such a short time frame in male rats.
Collapse
Affiliation(s)
- Luis F Jacome
- Department of Psychology (L.F.J., K.B., D.B., F.L., V.N.L.), Hunter College of City University of New York, New York, New York 10021; and Department of Science Education (M.F.), Hofstra North Shore Long Island Jewish School of Medicine, Hempstead, New York 11549
| | - Ketti Barateli
- Department of Psychology (L.F.J., K.B., D.B., F.L., V.N.L.), Hunter College of City University of New York, New York, New York 10021; and Department of Science Education (M.F.), Hofstra North Shore Long Island Jewish School of Medicine, Hempstead, New York 11549
| | - Dina Buitrago
- Department of Psychology (L.F.J., K.B., D.B., F.L., V.N.L.), Hunter College of City University of New York, New York, New York 10021; and Department of Science Education (M.F.), Hofstra North Shore Long Island Jewish School of Medicine, Hempstead, New York 11549
| | - Franklin Lema
- Department of Psychology (L.F.J., K.B., D.B., F.L., V.N.L.), Hunter College of City University of New York, New York, New York 10021; and Department of Science Education (M.F.), Hofstra North Shore Long Island Jewish School of Medicine, Hempstead, New York 11549
| | - Maya Frankfurt
- Department of Psychology (L.F.J., K.B., D.B., F.L., V.N.L.), Hunter College of City University of New York, New York, New York 10021; and Department of Science Education (M.F.), Hofstra North Shore Long Island Jewish School of Medicine, Hempstead, New York 11549
| | - Victoria N Luine
- Department of Psychology (L.F.J., K.B., D.B., F.L., V.N.L.), Hunter College of City University of New York, New York, New York 10021; and Department of Science Education (M.F.), Hofstra North Shore Long Island Jewish School of Medicine, Hempstead, New York 11549
| |
Collapse
|
32
|
A Mendelian randomization study of testosterone and cognition in men. Sci Rep 2016; 6:21306. [PMID: 26864717 PMCID: PMC4749999 DOI: 10.1038/srep21306] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/19/2016] [Indexed: 11/08/2022] Open
Abstract
Testosterone replacement for older men is increasingly common, with some observations suggesting a protective effect on cognitive function. We examined the association of endogenous testosterone with cognitive function among older men in a Mendelian randomization study using a separate-sample instrumental variable (SSIV) analysis estimator to minimize confounding and reverse causality. A genetic score predicting testosterone was developed in 289 young Chinese men from Hong Kong, based on selected testosterone-related single nucleotide polymorphisms (rs10046, rs1008805 and rs1256031). The association of genetically predicted testosterone with delayed 10-word recall score and Mini-Mental State Examination (MMSE) score was assessed at baseline and follow-up using generalized estimating equation among 4,212 older Chinese men from the Guangzhou Biobank Cohort Study. Predicted testosterone was not associated with delayed 10-word recall score (-0.02 per nmol/L testosterone, 95% confidence interval (CI) -0.06-0.02) or MMSE score (0.06, 95% CI -0.002-0.12). These estimates were similar after additional adjustment for age, education, smoking, use of alcohol, body mass index and the Framingham score. Our findings do not corroborate observed protective effects of testosterone on cognitive function among older men.
Collapse
|
33
|
Moghadami S, Jahanshahi M, Sepehri H, Amini H. Gonadectomy reduces the density of androgen receptor-immunoreactive neurons in male rat's hippocampus: testosterone replacement compensates it. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2016; 12:5. [PMID: 26822779 PMCID: PMC4730763 DOI: 10.1186/s12993-016-0089-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/18/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND In the present study, the role of gonadectomy on memory impairment and the density of androgen receptor-immunoreactive neurons in rats' hippocampus as well as the ability of testosterone to compensate of memory and the density of androgen receptors in the hippocampus was evaluated. METHODS Adult male rats (except intact-no testosterone group) were bilaterally castrated, and behavioral tests performed 2 weeks later. Animals bilaterally cannulated into lateral ventricles and then received testosterone (10, 40 and 120 µg/0.5 µl DMSO) or vehicle (DMSO; 0.5 µl) for gonadectomized-vehicle group, 30 min before training in water maze test. The androgen receptor-immunoreactive neurons were detected by immunohistochemical technique in the hippocampal areas. RESULTS In the gonadectomized male rats, a memory deficit was found in Morris water maze test on test day (5th day) after DMSO administration. Gonadectomy decreased density of androgen receptor-immunoreactive neurons in the rats' hippocampus. The treatment with testosterone daily for 5 days attenuated memory deficits induced by gonadectomy. Testosterone also significantly increased the density of androgen receptor-immunoreactive neurons in the hippocampal areas. The intermediate dose of this hormone (40 µg) appeared to have a significant effect on spatial memory and the density of androgen receptor-immunoreactive neurons in gonadectomized rats' hippocampus. CONCLUSIONS The present study suggests that testosterone can compensate memory failure in gonadectomized rats. Also testosterone replacement can compensate the reduction of androgen receptor-immunoreactive neurons density in the rats' hippocampus after gonadectomy.
Collapse
Affiliation(s)
- Sajjad Moghadami
- Neuroscience Research Center, Department of Anatomy, Faculty of Medicine, Golestan University of Medical Sciences, Km 4 Gorgan-Sari Road (Shastcola), P.O. Box 4934174515, Gorgan, Iran.
| | - Mehrdad Jahanshahi
- Neuroscience Research Center, Department of Anatomy, Faculty of Medicine, Golestan University of Medical Sciences, Km 4 Gorgan-Sari Road (Shastcola), P.O. Box 4934174515, Gorgan, Iran.
| | - Hamid Sepehri
- Neuroscience Research Center, Department of Physiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Hossein Amini
- Neuroscience Research Center, Department of Pharmacology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
34
|
Cherrier MM, Anderson K, Shofer J, Millard S, Matsumoto AM. Testosterone treatment of men with mild cognitive impairment and low testosterone levels. Am J Alzheimers Dis Other Demen 2015; 30:421-30. [PMID: 25392187 PMCID: PMC10852633 DOI: 10.1177/1533317514556874] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2024]
Abstract
INTRODUCTION This study investigated the effects of testosterone (T) treatment on cognition, mood, and quality of life in men with mild cognitive impairment (MCI) and low serum T levels. METHODS A total of 351 community-dwelling men were screened, and 37 men evidenced both MCI and low T of whom 27 agreed for further screening. Twenty-two met all the study inclusion/exclusion criteria and enrolled in a 6-month randomized, double-blind, placebo-controlled study. RESULTS Total T levels significantly increased in the T treatment group. No significant changes were observed in measures of cognition, mood, or quality of life other than improvement in 1 objective measure of verbal memory (P < .05) and decreased depression symptoms (P < .02) in the treatment group. CONCLUSIONS Testosterone treatment may modestly improve verbal memory and depression symptoms in men with both MCI and low T.
Collapse
Affiliation(s)
- M M Cherrier
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - K Anderson
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - J Shofer
- Geriatric, Research, Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, USA
| | - S Millard
- Geriatric, Research, Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, USA
| | - A M Matsumoto
- Geriatric, Research, Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, USA Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
35
|
Celec P, Ostatníková D, Hodosy J. On the effects of testosterone on brain behavioral functions. Front Neurosci 2015; 9:12. [PMID: 25741229 PMCID: PMC4330791 DOI: 10.3389/fnins.2015.00012] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 01/12/2015] [Indexed: 01/01/2023] Open
Abstract
Testosterone influences the brain via organizational and activational effects. Numerous relevant studies on rodents and a few on humans focusing on specific behavioral and cognitive parameters have been published. The results are, unfortunately, controversial and puzzling. Dosing, timing, even the application route seem to considerably affect the outcomes. In addition, the methods used for the assessment of psychometric parameters are a bit less than ideal regarding their validity and reproducibility. Metabolism of testosterone contributes to the complexity of its actions. Reduction to dihydrotestosterone by 5-alpha reductase increases the androgen activity; conversion to estradiol by aromatase converts the androgen to estrogen activity. Recently, the non-genomic effects of testosterone on behavior bypassing the nuclear receptors have attracted the interest of researchers. This review tries to summarize the current understanding of the complexity of the effects of testosterone on brain with special focus on their role in the known sex differences.
Collapse
Affiliation(s)
- Peter Celec
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University Bratislava, Slovakia ; Center for Molecular Medicine, Slovak Academy of Sciences Bratislava, Slovakia ; Institute of Pathophysiology, Faculty of Medicine, Comenius University Bratislava, Slovakia ; Department of Molecular Biology, Faculty of Natural Sciences, Comenius University Bratislava, Slovakia
| | - Daniela Ostatníková
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University Bratislava, Slovakia ; Institute of Physiology, Faculty of Medicine, Comenius University Bratislava, Slovakia
| | - Július Hodosy
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University Bratislava, Slovakia ; Center for Molecular Medicine, Slovak Academy of Sciences Bratislava, Slovakia ; Institute of Physiology, Faculty of Medicine, Comenius University Bratislava, Slovakia
| |
Collapse
|
36
|
Zhao X, Marler CA. Pair bonding prevents reinforcing effects of testosterone in male California mice in an unfamiliar environment. Proc Biol Sci 2015; 281:20140985. [PMID: 24943373 DOI: 10.1098/rspb.2014.0985] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Testosterone (T) can be released by stimuli such as social interactions, and thereby influence future social behaviours. Because the reinforcing effects of T can induce preferences for specific environmental locations, T has the potential to alter behaviour through space use. In a monogamous species, this T pulse may contribute differently to space use in sexually naive (SN) and pair-bonded (PB) males: SN males may be more likely to explore new areas to set up a territory than PB males, which are more likely to defend an existing, established territory. In this study, we test for variation in T-driven space use by examining variation in the formation of conditioned place preferences (CPPs) in SN and PB male California mice. In the three-chambered CPP apparatus, subcutaneous administrations of physiological levels of T were used to repeatedly condition SN and PB males to a side chamber, which is an unfamiliar/neutral environment. The final tests revealed that T-induced CPPs in the side chamber are developed in SN, but not PB males. This study fills a gap in our knowledge about plasticity in the rewarding nature of T pulses, based on past social experience.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Psychology, University of Wisconsin, Madison, WI 53706, USA
| | - Catherine A Marler
- Department of Psychology, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
37
|
Locklear MN, Bhamidipaty S, Kritzer MF. Local N-methyl-d-aspartate receptor antagonism in the prefrontal cortex attenuates spatial cognitive deficits induced by gonadectomy in adult male rats. Neuroscience 2014; 288:73-85. [PMID: 25545712 DOI: 10.1016/j.neuroscience.2014.12.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/11/2014] [Accepted: 12/13/2014] [Indexed: 02/08/2023]
Abstract
Gonadectomy in adult male rats significantly impairs spatial working memory, behavioral flexibility and other functions associated with the prefrontal cortex (PFC). However, the mechanisms through which this occurs are largely unknown. In this study, intracortical drug challenge with the selective N-methyl-d-aspartate receptor (NMDAR) antagonist D(-)-2-amino-5-phosphonopentanoic acid (APV) was combined with Barnes maze testing, gonadectomy (GDX) and hormone replacement (17β-estradiol, testosterone propionate) to explore the contributions of NMDAR-mediated activity within the PFC to hormone effects on spatial cognition in adult male rats. Previous studies have shown that Barnes maze testing reveals significant estrogen-dependent, GDX-induced deficits in spatial working memory and androgen-sensitive, GDX-induced deficits in spatial search strategy. Here we found that bilateral infusion of APV into the medial PFC prior to testing significantly improved both sets of behaviors in gonadectomized rats and significantly worsened performance measures in gonadally intact controls. In hormone-replaced cohorts, we further found that behaviors that are normally similar to controls were significantly disrupted by APV, and those that are normally similar to gonadectomized rats were rescued by intracortical APV infusion. There were, however, no residual effects of APV on retention testing conducted 24h later. Together these findings suggest that hormone regulation of NMDAR-mediated activity specifically within the PFC may be fundamental to the effects of gonadal steroids on spatial cognition in males. Our findings further identify NMDAR antagonists as potentially novel, non-steroidal means of attenuating the cognitive deficits that can accompany gonadal hormone decline in human males in aging, clinical cases of hypogonadalism and in certain neurologic and psychiatric illnesses. Accordingly, it may be important to obtain in males the kind of detailed knowledge concerning hormone effects on, for example, the channel and electrophysiological properties of NMDAR that currently exists for the female brain.
Collapse
Affiliation(s)
- M N Locklear
- Graduate Program in Neuroscience, Stony Brook University, Stony Brook, New York 11794-5230, United States
| | - S Bhamidipaty
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794-5230, United States
| | - M F Kritzer
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794-5230, United States.
| |
Collapse
|
38
|
Alarcón G, Cservenka A, Fair DA, Nagel BJ. Sex differences in the neural substrates of spatial working memory during adolescence are not mediated by endogenous testosterone. Brain Res 2014; 1593:40-54. [PMID: 25312831 PMCID: PMC4252582 DOI: 10.1016/j.brainres.2014.09.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 08/21/2014] [Accepted: 09/24/2014] [Indexed: 02/08/2023]
Abstract
Adolescence is a developmental period characterized by notable changes in behavior, physical attributes, and an increase in endogenous sex steroid hormones, which may impact cognitive functioning. Moreover, sex differences in brain structure are present, leading to differences in neural function and cognition. Here, we examine sex differences in performance and blood oxygen level-dependent (BOLD) activation in a sample of adolescents during a spatial working memory (SWM) task. We also examine whether endogenous testosterone levels mediate differential brain activity between the sexes. Adolescents between ages 10 and 16 years completed a SWM functional magnetic resonance imaging (fMRI) task, and serum hormone levels were assessed within seven days of scanning. While there were no sex differences in task performance (accuracy and reaction time), differences in BOLD response between girls and boys emerged, with girls deactivating brain regions in the default mode network and boys showing increased response in SWM-related brain regions of the frontal cortex. These results suggest that adolescent boys and girls adopted distinct neural strategies, while maintaining spatial cognitive strategies that facilitated comparable cognitive performance of a SWM task. A nonparametric bootstrapping procedure revealed that testosterone did not mediate sex-specific brain activity, suggesting that sex differences in BOLD activation during SWM may be better explained by other factors, such as early organizational effects of sex steroids or environmental influences. Elucidating sex differences in neural function and the influence of gonadal hormones can serve as a basis of comparison for understanding sexually dimorphic neurodevelopment and inform sex-specific psychopathology that emerges in adolescence.
Collapse
Affiliation(s)
- Gabriela Alarcón
- Department of Behavioral Neuroscience, Portland, OR, United States
| | - Anita Cservenka
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States
| | - Damien A Fair
- Department of Behavioral Neuroscience, Portland, OR, United States; Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States
| | - Bonnie J Nagel
- Department of Behavioral Neuroscience, Portland, OR, United States; Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States.
| |
Collapse
|
39
|
Atwi S, McMahon D, Scharfman H, MacLusky NJ. Androgen Modulation of Hippocampal Structure and Function. Neuroscientist 2014; 22:46-60. [PMID: 25416742 DOI: 10.1177/1073858414558065] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Androgens have profound effects on hippocampal structure and function, including induction of spines and spine synapses on the dendrites of CA1 pyramidal neurons, as well as alterations in long-term synaptic plasticity (LTP) and hippocampally dependent cognitive behaviors. How these effects occur remains largely unknown. Emerging evidence, however, suggests that one of the key elements in the response mechanism may be modulation of brain-derived neurotrophic factor (BDNF) in the mossy fiber (MF) system. In male rats, orchidectomy increases synaptic transmission and excitability in the MF pathway. Testosterone reverses these effects, suggesting that testosterone exerts tonic suppression on MF BDNF levels. These findings suggest that changes in hippocampal function resulting from declining androgen levels may reflect the outcome of responses mediated through normally balanced, but opposing, mechanisms: loss of androgen effects on the hippocampal circuitry may be compensated, at least in part, by an increase in BDNF-dependent MF plasticity.
Collapse
Affiliation(s)
- Sarah Atwi
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Dallan McMahon
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Helen Scharfman
- The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA Department of Child & Adolescent Psychiatry, Physiology & Neuroscience, and Psychiatry, New York University Langone Medical Center, New York, NY, USA
| | - Neil J MacLusky
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
40
|
Kelly B, Maguire-Herring V, Rose CM, Gore HE, Ferrigno S, Novak MA, Lacreuse A. Short-term testosterone manipulations do not affect cognition or motor function but differentially modulate emotions in young and older male rhesus monkeys. Horm Behav 2014; 66:731-42. [PMID: 25308086 PMCID: PMC4262694 DOI: 10.1016/j.yhbeh.2014.08.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 07/15/2014] [Accepted: 08/12/2014] [Indexed: 12/28/2022]
Abstract
Human aging is characterized by declines in cognition and fine motor function as well as improved emotional regulation. In men, declining levels of testosterone (T) with age have been implicated in the development of these age-related changes. However, studies examining the effects of T replacement on cognition, emotion and fine motor function in older men have not provided consistent results. Rhesus monkeys (Macaca mulatta) are excellent models for human cognitive aging and may provide novel insights on this issue. We tested 10 aged intact male rhesus monkeys (mean age=19, range 15-25) on a battery of cognitive, motor and emotional tasks at baseline and under low or high T experimental conditions. Their performance was compared to that of 6 young males previously tested in the same paradigm (Lacreuse et al., 2009; Lacreuse et al., 2010). Following a 4-week baseline testing period, monkeys were treated with a gonadotropin releasing hormone agonist (Depot Lupron, 200 μg/kg) to suppress endogenous T and were tested on the task battery under a 4-week high T condition (injection of Lupron+T enanthate, 20 mg/kg, n=8) or 4-week low T condition (injection of Lupron+oil vehicle, n=8) before crossing over to the opposite treatment. The cognitive tasks consisted of the Delayed Non-Matching-to-Sample (DNMS), the Delayed Response (DR), and the Delayed Recognition Span Test (spatial-DRST). The emotional tasks included an object Approach-Avoidance task and a task in which monkeys were played videos of unfamiliar conspecifics in different emotional context (Social Playbacks). The fine motor task was the Lifesaver task that required monkeys to remove a Lifesaver candy from rods of different complexity. T manipulations did not significantly affect visual recognition memory, working memory, reference memory or fine motor function at any age. In the Approach-Avoidance task, older monkeys, but not younger monkeys, spent more time in proximity of novel objects in the high T condition relative to the low T condition. In both age groups, high T increased watching time of threatening social stimuli in the Social Playbacks. These results suggest that T affects some aspects of emotional processing but has no effect on fine motor function or cognition in young or older male macaques. It is possible that the duration of T treatment was not long enough to affect cognition or fine motor function or that T levels were too high to improve these outcomes. An alternative explanation for the discrepancies of our findings with some of the cognitive and emotional effects of T reported in rodents and humans may be the use of a chemical castration, which reduced circulating gonadotropins in addition to T. Further studies will investigate whether the luteinizing hormone LH mediates the effects of T on brain function in male primates.
Collapse
Affiliation(s)
- Brian Kelly
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA 01003, USA; Harvard Medical School, New England Primate Research Center, Southborough, MA 01772, USA; Behavioral Sciences, Fitchburg State University, Fitchburg MA 01420, USA
| | | | - Christian M Rose
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Heather E Gore
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Stephen Ferrigno
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Melinda A Novak
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA 01003, USA; Harvard Medical School, New England Primate Research Center, Southborough, MA 01772, USA
| | - Agnès Lacreuse
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
41
|
Borst SE, Yarrow JF, Fernandez C, Conover CF, Ye F, Meuleman JR, Morrow M, Zou B, Shuster JJ. Cognitive effects of testosterone and finasteride administration in older hypogonadal men. Clin Interv Aging 2014; 9:1327-33. [PMID: 25143719 PMCID: PMC4136953 DOI: 10.2147/cia.s61760] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Serum concentrations of neuroactive androgens decline in older men and, in some studies, low testosterone is associated with decreased cognitive function and incidence of depression. Existing studies evaluating the effect of testosterone administration on cognition in older men have been largely inconclusive, with some studies reporting minor to moderate cognitive benefit, while others indicate no cognitive effect. Our objective was to assess the cognitive effects of treating older hypogonadal men for 1 year with a supraphysiological dose of testosterone, either alone or in combination with finasteride (a type II 5α-reductase inhibitor), in order to determine whether testosterone produces cognitive benefit and whether suppressed dihydrotestosterone influences cognition. Sixty men aged ≥60 years with a serum testosterone concentration of ≤300 ng/dL or bioavailable testosterone ≤70 ng/dL and no evidence of cognitive impairment received testosterone-enanthate (125 mg/week) versus vehicle, paired with finasteride (5 mg/day) versus placebo using a 2×2 factorial design. Testosterone caused a small decrease in depressive symptoms as assessed by the Geriatric Depression Scale and a moderate increase in visuospatial memory as assessed by performance on a recall trial of the Rey-Osterrieth Complex Figure Test. Finasteride caused a small increase in performance on the Benton Judgment of Line Orientation test. In total, major improvements in cognition were not observed either with testosterone or finasteride. Further studies are warranted to determine if testosterone replacement may improve cognition in other domains.
Collapse
Affiliation(s)
- Stephen E Borst
- Geriatric Research, Education and Clinical Center, Gainesville Florida
| | - Joshua F Yarrow
- Research Service, Malcom Randall VA Medical Center, Gainesville Florida
| | - Carmen Fernandez
- Geriatric Research, Education and Clinical Center, Gainesville Florida
| | | | - Fan Ye
- Research Service, Malcom Randall VA Medical Center, Gainesville Florida
| | - John R Meuleman
- Geriatric Research, Education and Clinical Center, Gainesville Florida
| | - Matthew Morrow
- Pharmacy Service, Malcom Randall VA Medical Center, Gainesville Florida
| | - Baiming Zou
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Jonathan J Shuster
- Department of Health Outcomes and Policy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
42
|
Mueller SC, Grissom EM, Dohanich GP. Assessing gonadal hormone contributions to affective psychopathologies across humans and animal models. Psychoneuroendocrinology 2014; 46:114-28. [PMID: 24882164 DOI: 10.1016/j.psyneuen.2014.04.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/15/2014] [Accepted: 04/21/2014] [Indexed: 10/25/2022]
Abstract
Despite increasing acknowledgement of hormonal contributions to mood and anxiety disorders, the underlying mechanisms by which gonadal hormones influence psychopathology-related behaviours remain unknown. This review focuses on recent research that examines the influence of gonadal steroid hormones, including androgens, oestrogens, and progesterone, on mood and anxiety-related behaviours in human health and disease. To this aim, the literature was surveyed for studies that assess conditions with suspected underlying hormonal imbalances in otherwise healthy participants (e.g., premenstrual dysphoric disorder, postmenopausal depression) as well as conditions linked to congenital endocrine abnormalities (e.g., Turner Syndrome, Klinefelter Syndrome, polycystic ovary syndrome, congenital adrenal hyperplasia, familial male precocious puberty, androgen insensitivity syndrome). Furthermore, to better inform clinical work and to create a translational bridge, a second goal was to set human psychopathologies and animal models of these conditions side-by-side. In the second part of the review, based on consistencies revealed in the existing literature across conditions, a new model for the impact of gonadal hormones on anxious and depressed behavioural states is proposed. Finally, we conclude by proposing directions for future research, including the development of specific tasks suitable for cross-species comparisons to increase our knowledge of the role of gonadal hormones in mood and anxiety.
Collapse
Affiliation(s)
- S C Mueller
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium.
| | - E M Grissom
- Department of Psychology, Tulane University, New Orleans, LA, USA
| | - G P Dohanich
- Department of Psychology, Tulane University, New Orleans, LA, USA; Program in Neuroscience, Tulane University, New Orleans, LA, USA
| |
Collapse
|
43
|
Locklear MN, Kritzer MF. Assessment of the effects of sex and sex hormones on spatial cognition in adult rats using the Barnes maze. Horm Behav 2014; 66:298-308. [PMID: 24937438 PMCID: PMC4127089 DOI: 10.1016/j.yhbeh.2014.06.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/05/2014] [Accepted: 06/06/2014] [Indexed: 11/29/2022]
Abstract
Although sex differences and hormone effects on spatial cognition are observed in humans and animals, consensus has not been reached regarding exact impact on spatial working or reference memory. Recent studies in rats suggest that stress and/or reward, which are often different in tasks used to assess spatial cognition, can contribute to the inconsistencies in the literature. To minimize the impact of these sex- and sex hormone-sensitive factors, we used the Barnes maze to compare spatial working memory, spatial reference memory and spatial learning strategy in adult male, female, gonadectomized (GDX) male, and GDX male rats supplemented with 17β-estradiol (E) or testosterone propionate (TP). Rats received four acquisition trials, four trials 24h later, and a single retention trial one week after. Males and females acquired the task during the first four trials and retained the task thereafter. In contrast, GDX rats took longer to acquire the task and showed retention deficits at 1week. All deficits were attenuated similarly by TP and E. Assessment of search patterns also showed that strategies in the males transitioned from random to spatially focused and eventually direct approaches to the goal. However, this transition was faster in control and GDX-TP than in GDX and GDX-E rats. In contrast, the females almost invariantly followed the maze edge in thigmotactic, serial searches. Thus, while Barnes maze reveals activational, in part estrogenic effects on spatial cognition in males, its amenability to animals' use of multiple strategies may limit its ability to resolve mnemonic differences across sex.
Collapse
Affiliation(s)
- M N Locklear
- Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY, USA; Dept. of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA.
| | - M F Kritzer
- Dept. of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
44
|
Luine V. Recognition memory tasks in neuroendocrine research. Behav Brain Res 2014; 285:158-64. [PMID: 24837746 DOI: 10.1016/j.bbr.2014.04.032] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 04/02/2014] [Accepted: 04/17/2014] [Indexed: 12/26/2022]
Abstract
The recognition memory tasks, novel object and novel object location, have been beneficial to neuroendocrine research concerning the effects of gonadal and adrenal hormones on cognitive function. This review discusses the advantages of these tasks in comparison with other learning and memory tasks. Experiments conducted across a number of laboratories show that gonadal hormones, both estradiol and testosterone, promote memory while the adrenal hormone, corticosterone, impairs memory. The effects of these steroid hormones on spine density in the prefrontal cortex and hippocampus are also briefly presented. Overall, results show that these steroid hormones are potent modulators of memory consolidation in rodent models.
Collapse
Affiliation(s)
- Victoria Luine
- Department of Psychology, Hunter College of CUNY, New York, NY, United States.
| |
Collapse
|
45
|
Handa RJ, Weiser MJ. Gonadal steroid hormones and the hypothalamo-pituitary-adrenal axis. Front Neuroendocrinol 2014; 35:197-220. [PMID: 24246855 PMCID: PMC5802971 DOI: 10.1016/j.yfrne.2013.11.001] [Citation(s) in RCA: 296] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 10/04/2013] [Accepted: 11/07/2013] [Indexed: 12/17/2022]
Abstract
The hypothalamo-pituitary-adrenal (HPA) axis represents a complex neuroendocrine feedback loop controlling the secretion of adrenal glucocorticoid hormones. Central to its function is the paraventricular nucleus of the hypothalamus (PVN) where neurons expressing corticotropin releasing factor reside. These HPA motor neurons are a primary site of integration leading to graded endocrine responses to physical and psychological stressors. An important regulatory factor that must be considered, prior to generating an appropriate response is the animal's reproductive status. Thus, PVN neurons express androgen and estrogen receptors and receive input from sites that also express these receptors. Consequently, changes in reproduction and gonadal steroid levels modulate the stress response and this underlies sex differences in HPA axis function. This review examines the make up of the HPA axis and hypothalamo-pituitary-gonadal (HPG) axis and the interactions between the two that should be considered when exploring normal and pathological responses to environmental stressors.
Collapse
Affiliation(s)
- Robert J Handa
- Department of Basic Medical Science, The University of Arizona College of Medicine, Phoenix, AZ 85004, United States.
| | - Michael J Weiser
- DSM Nutritional Products Ltd., R&D Human Nutrition and Health, Boulder, CO 80301, United States
| |
Collapse
|
46
|
Hawley WR, Grissom EM, Moody NM, Dohanich GP, Vasudevan N. Activation of G-protein-coupled receptor 30 is sufficient to enhance spatial recognition memory in ovariectomized rats. Behav Brain Res 2014; 262:68-73. [PMID: 24445074 DOI: 10.1016/j.bbr.2014.01.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 01/04/2014] [Accepted: 01/07/2014] [Indexed: 11/27/2022]
Abstract
In ovariectomized rats, administration of estradiol, or selective estrogen receptor agonists that activate either the α or β isoforms, have been shown to enhance spatial cognition on a variety of learning and memory tasks, including those that capitalize on the preference of rats to seek out novelty. Although the effects of the putative estrogen G-protein-coupled receptor 30 (GPR30) on hippocampus-based tasks have been reported using food-motivated tasks, the effects of activation of GPR30 receptors on tasks that depend on the preference of rats to seek out spatial novelty remain to be determined. Therefore, the aim of the current study was to determine if short-term treatment of ovariectomized rats with G-1, an agonist for GPR30, would mimic the effects on spatial recognition memory observed following short-term estradiol treatment. In Experiment 1, ovariectomized rats treated with a low dose (1 μg) of estradiol 48 h and 24 h prior to the information trial of a Y-maze task exhibited a preference for the arm associated with the novel environment on the retention trial conducted 48 h later. In Experiment 2, treatment of ovariectomized rats with G-1 (25 μg) 48 h and 24 h prior to the information trial of a Y-maze task resulted in a greater preference for the arm associated with the novel environment on the retention trial. Collectively, the results indicated that short-term treatment of ovariectomized rats with a GPR30 agonist was sufficient to enhance spatial recognition memory, an effect that also occurred following short-term treatment with a low dose of estradiol.
Collapse
Affiliation(s)
- Wayne R Hawley
- Department of Psychology, Tulane University, New Orleans, LA 70118, United States.
| | - Elin M Grissom
- Department of Psychology, Tulane University, New Orleans, LA 70118, United States
| | - Nicole M Moody
- Program in Neuroscience, Tulane University, New Orleans, LA 70118, United States
| | - Gary P Dohanich
- Department of Psychology, Tulane University, New Orleans, LA 70118, United States; Program in Neuroscience, Tulane University, New Orleans, LA 70118, United States
| | - Nandini Vasudevan
- Program in Neuroscience, Tulane University, New Orleans, LA 70118, United States; Department of Cellular and Molecular Biology, Tulane University, New Orleans, LA 70118, United States
| |
Collapse
|