1
|
Hayat K, Zheng R, Wang T, Al-Zahrani M, Zeng L, Ye Z, Sajer BH, Pan J. Sustainable poultry practices: integrating green light interventions to control pecking in chicken. BMC Vet Res 2024; 20:433. [PMID: 39342335 PMCID: PMC11437798 DOI: 10.1186/s12917-024-04264-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND The present study aimed to investigate the impact of the light-emitting diode (LED) green light alone or in combination with melatonin on pecking-related hormone regulation during incubation under normal and under hormonal stress conditions in breeder eggs. This study was divided into 2 experiments: In the first experiment effect of LED green light incubation on pecking-related hormones under normal conditions, on Hy-line brown (low pecking phenotype) and Roman pink (high pecking phenotype) eggs were tested. The 296 eggs of each strain were divided into two groups: LED green light incubation and dark incubation (control), each containing four replicates (37 eggs/replicate). The second experiment was conducted to evaluate the effect of LED green light incubation alone or in combination with melatonin under hormonal stress conditions on Roman pink eggs. A total of 704 Roman pink eggs were taken and divided into four groups, each consisting of 176 eggs. Each group was further divided into 2 subgroups, LED green light-regulated incubation and dark incubation with 88 eggs per subgroup, having 4 replicates of 22 eggs each. The groups were as follows: corticosterone solution injection (CI), corticosterone + melatonin mixed solution injection (CMI), Phosphate buffer solution injection (PI), and no injection (UI). RESULTS Results of the first experiment revealed a higher level of serotonin hormone and lower corticosterone hormone in Hy-Line brown embryos compared to Roman pink embryos during dark incubation. The LED green light incubation significantly (P < 0.05) increased the level of 5-HT while decreasing the CORT level in Roman pink embryos indicating its regulatory effect on pecking-related hormones. Results of the second experiment showed that LED green light incubation significantly (P < 0.05) alleviated the CORT-induced hyperactivity of plasma 5-HT in Roman pink embryos. Furthermore, Melatonin (MLT) injection and LED green light together significantly (P < 0.05) reduced the hormonal stress caused by corticosterone injection in the eggs. CONCLUSIONS Overall, the LED green light regulatory incubation demonstrated a regulatory effect on hormones that influence pecking habits. Additionally, when coupled with MLT injection, it synergistically mitigated hormonal stress in the embryos. So, LED green light incubation emerged as a novel method to reduce the damaging pecking habits of poultry birds.
Collapse
Affiliation(s)
- Khwar Hayat
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, 310058, China
| | - Rongjin Zheng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, 310058, China
| | - Tao Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, 310058, China
| | - Majid Al-Zahrani
- Biological Science Department, College of Science and Art, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Li Zeng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, 310058, China
| | - Zunzhong Ye
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, 310058, China
| | - Bayan H Sajer
- Biology Department, Faculty of Science, King Abdul Aziz University, Jeddah, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jinming Pan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Benowitz-Fredericks ZM, Will AP, Pete SN, Whelan S, Kitaysky AS. Corticosterone release in very young siblicidal seabird chicks (Rissa tridactyla) is sensitive to environmental variability and responds rapidly and robustly to external challenges. Gen Comp Endocrinol 2024; 355:114545. [PMID: 38701975 DOI: 10.1016/j.ygcen.2024.114545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
In birds, patterns of development of the adrenocortical response to stressors vary among individuals, types of stressors, and species. Since there are benefits and costs of exposure to elevated glucocorticoids, this variation is presumably a product of selection such that animals modulate glucocorticoid secretion in contexts where doing so increases their fitness. In this study, we evaluated hypothalamo-pituitary-adrenal (HPA) activity in first-hatched free-living seabird nestlings that engage in intense sibling competition and facultative siblicide (black-legged kittiwakes, Rissa tridactyla). We sampled 5 day old chicks (of the ∼45 day nestling period), a critical early age when food availability drives establishment of important parent-offspring and intra-brood dynamics. We experimentally supplemented parents with food ("supplemented") and measured chick baseline corticosterone secretion and capacity to rapidly increase corticosterone in response to an acute challenge (handling and 15 min of restraint in a bag). We also used topical administration of corticosterone to evaluate the ability of chicks to downregulate physiologically relevant corticosterone levels on a short time scale (minutes). We found that 5 day old chicks are not hypo-responsive but release corticosterone in proportion to the magnitude of the challenge, showing differences in baseline between parental feeding treatments (supplemented vs non-supplemented), moderate increases in response to handling, and a larger response to restraint (comparable to adults) that also differed between chicks from supplemented and control nests. Topical application of exogenous corticosterone increased circulating levels nearly to restraint-induced levels and induced downregulation of HPA responsiveness to the acute challenge of handling. Parental supplemental feeding did not affect absorbance/clearance or negative feedback. Thus, while endogenous secretion of corticosterone in young chicks is sensitive to environmental context, other aspects of the HPA function, such as rapid negative feedback and/or the ability to clear acute elevations in corticosterone, are not. We conclude that 5 day old kittiwake chicks are capable of robust adrenocortical responses to novel challenges, and are sensitive to parental food availability, which may be transduced behaviorally, nutritionally, or via maternal effects. Questions remain about the function of such rapid, large acute stress-induced increases in corticosterone in very young chicks.
Collapse
Affiliation(s)
| | - A P Will
- World Wildlife Fund, US Arctic Program, United States; University of Alaska Fairbanks, Department of Biology and Wildlife, Institute of Arctic Biology, United States
| | - S N Pete
- Bucknell University, Department of Biology, 1 Dent Drive, Lewisburg, PA, United States
| | - S Whelan
- Institute for Seabird Research and Conservation, United States
| | - A S Kitaysky
- University of Alaska Fairbanks, Department of Biology and Wildlife, Institute of Arctic Biology, United States
| |
Collapse
|
3
|
Ruuskanen S. Early-life environmental effects on birds: epigenetics and microbiome as mechanisms underlying long-lasting phenotypic changes. J Exp Biol 2024; 227:jeb246024. [PMID: 38449325 DOI: 10.1242/jeb.246024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Although the long-lasting effects of variation in early-life environment have been well documented across organisms, the underlying causal mechanisms are only recently starting to be unraveled. Yet understanding the underlying mechanisms of long-lasting effects can help us predict how organisms will respond to changing environments. Birds offer a great system in which to study developmental plasticity and its underlying mechanisms owing to the production of large external eggs and variation in developmental trajectories, combined with a long tradition of applied, physiological, ecological and evolutionary research. Epigenetic changes (such as DNA methylation) have been suggested to be a key mechanism mediating long-lasting effects of the early-life environment across taxa. More recently, changes in the early-life gut microbiome have been identified as another potential mediator of developmental plasticity. As a first step in understanding whether these mechanisms contribute to developmental plasticity in birds, this Review summarizes how changes in early-life environment (both prenatal and postnatal) influence epigenetic markers and the gut microbiome. The literature shows how both early-life biotic (such as resources and social environment) and abiotic (thermal environment and various anthropogenic stressors) factors modify epigenetic markers and the gut microbiome in birds, yet data concerning many other environmental factors are limited. The causal links of these modifications to lasting phenotypic changes are still scarce, but changes in the hypothalamic-pituitary-adrenal axis have been identified as one putative pathway. This Review identifies several knowledge gaps, including data on the long-term effects, stability of the molecular changes, and lack of diversity in the systems studied, and provides directions for future research.
Collapse
Affiliation(s)
- Suvi Ruuskanen
- Department of Biological and Environmental Science, University of Jyväskylä, Survontie 9C, 40500 Jyväskylä, Finland
- Department of Biology, University of Turku, Vesilinnankatu 5, 20500 Turku, Finland
| |
Collapse
|
4
|
Siller Wilks SJ, Heidinger BJ, Westneat DF, Solomon J, Rubenstein DR. The impact of parental and developmental stress on DNA methylation in the avian hypothalamic-pituitary-adrenal axis. Mol Ecol 2024; 33:e17291. [PMID: 38343177 DOI: 10.1111/mec.17291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/29/2023] [Accepted: 01/23/2024] [Indexed: 03/07/2024]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis coordinates an organism's response to environmental stress. The responsiveness and sensitivity of an offspring's stress response may be shaped not only by stressors encountered in their early post-natal environment but also by stressors in their parent's environment. Yet, few studies have considered how stressors encountered in both of these early life environments may function together to impact the developing HPA axis. Here, we manipulated stressors in the parental and post-natal environments in a population of house sparrows (Passer domesticus) to assess their impact on changes in DNA methylation (and corresponding gene expression) in a suite of genes within the HPA axis. We found that nestlings that experienced early life stress across both life-history periods had higher DNA methylation in a critical HPA axis gene, the glucocorticoid receptor (NR3C1). In addition, we found that the life-history stage when stress was encountered impacted some genes (HSD11B1, NR3C1 and NR3C2) differently. We also found evidence for the mitigation of parental stress by post-natal stress (in HSD11B1 and NR3C2). Finally, by assessing DNA methylation in both the brain and blood, we were able to evaluate cross-tissue patterns. While some differentially methylated regions were tissue-specific, we found cross-tissue changes in NR3C2 and NR3C1, suggesting that blood is a suitable tissue for assessing DNA methylation as a biomarker of early life stress. Our results provide a crucial first step in understanding the mechanisms by which early life stress in different life-history periods contributes to changes in the epigenome of the HPA axis.
Collapse
Affiliation(s)
- Stefanie J Siller Wilks
- Department of Ecology Evolution and Environmental Biology, Columbia University, New York, New York, USA
| | - Britt J Heidinger
- Biological Sciences Department, North Dakota State University, Fargo, North Dakota, USA
| | - David F Westneat
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Joseph Solomon
- Department of Ecology Evolution and Environmental Biology, Columbia University, New York, New York, USA
| | - Dustin R Rubenstein
- Department of Ecology Evolution and Environmental Biology, Columbia University, New York, New York, USA
| |
Collapse
|
5
|
Miltiadous A, Callahan DL, Dujon AM, Buchanan KL, Rollins LA. Maternally derived avian corticosterone affects offspring genome-wide DNA methylation in a passerine species. Mol Ecol 2024; 33:e17283. [PMID: 38288572 DOI: 10.1111/mec.17283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/13/2023] [Indexed: 03/07/2024]
Abstract
Avian embryos develop in an egg composition which reflects both maternal condition and the recent environment of their mother. In birds, yolk corticosterone (CORT) influences development by impacting pre- and postnatal growth, as well as nestling stress responses and development. One possible mechanism through which maternal CORT may affect offspring development is via changes to offspring DNA methylation. We sought to investigate this, for the first time in birds, by quantifying the impact of manipulations to maternal CORT on offspring DNA methylation. We non-invasively manipulated plasma CORT concentrations of egg-laying female zebra finches (Taeniopygia castanotis) with an acute dose of CORT administered around the time of ovulation and collected their eggs. We then assessed DNA methylation in the resulting embryonic tissue and in their associated vitelline membrane blood vessels, during early development (5 days after lay), using two established methods - liquid chromatography-mass spectrometry (LC-MS) and methylation-sensitive amplification fragment length polymorphism (MS-AFLP). LC-MS analysis showed that global DNA methylation was lower in embryos from CORT-treated mothers, compared to control embryos. In contrast, blood vessel DNA from eggs from CORT-treated mothers showed global methylation increases, compared to control samples. There was a higher proportion of global DNA methylation in the embryonic DNA of second clutches, compared to first clutches. Locus-specific analyses using MS-AFLP did not reveal a treatment effect. Our results indicate that an acute elevation of maternal CORT around ovulation impacts DNA methylation patterns in their offspring. This could provide a mechanistic understanding of how a mother's experience can affect her offspring's phenotype.
Collapse
Affiliation(s)
- Anna Miltiadous
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Damien L Callahan
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
| | - Antoine M Dujon
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
- CREEC/CANECEV (CREES), MIVEGEC, IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| | - Katherine L Buchanan
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Lee A Rollins
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Hukkanen M, Hsu B, Cossin‐Sevrin N, Crombecque M, Delaunay A, Hollmen L, Kaukonen R, Konki M, Lund R, Marciau C, Stier A, Ruuskanen S. From maternal glucocorticoid and thyroid hormones to epigenetic regulation of offspring gene expression: An experimental study in a wild bird species. Evol Appl 2023; 16:1753-1769. [PMID: 38020869 PMCID: PMC10660793 DOI: 10.1111/eva.13598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 12/01/2023] Open
Abstract
Offspring phenotype at birth is determined by its genotype and the prenatal environment including exposure to maternal hormones. Variation in both maternal glucocorticoids and thyroid hormones can affect offspring phenotype, but the underlying molecular mechanisms, especially those contributing to long-lasting effects, remain unclear. Epigenetic changes (such as DNA methylation) have been postulated as mediators of long-lasting effects of early-life environment. In this study, we determined the effects of elevated prenatal glucocorticoid and thyroid hormones on handling stress response (breath rate) as well as DNA methylation and gene expression of glucocorticoid receptor (GR) and thyroid hormone receptor (THR) in great tits (Parus major). Eggs were injected before incubation onset with corticosterone (the main avian glucocorticoid) and/or thyroid hormones (thyroxine and triiodothyronine) to simulate variation in maternal hormone deposition. Breath rate during handling and gene expression of GR and THR were evaluated 14 days after hatching. Methylation status of GR and THR genes was analyzed from the longitudinal blood cells sampled 7 and 14 days after hatching, as well as the following autumn. Elevated prenatal corticosterone level significantly increased the breath rate during handling, indicating an enhanced metabolic stress response. Prenatal corticosterone manipulation had CpG-site-specific effects on DNA methylation at the GR putative promoter region, while it did not significantly affect GR gene expression. GR expression was negatively associated with earlier hatching date and chick size. THR methylation or expression did not exhibit any significant relationship with the hormonal treatments or the examined covariates, suggesting that TH signaling may be more robust due to its crucial role in development. This study provides some support to the hypothesis suggesting that maternal corticosterone may influence offspring metabolic stress response via epigenetic alterations, yet their possible adaptive role in optimizing offspring phenotype to the prevailing conditions, context-dependency, and the underlying molecular interplay needs further research.
Collapse
Affiliation(s)
- Mikaela Hukkanen
- Institute for Molecular Medicine FinlandUniversity of HelsinkiHelsinkiFinland
| | - Bin‐Yan Hsu
- Department of BiologyUniversity of TurkuTurkuFinland
| | | | | | - Axelle Delaunay
- Institut des Sciences de l'Evolution de Montpellier (ISEM)Université de Montpellier, CNRS, IRD, EPHEMontpellierFrance
| | - Lotta Hollmen
- Department of BiologyUniversity of TurkuTurkuFinland
| | - Riina Kaukonen
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Mikko Konki
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
- Turku Doctoral Programme of Molecular MedicineUniversity of TurkuTurkuFinland
| | - Riikka Lund
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Coline Marciau
- Department of BiologyUniversity of TurkuTurkuFinland
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobartTasmaniaAustralia
| | - Antoine Stier
- Department of BiologyUniversity of TurkuTurkuFinland
- Institut Pluridisciplinaire Hubert Curien, UMR 7178University of Strasbourg, CNRSStrasbourgFrance
| | - Suvi Ruuskanen
- Department of BiologyUniversity of TurkuTurkuFinland
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
7
|
Siller Wilks SJ, Westneat DF, Heidinger BJ, Solomon J, Rubenstein DR. Epigenetic modification of the hypothalamic-pituitary-adrenal (HPA) axis during development in the house sparrow (Passer domesticus). Gen Comp Endocrinol 2023; 341:114336. [PMID: 37328040 DOI: 10.1016/j.ygcen.2023.114336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/23/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
Epigenetic modifications such as DNA methylation are important mechanisms for mediating developmental plasticity, where ontogenetic processes and their phenotypic outcomes are shaped by early environments. In particular, changes in DNA methylation of genes within the hypothalamic-pituitary-adrenal (HPA) axis can impact offspring growth and development. This relationship has been well documented in mammals but is less understood in other taxa. Here, we use target-enriched enzymatic methyl sequencing (TEEM-seq) to assess how DNA methylation in a suite of 25 genes changes over development, how these modifications relate to the early environment, and how they predict differential growth trajectories in the house sparrow (Passer domesticus). We found that DNA methylation changes dynamically over the postnatal developmental period: genes with initially low DNA methylation tended to decline in methylation over development, whereas genes with initially high DNA methylation tended to increase in methylation. However, sex-specific differentially methylated regions (DMRs) were maintained across the developmental period. We also found significant differences in post-hatching DNA methylation in relation to hatch date, with higher levels of DNA methylation in nestlings hatched earlier in the season. Although these differences were largely absent by the end of development, a number of DMRs in HPA-related genes (CRH, MC2R, NR3C1, NR3C2, POMC)-and to a lesser degree HPG-related genes (GNRHR2)-predicted nestling growth trajectories over development. These findings provide insight into the mechanisms by which the early environment shapes DNA methylation in the HPA axis, and how these changes subsequently influence growth and potentially mediate developmental plasticity.
Collapse
Affiliation(s)
- Stefanie J Siller Wilks
- Department of Ecology Evolution and Environmental Biology, Columbia University, New York, NY, USA.
| | - David F Westneat
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | - Britt J Heidinger
- Biological Sciences Department, North Dakota State University, Fargo, ND, USA
| | - Joseph Solomon
- Department of Ecology Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Dustin R Rubenstein
- Department of Ecology Evolution and Environmental Biology, Columbia University, New York, NY, USA
| |
Collapse
|
8
|
Duckworth RA, Chenard KC, Meza L, Beiriz MC. Coping styles vary with species' sociality and life history: A systematic review and meta-regression analysis. Neurosci Biobehav Rev 2023; 151:105241. [PMID: 37216998 DOI: 10.1016/j.neubiorev.2023.105241] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023]
Abstract
Despite a long history of animal studies investigating coping styles, the causal connections between behavior and stress physiology remain unclear. Consistency across taxa in effect sizes would support the idea of a direct causal link maintained by either functional or developmental dependencies. Alternatively, lack of consistency would suggest coping styles are evolutionarily labile. Here, we investigated correlations between personality traits and baseline and stress-induced glucocorticoid levels using a systematic review and meta-analysis. Most personality traits did not consistently vary with either baseline or stress-induced glucocorticoids. Only aggression and sociability showed a consistent negative correlation with baseline glucocorticoids. We found that life history variation affected the relationship between stress-induced glucocorticoid levels and personality traits, especially anxiety and aggression. The relationship between anxiety and baseline glucocorticoids depended on species' sociality with solitary species showing more positive effect sizes. Thus, integration between behavioral and physiological traits depends on species' sociality and life history and suggests high evolutionary lability of coping styles.
Collapse
Affiliation(s)
- Renée A Duckworth
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA.
| | - Kathryn C Chenard
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Lexis Meza
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Maria Carolina Beiriz
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA; Department of Ecology and Natural Resources, Universidade Federal do Ceará, Fortaleza, CE 60440-900, Brazil
| |
Collapse
|
9
|
Angove J, Willson NL, Barekatain R, Rosenzweig D, Forder R. In ovo corticosterone exposure does not influence yolk steroid hormone relative abundance or skeletal muscle development in the embryonic chicken. Poult Sci 2023; 102:102735. [PMID: 37209653 DOI: 10.1016/j.psj.2023.102735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 05/22/2023] Open
Abstract
In ovo corticosterone (CORT) exposure reportedly reduces growth and alters body composition traits in meat-type chickens. However, the mechanisms governing alterations in growth and body composition remain unclear but could involve myogenic stem cell commitment, and/or the presence of yolk steroid hormones. This study investigated whether in ovo CORT exposure influenced yolk steroid hormone content, as well as embryonic myogenic development in meat-type chickens. Fertile eggs were randomly divided at embryonic day (ED) 11 and administered either a control (CON; 100 µL of 10 mM PBS) or CORT solution (100 µL of 10 mM PBS containing 1 µg CORT) into the chorioallantoic membrane. Yolk samples were collected at ED 0 and ED 5. At ED 15 and hatch, embryos were humanely killed, and yolk and breast muscle (BM) samples were collected. The relative abundance of 15 steroid hormones, along with total lipid content was measured in yolk samples collected at ED 0, ED 5, ED 15, and ED 21. Muscle fiber number, cross-sectional area, and fascicle area occupied by muscle fibers were measured in BM samples collected at hatch. Relative expression of MyoD, MyoG, Pax7, PPARγ, and CEBP/β, and the sex steroid receptors were measured in BM samples collected at hatch. The administration of CORT had a limited effect on yolk steroid hormones. In ovo CORT significantly reduced fascicle area occupied by muscle fibers and CEBP/β expression was increased in CORT exposed birds at hatch. In addition, the quantity of yolk lipid was significantly reduced in CORT-treated birds. In conclusion, in ovo exposure to CORT does not appear to influence early muscle development through yolk steroid hormones in embryonic meat-type chickens however, the results provide a comprehensive analysis of the composition of yolk steroid hormones in ovo at different developmental time points. The findings may suggest increased mesenchymal stem cell commitment to the adipogenic lineage during differentiation and requires further investigation.
Collapse
Affiliation(s)
- J Angove
- School of Animal and Veterinary Sciences, the University of Adelaide, Roseworthy, SA, Australia
| | - N-L Willson
- School of Animal and Veterinary Sciences, the University of Adelaide, Roseworthy, SA, Australia
| | - R Barekatain
- South Australian Research and Development Institute, Roseworthy, SA, Australia
| | - D Rosenzweig
- School of Animal and Veterinary Sciences, the University of Adelaide, Roseworthy, SA, Australia
| | - R Forder
- School of Animal and Veterinary Sciences, the University of Adelaide, Roseworthy, SA, Australia.
| |
Collapse
|
10
|
Meijer M, Franke B, Sandi C, Klein M. Epigenome-wide DNA methylation in externalizing behaviours: A review and combined analysis. Neurosci Biobehav Rev 2023; 145:104997. [PMID: 36566803 DOI: 10.1016/j.neubiorev.2022.104997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/24/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
DNA methylation (DNAm) is one of the most frequently studied epigenetic mechanisms facilitating the interplay of genomic and environmental factors, which can contribute to externalizing behaviours and related psychiatric disorders. Previous epigenome-wide association studies (EWAS) for externalizing behaviours have been limited in sample size, and, therefore, candidate genes and biomarkers with robust evidence are still lacking. We 1) performed a systematic literature review of EWAS of attention-deficit/hyperactivity disorder (ADHD)- and aggression-related behaviours conducted in peripheral tissue and cord blood and 2) combined the most strongly associated DNAm sites observed in individual studies (p < 10-3) to identify candidate genes and biological systems for ADHD and aggressive behaviours. We observed enrichment for neuronal processes and neuronal cell marker genes for ADHD. Astrocyte and granulocytes cell markers among genes annotated to DNAm sites were relevant for both ADHD and aggression-related behaviours. Only 1 % of the most significant epigenetic findings for ADHD/ADHD symptoms were likely to be directly explained by genetic factors involved in ADHD. Finally, we discuss how the field would greatly benefit from larger sample sizes and harmonization of assessment instruments.
Collapse
Affiliation(s)
- Mandy Meijer
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Laboratory of Behavioural Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Barbara Franke
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Carmen Sandi
- Laboratory of Behavioural Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Marieke Klein
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Psychiatry, University of California, La Jolla, San Diego, CA, 92093, USA.
| |
Collapse
|
11
|
Kadawarage RW, Dunislawska A, Siwek M. Ecological footprint of poultry production and effect of environment on poultry genes. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
The growing demand for poultry meat and eggs has forced plenty of changes in poultry production in recent years. According to FAO, the total number of poultry in the world in 2019 was 27.9 billion. About 93% of them are chickens. The number of chickens has doubled in the last 30 years. These animals are the most numerous in Asia and America. Hence, poultry meat is the most frequently obtained type of meat in recent years (it is 40.6% of the obtained meat). Focusing on lowering production costs has led to process optimization, which was possible by improving the use of animal genetics, optimizing feeding programs, and new production technologies. The applied process optimization and production increase practices may also lead to a deterioration of the ecological balance through pollution with chemical substances, water consumption, and natural resources. The aim of this paper was to review the current state of knowledge in the field of the ecological footprint of poultry production and the impact on environmental genes.
Collapse
Affiliation(s)
- Ramesha Wishna Kadawarage
- Department of Animal Biotechnology and Genetics , Bydgoszcz University of Science and Technology , Mazowiecka 28, 85-796 Bydgoszcz , Poland
| | - Aleksandra Dunislawska
- Department of Animal Biotechnology and Genetics , Bydgoszcz University of Science and Technology , Mazowiecka 28, 85-796 Bydgoszcz , Poland
| | - Maria Siwek
- Department of Animal Biotechnology and Genetics , Bydgoszcz University of Science and Technology , Mazowiecka 28, 85-796 Bydgoszcz , Poland
| |
Collapse
|
12
|
Özkan S, Yalçın S, Bayraktar ÖH, Bilgen G, Dayıoğlu M, Bolhuis JE, Rodenburg TB. Effects of incubation lighting with green or white light on brown layers: Hatching performance, feather pecking and hypothalamic expressions of genes related with photoreception, serotonin and stress systems. Poult Sci 2022; 101:102114. [PMID: 36088819 PMCID: PMC9468462 DOI: 10.1016/j.psj.2022.102114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 11/27/2022] Open
Abstract
The aim of this study was to evaluate the effect of 16L:8D photoperiod with green (GREEN) or white (WHITE) lights during incubation on hatching performance, blood melatonin, corticosterone, and serotonin levels, hypothalamic expressions of genes related to photoreception, serotonin, and stress systems in layers in relation with feather pecking behavior. Dark incubation (DARK) was the control. Eggs (n = 1,176) from Brown Nick breeders in 2 batches (n = 588/batch) were incubated in the experiment. A total of 396 female chicks and 261 hens were used at rearing and laying periods until 40 wk. Incubation lighting did not affect hatchability, day-old chick weight, and length, but resulted in a more synchronized hatch as compared with the DARK. The effect of incubation lighting on blood hormones was not significant except for reduced serotonin in the GREEN group at the end of the experiment. There was no effect of incubation lighting on gentle, severe, and aggressive pecking of birds during the early rearing period. From 16 wk, GREEN hens showed increased gentle pecking with increasing age. WHITE hens had the highest gentle pecking frequency at 16 wk while they performed less gentle but higher severe and aggressive pecks at 24 and 32 wk. At hatching, the hypothalamic expression of CRH, 5-HTR1A, and 5-HTR1B was higher for the WHITE group compared with both GREEN and DARK, however, 5-HTT expression was higher in GREEN than WHITE which was similar to DARK. Except for the highest VA opsin expression obtained for WHITE hens at 40 wk of age, there was no change in hypothalamic expression levels of rhodopsin, VA opsin, red, and green opsins at any age. Although blood hormone levels were not consistent, results provide preliminary evidence that incubation lighting modulates the pecking tendencies of laying hens, probably through the observed changes in hypothalamic expression of genes related to the serotonin system and stress. Significant correlations among the hypothalamic gene expression levels supplied further evidence for the associations among photoreception, serotonin, and stress systems.
Collapse
|
13
|
Cusick JA, Wellman CL, Demas GE. Maternal stress and the maternal microbiome have sex-specific effects on offspring development and aggressive behavior in Siberian hamsters (Phodopus sungorus). Horm Behav 2022; 141:105146. [PMID: 35276524 DOI: 10.1016/j.yhbeh.2022.105146] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 11/29/2022]
Abstract
The gut microbiome, a community of commensal, symbiotic and pathogenic bacteria, fungi, and viruses, interacts with many physiological systems to affect behavior. Prenatal experiences, including exposure to maternal stress and different maternal microbiomes, are important sources of organismal variation that can affect offspring development. These physiological systems do not act in isolation and can have long-term effects on offspring development and behavior. Here we investigated the interactive effects of maternal stress and manipulations of the maternal microbiome on offspring development and social behavior using Siberian hamsters, Phodopus sungorus. We exposed pregnant females to either a social stressor, antibiotics, both the social stressor and antibiotics, or no treatment (i.e., control) over the duration of their pregnancy and quantified male and female offspring growth, gut microbiome composition and diversity, stress-induced cortisol concentrations, and social behavior. Maternal antibiotic exposure altered the gut microbial communities of male and female offspring. Maternal treatment also had sex-specific effects on aspects of offspring development and aggressive behavior. Female offspring produced by stressed mothers were more aggressive than other female offspring. Female, but not male, offspring produced by mothers exposed to the combined treatment displayed low levels of aggression, suggesting that alteration of the maternal microbiome attenuated the effects of prenatal stress in a sex-specific manner. Maternal treatment did not affect non-aggressive behavior in offspring. Collectively, our study offers insight into how maternal systems can interact to affect offspring in sex-specific ways and highlights the important role of the maternal microbiome in mediating offspring development and behavior.
Collapse
Affiliation(s)
- Jessica A Cusick
- Department of Biology, Utah Valley University, United States of America; Department of Biology, Indiana University, United States of America; Animal Behavior Program, Indiana University, United States of America.
| | - Cara L Wellman
- Animal Behavior Program, Indiana University, United States of America; Department of Psychological and Brain Sciences, Indiana University, United States of America; Program in Neuroscience, Indiana University, United States of America
| | - Gregory E Demas
- Department of Biology, Indiana University, United States of America; Animal Behavior Program, Indiana University, United States of America; Program in Neuroscience, Indiana University, United States of America
| |
Collapse
|
14
|
Perspective: Gestational Tryptophan Fluctuation Altering Neuroembryogenesis and Psychosocial Development. Cells 2022; 11:cells11081270. [PMID: 35455949 PMCID: PMC9032700 DOI: 10.3390/cells11081270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/10/2022] Open
Abstract
Tryptophan, as the sole precursor of serotonin, mainly derived from diets, is essential for neurodevelopment and immunomodulation. Gestational tryptophan fluctuation may account for the maternal-fetal transmission in determining neuroembryogenesis with long-lasting effects on psychological development. Personality disorders and social exclusion are related to psychosocial problems, leading to impaired social functioning. However, it is not clear how the fluctuation in mother-child transmission regulates the neuroendocrine development and gut microbiota composition in progeny due to that tryptophan metabolism in pregnant women is affected by multiple factors, such as diets (tryptophan-enriched or -depleted diet), emotional mental states (anxiety, depression), health status (hypertension, diabetes), and social support as well as stresses and management skills. Recently, we have developed a non-mammal model to rationalize those discrepancies without maternal effects. This perspective article outlines the possibility and verified the hypothesis in bully-victim research with this novel model: (1). Summarizes the effects of the maternal tryptophan administration on the neuroendocrine and microbial development in their offspring; (2). Highlights the inconsistency and limitations in studying the relationship between gestational tryptophan exposure and psychosocial development in humans and viviparous animals; and (3). Evidences that embryonic exposure to tryptophan and its metabolite modify bullying interactions in the chicken model. With the current pioneer researches on the biomechanisms underlying the bully-victim interaction, the perspective article provides novel insights for developing appropriate intervention strategies to prevent psychological disorders among individuals, especially those who experienced prenatal stress, by controlling dietary tryptophan and medication therapy during pregnancy.
Collapse
|
15
|
Patterson SK, Strum SC, Silk JB. Early life adversity has long-term effects on sociality and interaction style in female baboons. Proc Biol Sci 2022; 289:20212244. [PMID: 35105243 PMCID: PMC8808103 DOI: 10.1098/rspb.2021.2244] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Social bonds enhance fitness in many group-living animals, generating interest in the processes that create individual variation in sociality. Previous work on female baboons shows that early life adversity and temperament both influence social connectedness in adulthood. Early life adversity might shape sociality by reducing ability to invest in social relationships or through effects on attractiveness as a social partner. We examine how females' early life adversity predicts sociality and temperament in wild olive baboons, and evaluate whether temperament mediates the relationship between early life adversity and sociality. We use behavioural data on 31 females to quantify sociality. We measure interaction style as the tendency to produce grunts (signals of benign intent) in contexts in which the vocalization does not produce immediate benefits to the actor. Early life adversity was negatively correlated with overall sociality, but was a stronger predictor of social behaviours received than behaviours initiated. Females who experienced less early life adversity had more benign interaction styles and benign interaction styles were associated with receiving more social behaviours. Interaction style may partially mediate the association between early life adversity and sociality. These analyses add to our growing understanding of the processes connecting early life experiences to adult sociality.
Collapse
Affiliation(s)
- Sam K. Patterson
- Department of Anthropology, New York University, New York, NY, USA
| | - Shirley C. Strum
- Department of Anthropology, University of California, San Diego, CA, USA,Uaso Ngiro Baboon Project, Nairobi, Kenya
| | - Joan B. Silk
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA,Institute for Human Origins, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
16
|
Zhao S, Xu C, Zhang R, Li X, Li J, Bao J. Effect of prenatal different auditory environment on learning ability and fearfulness in chicks. Anim Biosci 2022; 35:1454-1460. [PMID: 34991195 PMCID: PMC9449402 DOI: 10.5713/ab.21.0470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/18/2021] [Indexed: 11/27/2022] Open
Abstract
Objective Early environmental enrichment in life can improve cognition in animals. The effect of prenatal auditory stimulation on learning ability and fear level in chick embryos remained unexplored. Therefore, this study investigated the effect of prenatal auditory stimulation on the learning ability and fear level of chicks. Methods A total of 450 fertilized eggs were randomly divided into 5 groups, including control group (C), low-sound intensity music group (LM), low-sound intensity noise group (LN), high-sound intensity noise group (HN) and high-sound intensity music group (HM). From the 10th day of embryonic development until hatching, group LM and group LN received 65 to 75 dB of music and noise stimulation. Group HN and group HM received 85 to 95 dB of noise and music stimulation, and group C received no additional sound. At the end of incubation, the one-trial passive avoidance learning (PAL) task and tonic immobility (TI) tests were carried out, and the serum corticosterone (CORT) and serotonin (5-HT) concentrations were determined. Results The results showed that compared with the group C, 65 to 75 dB of music and noise stimulation did not affect the PAL avoidance rate (p>0.05), duration of TI (p>0.05) and the concentration of CORT (p>0.05) and 5-HT (p>0.05) in chicks. However, 85 to 95 dB of music and noise stimulation could reduce duration of TI (p<0.05) and the concentration of CORT (p<0.05), but no significant effect was observed on the concentration of 5-HT (p>0.05) and PAL avoidance rate (p>0.05). Conclusion Therefore, the prenatal auditory stimulation of 85 to 95 dB can effectively reduce the fear level of chicks while it does not affect the learning ability.
Collapse
Affiliation(s)
- Shuai Zhao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Chunzhu Xu
- College of life Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Runxiang Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, Heilongjiang, China.,Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Xiang Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Jianhong Li
- College of life Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, Heilongjiang, China.,Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| |
Collapse
|
17
|
Das R, Mishra P, Jha R. In ovo Feeding as a Tool for Improving Performance and Gut Health of Poultry: A Review. Front Vet Sci 2021; 8:754246. [PMID: 34859087 PMCID: PMC8632539 DOI: 10.3389/fvets.2021.754246] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/01/2021] [Indexed: 12/14/2022] Open
Abstract
Early growth and development of the gastrointestinal tract are of critical importance to enhance nutrients' utilization and optimize the growth of poultry. In the current production system, chicks do not have access to feed for about 48-72 h during transportation between hatchery and production farms. This lag time affects early nutrient intake, natural exposure to the microbiome, and the initiation of beneficial stimulation of the immune system of chicks. In ovo feeding can provide early nutrients and additives to embryos, stimulate gut microflora, and mitigate the adverse effects of starvation during pre-and post-hatch periods. Depending on the interests, the compounds are delivered to the embryo either around day 12 or 17 to 18 of incubation and via air sac or amnion. In ovo applications of bioactive compounds like vaccines, nutrients, antibiotics, prebiotics, probiotics, synbiotics, creatine, follistatin, L-carnitine, CpG oligodeoxynucleotide, growth hormone, polyclonal antimyostatin antibody, peptide YY, and insulin-like growth factor-1 have been studied. These compounds affect hatchability, body weight at hatch, physiological functions, immune responses, gut morphology, gut microbiome, production performance, and overall health of birds. However, the route, dose, method, and time of in ovo injection and host factors can cause variation, and thereby inconsistencies in results. Studies using this method have manifested the benefits of injection of different single bioactive compounds. But for excelling in poultry production, researchers should precisely know the proper route and time of injection, optimum dose, and effective combination of different compounds. This review paper will provide an insight into current practices and available findings related to in ovo feeding on performance and health parameters of poultry, along with challenges and future perspectives of this technique.
Collapse
Affiliation(s)
- Razib Das
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Pravin Mishra
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Rajesh Jha
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI, United States
| |
Collapse
|
18
|
Miltiadous A, Buchanan KL. Experimental manipulation of maternal corticosterone: Hormone transfer to the yolk in the zebra finch Taeniopygia guttata. Gen Comp Endocrinol 2021; 313:113898. [PMID: 34492223 DOI: 10.1016/j.ygcen.2021.113898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/28/2021] [Accepted: 08/28/2021] [Indexed: 10/20/2022]
Abstract
Maternally-derived hormones affect offspring physiological and behavioural phenotype, plausibly as an adaptive response to maternal environmental conditions. Corticosterone (CORT), the principal avian glucocorticoid produced in response to stress, is recognised as a potential mediator of such maternal reproductive effects. Maternally-derived yolk CORT is implicated in mediating offspring growth and hatchling begging behaviour. However, determining the potential for maternal effects in opportunistic breeders subject to variable environments relies on understanding whether natural variation in maternal circulating hormones may directly impact the embryo during development. Therefore, we tested whether elevated maternal CORT concentrations increase yolk CORT concentrations in zebra finch (Taeniopygia guttata) eggs. We remotely dosed breeding females with biologically-relevant doses of CORT, or the oil vehicle, 0-3 h prior to the predicted time of ovulation, and allowed pairs to produce two clutches, one under each treatment, in a crosswise, balanced design. CORT dosing elevated maternal plasma CORT and increased mean yolk CORT by a factor of 1.75 compared to the egg yolks of control mothers. Importantly, CORT concentrations did not differ between inner and outer layers of yolk. We found no egg lay order effect and maternal CORT dosing did not influence reproductive outputs (clutch initiation date, clutch size or egg mass). Our results confirm the direct impact of biologically-relevant increases in maternal CORT on yolk CORT, providing evidence that maternal CORT concentrations during yolk deposition to the follicle alters embryonic exogenous CORT exposure. Further research is required to determine the impact of maternal CORT on embryonic developmental programming.
Collapse
Affiliation(s)
- Anna Miltiadous
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia.
| | - Katherine L Buchanan
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
19
|
Duclot F, Kabbaj M. Epigenetics of Aggression. Curr Top Behav Neurosci 2021; 54:283-310. [PMID: 34595741 DOI: 10.1007/7854_2021_252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Aggression is a complex behavioral trait modulated by both genetic and environmental influences on gene expression. By controlling gene expression in a reversible yet potentially lasting manner in response to environmental stimulation, epigenetic mechanisms represent prime candidates in explaining both individual differences in aggression and the development of elevated aggressive behaviors following life adversity. In this manuscript, we review the evidence for an epigenetic basis in the development and expression of aggression in both humans and related preclinical animal models. In particular, we discuss reports linking DNA methylation, histone post-translational modifications, as well as non-coding RNA, to the regulation of a variety of genes implicated in the neurobiology of aggression including neuropeptides, the serotoninergic and dopaminergic systems, and stress response related systems. While clinical reports do reveal interesting patterns of DNA methylation underlying individual differences and experience-induced aggressive behaviors, they do, in general, face the challenge of linking peripheral observations to central nervous system regulations. Preclinical studies, on the other hand, provide detailed mechanistic insights into the epigenetic reprogramming of gene expression following life adversities. Although the functional link to aggression remains unclear in most, these studies together do highlight the involvement of epigenetic events driven by DNA methylation, histone modifications, and non-coding RNA in the neuroadaptations underlying the development and expression of aggression.
Collapse
Affiliation(s)
- Florian Duclot
- Department of Biomedical Sciences and Program in Neuroscience, Florida State University, Tallahassee, FL, USA.
| | - Mohamed Kabbaj
- Department of Biomedical Sciences and Program in Neuroscience, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
20
|
Huang C, Chen Y, Yue Q, Hao E, Wang D, Zhou R, Zhao G, Chen H. Effect of in ovo injection of serotonin on the behavior and hormone level in laying hens. Gen Comp Endocrinol 2021; 310:113824. [PMID: 34048728 DOI: 10.1016/j.ygcen.2021.113824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/18/2021] [Accepted: 05/23/2021] [Indexed: 11/24/2022]
Abstract
Feather pecking is a typically abnormal behavior that significantly impacts breeding efficiency and animal welfare in the egg production sector. Serotonin (5-HT) is essential for neuronal development and behavioral regulation. This study evaluated the effects of birds' behavioral development (including feather pecking) and changes in serum hormones in chickens followed in ovo injection of 5-HT. On day 11, incubated eggs were injected with 5-HT at 0 (saline control), 5 ug (low) or 15 ug (high) (n = 166 per treatment). The hatched female chicks were raised under similar conditions up to 20 weeks of age (n = 60 per treatment). Birds' behaviors were recorded using a digital video recording system. The time to first vocalize and first move, along with the duration of vocalization and escape attempts during the isolation test, during isolation test were analyzed on day 1, and week 4, 8, 12, 16 and 20. Blood samples were collected followed behavioral tests (n = 5/treatment). The expression of 5-HTR1A genes in the hypothalamus was measured by real-time PCR. Compared to controls, 5-HT administrated pullets had greater body weight (P < 0.05) with an improved feed conversion rate (P < 0.05) as well as higher serum concentrations of norepinephrine (NE) regardless of their doses. In addition, serum dopamine (DA) concentrations were lower in both high- and low-dose pullets at 8 and 12 weeks of age (P < 0.05). Also, a decrease in fearfulness response was observed based on the test to vocalize and duration of vocalization (P < 0.05). Further, this exhibited a lesser frequency of total aggressive behavior compared with the chicks in the control group, especially at 8 weeks of age (P < 0.05), where it is associated with elevated serum 5-HT concentration and upregulated hypothalamic expression of 5-HTR1A (P < 0.05). The changes of these hormone concentrations and gene expressions suggested that 5-HT accumulation in early embryonic stages may alter both the adrenergic and serotonergic systems, which could further regulate the isolation behavior and improve birds' growth performance to a certain extent.
Collapse
Affiliation(s)
- Chenxuan Huang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Yifan Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Qiaoxian Yue
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Erying Hao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Dehe Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Rongyan Zhou
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Guoxian Zhao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China.
| | - Hui Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China.
| |
Collapse
|
21
|
Hofmann T, Schmucker S, Grashorn M, Stefanski V. Short- and long-term consequences of stocking density during rearing on the immune system and welfare of laying hens. Poult Sci 2021; 100:101243. [PMID: 34175797 PMCID: PMC8253997 DOI: 10.1016/j.psj.2021.101243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 04/23/2021] [Accepted: 05/02/2021] [Indexed: 11/22/2022] Open
Abstract
Already during early life, chickens need to cope with chronic stressors that can impair their health and welfare, with stocking density being one of the most influential factors. Nevertheless, there is a gap in research on the influence of stocking density on laying hens during rearing and in the subsequent laying period. This study therefore investigated how stocking density during rearing affects the immune system and welfare of pullets, and whether effects are persistent later in life. Pullets were reared at either low (13 birds/m2) or high (23 birds/m2) stocking densities but in identical group sizes from wk 7 to 17. Afterward, hens were kept at the same stocking density (2.4 birds/m2) until wk 28. Blood and tissue samples (spleen and cecal tonsils) were collected at the end of the rearing period and in the laying period. The parameters evaluated encompassed number and distribution of leukocytes and lymphocyte subsets in blood and lymphatic tissue, lymphocyte functionality, plasma corticosterone concentrations as well as behavior and physical appearance of hens. At the end of rearing, pullets kept under high stocking density had lower numbers of T lymphocytes, especially γδ T cells in blood, spleen, and cecal tonsils and displayed a higher heterophil to lymphocyte ratio. These effects are mostly persistent during the laying period, although stocking density was identical at this time. Furthermore, birds from the high stocking density group showed less active behavior, more pecking behavior and worse physical appearance throughout both examination periods. In conclusion, stocking density during rearing affects pullets' immune system and behavior not only in the rearing, but also subsequently in the laying period, indicating a strong correlation between health and welfare during rearing and the laying period.
Collapse
Affiliation(s)
- Tanja Hofmann
- Behavioral Physiology of Livestock, Institute of Animal Science, University of Hohenheim, Garbenstr. 17, 70599 Stuttgart, Germany.
| | - Sonja Schmucker
- Behavioral Physiology of Livestock, Institute of Animal Science, University of Hohenheim, Garbenstr. 17, 70599 Stuttgart, Germany
| | - Michael Grashorn
- Livestock Population Genomics, Institute of Animal Science, University of Hohenheim, Garbenstr. 17, 70599 Stuttgart, Germany
| | - Volker Stefanski
- Behavioral Physiology of Livestock, Institute of Animal Science, University of Hohenheim, Garbenstr. 17, 70599 Stuttgart, Germany
| |
Collapse
|
22
|
Angove JL, Willson NL, Cadogan DJ, Forder REA. In ovo corticosterone administration alters body composition irrespective of arginine supplementation in 35-day-old female chicken meat birds. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an20254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context
Exposure to maternal hormones can permanently alter an embryo’s developmental trajectory. Maternal mediated effects have significant potential in the chicken meat industry, as breeder hens are feed restricted in a bid to improve performance. Evidence suggests breeder hens are chronically stressed, resulting from periods of prolonged hunger. However, evidence linking embryonic exposure to early-life stress and altered offspring phenotype in meat chickens is lacking. Additionally, methods to alleviate the phenotypic consequences of early-life stress have not been comprehensively explored. Nutritional supplementation with amino acids, such as arginine (Arg), may provide one such option, as Arg reportedly enhances performance characteristics in chicken meat birds.
Aims
An in ovo study was conducted to investigate whether exposure to in ovo stress altered offspring performance in meat chickens. Additionally, Arg was supplemented post-hatch to alleviate reductions in performance, hypothesised to occur as a result of exposure to corticosterone.
Method
A total of 400 eggs were divided into two groups and administered a corticosterone (CORT) or control (CON) solution at embryonic Day 11. At hatch, birds were separated into four groups based on in ovo and dietary treatments: CORT-Control, CORT-Arg, CON-Arg and CON-Control. Birds fed supplementary Arg diets received an Arg:lysine inclusion of 125%. Bodyweight (bwt) and feed conversion were recorded weekly. Birds were euthanised at embryonic Day 15, Day 0, 7, 21 (n = 40 birds/time point), 28 and 35 (n = 48 birds/time point) for organ collection. A total of 12 additional female birds were euthanised and subjected to a dual-energy X-ray absorptiometry scan for body composition at Day 35.
Results
Neither in ovo nor diet treatments influenced bwt, bwt gain, feed conversion or plasma corticosterone at any time point, nor did any in ovo by diet interaction exist. Female birds exposed to CORT exhibited significantly greater fat mass (%bwt; P = 0.007) and reduced lean mass (%bwt; P = 0.026) compared with CON females at Day 35. Supplementary Arg did not influence bird body composition.
Conclusions
These findings suggest in ovo exposure to CORT may negatively influence body composition of female birds.
Implications
Understanding the effects of the maternal/in ovo environment may provide a novel approach to further improve carcass quality and flock uniformity.
Collapse
|
23
|
Chenxuan H, Qiaoxian Y, Yifan C, Dehe W, Rongyan Z, Guoxian Z, Hui C. Effects of in ovo injection of serotonin on behavior and hypothalamic genes expression in post hatch-chicks. Appl Anim Behav Sci 2021. [DOI: 10.1016/j.applanim.2020.105176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Tran PV, Nguyen LTN, Yang H, Do PH, Torii K, Putnam GL, Chowdhury VS, Furuse M. Intracerebroventricular injection of L-arginine and D-arginine induces different effects under an acute stressful condition. Biochem Biophys Res Commun 2020; 533:965-970. [PMID: 33008589 DOI: 10.1016/j.bbrc.2020.09.111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022]
Abstract
Central administration of L-arginine was reported to attenuate stress responses in neonatal chicks. The present study aimed to elucidate the differential effects of centrally administered L-arginine and its enantiomer, D-arginine, on the stress response in chicks and the associated mechanisms. Intracerebroventricular injection of L-arginine attenuated acute isolation stress by inducing sleep-like behavior, while central administration of D-arginine potentiated the stress response, reducing the time spent standing motionless with eyes open and increasing distress vocalizations compared to the control. The brain concentrations of amino acids and monoamines following L- and D-arginine administration during stress were also determined. L-Arginine significantly increased the mesencephalic L-glutamine concentration. D-Arginine administration did not affect the levels of L-arginine or other amino acids in the examined brain regions. 3,4-Dihydroxyphenylacetic acid (DOPAC) level and dopamine (DA) metabolic rate (DOPAC/DA) were significantly higher in the diencephalon in the D-arginine group compared to the L-arginine group, while the mesencephalic DA level was significantly lower in the D-arginine group compared to the control. In vitro experiment using the brain slice culture demonstrated that extracellular perfusion of D-arginine significantly elevated the mRNA expression level of monoamine oxidase B, the major enzyme involved in DA metabolism, in the locus coeruleus region of the brainstem. In conclusion, in neonatal chicks, central administration of D-arginine exerted a stimulant effect on the stress response, in contrast to the stress-attenuating effects of L-arginine, partly through an effect on brain dopaminergic metabolism and not through competition with the L-stereoisomer.
Collapse
Affiliation(s)
- Phuong V Tran
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Linh T N Nguyen
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Hui Yang
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Phong H Do
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Kyohei Torii
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Grace L Putnam
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Vishwajit S Chowdhury
- Laboratory of Stress Physiology and Metabolism, Faculty of Arts and Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Mitsuhiro Furuse
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
25
|
Abstract
AbstractEvolution of adaptation requires predictability and recurrence of functional contexts. Yet organisms live in multifaceted environments that are dynamic and ever changing, making it difficult to understand how complex adaptations evolve. This problem is particularly apparent in the evolution of adaptive maternal effects, which are often assumed to require reliable and discrete cues that predict conditions in the offspring environment. One resolution to this problem is if adaptive maternal effects evolve through preexisting, generalized maternal pathways that respond to many cues and also influence offspring development. Here, we assess whether an adaptive maternal effect in western bluebirds is influenced by maternal stress pathways across multiple challenging environments. Combining 18 years of hormone sampling across diverse environmental contexts with an experimental manipulation of the competitive environment, we show that multiple environmental factors influenced maternal corticosterone levels, which, in turn, influenced a maternal effect on aggression of sons in adulthood. Together, these results support the idea that multiple stressors can induce a known maternal effect in this system. More generally, they suggest that activation of general pathways, such as the hypothalamic-pituitary-adrenal axis, may simplify and facilitate the evolution of adaptive maternal effects by integrating variable environmental conditions into preexisting maternal physiological systems.
Collapse
|
26
|
Zhang YN, Wang S, Huang XB, Li KC, Chen W, Ruan D, Xia WG, Wang SL, Abouelezz KFM, Zheng CT. Estimation of dietary manganese requirement for laying duck breeders: effects on productive and reproductive performance, egg quality, tibial characteristics, and serum biochemical and antioxidant indices. Poult Sci 2020; 99:5752-5762. [PMID: 33142493 PMCID: PMC7647759 DOI: 10.1016/j.psj.2020.06.076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/11/2020] [Accepted: 06/25/2020] [Indexed: 01/05/2023] Open
Abstract
This study was aimed at estimating the dietary manganese (Mn) requirement for laying duck breeders. A total of 504 Longyan duck breeders (body weight: 1.20 ± 0.02 kg) aged 17 wk were randomly allocated to 6 treatments. The birds were fed with a basal diet (Mn, 17.5 mg/kg) or diets supplemented with 20, 40, 80, 120, or 160 mg/kg of Mn (as MnSO4·H2O) for 18 wk. Each treatment had 6 replicates of 14 ducks each. As a result of this study, dietary Mn supplementation did not affect the productive performance of laying duck breeders in the early laying period (17–18 wk), but affected egg production, egg mass, and feed conversion ratio (FCR) from 19 to 34 wk (P < 0.05), and there was a linear and quadratic effect of supplement level (P < 0.05). The proportion of preovulatory ovarian follicles increased (P < 0.01) linearly and quadratically, and atretic follicles (weight and percentage) decreased (P < 0.05) quadratically with dietary Mn supplementation. The density and breaking strength of tibias increased (quadratic; P < 0.05), the calcium content of tibias decreased (linear, quadratic; P < 0.01), and Mn content increased (linear, quadratic; P < 0.001) with increase in Mn. The addition of Mn had a quadratic effect on serum contents of estradiol, prolactin, progesterone, luteinizing hormone, and follicle-stimulating hormone (P < 0.001). Dietary Mn supplementation decreased serum contents of total protein (linear, P < 0.05), glucose (quadratic, P < 0.05), total bilirubin, triglycerides, total cholesterol, low-density lipoprotein cholesterol, and calcium (linear, quadratic; P < 0.05). The serum total antioxidant capacity and total and Mn-containing superoxide dismutase activities increased (linear, quadratic; P < 0.001), and malondialdehyde content decreased (linear, quadratic; P < 0.001) in response to Mn supplemental levels. The dietary Mn requirements, in milligram per kilogram for a basal diet containing 17.5 mg/kg of Mn, for Longyan duck breeders from 19 to 34 wk of age were estimated to be 84.2 for optimizing egg production, 85.8 for egg mass, and 95.0 for FCR. Overall, dietary Mn supplementation, up to 160 mg/kg of feed, affected productive performance, tibial characteristics, and serum biochemical and antioxidant status of layer duck breeders. Supplementing this basal diet (17.5 mg/kg of Mn) with 85 to 95 mg/kg of additional Mn was adequate for laying duck breeders during the laying period.
Collapse
Affiliation(s)
- Y N Zhang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China
| | - S Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China
| | - X B Huang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China
| | - K C Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China
| | - W Chen
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China
| | - D Ruan
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China
| | - W G Xia
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China
| | - S L Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China
| | - K F M Abouelezz
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China; Department of Poultry Production, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
| | - C T Zheng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China.
| |
Collapse
|
27
|
Liu L, Li J, Qing L, Yan M, Xiong G, Lian X, Hu L, Nie S. Glucocorticoid receptor gene (NR3C1) is hypermethylated in adult males with aggressive behaviour. Int J Legal Med 2020; 135:43-51. [PMID: 32577827 DOI: 10.1007/s00414-020-02328-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/28/2020] [Indexed: 12/20/2022]
Abstract
Aggressive behaviour is a serious threat to the personal safety and property of others due to the potential that the assailant may hurt people, himself/herself or objects, and aggression has always been one of the focuses of research and concern. Accumulating evidence suggests that the hypothalamic-pituitary-adrenal (HPA) axis plays a major role in the development, elicitation, enhancement and genetic susceptibility of aggressive behaviour in humans and animals. GR (NR3C1) plays a crucial role in controlling HPA activity, which directly affects aggressive behaviour. Here, we investigated the methylation state of the NR3C1 gene promoter region and its role in aggressive behaviour in adult males for the first time by applying a case-control approach (N = 106 controls, N = 104 patients). Methylation of NR3C1 was measured in peripheral blood samples at exons 1D, 1B and 1F via sodium bisulfite treatment combined with the MethylTarget method. Methylation of the NR3C1 gene was significantly correlated with aggressive behaviour, and the methylation levels of 1D, 1B and 1F were upregulated in the aggressive behaviour group, intentional injury subgroup and robbery subgroup, and the significance varied. In addition, multiple CpG sites were found to be significantly associated with aggressive behaviour. These results suggest that epigenetic aberrations of NR3C1 are associated with aggressive behaviour, and epigenetic processes might mediate aggressive behaviour by affecting the activity of the HPA axis. This correlative study between DNA methylation of the NR3C1 gene and aggressive behaviour in patients may be helpful for forensic assessments.
Collapse
Affiliation(s)
- Linlin Liu
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, People's Republic of China
| | - Jiajue Li
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, People's Republic of China
| | - Lili Qing
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, People's Republic of China
| | - Ming Yan
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, People's Republic of China
| | - Gen Xiong
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, People's Republic of China
| | - Xinqing Lian
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, People's Republic of China
| | - Liping Hu
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, People's Republic of China.
| | - Shengjie Nie
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, People's Republic of China.
| |
Collapse
|
28
|
Alberghina D, Biondi V, Passantino A, Giunta F, Panzera M. Plasma Serotonin in Laying Hens ( Gallus gallus domesticus) With and Without Foot pad Dermatitis. Int J Tryptophan Res 2020; 13:1178646920927380. [PMID: 32577078 PMCID: PMC7290255 DOI: 10.1177/1178646920927380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/20/2020] [Indexed: 11/15/2022] Open
Abstract
The aim of this study was to investigate whether plasma serotonin (5-hydroxytryptamine [5-HT]) was associated with the presence of foot pad dermatitis (FPD) in laying hens. FPD birds (n = 20) and healthy individuals (n = 22) were included. Plasma 5-HT was investigated. FPD laying hens showed significantly higher 5-HT levels (median = 6 µmol/L) compared with healthy individuals (median = 4.28 µmol/L, P < .001). When present, FPD were scored as either 1 (n = 12) indicating mildly to moderately abnormal or 2 indicating severely abnormal (n = 8). The subjects whose lesions scored 2 had higher plasma 5-HT levels than those whose lesions scored 1. Inflammatory mechanisms seem to be related to plasma 5-HT levels in laying hens. Assessing plasma 5-HT could be useful to evaluate chicken welfare.
Collapse
Affiliation(s)
| | - Vito Biondi
- Department of Veterinary Science, University of Messina, Messina, Italy
| | | | - Fabiola Giunta
- Department of Veterinary Science, University of Messina, Messina, Italy
| | - Michele Panzera
- Department of Veterinary Science, University of Messina, Messina, Italy
| |
Collapse
|
29
|
Gum Arabic improves the reproductive capacity through upregulation of testicular glucose transporters (GLUTs) mRNA expression in Alloxan induced diabetic rat. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.bcdf.2020.100218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Takaki N, Uchiwa T, Furuse M, Yasuo S. Effect of postnatal photoperiod on DNA methylation dynamics in the mouse brain. Brain Res 2020; 1733:146725. [DOI: 10.1016/j.brainres.2020.146725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 10/26/2019] [Accepted: 02/10/2020] [Indexed: 02/06/2023]
|
31
|
Angove JL, Forder REA. The avian maternal environment: exploring the physiological mechanisms driving progeny performance. WORLD POULTRY SCI J 2020. [DOI: 10.1080/00439339.2020.1729675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- J. L. Angove
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, Australia
| | - R. E. A. Forder
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, Australia
| |
Collapse
|
32
|
Siller SJ, Rubenstein DR. A Tissue Comparison of DNA Methylation of the Glucocorticoid Receptor Gene (Nr3c1) in European Starlings. Integr Comp Biol 2019; 59:264-272. [PMID: 31076777 DOI: 10.1093/icb/icz034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Negative feedback of the vertebrate stress response via the hypothalamic-pituitary-adrenal (HPA) axis is regulated by glucocorticoid receptors in the brain. Epigenetic modification of the glucocorticoid receptor gene (Nr3c1), including DNA methylation of the promoter region, can influence expression of these receptors, impacting behavior, physiology, and fitness. However, we still know little about the long-term effects of these modifications on fitness. To better understand these fitness effects, we must first develop a non-lethal method to assess DNA methylation in the brain that allows for multiple measurements throughout an organism's lifetime. In this study, we aimed to determine if blood is a viable biomarker for Nr3c1 DNA methylation in two brain regions (hippocampus and hypothalamus) in adult European starlings (Sturnus vulgaris). We found that DNA methylation of CpG sites in the complete Nr3c1 putative promoter varied among tissue types and was lowest in blood. Although we identified a similar cluster of correlated Nr3c1 putative promoter CpG sites within each tissue, this cluster did not show any correlation in DNA methylation among tissues. Additional studies should consider the role of the developmental environment in producing epigenetic modifications in different tissues.
Collapse
Affiliation(s)
- Stefanie J Siller
- Department of Ecology, Evolution and Environmental Biology, Columbia University, 10th Floor Schermerhorn Extension, 1200 Amsterdam Avenue, New York, NY, USA
| | - Dustin R Rubenstein
- Department of Ecology, Evolution and Environmental Biology, Columbia University, 10th Floor Schermerhorn Extension, 1200 Amsterdam Avenue, New York, NY, USA
| |
Collapse
|
33
|
Mustafin RN, Kazantseva AV, Enikeeva RF, Davydova YD, Karunas AS, Malykh SB, Khusnutdinova EK. Epigenetics of Aggressive Behavior. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419090096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
34
|
Pu S, Nagaoka K, Watanabe G. Yolk immunoreactive corticosterone in hierarchical follicles of Japanese quail (Coturnix japonica) exposed to heat challenge. Gen Comp Endocrinol 2019; 279:148-153. [PMID: 30898528 DOI: 10.1016/j.ygcen.2019.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 03/11/2019] [Accepted: 03/17/2019] [Indexed: 12/20/2022]
Abstract
High temperature decreases the egg number, ovarian weight, and hierarchical follicle number. In the present study, we investigated the effect of high temperature on the quality of eggs of adult female quails. Laying quail were raised under a standard thermal condition of 25 °C until exposed to an elevated temperature of 34 °C (experimental) or maintained at 25 °C (control) from 12:00 to 16:00 for 10 consecutive days. Weight and number of eggs were measured; serum and the largest follicles were collected and used for hormone measurement. Ovaries and adrenals were collected for expression analysis of 3β- and 17β-HSD, genes encoding steroidogenic enzymes. Egg weight slightly decreased with an increase in the treatment time in the heat-challenged group; the egg weight significantly decreased in the heat treatment group than in the control group during the last 2 days of experiment (P < 0.05). The laying rate showed no difference during the experimental period but significantly decreased on the last day in the heat treatment group. In the experimental group the ovaries and oviducts were lighter (P < 0.05) and the hierarchical follicle number and ovarian weight decreased (P < 0.05) compared to the control group. Although serum corticosterone level significantly increased after heat challenge (P < 0.05) and immediately recovered to the normal level, yolk immunoreactive corticosterone in the hierarchical follicle (F1, F2, F3) significantly increased (P < 0.05). The expression level of 17β-HSD showed no changes in the ovary but significantly increased in adrenals (P < 0.05). Our findings indicate that the effects of heat challenge on the maternal ovary in the quail are mediated through the adrenal function.
Collapse
Affiliation(s)
- Shaoxia Pu
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan; Department of Basic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Kentaro Nagaoka
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan; Department of Basic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Gen Watanabe
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan; Department of Basic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan.
| |
Collapse
|
35
|
Pörtl D, Jung C. Physiological pathways to rapid prosocial evolution. Biol Futur 2019; 70:93-102. [PMID: 34554422 DOI: 10.1556/019.70.2019.12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 03/05/2019] [Indexed: 01/29/2023]
Abstract
Dogs (Canis lupus familiaris) descend from wolves (Canis lupus) sharing the same ecological niche of cooperative hunters, as humans. Initially, humans and wolves were competitors starting interspecific communication in order to avoid risk of injury. The evolutionary continuity of mammalian brains enabled interspecific prosocial contacts between both of them, which reduced stress, and enabled behavioral cultures leading to genetic isolation of those wolves. Dogs are the first domesticated animal living together with humans for about 25,000 years. Domestication means decreased aggression and flight distance toward humans, thus changes in the stress axis are crucial. The hypothesis of Active Social Domestication considers genetic selection as a necessary prediction but not a sufficient explanation of dog domestication. In addition, dog domestication is suggested to be an epigenetic disclosure. Due to changed stress activity, epigenetic mechanisms affect cerebral receptor activity and regulate transposon expressions, thus shaping brain function and behavior. Interspecific prosocial contacts initiated via serotonin release an enzymatic cascade enhancing, epigeneti-cally, the glucocorticoid negative feedback loop. Reduced chronic stress improved social learning capability and inhibitory control. Over time, those wolves could integrate themselves into human social structures, thus becoming dogs. In analogy, human mental skills, such as creating art and culture, might have also improved during the Upper Paleolithic.
Collapse
Affiliation(s)
- Daniela Pörtl
- Psychiatric Department, Saale-Unstrut Klinikum, Teaching Hospital Leipzig and Jena Universities, Naumburg, Germany.
| | | |
Collapse
|
36
|
Chistiakov DA, Chekhonin VP. Early-life adversity-induced long-term epigenetic programming associated with early onset of chronic physical aggression: Studies in humans and animals. World J Biol Psychiatry 2019; 20:258-277. [PMID: 28441915 DOI: 10.1080/15622975.2017.1322714] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Objectives: To examine whether chronic physical aggression (CPA) in adulthood can be epigenetically programmed early in life due to exposure to early-life adversity. Methods: Literature search of public databases such as PubMed/MEDLINE and Scopus. Results: Children/adolescents susceptible for CPA and exposed to early-life abuse fail to efficiently cope with stress that in turn results in the development of CPA later in life. This phenomenon was observed in humans and animal models of aggression. The susceptibility to aggression is a complex trait that is regulated by the interaction between environmental and genetic factors. Epigenetic mechanisms mediate this interaction. Subjects exposed to stress early in life exhibited long-term epigenetic programming that can influence their behaviour in adulthood. This programming affects expression of many genes not only in the brain but also in other systems such as neuroendocrine and immune. Conclusions: The propensity to adult CPA behaviour in subjects experienced to early-life adversity is mediated by epigenetic programming that involves long-term systemic epigenetic alterations in a whole genome.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- a Department of Fundamental and Applied Neurobiology , Serbsky Federal Medical Research Center of Psychiatry and Narcology , Moscow , Russia
| | - Vladimir P Chekhonin
- a Department of Fundamental and Applied Neurobiology , Serbsky Federal Medical Research Center of Psychiatry and Narcology , Moscow , Russia.,b Department of Medical Nanobiotechnology , Pirogov Russian State Medical University (RSMU) , Moscow , Russia
| |
Collapse
|
37
|
Absalón AE, Cortés-Espinosa DV, Lucio E, Miller PJ, Afonso CL. Epidemiology, control, and prevention of Newcastle disease in endemic regions: Latin America. Trop Anim Health Prod 2019; 51:1033-1048. [PMID: 30877525 PMCID: PMC6520322 DOI: 10.1007/s11250-019-01843-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/07/2019] [Indexed: 12/17/2022]
Abstract
Newcastle disease (ND) infects wild birds and poultry species worldwide, severely impacting the economics of the poultry industry. ND is especially problematic in Latin America (Mexico, Colombia, Venezuela, and Peru) where it is either endemic or re-emerging. The disease is caused by infections with one of the different strains of virulent avian Newcastle disease virus (NDV), recently renamed Avian avulavirus 1. Here, we describe the molecular epidemiology of Latin American NDVs, current control and prevention methods, including vaccines and vaccination protocols, as well as future strategies for control of ND. Because the productive, cultural, economic, social, and ecological conditions that facilitate poultry endemicity in South America are similar to those in the developing world, most of the problems and control strategies described here are applicable to other continents.
Collapse
Affiliation(s)
- A E Absalón
- Vaxbiotek, S.C. San Lorenzo 122-7, 72700, Cuautlancingo, Puebla, Mexico.
- Instituto Politécnico Nacional, CIBA-Tlaxcala, Carr. Est. Santa Ines Tecuexcomac-Tepetitla Km. 1.5, 90700, Tepetitla, Tlaxcala, Mexico.
| | | | - E Lucio
- Boehringer Ingelheim Animal Health, PO Drawer 2497, Gainesville, GA, 30503-2497, USA
| | - P J Miller
- Department of Population Health, College of Veterinary Medicine, The University of Georgia, 953 College Station Road, Athens, GA, 30602, USA
| | - C L Afonso
- Exotic and Emerging Avian Viral Disease Research Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, USDA/ARS, Athens, GA, 30605, USA.
| |
Collapse
|
38
|
de Haas EN, van der Eijk JA. Where in the serotonergic system does it go wrong? Unravelling the route by which the serotonergic system affects feather pecking in chickens. Neurosci Biobehav Rev 2018; 95:170-188. [DOI: 10.1016/j.neubiorev.2018.07.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 12/16/2022]
|
39
|
Spencer KA. Developmental stress and social phenotypes: integrating neuroendocrine, behavioural and evolutionary perspectives. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0242. [PMID: 28673918 DOI: 10.1098/rstb.2016.0242] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2017] [Indexed: 01/19/2023] Open
Abstract
The social world is filled with different types of interactions, and social experience interacts with stress on several different levels. Activation of the neuroendocrine axis that regulates the response to stress can have consequences for innumerable behavioural responses, including social decision-making and aspects of sociality, such as gregariousness and aggression. This is especially true for stress experienced during early life, when physiological systems are developing and highly sensitive to perturbation. Stress at this time can have persistent effects on social behaviours into adulthood. One important question remaining is to what extent these effects are adaptive. This paper initially reviews the current literature investigating the complex relationships between the hypothalamic-pituitary-adrenal (HPA) axis and other neuroendocrine systems and several aspects of social behaviour in vertebrates. In addition, the review explores the evidence surrounding the potential for 'social programming' via differential development and activation of the HPA axis, providing an insight into the potential for positive effects on fitness following early life stress. Finally, the paper provides a framework from which novel investigations could work to fully understand the adaptive significance of early life effects on social behaviours.This article is part of the themed issue 'Physiological determinants of social behaviour in animals'.
Collapse
Affiliation(s)
- Karen A Spencer
- School of Psychology and Neuroscience, University of St Andrews, South Street, St Andrews KY16 9JP, UK
| |
Collapse
|
40
|
Podmokła E, Drobniak SM, Rutkowska J. Chicken or egg? Outcomes of experimental manipulations of maternally transmitted hormones depend on administration method - a meta-analysis. Biol Rev Camb Philos Soc 2018; 93:1499-1517. [PMID: 29573376 DOI: 10.1111/brv.12406] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 01/28/2018] [Accepted: 02/13/2018] [Indexed: 12/25/2022]
Abstract
Steroid hormones are important mediators of prenatal maternal effects in animals. Despite a growing number of studies involving experimental manipulation of these hormones, little is known about the impact of methodological differences among experiments on the final results expressed as offspring traits. Using a meta-analytical approach and a representative sample of experimental studies performed on birds, we tested the effect of two types of direct hormonal manipulations: manipulation of females (either by implantation of hormone pellets or injection of hormonal solutions) and manipulation of eggs by injection. In both types of manipulation we looked at the effects of two groups of hormones: corticosterone and androgens in the form of testosterone and androstenedione. We found that the average effect on offspring traits differed between the manipulation types, with a well-supported positive effect of egg manipulation and lack of a significant effect of maternal manipulation. The observed average positive effect for egg manipulation was driven mainly by androgen manipulations, while corticosterone manipulations exerted no overall effect, regardless of manipulation type. Detailed analyses revealed effects of varying size and direction depending on the specific offspring traits; e.g., egg manipulation positively affected physiology and behaviour (androgens), and negatively affected future reproduction (corticosterone). Effect size was negatively related to the dose of androgen injected into the eggs, but unrelated to timing of manipulation, offspring developmental stage at the time of measuring their traits, solvent type, the site of egg injection and maternal hormone delivery method. Despite the generally acknowledged importance of maternal hormones for offspring development in birds, the overall effect of their experimental elevation is rather weak, significantly heterogeneous and dependent on the hormone and type of manipulation. We conclude by providing general recommendations as to how hormonal manipulations should be performed in order to standardize their impact and the results achieved. We also emphasize the need for research on free-living birds with a focus on fitness-related and other long-term effects of maternal hormones.
Collapse
Affiliation(s)
- Edyta Podmokła
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Szymon M Drobniak
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Joanna Rutkowska
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| |
Collapse
|
41
|
Bernardo M, Bioque M, Cabrera B, Lobo A, González-Pinto A, Pina L, Corripio I, Sanjuán J, Mané A, Castro-Fornieles J, Vieta E, Arango C, Mezquida G, Gassó P, Parellada M, Saiz-Ruiz J, Cuesta MJ, Mas S. Modelling gene-environment interaction in first episodes of psychosis. Schizophr Res 2017; 189:181-189. [PMID: 28179063 DOI: 10.1016/j.schres.2017.01.058] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/24/2017] [Accepted: 01/30/2017] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Recent research demonstrates the heterogeneous etiology of psychotic disorders, where gen-environment (GxE) interaction plays a key role. Large genetic studies have linked many genetic variants with schizophrenia, but each variant is only associated with a small effect and the GxE interaction contribution has not been evaluated. METHODS The PEPs Project was designed to carefully collect a large amount of genetic and environmental exposure data of 335 FEP patients and 253 matched healthy controls.780single-nucleotide polymorphisms (from 159 candidate genes)and 16 environmental variables previously reported as the main psychosis non-genetic risk factors were analyzed together using entropy-based measures of information gain. RESULTS Our analyses identified an interaction between nine SNPs and the exposition to the environmental risk factors of psychosis, showing a clear enrichment of genes linked to serotonin neurotransmission and neurodevelopmental processes. CONCLUSIONS This study has allowed the identification of several GxE-environment interactions involved in the risk of presenting a FEP. Our results highlight the importance of serotonin neurotransmission interacting with certain environmental stimuli. The serotoninergic system may be playing a key role in the regulatory network of stress and other systems implicated in the emergence and development of psychotic disorders.
Collapse
Affiliation(s)
- Miguel Bernardo
- Barcelona Clínic SchizophreniaUnit, Hospital Clínic de Barcelona, CIBERSAM, Spain; Universitat de Barcelona, IDIBAPS, Barcelona, Spain.
| | - Miquel Bioque
- Barcelona Clínic SchizophreniaUnit, Hospital Clínic de Barcelona, CIBERSAM, Spain
| | - Bibiana Cabrera
- Barcelona Clínic SchizophreniaUnit, Hospital Clínic de Barcelona, CIBERSAM, Spain
| | - Antonio Lobo
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), University of Zaragoza, Spain
| | - Ana González-Pinto
- Department of Psychiatry, Hospital Universitario de Alava, CIBERSAM, University of the Basque Country, Spain
| | - Laura Pina
- Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, IiSGM, CIBERSAM, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Iluminada Corripio
- Department of Psychiatry, Hospital de Sant Pau, CIBERSAM, Barcelona, Spain
| | - Julio Sanjuán
- Clinic Hospital Valencia, INCLIVA, CIBERSAM, Valencia University, Spain
| | - Anna Mané
- Department of Psychiatry, Hospital del Mar, Barcelona, IMIM, Barcelona, Spain
| | - Josefina Castro-Fornieles
- Department of Child and Adolescent Psychiatry and Psychology, SGR-489, Neurosciences Institute, Hospital Clínic of Barcelona, IDIBAPS, CIBERSAM, University of Barcelona, Spain
| | - Eduard Vieta
- Hospital Clínic de Barcelona, Universitat de Barcelona, IDIBAPS, CIBERSAM, Spain
| | - Celso Arango
- Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, IiSGM, CIBERSAM, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Gisela Mezquida
- Barcelona Clínic SchizophreniaUnit, Hospital Clínic de Barcelona, CIBERSAM, Spain
| | - Patricia Gassó
- Department of Pathological Anatomy, Pharmacology and Microbiology, University of Barcelona, Institutd'InvestigacionsBiomèdiques August Pi i Sunyer (IDIBAPS), CIBERSAM, Barcelona, Spain
| | - Mara Parellada
- Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, IiSGM, CIBERSAM, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Jerónimo Saiz-Ruiz
- Hospital Ramón y Cajal, Universidad de Alcalá, IRYCIS, CIBERSAM, Madrid, Spain
| | - Manuel J Cuesta
- Psychiatric Department, Complejo Hospitalario de Navarra, Pamplona (Spain), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Spain
| | - Sergi Mas
- Department of Pathological Anatomy, Pharmacology and Microbiology, University of Barcelona, Institutd'InvestigacionsBiomèdiques August Pi i Sunyer (IDIBAPS), CIBERSAM, Barcelona, Spain
| | | |
Collapse
|
42
|
Kelly AM, Vitousek MN. Dynamic modulation of sociality and aggression: an examination of plasticity within endocrine and neuroendocrine systems. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160243. [PMID: 28673919 PMCID: PMC5498303 DOI: 10.1098/rstb.2016.0243] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2016] [Indexed: 12/13/2022] Open
Abstract
Endocrine and neuroendocrine systems are key mediators of behavioural plasticity and allow for the ability to shift social behaviour across dynamic contexts. These systems operate across timescales, modulating both rapid responses to environmental changes and developmental plasticity in behavioural phenotypes. Thus, not only do endocrine systems mediate behavioural plasticity, but also the systems themselves exhibit plasticity in functional capabilities. This flexibility at both the mechanistic and behavioural levels can be crucial for reproduction and survival. Here, we discuss how plasticity in nonapeptide and steroid actions may influence the expression of, and allow rapid shifts between, sociality and aggression-behavioural shifts that can be particularly important for social interactions. Recent findings of overlap in the mechanisms that modulate social and aggressive behaviour suggest the potential for a mechanistic continuum between these behaviours. We briefly discuss the potential for a sociality-aggression continuum and novel techniques that will enable probing of the functional connectivity of social behaviours. From an evolutionary perspective, we suggest that plasticity in endocrine and neuroendocrine mechanisms of behaviour may be important targets of selection, and discuss the conditions under which we would predict selection to have resulted in differences in endocrine plasticity across species that differ in social organization.This article is part of the themed issue 'Physiological determinants of social behaviour in animals'.
Collapse
Affiliation(s)
- Aubrey M Kelly
- Department of Psychology, Cornell University, 229 Uris Hall, Ithaca, NY 14853, USA
| | - Maren N Vitousek
- Department of Ecology and Evolutionary Biology, Cornell University, E237 Corson Hall, Ithaca, NY 14853, USA
| |
Collapse
|
43
|
Idriss AA, Hu Y, Sun Q, Jia L, Jia Y, Omer NA, Abobaker H, Zhao R. Prenatal betaine exposure modulates hypothalamic expression of cholesterol metabolic genes in cockerels through modifications of DNA methylation. Poult Sci 2017; 96:1715-1724. [DOI: 10.3382/ps/pew437] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/31/2016] [Indexed: 11/20/2022] Open
|
44
|
Transgenerational transmission of a stress-coping phenotype programmed by early-life stress in the Japanese quail. Sci Rep 2017; 7:46125. [PMID: 28387355 PMCID: PMC5384203 DOI: 10.1038/srep46125] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 03/13/2017] [Indexed: 12/21/2022] Open
Abstract
An interesting aspect of developmental programming is the existence of transgenerational effects that influence offspring characteristics and performance later in life. These transgenerational effects have been hypothesized to allow individuals to cope better with predictable environmental fluctuations and thus facilitate adaptation to changing environments. Here, we test for the first time how early-life stress drives developmental programming and transgenerational effects of maternal exposure to early-life stress on several phenotypic traits in their offspring in a functionally relevant context using a fully factorial design. We manipulated pre- and/or post-natal stress in both Japanese quail mothers and offspring and examined the consequences for several stress-related traits in the offspring generation. We show that pre-natal stress experienced by the mother did not simply affect offspring phenotype but resulted in the inheritance of the same stress-coping traits in the offspring across all phenotypic levels that we investigated, shaping neuroendocrine, physiological and behavioural traits. This may serve mothers to better prepare their offspring to cope with later environments where the same stressors are experienced.
Collapse
|
45
|
Sopinka NM, Capelle PM, Semeniuk CAD, Love OP. Glucocorticoids in Fish Eggs: Variation, Interactions with the Environment, and the Potential to Shape Offspring Fitness. Physiol Biochem Zool 2016; 90:15-33. [PMID: 28051944 DOI: 10.1086/689994] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Wild and captive vertebrates face multiple stressors that all have the potential to induce chronic maternal stress (i.e., sustained, elevated plasma glucocorticoids), resulting in embryo exposure to elevated maternally derived glucocorticoids. In oviparous taxa such as fish, maternally derived glucocorticoids in eggs are known for their capacity to shape offspring phenotype. Using a variety of methodologies, scientists have quantified maternally derived levels of egg cortisol, the primary glucocorticoid in fishes, and examined the cascading effects of egg cortisol on progeny phenotype. Here we summarize and interpret the current state of knowledge on egg cortisol in fishes and the relationships linking maternal stress/state to egg cortisol and offspring phenotype/fitness. Considerable variation in levels of egg cortisol exists across species and among females within a species; this variation is hypothesized to be due to interspecific differences in reproductive life history and intraspecific differences in female condition. Outcomes of experimental studies manipulating egg cortisol vary both inter- and intraspecifically. Moreover, while exogenous elevation of egg cortisol (as a proxy for maternal stress) induces phenotypic changes commonly considered to be maladaptive (e.g., smaller offspring size), emerging work in other taxa suggests that there can be positive effects on fitness when the offspring's environment is taken into account. Investigations into (i) mechanisms by which egg cortisol elicits phenotypic change in offspring (e.g., epigenetics), (ii) maternal and offspring buffering capacity of cortisol, and (iii) factors driving natural variation in egg cortisol and how this variation affects offspring phenotype and fitness are all germane to discussions on egg glucocorticoids as signals of maternal stress.
Collapse
|
46
|
Sinkalu VO, Ayo JO, Adelaiye AB, Hambolu JO. Melatonin modulates tonic immobility and vigilance behavioural responses of broiler chickens to lighting regimens during the hot-dry season. Physiol Behav 2016; 165:195-201. [PMID: 27484699 DOI: 10.1016/j.physbeh.2016.07.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 11/24/2022]
Abstract
Experiments were conducted with the aim of determining the influence of melatonin administration on vigilance and tonic immobility (TI) responses of Marshall broiler chickens. The broiler chickens were reared on different lighting regimens and subjected to heat stress during the hot-dry season. Simple random sampling was used to assign 300 broiler chicks into three groups, comprising 100 broiler chicks each. Group I (12D:12L cycle) was raised under natural photoperiod of 12-h light and 12-h darkness, without melatonin supplementation. Group II (CL) was kept under 24-h continuous lighting, without melatonin administration. Group III (CL+MEL) was raised under 24-h continuous lighting; with melatonin supplementation at 0.5mg/kg per os, via drinking water using a syringe. Beginning from day-old, broiler chickens in group III were individually administered with melatonin once daily for 8weeks at 17:00h. TI was induced by manual restraint, and vigilance elicited at self-righting graded for three days, two weeks apart, in 15 labeled broiler chickens from each of the three groups; at 06:00h, 13:00h and 18:00h, starting from week 4-8. Each broiler chicken was laid on its back in a U-shaped cradle, covered with cloth. Thermal microenvironment parameters of dry bulb temperature (DBT) and relative humidity (RH) were recorded at the experimental site, concurrently during the vigilance and TI tests. Inside the broiler chickens' house, the weekly temperature-humidity index (THI) was lowest at week 4 of the study, with the value of 48.60±0.08°C. At week 4, the relationship between the THI and TI induction attempts was stronger in 12D:12L cycle (r=0.589, P<0.001) than CL (r=0.264, P>0.05) or CL+MEL (r=0.096, P>0.05) broiler chickens. This indicated that the broiler chickens on 12D:12L cycle were more active compared to their melatonin-treated counterparts, apparently due to adverse effects of high DBT and high RH on the broiler chickens during the hot-dry season. The highest numbers of TI induction trial attempts were recorded at 13:00h in 12D:12L cycle and CL groups (2.13±0.34 and 2.15±0.22, respectively), when the broiler chickens were at week 8. The overall mean values of induction trial attempts differed significantly (P<0.0001) between the groups; with the lowest mean values of 1.22±0.4 recorded in CL+MEL broiler chickens. At day 42, the lowest mean TI duration of 101.87±10.24s in the CL group, recorded at 06:00h rose (P<0.001) to 184.07±23.69s at 13:00h. The overall mean duration of TI differed significantly (P<0.0001) again between the groups; with the highest mean duration of 167.82±8.35s, recorded in CL+MEL broiler chickens administered with melatonin. The overall mean vigilance behavioural ranking values of 1.85+0.07 and 1.70+0.08, obtained in 12D:12L cycle and CL broiler chickens, respectively were higher (P<0.0001) than the value of 1.44+0.05 recorded in melatonin-treated broiler chickens. The results indicated that broiler chickens belonging to both 12D:12L cycle and CL groups were more emotional, fearful or anxious, compared to CL+MEL broiler chickens. It was concluded that melatonin administration elicits boldness and confidence by suppressing freezing behaviour in broiler chickens, and it may improve their welfare and productivity.
Collapse
Affiliation(s)
- Victor Olusegun Sinkalu
- Department of Physiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria.
| | - Joseph O Ayo
- Department of Physiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria.
| | - Alexander B Adelaiye
- Department of Human Physiology, Faculty of Medicine, Ahmadu Bello University, Zaria, Nigeria.
| | - Joseph O Hambolu
- Department of Anatomy, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria.
| |
Collapse
|
47
|
Waltes R, Chiocchetti AG, Freitag CM. The neurobiological basis of human aggression: A review on genetic and epigenetic mechanisms. Am J Med Genet B Neuropsychiatr Genet 2016; 171:650-75. [PMID: 26494515 DOI: 10.1002/ajmg.b.32388] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/25/2015] [Indexed: 12/17/2022]
Abstract
Aggression is an evolutionary conserved behavior present in most species including humans. Inadequate aggression can lead to long-term detrimental personal and societal effects. Here, we differentiate between proactive and reactive forms of aggression and review the genetic determinants of it. Heritability estimates of aggression in general vary between studies due to differing assessment instruments for aggressive behavior (AB) as well as age and gender of study participants. In addition, especially non-shared environmental factors shape AB. Current hypotheses suggest that environmental effects such as early life stress or chronic psychosocial risk factors (e.g., maltreatment) and variation in genes related to neuroendocrine, dopaminergic as well as serotonergic systems increase the risk to develop AB. In this review, we summarize the current knowledge of the genetics of human aggression based on twin studies, genetic association studies, animal models, and epigenetic analyses with the aim to differentiate between mechanisms associated with proactive or reactive aggression. We hypothesize that from a genetic perspective, the aminergic systems are likely to regulate both reactive and proactive aggression, whereas the endocrine pathways seem to be more involved in regulation of reactive aggression through modulation of impulsivity. Epigenetic studies on aggression have associated non-genetic risk factors with modifications of the stress response and the immune system. Finally, we point to the urgent need for further genome-wide analyses and the integration of genetic and epigenetic information to understand individual differences in reactive and proactive AB. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Regina Waltes
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Goethe University Hospital, Frankfurt am Main, Germany
| | - Andreas G Chiocchetti
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Goethe University Hospital, Frankfurt am Main, Germany
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Goethe University Hospital, Frankfurt am Main, Germany
| |
Collapse
|
48
|
Ahmed AA, Musa HH, Sifaldin AZ. Prenatal corticosterone exposure programs growth, behavior, reproductive function and genes in the chicken. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2016. [DOI: 10.1016/j.apjr.2016.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
49
|
Ahmed AA, Sifaldin AZ, Musa HH, Musa TH, Fedail JS. Prenatal corticosterone altered glucocorticoid receptor and glucocorticoid metabolic enzyme gene expression in chicken ovary. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2016. [DOI: 10.1016/j.apjr.2016.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
50
|
Marasco V, Herzyk P, Robinson J, Spencer KA. Pre- and Post-Natal Stress Programming: Developmental Exposure to Glucocorticoids Causes Long-Term Brain-Region Specific Changes to Transcriptome in the Precocial Japanese Quail. J Neuroendocrinol 2016; 28:10.1111/jne.12387. [PMID: 26999292 PMCID: PMC5103168 DOI: 10.1111/jne.12387] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 03/04/2016] [Accepted: 03/15/2016] [Indexed: 01/16/2023]
Abstract
Exposure to stress during early development can permanently influence an individual's physiology and behaviour, and affect its subsequent health. The extent to which elevated glucocorticoids cause such long-term 'programming' remains largely untested. In the present study, using the Japanese quail as our study species, we independently manipulated exposure to corticosterone during pre- and/or post-natal development and investigated the subsequent effects on global gene expression profiles within the hippocampus and hypothalamus upon achieving adulthood. Our results showed that the changes in transcriptome profiles in response to corticosterone exposure clearly differed between the hippocampus and the hypothalamus. We also showed that these effects depended on the developmental timing of exposure and identified brain-region specific gene expression patterns that were either: (i) similarly altered by corticosterone regardless of the developmental stage in which hormonal exposure occurred or (ii) specifically and uniquely altered by either pre-natal or post-natal exposure to corticosterone. Corticosterone-treated birds showed alterations in networks of genes that included known markers of the programming actions of early-life adversity (e.g. brain-derived neurotrophic factor and mineralocorticoid receptor within the hippocampus; corticotrophin-releasing hormone and serotonin receptors in the hypothalamus). Altogether, for the first time, these findings provide experimental support for the hypothesis that exposure to elevated glucocorticoids during development may be a key hormonal signalling pathway through which the long-term phenotypic effects associated with early-life adversity emerge and potentially persist throughout the lifespan. These data also highlight that stressors might have different long-lasting impacts on the brain transcriptome depending on the developmental stage in which they are experienced; more work is now required to relate these mechanisms to organismal phenotypic differences.
Collapse
Affiliation(s)
- V. Marasco
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
| | - P. Herzyk
- Institute of Molecular Cell and Systems BiologyUniversity of GlasgowGlasgowUK
- Glasgow PolyomicsWolfson Wohl Cancer Research CentreUniversity of GlasgowGlasgowUK
| | - J. Robinson
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
| | - K. A. Spencer
- School of Psychology and NeuroscienceUniversity of St AndrewsSt AndrewsUK
| |
Collapse
|