1
|
Gabele L, Bochow I, Rieke N, Sieben C, Michaelsen-Preusse K, Hosseini S, Korte M. H7N7 viral infection elicits pronounced, sex-specific neuroinflammatory responses in vitro. Front Cell Neurosci 2024; 18:1444876. [PMID: 39171200 PMCID: PMC11335524 DOI: 10.3389/fncel.2024.1444876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/18/2024] [Indexed: 08/23/2024] Open
Abstract
Influenza A virus (IAV) infection can increase the risk of neuroinflammation, and subsequent neurodegenerative diseases. Certain IAV strains, such as avian H7N7 subtype, possess neurotropic properties, enabling them to directly invade the brain parenchyma and infect neurons and glia cells. Host sex significantly influences the severity of IAV infections. Studies indicate that females of the reproductive age exhibit stronger innate and adaptive immune responses to IAVs compared to males. This heightened immune response correlates with increased morbidity and mortality, and potential neuronal damage in females. Understanding the sex-specific neurotropism of IAV and associated mechanisms leading to adverse neurological outcomes is essential. Our study reveals that primary hippocampal cultures from female mice show heightened interferon-β and pro-inflammatory chemokine secretion following neurotropic IAV infection. We observed sex-specific differences in microglia activation: both sexes showed a transition into a hyper-ramified state, but only male-derived microglia exhibited an increase in amoeboid-shaped cells. These disparities extended to alterations in neuronal morphology. Neurons derived from female mice displayed increased spine density within 24 h post-infection, while no significant change was observed in male cultures. This aligns with sex-specific differences in microglial synaptic pruning. Data suggest that amoeboid-shaped microglia preferentially target postsynaptic terminals, potentially reducing neuronal hyperexcitability. Conversely, hyper-ramified microglia may focus on presynaptic terminals, potentially limiting viral spread. In conclusion, our findings underscore the utility of primary hippocampal cultures, incorporating microglia, as an effective model to study sex-specific, virus-induced effects on brain-resident cells.
Collapse
Affiliation(s)
- Lea Gabele
- Department of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
- Helmholtz Centre for Infection Research, Research Group Neuroinflammation and Neurodegeneration, Braunschweig, Germany
| | - Isabell Bochow
- Department of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Nele Rieke
- Helmholtz Centre for Infection Research, Nanoscale Infection Biology Group, Braunschweig, Germany
| | - Christian Sieben
- Helmholtz Centre for Infection Research, Nanoscale Infection Biology Group, Braunschweig, Germany
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Kristin Michaelsen-Preusse
- Department of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Shirin Hosseini
- Department of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
- Helmholtz Centre for Infection Research, Research Group Neuroinflammation and Neurodegeneration, Braunschweig, Germany
| | - Martin Korte
- Department of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
- Helmholtz Centre for Infection Research, Research Group Neuroinflammation and Neurodegeneration, Braunschweig, Germany
| |
Collapse
|
2
|
De la Torre K, Cerbón MA, Molina-Salinas G, Suárez-Santiago JE, Morin JP, Roldán-Roldán G, Picazo O. Synergistic neuroprotective action of prolactin and 17β-estradiol on kainic acid-induced hippocampal injury and long-term memory deficit in ovariectomized rats. Hormones (Athens) 2024; 23:321-329. [PMID: 38625627 DOI: 10.1007/s42000-024-00551-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/19/2024] [Indexed: 04/17/2024]
Abstract
PURPOSE The neuroprotective actions of the ovarian hormone 17β-estradiol (E2) against different brain lesions have been constantly confirmed in a variety of models including kainic acid (KA) lesions. Similarly, the pituitary hormone prolactin (PRL), traditionally associated with lactogenesis, has recently been linked to a large diversity of functions, including neurogenesis, neuroprotection, and cognitive processes. While the mechanisms of actions of E2 as regards its neuroprotective and behavioral effects have been extensively explored, the molecular mechanisms of PRL related to these roles remain under investigation. The current study aimed to investigate whether the simultaneous administration of PRL and a low dose of E2 prevents the KA-induced cognitive deficit and if this action is associated with changes in hippocampal neuronal density. METHODS Ovariectomized (OVX) rats were treated with saline, PRL, and/or E2 in the presence or absence of KA. Neuroprotection was assessed by Nissl staining and neuron counting. Memory was evaluated with the novel object recognition test (NOR). RESULTS On their own, both PRL and E2 prevented short- and long-term memory deficits in lesioned animals and exerted neuroprotection against KA-induced excitotoxicity in the hippocampus. Interestingly, the combined hormonal treatment was superior to either of the treatments administered alone as regards improving both memory and neuronal survival. CONCLUSION Taken together, these results point to a synergic effect of E2 and PRL in the hippocampus to produce their behavioral, proliferative, and neuroprotective effects.
Collapse
Affiliation(s)
- Karen De la Torre
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Sto. Tomás, 11340. Ciudad de México, Ciudad de México, México
| | - Marco Antonio Cerbón
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Gladys Molina-Salinas
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - José Eduardo Suárez-Santiago
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Sto. Tomás, 11340. Ciudad de México, Ciudad de México, México
- Facultad de Medicina Humana, Universidad Autónoma de Chiapas, Tuxtla Gutiérrez, Chiapas, Mexico
| | - Jean-Pascal Morin
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Gabriel Roldán-Roldán
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México.
| | - Ofir Picazo
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Sto. Tomás, 11340. Ciudad de México, Ciudad de México, México.
| |
Collapse
|
3
|
Bellingacci L, Canonichesi J, Sciaccaluga M, Megaro A, Mazzocchetti P, Di Mauro M, Costa C, Di Filippo M, Pettorossi VE, Tozzi A. Locally Synthetized 17-β-Estradiol Reverses Amyloid-β-42-Induced Hippocampal Long-Term Potentiation Deficits. Int J Mol Sci 2024; 25:1377. [PMID: 38338656 PMCID: PMC10855267 DOI: 10.3390/ijms25031377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
Amyloid beta 1-42 (Aβ42) aggregates acutely impair hippocampal long-term potentiation (LTP) of synaptic transmission, and 17β-estradiol is crucial for hippocampal LTP. We tested whether boosting the synthesis of neural-derived 17β-estradiol (nE2) saves hippocampal LTP by the neurotoxic action of Aβ42. Electrophysiological recordings were performed to measure dentate gyrus (DG) LTP in rat hippocampal slices. Using a pharmacological approach, we tested the ability of nE2 to counteract the LTP impairment caused by acute exposure to soluble Aβ42 aggregates. nE2 was found to be required for LTP in DG under physiological conditions. Blockade of steroid 5α-reductase with finasteride, by increasing nE2 synthesis from testosterone (T), completely recovered LTP in slices treated with soluble Aβ42 aggregates. Modulation of the glutamate N-methyl-D aspartate receptor (NMDAR) by memantine effectively rescued the LTP deficit observed in slices exposed to Aβ42, and memantine prevented LTP reduction observed under the blocking of nE2 synthesis. nE2 is able to counteract Aβ42-induced synaptic dysfunction. This effect depends on a rapid, non-genomic mechanism of action of nE2, which may share a common pathway with glutamate NMDAR signaling.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Alessandro Tozzi
- Department of Medicine and Surgery, University of Perugia, 06156 Perugia, Italy; (L.B.); (J.C.); (M.S.)
| |
Collapse
|
4
|
Iqbal J, Bibi M, Huang GD, Xue YX, Khatttak JZK, Yang M, Jia XJ. Differential regulation of hippocampal transcriptome by circulating estrogen. Funct Integr Genomics 2023; 23:309. [PMID: 37735249 DOI: 10.1007/s10142-023-01234-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023]
Abstract
Estrogen (E2) modulates the synaptic structure and plasticity in the hippocampus. Previous studies showed that E2 fluctuations during various phases of the menstrual cycle produce subtle neurosynaptic changes that impact women's behavior, emotion, and cognitive functions. In this study, we explored the transcriptome of the hippocampus via RNA-seq (RNA-sequencing) between proestrus (PE) and diestrus (DE) stages in young female rats to determine the effect of E2 of PE and DE stages on hippocampal gene expression. We identified 238 genes (at 1.5-fold-change selection criteria, FDR adjusted p-value < 0.05) as differentially expressed genes (DEGs) that responded to E2 between PE and DE stages. Functional analysis based on Gene Ontology (GO) revealed that a higher E2 level corresponded to an increase in gene transcription among most of the DEGs, suggesting biological mechanisms operating differentially in the hippocampus of female rats between PE and DE stages in the estrus cycle; while analysis with Kyoto Encyclopedia of Genes and Genomes database (KEGG) found that the DEGs involving neuroactive ligand-receptor interaction, antigen processing, cell adhesion molecules, and presentation were upregulated in PE stage, whereas DEGs in pathways relating to bile secretion, coagulation cascades, osteoclast differentiation, cysteine and methionine metabolism were upregulated in DE stage of the estrus cycle. The high-fold expression of DEGs was confirmed by a follow-up quantitative real-time PCR. Our findings in this current study have provided fundamental information for further dissection of neuro-molecular mechanisms in the hippocampus in response to E2 fluctuation and its relationship with disorders.
Collapse
Affiliation(s)
- Javed Iqbal
- Shenzhen Graduate School, Peking University, Shenzhen, China
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital & Shenzhen Mental Health Center, No.77 Zhenbi Road, Pingshan District, Shenzhen, 518118, Guangdong, China
| | - Maryam Bibi
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Geng-Di Huang
- Shenzhen Graduate School, Peking University, Shenzhen, China
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital & Shenzhen Mental Health Center, No.77 Zhenbi Road, Pingshan District, Shenzhen, 518118, Guangdong, China
| | - Yan-Xue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | | | - Mei Yang
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital & Shenzhen Mental Health Center, No.77 Zhenbi Road, Pingshan District, Shenzhen, 518118, Guangdong, China.
- Clinical College of Mental Health, Shenzhen University Health Science Center, Shenzhen, China.
- Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, China.
| | - Xiao-Jian Jia
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital & Shenzhen Mental Health Center, No.77 Zhenbi Road, Pingshan District, Shenzhen, 518118, Guangdong, China.
- Clinical College of Mental Health, Shenzhen University Health Science Center, Shenzhen, China.
- Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
5
|
Beamish SB, Frick KM. A Putative Role for Ubiquitin-Proteasome Signaling in Estrogenic Memory Regulation. Front Behav Neurosci 2022; 15:807215. [PMID: 35145382 PMCID: PMC8821141 DOI: 10.3389/fnbeh.2021.807215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/20/2021] [Indexed: 12/31/2022] Open
Abstract
Sex steroid hormones such as 17β-estradiol (E2) are critical neuromodulators of hippocampal synaptic plasticity and hippocampus-dependent memory in both males and females. However, the mechanisms through which E2 regulates memory formation in both sexes remain unclear. Research to date suggests that E2 regulates hippocampus-dependent memory by activating numerous cell-signaling cascades to promote the synthesis of proteins that support structural changes at hippocampal synapses. However, this work has largely overlooked the equally important contributions of protein degradation mediated by the ubiquitin proteasome system (UPS) in remodeling the synapse. Despite being critically implicated in synaptic plasticity and successful formation of long-term memories, it remains unclear whether protein degradation mediated by the UPS is necessary for E2 to exert its beneficial effects on hippocampal plasticity and memory formation. The present article provides an overview of the receptor and signaling mechanisms so far identified as critical for regulating hippocampal E2 and UPS function in males and females, with a particular emphasis on the ways in which these mechanisms overlap to support structural integrity and protein composition of hippocampal synapses. We argue that the high degree of correspondence between E2 and UPS activity warrants additional study to examine the contributions of ubiquitin-mediated protein degradation in regulating the effects of sex steroid hormones on cognition.
Collapse
|
6
|
Koszegi Z, Cheong RY. Targeting the non-classical estrogen pathway in neurodegenerative diseases and brain injury disorders. Front Endocrinol (Lausanne) 2022; 13:999236. [PMID: 36187099 PMCID: PMC9521328 DOI: 10.3389/fendo.2022.999236] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Estrogens can alter the biology of various tissues and organs, including the brain, and thus play an essential role in modulating homeostasis. Despite its traditional role in reproduction, it is now accepted that estrogen and its analogues can exert neuroprotective effects. Several studies have shown the beneficial effects of estrogen in ameliorating and delaying the progression of neurodegenerative diseases, including Alzheimer's and Parkinson's disease and various forms of brain injury disorders. While the classical effects of estrogen through intracellular receptors are more established, the impact of the non-classical pathway through receptors located at the plasma membrane as well as the rapid stimulation of intracellular signaling cascades are still under active research. Moreover, it has been suggested that the non-classical estrogen pathway plays a crucial role in neuroprotection in various brain areas. In this mini-review, we will discuss the use of compounds targeting the non-classical estrogen pathway in their potential use as treatment in neurodegenerative diseases and brain injury disorders.
Collapse
Affiliation(s)
- Zsombor Koszegi
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Rachel Y. Cheong
- Timeline Bioresearch AB, Medicon Village, Lund, Sweden
- *Correspondence: Rachel Y. Cheong,
| |
Collapse
|
7
|
Grković I, Mitrović N, Dragić M. Ectonucleotidases in the hippocampus: Spatial distribution and expression after ovariectomy and estradiol replacement. VITAMINS AND HORMONES 2021; 118:199-221. [PMID: 35180927 DOI: 10.1016/bs.vh.2021.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Extracellular purine nucleotides, such as adenosine 5'-triphosphate (ATP), are important modulators of hippocampal function and plasticity. In the extracellular space, ATP is inherently short-lived molecule, which undergoes rapid enzymatic degradation to adenosine by ectonucleotidases. Given that ectonucleotidases have distinct and overlapping distribution in the hippocampus, and as ovarian hormones participate in a formation, maturation, and a refinement of synaptic contacts, both during development and in adulthood, the present chapter summarizes known data about spatial distribution of selected ecto-enzymes and estradiol-induced effects on ectonucleotidases in the rat hippocampus.
Collapse
Affiliation(s)
- Ivana Grković
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences-National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| | - Nataša Mitrović
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences-National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milorad Dragić
- Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
8
|
Zhang C, Wu XC, Li S, Dou LJ, Zhou L, Wang FH, Ma K, Huang D, Pan Y, Gu JJ, Cao JY, Wang H, Hao JH. Perinatal low-dose bisphenol AF exposure impairs synaptic plasticity and cognitive function of adult offspring in a sex-dependent manner. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147918. [PMID: 34134381 DOI: 10.1016/j.scitotenv.2021.147918] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/15/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol AF (BPAF), a kind of the ideal substitutes of Bisphenol A (BPA), has frequently been detected in environmental media and biological samples. Numerous studies have focused on the reproductive toxicity, cardiotoxicity and endocrine disrupting toxicity of BPAF. However, little evidence is available on neurodevelopmental toxicity of BPAF. Here, our study is to evaluate the effect of perinatal BPAF exposure (0, 0.34, 3.4 and 34 mg/kg body weight/day, correspond to Ctrl, low-, medium- and high-dose groups) on the cognitive function of adult mouse offspring. This study firstly found that perinatal BPAF exposure caused cognitive impairments of mouse offspring, in which male offspring was more sensitive than female offspring in low- and medium-dose BPAF groups. Furthermore, the dendritic arborization and complexity of hippocampal CA1 and DG neurons in male offspring were impaired in all BPAF groups, and these effects were only found in high-dose BPAF group for female offspring. The damage of BPAF to dendritic spines, and the structural basis of learning and memory, was found in male offspring but not in females. Correspondingly, perinatal BPAF exposure significantly downregulated the expressions of hippocampal PSD-95 and Synapsin-1 proteins, and male offspring was more vulnerable than female offspring. Meanwhile, we explored the alteration of hippocampal estrogen receptors (ERs) to explain the sex specific impairment of cognitive function in low- and medium-dose BPAF groups. The results showed that perinatal BPAF exposure significantly decreased the expression of ERα in male offspring in a dose-dependent manner, but not in female offspring. In addition, we found that perinatal BPAF exposure can disordered the balance of oxidation and antioxidation in hippocampus of male offspring. In summary, perinatal low-dose bisphenol AF exposure impairs synaptic plasticity and cognitive function of adult offspring in a sex-dependent manner. The present results provide a pierce of potential mechanism of BPAF-caused neurodevelopmental toxicity.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Xiao-Chang Wu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Sha Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Lian-Jie Dou
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Li Zhou
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Feng-Hui Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Kai Ma
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Dan Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Ying Pan
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Ji-Jun Gu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Ji-Yu Cao
- Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China.
| | - Jia-Hu Hao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
9
|
Androvičová R, Pfaus JG, Ovsepian SV. Estrogen pendulum in schizophrenia and Alzheimer's disease: Review of therapeutic benefits and outstanding questions. Neurosci Lett 2021; 759:136038. [PMID: 34116197 DOI: 10.1016/j.neulet.2021.136038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/21/2021] [Accepted: 06/06/2021] [Indexed: 12/29/2022]
Abstract
Although produced largely in the periphery, gonadal steroids play a key role in regulating the development and functions of the central nervous system and have been implicated in several chronic neuropsychiatric disorders, with schizophrenia and Alzheimer's disease (AD) most prominent. Despite major differences in pathobiology and clinical manifestations, in both conditions, estrogen transpires primarily with protective effects, buffering the onset and progression of diseases at various levels. As a result, estrogen replacement therapy (ERT) emerges as one of the most widely discussed adjuvant interventions. In this review, we revisit evidence supporting the protective role of estrogen in schizophrenia and AD and consider putative cellular and molecular mechanisms. We explore the underlying functional processes relevant to the manifestation of these devastating conditions, with a focus on synaptic transmission and plasticity mechanisms. We discuss specific effects of estrogen deficit on neurotransmitter systems such as cholinergic, dopaminergic, serotoninergic, and glutamatergic. While the evidence from both, preclinical and clinical reports, in general, are supportive of the protective effects of estrogen from cognitive decline to synaptic pathology, numerous questions remain, calling for further research.
Collapse
Affiliation(s)
- Renáta Androvičová
- Department of Applied Neuroscience and Neuroimaging (RA) and Department of Experimental Neuroscience (SVO), National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic.
| | - James G Pfaus
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Mexico
| | - Saak V Ovsepian
- Department of Applied Neuroscience and Neuroimaging (RA) and Department of Experimental Neuroscience (SVO), National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| |
Collapse
|
10
|
Tozzi A, Bellingacci L, Pettorossi VE. Rapid Estrogenic and Androgenic Neurosteroids Effects in the Induction of Long-Term Synaptic Changes: Implication for Early Memory Formation. Front Neurosci 2020; 14:572511. [PMID: 33192257 PMCID: PMC7653679 DOI: 10.3389/fnins.2020.572511] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 08/21/2020] [Indexed: 11/17/2022] Open
Abstract
Mounting experimental evidence demonstrate that sex neuroactive steroids (neurosteroids) are essential for memory formation. Neurosteroids have a profound impact on the function and structure of neural circuits and their local synthesis is necessary for the induction of both long-term potentiation (LTP) and long-term depression (LTD) of synaptic transmission and for neural spine formation in different areas of the central nervous system (CNS). Several studies demonstrated that in the hippocampus, 17β-estradiol (E2) is necessary for inducing LTP, while 5α-dihydrotestosterone (DHT) is necessary for inducing LTD. This contribution has been proven by administering sex neurosteroids in rodent models and by using blocking agents of their synthesis or of their specific receptors. The general opposite role of sex neurosteroids in synaptic plasticity appears to be dependent on their different local availability in response to low or high frequency of synaptic stimulation, allowing the induction of bidirectional synaptic plasticity. The relevant contribution of these neurosteroids to synaptic plasticity has also been described in other brain regions involved in memory processes such as motor learning, as in the case of the vestibular nuclei, the cerebellum, and the basal ganglia, or as the emotional circuit of the amygdala. The rapid effects of sex neurosteroids on neural synaptic plasticity need the maintenance of a tonic or phasic local steroid synthesis determined by neural activity but might also be influenced by circulating hormones, age, and gender. To disclose the exact mechanisms how sex neurosteroids participate in finely tuning long-term synaptic changes and spine remodeling, further investigation is required.
Collapse
Affiliation(s)
- Alessandro Tozzi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Laura Bellingacci
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | |
Collapse
|
11
|
Nicholson K, MacLusky NJ, Leranth C. Synaptic effects of estrogen. VITAMINS AND HORMONES 2020; 114:167-210. [PMID: 32723543 DOI: 10.1016/bs.vh.2020.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The concept that estradiol may act as a local neuromodulator in the brain, rapidly affecting connectivity and synaptic function, has been firmly established by research over the last 30 years. De novo synthesis of estradiol within the brain as well as signaling mechanisms mediating responses to the hormone have been demonstrated, along with morphological evidence indicating rapid changes in synaptic input following increases in local estradiol levels. These rapid synaptic effects may play important roles in both physiological and pathophysiological responses to changes in circulating hormone levels, as well as in neurodegenerative disease. How local effects of estradiol on synaptic plasticity are integrated into changes in the overall activity of neural networks in the brain, however, remains a subject that is only incompletely understood.
Collapse
Affiliation(s)
- Kate Nicholson
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Neil J MacLusky
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Csaba Leranth
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University, School of Medicine, New Haven, CT, United States.
| |
Collapse
|
12
|
Kumar D, Koyanagi I, Carrier-Ruiz A, Vergara P, Srinivasan S, Sugaya Y, Kasuya M, Yu TS, Vogt KE, Muratani M, Ohnishi T, Singh S, Teixeira CM, Chérasse Y, Naoi T, Wang SH, Nondhalee P, Osman BAH, Kaneko N, Sawamoto K, Kernie SG, Sakurai T, McHugh TJ, Kano M, Yanagisawa M, Sakaguchi M. Sparse Activity of Hippocampal Adult-Born Neurons during REM Sleep Is Necessary for Memory Consolidation. Neuron 2020; 107:552-565.e10. [PMID: 32502462 DOI: 10.1016/j.neuron.2020.05.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 03/21/2020] [Accepted: 05/06/2020] [Indexed: 12/20/2022]
Abstract
The occurrence of dreaming during rapid eye movement (REM) sleep prompts interest in the role of REM sleep in hippocampal-dependent episodic memory. Within the mammalian hippocampus, the dentate gyrus (DG) has the unique characteristic of exhibiting neurogenesis persisting into adulthood. Despite their small numbers and sparse activity, adult-born neurons (ABNs) in the DG play critical roles in memory; however, their memory function during sleep is unknown. Here, we investigate whether young ABN activity contributes to memory consolidation during sleep using Ca2+ imaging in freely moving mice. We found that contextual fear learning recruits a population of young ABNs that are reactivated during subsequent REM sleep against a backdrop of overall reduced ABN activity. Optogenetic silencing of this sparse ABN activity during REM sleep alters the structural remodeling of spines on ABN dendrites and impairs memory consolidation. These findings provide a causal link between ABN activity during REM sleep and memory consolidation.
Collapse
Affiliation(s)
- Deependra Kumar
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-0006, Japan
| | - Iyo Koyanagi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-0006, Japan
| | - Alvaro Carrier-Ruiz
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo 113-0033, Japan
| | - Pablo Vergara
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-0006, Japan
| | - Sakthivel Srinivasan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-0006, Japan
| | - Yuki Sugaya
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo 113-0033, Japan
| | - Masatoshi Kasuya
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-0006, Japan
| | - Tzong-Shiue Yu
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Kaspar E Vogt
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-0006, Japan
| | - Masafumi Muratani
- Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-0006, Japan
| | - Takaaki Ohnishi
- Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| | - Sima Singh
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-0006, Japan
| | - Catia M Teixeira
- Emotional Brain Institute, Nathan Kline Institute, Orangeburg, NY 10962, USA
| | - Yoan Chérasse
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-0006, Japan
| | - Toshie Naoi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-0006, Japan
| | - Szu-Han Wang
- Centre for Clinical Brain Sciences, Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Pimpimon Nondhalee
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-0006, Japan
| | - Boran A H Osman
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-0006, Japan
| | - Naoko Kaneko
- Department of Developmental and Regenerative Biology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Biology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan; Division of Neural Development and Regeneration, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Steven G Kernie
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Takeshi Sakurai
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-0006, Japan
| | - Thomas J McHugh
- RIKEN Center for Brain Science, Wako, Saitama 351-0106, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo 113-0033, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-0006, Japan
| | - Masanori Sakaguchi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-0006, Japan.
| |
Collapse
|
13
|
Yu EJ, Yamaguchi T, Lee JH, Lim AR, Lee JH, Park H, Oh TJ. Enzymatic Synthesis of Anabolic Steroid Glycosides by Glucosyltransferase from Terribacillus sp. PAMC 23288. J Microbiol Biotechnol 2020; 30:604-614. [PMID: 31893610 PMCID: PMC9728329 DOI: 10.4014/jmb.1911.11057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The application of steroids has steadily increased thanks to their therapeutic effects. However, alternatives are required due their severe side effects; thus, studies on the activities of steroid derivatives are underway. Sugar derivatives of nandrolone, which is used to treat breast cancer, as well as cortisone and prednisone, which reduce inflammation, pain, and edema, are unknown. We linked O-glucose to nandrolone and testosterone using UDP-glucosyltransferase (UGT-1) and, then, tested their bioactivities in vitro. Analysis by NMR showed that the derivatives were 17β-nandrolone β-D-glucose and 17β-testosterone β-D-glucose, respectively. The viability was higher and cytotoxicity was evident in PC12 cells incubated with rotenone and, testosterone derivatives, compared to the controls. SH-SY5Y cells incubated with H2O2 and nandrolone derivatives remained viable and cytotoxicity was attenuated. Both derivatives enhanced neuronal protective effects and increased the amounts of cellular ATP.
Collapse
Affiliation(s)
- Eun-Ji Yu
- Department of Life Science and Biochemical Engineering, SunMoon University, Asan 31460, Republic of Korea
| | - Tokutaro Yamaguchi
- Department of Life Science and Biochemical Engineering, SunMoon University, Asan 31460, Republic of Korea,Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan 31460, Republic of Korea,Genome-Based BioIT Convergence Institute, Asan 31460, Republic of Korea
| | - Joo-Ho Lee
- Genome-Based BioIT Convergence Institute, Asan 31460, Republic of Korea
| | - A-Rang Lim
- Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Jun Hyuck Lee
- Unit of Research for Practical Application, Korea Polar Research Institute, Incheon 21990, Republic of Korea,Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea
| | - Hyun Park
- Division of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea,Corresponding authors H.P. Phone: +82 2 3290 3051 E-mail: T.-J.O. Phone: +82 41 530 2677 E-mail:
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, SunMoon University, Asan 31460, Republic of Korea,Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan 31460, Republic of Korea,Genome-Based BioIT Convergence Institute, Asan 31460, Republic of Korea,Corresponding authors H.P. Phone: +82 2 3290 3051 E-mail: T.-J.O. Phone: +82 41 530 2677 E-mail:
| |
Collapse
|
14
|
Guo G, Kang L, Geng D, Han S, Li S, Du J, Wang C, Cui H. Testosterone modulates structural synaptic plasticity of primary cultured hippocampal neurons through ERK - CREB signalling pathways. Mol Cell Endocrinol 2020; 503:110671. [PMID: 31805308 DOI: 10.1016/j.mce.2019.110671] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 11/24/2019] [Accepted: 11/30/2019] [Indexed: 11/27/2022]
Abstract
Although hippocampus-derived androgens play an important role in hippocampal synaptic plasticity, studies at the cellular level have received relatively less attention. Furthermore, the underlying signalling pathways associated with synaptic plasticity remain unclear. Results of the present study demonstrated that testosterone treatment of primary cultured rat hippocampal neurons resulted in a rapid increase in spine density, accompanied by the elevation of protein and messenger RNA levels of synaptophysin, developmentally regulated brain protein (Drebrin), and the N-methyl-D-aspartate receptor NR1 subunit. Testosterone treatment also increased the phosphorylation levels of extracellular-regulated protein kinase (ERK)1/2 and cAMP-responsive element binding protein (CREB), rather than p38 and Jun N-terminal kinase (JNK). U0126 significantly reversed the testosterone-mediated phosphorylation of CREB. Importantly, the increase in spine density was not induced by testosterone under U0126 treatment. These findings suggest that the ERK1/2-CREB signalling pathway plays an important role in testosterone-mediated rapid spinogenesis of cultured rat hippocampal neurons. Results of this study will be helpful in further clarifying the physiological function of testosterone and related signalling pathways in vitro.
Collapse
Affiliation(s)
- Guoxin Guo
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Lin Kang
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Dandan Geng
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Shuo Han
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Sha Li
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China; Human Brain Bank, Hebei Medical University, Shijiazhuang, China
| | - Juan Du
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China; Human Brain Bank, Hebei Medical University, Shijiazhuang, China
| | - Chang Wang
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Huixian Cui
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China; Human Brain Bank, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
15
|
Ubuka T, Trudeau VL, Parhar I. Editorial: Steroids and the Brain. Front Endocrinol (Lausanne) 2020; 11:366. [PMID: 32582033 PMCID: PMC7283457 DOI: 10.3389/fendo.2020.00366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/11/2020] [Indexed: 02/03/2023] Open
Affiliation(s)
- Takayoshi Ubuka
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
- *Correspondence: Takayoshi Ubuka
| | | | - Ishwar Parhar
- Brain Research Institute, Monash University Malaysia, Subang Jaya, Malaysia
| |
Collapse
|
16
|
17α Estradiol promotes plasticity of spared inputs in the adult amblyopic visual cortex. Sci Rep 2019; 9:19040. [PMID: 31836739 PMCID: PMC6910995 DOI: 10.1038/s41598-019-55158-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 11/20/2019] [Indexed: 01/10/2023] Open
Abstract
The promotion of structural and functional plasticity by estrogens is a promising approach to enhance central nervous system function in the aged. However, how the sensitivity to estrogens is regulated across brain regions, age and experience is poorly understood. To ask if estradiol treatment impacts structural and functional plasticity in sensory cortices, we examined the acute effect of 17α-Estradiol in adult Long Evans rats following chronic monocular deprivation, a manipulation that reduces the strength and selectivity of deprived eye vision. Chronic monocular deprivation decreased thalamic input from the deprived eye to the binocular visual cortex and accelerated short-term depression of the deprived eye pathway, but did not change the density of excitatory synapses in primary visual cortex. Importantly, we found that the classical estrogen receptors ERα and ERβ were robustly expressed in the adult visual cortex, and that a single dose of 17α-Estradiol reduced the expression of the calcium-binding protein parvalbumin, decreased the integrity of the extracellular matrix and increased the size of excitatory postsynaptic densities. Furthermore, 17α-Estradiol enhanced experience-dependent plasticity in the amblyopic visual cortex, by promoting response potentiation of the pathway served by the non-deprived eye. The promotion of plasticity at synapses serving the non-deprived eye may reflect selectivity for synapses with an initially low probability of neurotransmitter release, and may inform strategies to remap spared inputs around a scotoma or a cortical infarct.
Collapse
|
17
|
Herrera-Morales WV, Herrera-Solís A, Núñez-Jaramillo L. Sexual Behavior and Synaptic Plasticity. ARCHIVES OF SEXUAL BEHAVIOR 2019; 48:2617-2631. [PMID: 31270644 DOI: 10.1007/s10508-019-01483-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 05/30/2019] [Accepted: 06/01/2019] [Indexed: 06/09/2023]
Abstract
Although sex drive is present in many animal species, sexual behavior is not static and, like many other behaviors, can be modified by experience. This modification relies on synaptic plasticity, a sophisticated mechanism through which neurons change how they process a given stimulus, and the neurophysiological basis of learning. This review addresses the main plastic effects of steroid sex hormones in the central nervous system (CNS) and the effects of sexual experience on the CNS, including effects on neurogenesis, intracellular signaling, gene expression, and changes in dendritic spines, as well as behavioral changes.
Collapse
Affiliation(s)
- Wendy Verónica Herrera-Morales
- División de Ciencias de la Salud, Universidad de Quintana Roo, Av. Erick Paolo Martínez S/N esquina Av 4 de marzo. Colonia Magisterial, 77039, Chetumal, Quintana Roo, Mexico
| | - Andrea Herrera-Solís
- Laboratorio Efectos Terapéuticos de los Canabinoides, Subdirección de Investigación Biomédica, Hospital General Dr. Manuel Gea González, Ciudad de México, Mexico
| | - Luis Núñez-Jaramillo
- División de Ciencias de la Salud, Universidad de Quintana Roo, Av. Erick Paolo Martínez S/N esquina Av 4 de marzo. Colonia Magisterial, 77039, Chetumal, Quintana Roo, Mexico.
| |
Collapse
|
18
|
Song ZJ, Yang SJ, Han L, Wang B, Zhu G. Postnatal calpeptin treatment causes hippocampal neurodevelopmental defects in neonatal rats. Neural Regen Res 2019; 14:834-840. [PMID: 30688269 PMCID: PMC6375038 DOI: 10.4103/1673-5374.249231] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Our previous studies showed that the early use of calpain inhibitors reduces calpain activity in multiple brain regions, and that postnatal treatment with calpeptin may lead to cerebellar motor dysfunction. However, it remains unclear whether postnatal calpeptin application affects hippocampus-related behaviors. In this study, Sprague-Dawley rats were purchased from the Animal Center of Anhui Medical University of China. For the experiments in the adult stage, rats were intraperitoneally injected with calpeptin, 2 mg/kg, once a day, on postnatal days 7-14. Then on postnatal day 60, the Morris water maze test was used to evaluate spatial learning and memory abilities. The open field test was carried out to assess anxiety-like activities. Phalloidin staining was performed to observe synaptic morphology in the hippocampus. Immunohistochemistry was used to count the number of NeuN-positive cells in the hippocampal CA1 region. DiI was applied to label dendritic spines. Calpeptin administration impaired spatial memory, caused anxiety-like behavior in adulthood, reduced the number and area of apical dendritic spines, and decreased actin polymerization in the hippocampus, but did not affect the number of NeuN-positive cells in the hippocampal CA1 region. For the neonatal experiments, neonatal rats were intraperitoneally injected with calpeptin, 2 mg/kg, on postnatal days 7 and 8. Western blot assay was performed to analyze the protein levels of Akt, Erk, p-Akt, p-Erk1/2, Erk1/2, SCOP, PTEN, mTOR, p-mTOR, CREB and p-CREB in the hippocampus. SCOP expression was increased, and the phosphorylation levels of Akt, mTOR and CREB were reduced in the hippocampus. These findings show that calpeptin administration after birth affects synaptic development in neonatal rats by inhibiting the Akt/mTOR signaling pathway, thereby perturbing hippocampal function. Therefore, calpeptin administration after birth is a risk factor for neurodevelopmental defects.
Collapse
Affiliation(s)
- Zhu-Jin Song
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - San-Juan Yang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Lan Han
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Bin Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| |
Collapse
|
19
|
The Neural Mechanisms of Sexually Dimorphic Aggressive Behaviors. Trends Genet 2018; 34:755-776. [PMID: 30173869 DOI: 10.1016/j.tig.2018.07.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/16/2018] [Accepted: 07/05/2018] [Indexed: 10/28/2022]
Abstract
Aggression is a fundamental social behavior that is essential for competing for resources and protecting oneself and families in both males and females. As a result of natural selection, aggression is often displayed differentially between the sexes, typically at a higher level in males than females. Here, we highlight the behavioral differences between male and female aggression in rodents. We further outline the aggression circuits in males and females, and compare their differences at each circuit node. Lastly, we summarize our current understanding regarding the generation of sexually dimorphic aggression circuits during development and their maintenance during adulthood. In both cases, gonadal steroid hormones appear to play crucial roles in differentiating the circuits by impacting on the survival, morphology, and intrinsic properties of relevant cells. Many other factors, such as environment and experience, may also contribute to sex differences in aggression and remain to be investigated in future studies.
Collapse
|
20
|
Dieni CV, Sullivan JA, Faralli M, Contemori S, Biscarini A, Pettorossi VE, Panichi R. 17 beta-estradiol synthesis modulates cerebellar dependent motor memory formation in adult male rats. Neurobiol Learn Mem 2018; 155:276-286. [PMID: 30125696 DOI: 10.1016/j.nlm.2018.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/30/2018] [Accepted: 08/14/2018] [Indexed: 12/30/2022]
Abstract
Neurosteroid 17 beta-estradiol (E2) is a steroid synthesized de novo in the nervous system that might influence neuronal activity and behavior. Nevertheless, the impact of E2 on the functioning of those neural systems in which it is slightly synthesized is less questioned. The vestibulo-ocular reflex (VOR) adaptation, may provide an ideal arena for investigating this issue. Indeed, E2 modulates cerebellar parallel fiber-Purkinje cell synaptic plasticity that underlies encoding of VOR adaptation. Moreover, aromatase expression in the cerebellum of adult rodents is maintained at very low levels and localized to Purkinje cells. The significance of age-related maintenance of low levels of aromatase expression in the cerebellum on behavior, however, has yet to be explored. Our aim in this study was to determine whether E2 synthesis exerts an effective and persistent modulation of VOR adaptation in adult male rats. To answer this question, we investigated the acute effect of blocking E2 synthesis on gain increases and decreases in VOR adaptation using an oral dose (2.5 mg/kg) of the aromatase inhibitor Letrozole in peri-pubertal and post-pubertal male rats. We found that Letrozole acutely impaired gain increases and decreases in VOR adaptation without altering basal ocular-motor performance and that these effects were similar in peri-pubertal and post-pubertal rats. Thus, in adult male rats neurosteroid E2 effectively modulates VOR adaptation in both of the periods studied. These findings imply that the adult cerebellum uses E2 synthesis for modulating motor memory formation and suggest that low and extremely localized E2 production may play a role in adaptive phenomena.
Collapse
Affiliation(s)
- Cristina V Dieni
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | - Mario Faralli
- Department of Medical-Surgical Specialization, Otolaryngology and Cervicofacial Surgery Division, University of Perugia, 06127 Perugia, Italy
| | - Samuele Contemori
- Department of Experimental Medicine Section of Physiology and Biochemistry, University of Perugia, 06127 Perugia, Italy
| | - Andrea Biscarini
- Department of Experimental Medicine Section of Physiology and Biochemistry, University of Perugia, 06127 Perugia, Italy
| | - Vito E Pettorossi
- Department of Experimental Medicine Section of Physiology and Biochemistry, University of Perugia, 06127 Perugia, Italy
| | - Roberto Panichi
- Department of Experimental Medicine Section of Physiology and Biochemistry, University of Perugia, 06127 Perugia, Italy.
| |
Collapse
|
21
|
Frick KM, Kim J. Mechanisms underlying the rapid effects of estradiol and progesterone on hippocampal memory consolidation in female rodents. Horm Behav 2018; 104:100-110. [PMID: 29727606 PMCID: PMC6226372 DOI: 10.1016/j.yhbeh.2018.04.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 12/21/2022]
Abstract
Contribution to Special Issue on Fast effects of steroids. Although rapid effects of 17β‑estradiol (E2) and progesterone on cellular functions have been observed for several decades, a proliferation of data in recent years has demonstrated the importance of these actions to cognition. In particular, an emerging literature has demonstrated that these hormones promote the consolidation of spatial and object recognition memories in rodents via rapid activation of numerous cellular events including cell signaling, histone modifications, and local protein translation in the hippocampus. This article provides an overview of the evidence demonstrating that E2 and progesterone enhance hippocampal memory consolidation in female rodents, and then discusses numerous molecular mechanisms thus far shown to mediate the beneficial effects of these hormones on memory formation.
Collapse
Affiliation(s)
- Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States.
| | - Jaekyoon Kim
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States
| |
Collapse
|
22
|
Kitamura A, Hojo Y, Ikeda M, Karakawa S, Kuwahara T, Kim J, Soma M, Kawato S, Tsurugizawa T. Ingested d-Aspartate Facilitates the Functional Connectivity and Modifies Dendritic Spine Morphology in Rat Hippocampus. Cereb Cortex 2018; 29:2499-2508. [DOI: 10.1093/cercor/bhy120] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Indexed: 12/11/2022] Open
Affiliation(s)
- Akihiko Kitamura
- Institute for Innovation, Ajinomoto Co., Inc., Suzuki-cho 1-1, Kawasaki-ku, Kawasaki, Japan
| | - Yasushi Hojo
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Muneki Ikeda
- Department of Cognitive Neuroscience, Faculty of Pharma-Science, Teikyo University, Kaga 2-11-1, Itabashi, Tokyo, Japan
| | - Sachise Karakawa
- Institute for Innovation, Ajinomoto Co., Inc., Suzuki-cho 1-1, Kawasaki-ku, Kawasaki, Japan
| | - Tomomi Kuwahara
- Institute for Innovation, Ajinomoto Co., Inc., Suzuki-cho 1-1, Kawasaki-ku, Kawasaki, Japan
| | - Jonghyuk Kim
- Department of Cognitive Neuroscience, Faculty of Pharma-Science, Teikyo University, Kaga 2-11-1, Itabashi, Tokyo, Japan
| | - Mika Soma
- Department of Cognitive Neuroscience, Faculty of Pharma-Science, Teikyo University, Kaga 2-11-1, Itabashi, Tokyo, Japan
| | - Suguru Kawato
- Department of Cognitive Neuroscience, Faculty of Pharma-Science, Teikyo University, Kaga 2-11-1, Itabashi, Tokyo, Japan
| | | |
Collapse
|
23
|
Abstract
Estrogens influence nearly every aspect of hippocampal function, including memory formation. Although this research has traditionally focused on ovariectomized females, more recent work is providing insights into the ways in which estrogens regulate hippocampal function in both sexes. This review provides an overview of estrogenic regulation of hippocampal function in female and male rodents, with a particular emphasis on memory formation. Where applicable, we discuss the involvement of specific estrogen receptors and molecular mechanisms that mediate these effects. The review concludes by suggesting gaps in the literature that need to be filled to provide greater insights into potential sex differences in the effects of estrogens on hippocampal function.
Collapse
Affiliation(s)
- Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211
| | - Jaekyoon Kim
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211
| | - Wendy A Koss
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211
| |
Collapse
|
24
|
Hojo Y, Kawato S. Neurosteroids in Adult Hippocampus of Male and Female Rodents: Biosynthesis and Actions of Sex Steroids. Front Endocrinol (Lausanne) 2018; 9:183. [PMID: 29740398 PMCID: PMC5925962 DOI: 10.3389/fendo.2018.00183] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/04/2018] [Indexed: 12/13/2022] Open
Abstract
The brain is not only the target of steroid hormones but also is able to locally synthesize steroids de novo. Evidence of the local production of steroids in the brain has been accumulating in various vertebrates, including teleost fish, amphibia, birds, rodents, non-human primates, and humans. In this review, we mainly focus on the local production of sex steroids in the hippocampal neurons of adult rodents (rats and mice), a center for learning and memory. From the data of the hippocampus of adult male rats, hippocampal principal neurons [pyramidal cells in CA1-CA3 and granule cells in dentate gyrus (DG)] have a complete system for biosynthesis of sex steroids. Liquid chromatography with tandem-mass-spectrometry (LC-MS/MS) enabled us to accurately determine the levels of hippocampal sex steroids including 17β-estradiol (17β-E2), testosterone (T), and dihydrotestosterone (DHT), which are much higher than those in blood. Next, we review the steroid synthesis in the hippocampus of female rats, since previous knowledge had been biased toward the data from males. Recently, we clarified that the levels of hippocampal steroids fluctuate in adult female rats across the estrous cycle. Accurate determination of hippocampal steroids at each stage of the estrous cycle is of importance for providing the account for the fluctuation of female hippocampal functions, including spine density, long-term potentiation (LTP) and long-term depression (LTD), and learning and memory. These functional fluctuations in female had been attributed to the level of circulation-derived steroids. LC-MS/MS analysis revealed that the dendritic spine density in CA1 of adult female hippocampus correlates with the levels of hippocampal progesterone and 17β-E2. Finally, we introduce the direct evidence of the role of hippocampus-synthesized steroids in hippocampal function including neurogenesis, LTP, and memory consolidation. Mild exercise (2 week of treadmill running) elevated synthesis of DHT in the hippocampus, but not in the testis, of male rats, resulting in enhancement of neurogenesis in DG. Concerning synaptic plasticity, hippocampus-synthesized E2 is required for LTP induction, whereas hippocampus-synthesized DHT is required for LTD induction. Furthermore, hippocampus-synthesized E2 is involved in memory consolidation tested by object recognition and object placement tasks, both of which are hippocampus-dependent.
Collapse
Affiliation(s)
- Yasushi Hojo
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Moroyama, Saitama, Japan
- *Correspondence: Yasushi Hojo,
| | - Suguru Kawato
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Department of Urology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Department of Cognitive Neuroscience, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| |
Collapse
|
25
|
Santos VR, Pun RYK, Arafa SR, LaSarge CL, Rowley S, Khademi S, Bouley T, Holland KD, Garcia-Cairasco N, Danzer SC. PTEN deletion increases hippocampal granule cell excitability in male and female mice. Neurobiol Dis 2017; 108:339-351. [PMID: 28855130 DOI: 10.1016/j.nbd.2017.08.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/10/2017] [Accepted: 08/26/2017] [Indexed: 02/06/2023] Open
Abstract
Deletion of the mTOR pathway inhibitor PTEN from postnatally-generated hippocampal dentate granule cells causes epilepsy. Here, we conducted field potential, whole cell recording and single cell morphology studies to begin to elucidate the mechanisms by which granule cell-specific PTEN-loss produces disease. Cells from both male and female mice were recorded to identify sex-specific effects. PTEN knockout granule cells showed altered intrinsic excitability, evident as a tendency to fire in bursts. PTEN knockout granule cells also exhibited increased frequency of spontaneous excitatory synaptic currents (sEPSCs) and decreased frequency of inhibitory currents (sIPSCs), further indicative of a shift towards hyperexcitability. Morphological studies of PTEN knockout granule cells revealed larger dendritic trees, more dendritic branches and an impairment of dendrite self-avoidance. Finally, cells from both female control and female knockout mice received more sEPSCs and more sIPSCs than corresponding male cells. Despite the difference, the net effect produced statistically equivalent EPSC/IPSC ratios. Consistent with this latter observation, extracellularly evoked responses in hippocampal slices were similar between male and female knockouts. Both groups of knockouts were abnormal relative to controls. Together, these studies reveal a host of physiological and morphological changes among PTEN knockout cells likely to underlie epileptogenic activity. SIGNIFICANCE STATEMENT Hyperactivation of the mTOR pathway is associated with numerous neurological diseases, including autism and epilepsy. Here, we demonstrate that deletion of the mTOR negative regulator, PTEN, from a subset of hippocampal dentate granule impairs dendritic patterning, increases excitatory input and decreases inhibitory input. We further demonstrate that while granule cells from female mice receive more excitatory and inhibitory input than males, PTEN deletion produces mostly similar changes in both sexes. Together, these studies provide new insights into how the relatively small number (≈200,000) of PTEN knockout granule cells instigates the development of the profound epilepsy syndrome evident in both male and female animals in this model.
Collapse
Affiliation(s)
- Victor R Santos
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Raymund Y K Pun
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States
| | - Salwa R Arafa
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; University of Cincinnati, College of Pharmacy, Cincinnati, OH 45267, United States
| | - Candi L LaSarge
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States
| | - Shane Rowley
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States
| | - Shadi Khademi
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States
| | - Tom Bouley
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States
| | - Katherine D Holland
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States
| | - Norberto Garcia-Cairasco
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Steve C Danzer
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45267, United States.
| |
Collapse
|
26
|
In vivo and in vitro sex differences in the dendritic morphology of developing murine hippocampal and cortical neurons. Sci Rep 2017; 7:8486. [PMID: 28814778 PMCID: PMC5559594 DOI: 10.1038/s41598-017-08459-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/12/2017] [Indexed: 12/20/2022] Open
Abstract
Altered dendritic morphology is common in neurodevelopmental disorders (NDDs), many of which show sex biases in prevalence, onset and/or severity. However, whether dendritic morphology varies as a function of sex in juvenile mice or primary neuronal cell cultures is largely unknown even though both are widely used models for studying NDDs. To address this gap, we quantified dendritic morphology in CA1 pyramidal hippocampal and adjacent somatosensory pyramidal cortical neurons from male and female postnatal day (P)28 C57BL/6J mice. As determined by Sholl analysis of Golgi-stained brain sections, dendritic arbors of male hippocampal neurons are more complex than females. Conversely, dendritic morphology of female cortical neurons is more complex than males. In primary neuron-glia co-cultures from P0 mouse hippocampi, male neurons have more complex dendritic arbors than female neurons. Sex differences are less pronounced in cortical cultures. In vitro sex differences in dendritic morphology are driven in part by estrogen-dependent mechanisms, as evidenced by decreased dendritic complexity in male hippocampal neurons cultured in phenol red-free media or in the presence of an estrogen receptor antagonist. Evidence that sex influences dendritic morphogenesis in two models of neurodevelopment in a region-specific manner has significant mechanistic implications regarding sex biases in NDDs.
Collapse
|
27
|
Diaz A, Treviño S, Vázquez-Roque R, Venegas B, Espinosa B, Flores G, Fernández-G JM, Montaño LF, Guevara J. The aminoestrogen prolame increases recognition memory and hippocampal neuronal spine density in aged mice. Synapse 2017; 71:e21987. [PMID: 28545157 DOI: 10.1002/syn.21987] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 12/24/2022]
Abstract
The aging brain shows biochemical and morphological changes in the dendrites of pyramidal neurons from the limbic system associated with memory loss. Prolame (N-(3-hydroxy-1,3,5 (10)-estratrien-17β-yl)-3-hydroxypropylamine) is a non-feminizing aminoestrogen with antithrombotic activity that prevents neuronal deterioration, oxidative stress, and neuroinflammation. Our aim was to evaluate the effect of prolame on motor and cognitive processes, as well as its influence on the dendritic morphology of neurons at the CA1, CA3, and granule cells of the dentate gyrus (DG) regions of hippocampus (HP), and medium spiny neurons of the nucleus accumbens (NAcc) of aged mice. Dendritic morphology was assessed with the Golgi-Cox stain procedure followed by Sholl analysis. Prolame (60 µg/kg) was subcutaneously injected daily for 60 days in 18-month-old mice. Immediately after treatment, locomotor activity in a new environment and recognition memory using the Novel Object Recognition Task (NORT) were evaluated. Prolame-treated mice showed a significant increase in the long-term exploration quotient, but locomotor activity was not modified in comparison to control animals. Prolame-treated mice showed a significant increase in dendritic spines density and dendritic length in neurons of the CA1, CA3, and DG regions of the HP, whereas dendrites of neurons in the NAcc remained unmodified. In conclusion, prolame administration promotes hippocampal plasticity processes but not in the NAcc neurons of aged mice, thus improving long-term recognition memory. Prolame could become a pharmacological alternative to prevent or delay the brain aging process, and thus the emergence of neurodegenerative diseases that affect memory.
Collapse
Affiliation(s)
- Alfonso Diaz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Pue, Mexico
| | - Samuel Treviño
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Pue, Mexico
| | - Rubén Vázquez-Roque
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Pue, Mexico
| | - Berenice Venegas
- Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Pue, Mexico
| | - Blanca Espinosa
- Departamento de Bioquímica, Instituto Nacional de Enfermedades Respiratorias INER, Ciudad de México, Mexico
| | - Gonzalo Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Pue, Mexico
| | | | - Luis F Montaño
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Jorge Guevara
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
28
|
Mitrović N, Zarić M, Drakulić D, Martinović J, Sévigny J, Stanojlović M, Nedeljković N, Grković I. 17β-Estradiol-Induced Synaptic Rearrangements Are Accompanied by Altered Ectonucleotidase Activities in Male Rat Hippocampal Synaptosomes. J Mol Neurosci 2016; 61:412-422. [PMID: 27981418 DOI: 10.1007/s12031-016-0877-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/05/2016] [Indexed: 12/20/2022]
Abstract
17β-Estradiol (E2) rapidly, by binding to membrane estrogen receptors, activates cell signaling cascades which induce formation of new dendritic spines in the hippocampus of males as in females, but the interaction with other metabolic processes, such as extracellular adenine nucleotides metabolism, are currently unknown. Extracellular adenine nucleotides play significant roles, controlling excitatory glutamatergic synapses and development of neural circuits and synaptic plasticity. Their precise regulation in the synaptic cleft is tightly controlled by ecto-nucleoside triphosphate diphosphohydrolase (NTPDase)/ecto-5'-nucleotidase (eN) enzyme chain. Therefore, we sought to clarify whether a single systemic injection of E2 in male rats is accompanied by changes in the expression of the pre- and postsynaptic proteins and downstream kinases linked to E2-induced synaptic rearrangement as well as alterations in NTPDase/eN pathway in the hippocampal synaptosomes. Obtained data showed activation of mammalian target of rapamycin and upregulation of key synaptic proteins necessary for spine formation, 24 h after systemic E2 administration. In E2-mediated conditions, we found downregulation of NTPDase1 and NTPDase2 and attenuation of adenine nucleotide hydrolysis by NTPDase/eN enzyme chain, without changes in NTPDase3 properties and augmentation of synaptic tissue-nonspecific alkaline phosphatase (TNAP) activity. Despite reduced NTPDase activities, increased TNAP activity probably prevents toxic accumulation of ATP in the extracellular milieu and also hydrolyzes accumulated ADP due to unchanged NTPDase3 activity. Thus, our initial evaluation supports idea of specific roles of different ectonucleotidases and their coordinated actions in E2-mediated spine remodeling and maintenance.
Collapse
Affiliation(s)
- Nataša Mitrović
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, Belgrade, 11001, Serbia
| | - Marina Zarić
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, Belgrade, 11001, Serbia
| | - Dunja Drakulić
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, Belgrade, 11001, Serbia
| | - Jelena Martinović
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, Belgrade, 11001, Serbia
| | - Jean Sévigny
- Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec, QC, G1V 0A6, Canada.,Centre de recherche du CHU de Québec, Université Laval, Québec, QC, G1V 4G2, Canada
| | - Miloš Stanojlović
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, Belgrade, 11001, Serbia
| | - Nadežda Nedeljković
- Institute for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Studentski trg 3, Belgrade, 11000, Serbia
| | - Ivana Grković
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, Belgrade, 11001, Serbia.
| |
Collapse
|
29
|
Gonadal hormone modulation of intracellular calcium as a mechanism of neuroprotection. Front Neuroendocrinol 2016; 42:40-52. [PMID: 26930421 DOI: 10.1016/j.yfrne.2016.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 02/22/2016] [Accepted: 02/26/2016] [Indexed: 12/28/2022]
Abstract
Hormones have wide-ranging effects throughout the nervous system, including the ability interact with and modulate many aspects of intracellular calcium regulation and calcium signaling. Indeed, these interactions specifically may help to explain the often opposing or paradoxical effects of hormones, such as their ability to both promote and prevent neuronal cell death during development, as well as reduce or exacerbate damage following an insult or injury in adulthood. Here, we review the basic mechanisms underlying intracellular calcium regulation-perhaps the most dynamic and flexible of all signaling molecules-and discuss how gonadal hormones might manipulate these mechanisms to coordinate diverse cellular responses and achieve disparate outcomes. Additional future research that specifically addresses questions of sex and hormone effects on calcium signaling at different ages will be critical to understanding hormone-mediated neuroprotection.
Collapse
|
30
|
Jacome LF, Barateli K, Buitrago D, Lema F, Frankfurt M, Luine VN. Gonadal Hormones Rapidly Enhance Spatial Memory and Increase Hippocampal Spine Density in Male Rats. Endocrinology 2016; 157:1357-62. [PMID: 26844375 PMCID: PMC4816741 DOI: 10.1210/en.2015-1959] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
17β-estradiol (E2) rapidly, within minutes, activates behaviors and cognition by binding to membrane estrogen receptors, activating cell signaling cascades and increasing dendritic spines. In female rodents, E2 enhances spatial memory within 2-4 hours, and spine density is increased in the CA1 area of the hippocampus within 30-60 minutes. Although chronic gonadal hormone treatments in male rats alter cognition and spines/spine synapses and acute hormone effects occur in hippocampal slices, effects of acute, in vivo hormone administration in males are unknown. Therefore, we assessed rapid effects of E2 (20 μg/kg) and testosterone (T) (750 μg/kg) on spatial memory using the object placement task and on hippocampal spine density using Golgi impregnation. Orchidectomized rats received hormones immediately after the training trial and were tested for retention 2 hours later. Vehicle-injected orchidectomized males spent equal time exploring objects in the old and new locations, but E2- or T-treated subjects spent more time exploring objects at the new location, suggesting enhanced memory. Both hormones also increased spine density in CA1, but not the dentate gyrus, by 20%-40% at 30 minutes and 2 hours after injections. This report is the first, to our knowledge, to show E2 and T enhancements of memory and spine density within such a short time frame in male rats.
Collapse
Affiliation(s)
- Luis F Jacome
- Department of Psychology (L.F.J., K.B., D.B., F.L., V.N.L.), Hunter College of City University of New York, New York, New York 10021; and Department of Science Education (M.F.), Hofstra North Shore Long Island Jewish School of Medicine, Hempstead, New York 11549
| | - Ketti Barateli
- Department of Psychology (L.F.J., K.B., D.B., F.L., V.N.L.), Hunter College of City University of New York, New York, New York 10021; and Department of Science Education (M.F.), Hofstra North Shore Long Island Jewish School of Medicine, Hempstead, New York 11549
| | - Dina Buitrago
- Department of Psychology (L.F.J., K.B., D.B., F.L., V.N.L.), Hunter College of City University of New York, New York, New York 10021; and Department of Science Education (M.F.), Hofstra North Shore Long Island Jewish School of Medicine, Hempstead, New York 11549
| | - Franklin Lema
- Department of Psychology (L.F.J., K.B., D.B., F.L., V.N.L.), Hunter College of City University of New York, New York, New York 10021; and Department of Science Education (M.F.), Hofstra North Shore Long Island Jewish School of Medicine, Hempstead, New York 11549
| | - Maya Frankfurt
- Department of Psychology (L.F.J., K.B., D.B., F.L., V.N.L.), Hunter College of City University of New York, New York, New York 10021; and Department of Science Education (M.F.), Hofstra North Shore Long Island Jewish School of Medicine, Hempstead, New York 11549
| | - Victoria N Luine
- Department of Psychology (L.F.J., K.B., D.B., F.L., V.N.L.), Hunter College of City University of New York, New York, New York 10021; and Department of Science Education (M.F.), Hofstra North Shore Long Island Jewish School of Medicine, Hempstead, New York 11549
| |
Collapse
|
31
|
Maysinger D, Ji J, Hutter E, Cooper E. Nanoparticle-Based and Bioengineered Probes and Sensors to Detect Physiological and Pathological Biomarkers in Neural Cells. Front Neurosci 2015; 9:480. [PMID: 26733793 PMCID: PMC4683200 DOI: 10.3389/fnins.2015.00480] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 11/30/2015] [Indexed: 01/11/2023] Open
Abstract
Nanotechnology, a rapidly evolving field, provides simple and practical tools to investigate the nervous system in health and disease. Among these tools are nanoparticle-based probes and sensors that detect biochemical and physiological properties of neurons and glia, and generate signals proportionate to physical, chemical, and/or electrical changes in these cells. In this context, quantum dots (QDs), carbon-based structures (C-dots, grapheme, and nanodiamonds) and gold nanoparticles are the most commonly used nanostructures. They can detect and measure enzymatic activities of proteases (metalloproteinases, caspases), ions, metabolites, and other biomolecules under physiological or pathological conditions in neural cells. Here, we provide some examples of nanoparticle-based and genetically engineered probes and sensors that are used to reveal changes in protease activities and calcium ion concentrations. Although significant progress in developing these tools has been made for probing neural cells, several challenges remain. We review many common hurdles in sensor development, while highlighting certain advances. In the end, we propose some future directions and ideas for developing practical tools for neural cell investigations, based on the maxim "Measure what is measurable, and make measurable what is not so" (Galileo Galilei).
Collapse
Affiliation(s)
- Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University Montreal, QC, Canada
| | - Jeff Ji
- Department of Pharmacology and Therapeutics, McGill University Montreal, QC, Canada
| | - Eliza Hutter
- Department of Pharmacology and Therapeutics, McGill University Montreal, QC, Canada
| | - Elis Cooper
- Department of Physiology, McGill University Montreal, QC, Canada
| |
Collapse
|
32
|
Hansberg-Pastor V, González-Arenas A, Piña-Medina AG, Camacho-Arroyo I. Sex Hormones Regulate Cytoskeletal Proteins Involved in Brain Plasticity. Front Psychiatry 2015; 6:165. [PMID: 26635640 PMCID: PMC4653291 DOI: 10.3389/fpsyt.2015.00165] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 11/02/2015] [Indexed: 01/22/2023] Open
Abstract
In the brain of female mammals, including humans, a number of physiological and behavioral changes occur as a result of sex hormone exposure. Estradiol and progesterone regulate several brain functions, including learning and memory. Sex hormones contribute to shape the central nervous system by modulating the formation and turnover of the interconnections between neurons as well as controlling the function of glial cells. The dynamics of neuron and glial cells morphology depends on the cytoskeleton and its associated proteins. Cytoskeletal proteins are necessary to form neuronal dendrites and dendritic spines, as well as to regulate the diverse functions in astrocytes. The expression pattern of proteins, such as actin, microtubule-associated protein 2, Tau, and glial fibrillary acidic protein, changes in a tissue-specific manner in the brain, particularly when variations in sex hormone levels occur during the estrous or menstrual cycles or pregnancy. Here, we review the changes in structure and organization of neurons and glial cells that require the participation of cytoskeletal proteins whose expression and activity are regulated by estradiol and progesterone.
Collapse
Affiliation(s)
- Valeria Hansberg-Pastor
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México , Mexico City , Mexico
| | - Aliesha González-Arenas
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México , Mexico City , Mexico
| | - Ana Gabriela Piña-Medina
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México , Mexico City , Mexico
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México , Mexico City , Mexico
| |
Collapse
|