1
|
Wu G, Ou Y, Feng Z, Xiong Z, Li K, Che M, Qi S, Zhou M. Oxytocin attenuates hypothalamic injury-induced cognitive dysfunction by inhibiting hippocampal ERK signaling and Aβ deposition. Transl Psychiatry 2024; 14:208. [PMID: 38796566 PMCID: PMC11127955 DOI: 10.1038/s41398-024-02930-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/28/2024] Open
Abstract
In clinical settings, tumor compression, trauma, surgical injury, and other types of injury can cause hypothalamic damage, resulting in various types of hypothalamic dysfunction. Impaired release of oxytocin can lead to cognitive impairment and affect prognosis and long-term quality of life after hypothalamic injury. Hypothalamic injury-induced cognitive dysfunction was detected in male animals. Behavioral parameters were measured to assess the characteristics of cognitive dysfunction induced by hypothalamic-pituitary stalk lesions. Brains were collected for high-throughput RNA sequencing and immunostaining to identify pathophysiological changes in hippocampal regions highly associated with cognitive function after injury to corresponding hypothalamic areas. Through transcriptomic analysis, we confirmed the loss of oxytocin neurons after hypothalamic injury and the reversal of hypothalamic-induced cognitive dysfunction after oxytocin supplementation. Furthermore, overactivation of the ERK signaling pathway and β-amyloid deposition in the hippocampal region after hypothalamic injury were observed, and cognitive function was restored after inhibition of ERK signaling pathway overactivation. Our findings suggest that cognitive dysfunction after hypothalamic injury may be caused by ERK hyperphosphorylation in the hippocampal region resulting from a decrease in the number of oxytocin neurons, which in turn causes β-amyloid deposition.
Collapse
Affiliation(s)
- Guangsen Wu
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Yichao Ou
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Zhanpeng Feng
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Zhiwei Xiong
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Kai Li
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Mengjie Che
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Songtao Qi
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, China.
| | - Mingfeng Zhou
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Freeman AR, Arenas S, Lee DN, Singh B, Ophir AG. Characterization of oxytocin and vasopressin receptors in the Southern giant pouched rat and comparison to other rodents. Front Endocrinol (Lausanne) 2024; 15:1390203. [PMID: 38803478 PMCID: PMC11128605 DOI: 10.3389/fendo.2024.1390203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Vasopressin and oxytocin are well known and evolutionarily ancient modulators of social behavior. The distribution and relative densities of vasopressin and oxytocin receptors are known to modulate the sensitivity to these signaling molecules. Comparative work is needed to determine which neural networks have been conserved and modified over evolutionary time, and which social behaviors are commonly modulated by nonapeptide signaling. To this end, we used receptor autoradiography to determine the distribution of vasopressin 1a and oxytocin receptors in the Southern giant pouched rat (Cricetomys ansorgei) brain, and to assess the relative densities of these receptors in specific brain regions. We then compared the relative receptor pattern to 23 other species of rodents using a multivariate ANOVA. Pouched rat receptor patterns were strikingly similar to hamsters and voles overall, despite the variation in social organization among species. Uniquely, the pouched rat had dense vasopressin 1a receptor binding in the caudate-putamen (i.e., striatum), an area that might impact affiliative behavior in this species. In contrast, the pouched rat had relatively little oxytocin receptor binding in much of the anterior forebrain. Notably, however, oxytocin receptor binding demonstrated extremely dense binding in the bed nucleus of the stria terminalis, which is associated with the modulation of several social behaviors and a central hub of the social decision-making network. Examination of the nonapeptide system has the potential to reveal insights into species-specific behaviors and general themes in the modulation of social behavior.
Collapse
Affiliation(s)
- Angela R. Freeman
- Department of Psychology, Cornell University, Ithaca, NY, United States
- Department of Biology, Salisbury University, Salisbury, MD, United States
| | - Samanta Arenas
- Department of Psychology, Cornell University, Ithaca, NY, United States
| | - Danielle N. Lee
- Department of Psychology, Cornell University, Ithaca, NY, United States
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, United States
| | - Bhupinder Singh
- Department of Psychology, Cornell University, Ithaca, NY, United States
- Comparative Medicine Resources, Rutgers University, New Brunswick, NJ, United States
| | | |
Collapse
|
3
|
Rodriguez M, Themann A, Garcia-Carachure I, Lira O, Robison AJ, Cushing BS, Iñiguez SD. Chronic social defeat stress in prairie voles (Microtus ochrogaster): A preclinical model for the study of depression-related phenotypes. J Affect Disord 2024; 351:833-842. [PMID: 38341153 DOI: 10.1016/j.jad.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Stress-induced illnesses, like major depression, are among the leading causes of disability across the world. Consequently, there is a dire need for the validation of translationally-suited animal models incorporating social stress to uncover the etiology of depression. Prairie voles (Microtus ochrogaster) are more translationally relevant than many other rodent models as they display monogamous social and bi-parental behaviors. Therefore, we evaluated whether a novel social defeat stress (SDS) model in male prairie voles induces depression-relevant behavioral outcomes. METHODS Adult sexually-naïve male prairie voles experienced SDS bouts from a conspecific pair-bonded male aggressor, 10 min per day for 10 consecutive days. Non-stressed controls (same-sex siblings) were housed in similar conditions but never experienced physical stress. Twenty-four h later, voles were evaluated in social interaction, sucrose preference, and Morris water maze tests - behavioral endpoints validated to assess social withdrawal, anhedonia-related behavior, and spatial memory performance, respectively. RESULTS SDS-exposed voles displayed lower sociability and body weight, decreased preference for a sucrose solution, and impairment of spatial memory retrieval. Importantly, no differences in general locomotor activity were observed as a function of SDS exposure. LIMITATIONS This study does not include female voles in the experimental design. CONCLUSIONS We found that repeated SDS exposure, in male prairie voles, results in a depression-relevant phenotype resembling an anhedonia-like outcome (per reductions in sucrose preference) along with social withdrawal and spatial memory impairment - highlighting that the prairie vole is a valuable model with potential to study the neurobiology of social stress-induced depression-related outcomes.
Collapse
Affiliation(s)
- Minerva Rodriguez
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, United States
| | - Anapaula Themann
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, United States
| | | | - Omar Lira
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, United States
| | - Alfred J Robison
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Bruce S Cushing
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, United States
| | - Sergio D Iñiguez
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, United States.
| |
Collapse
|
4
|
Sailer LL, Finton CJ, Patel PP, Bogdanowicz SM, Ophir AG. Dorsal CA1 lesions of the hippocampus impact mating tactics in prairie voles by shifting non-monogamous males' use of space to resemble monogamous males. Front Behav Neurosci 2024; 18:1355807. [PMID: 38468707 PMCID: PMC10925758 DOI: 10.3389/fnbeh.2024.1355807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024] Open
Abstract
Alternative mating tactics within mating systems are characterized by discrete patterns of spatio-temporal overlap with same-and opposite-sex conspecifics and mating-relevant outcomes. Socially monogamous "residents" maintain relatively small home range sizes, have territories that almost exclusively overlap with their mating partners, and are more likely to produce offspring than non-bonded "wandering" conspecifics. Because mating tactics appear to be so closely tied to patterns of space use, differences in spatial cognitive abilities might differentially impact individual males' decisions to adopt a particular mating tactic and/or how efficient they are within their chosen mating tactic. Yet few studies have considered how the hippocampus, a brain region important for encoding cognitive maps and for processing contextual information, might impact how individuals adopt mating tactics or the spatio-temporal behaviors closely associated with them. We assessed the impact of lesions to the dorsal CA1 (dCA1) region of the hippocampus on male prairie vole space use, reproductive success, and mating tactics in semi-natural outdoor field conditions. Interestingly, dCA1 lesions did not impact the proportion of males that adopted resident or wandering mating tactics, and dCA1 lesions did not impact a male's ability to form a pair bond in the lab. In contrast, we found that lesioning the dCA1 shifted the home range size of reproductively successful and unsuccessful males. Furthermore, we found that patterns of space use among residents were unaffected by dCA1 lesions, whereas wanderers with dCA1 lesions showed pronounced reductions of their space use habits and resembled non-lesioned residents. Collectively, our study supports the hypothesis that wanderer male prairie voles rely on dCA1-mediated spatial cognition to navigate their world in a way that resident males do not. Such differences might have implications for how individuals efficiently attract and defend mates, obtain resources, defend territories, and outcompete rivals.
Collapse
Affiliation(s)
- Lindsay L. Sailer
- Department of Psychology, Cornell University, Ithaca, NY, United States
| | - Caitlyn J. Finton
- Department of Psychology, Cornell University, Ithaca, NY, United States
| | - Pooja P. Patel
- Department of Psychology, Cornell University, Ithaca, NY, United States
| | - Steven M. Bogdanowicz
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, United States
| | | |
Collapse
|
5
|
Berendzen KM, Bales KL, Manoli DS. Attachment across the lifespan: Examining the intersection of pair bonding neurobiology and healthy aging. Neurosci Biobehav Rev 2023; 153:105339. [PMID: 37536581 PMCID: PMC11073483 DOI: 10.1016/j.neubiorev.2023.105339] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/17/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
Increasing evidence suggests that intact social bonds are protective against age-related morbidity, while bond disruption and social isolation increase the risk for multiple age-related diseases. Social attachments, the enduring, selective bonds formed between individuals, are thus essential to human health. Socially monogamous species like the prairie vole (M. ochrogaster) form long-term pair bonds, allowing us to investigate the mechanisms underlying attachment and the poorly understood connection between social bonds and health. In this review, we explore several potential areas of focus emerging from data in humans and other species associating attachment and healthy aging, and evidence from prairie voles that may clarify this link. We examine gaps in our understanding of social cognition and pair bond behavior. Finally, we discuss physiologic pathways related to pair bonding that promote resilience to the processes of aging and age-related disease. Advances in the development of molecular genetic tools in monogamous species will allow us to bridge the mechanistic gaps presented and identify conserved research and therapeutic targets relevant to human health and aging.
Collapse
Affiliation(s)
- Kristen M. Berendzen
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco; San Francisco, CA 95158, USA
- Center for Integrative Neuroscience, University of California, San Francisco; San Francisco, CA 95158, USA
- Weill Institute for Neurosciences, University of California, San Francisco; San Francisco, CA 95158, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco; San Francisco, CA 95158, USA
| | - Karen L. Bales
- Department of Psychology, University of California, Davis; Davis, CA 95616, USA
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis; Davis, CA 95616, USA
| | - Devanand S. Manoli
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco; San Francisco, CA 95158, USA
- Center for Integrative Neuroscience, University of California, San Francisco; San Francisco, CA 95158, USA
- Weill Institute for Neurosciences, University of California, San Francisco; San Francisco, CA 95158, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco; San Francisco, CA 95158, USA
- Neurosciences Graduate Program, University of California, San Francisco; San Francisco, CA 95158, USA
| |
Collapse
|
6
|
Wu WY, Yiu E, Ophir AG, Smith DM. Effects of social context manipulation on dorsal and ventral hippocampal neuronal responses. Hippocampus 2023; 33:830-843. [PMID: 36789678 PMCID: PMC11127721 DOI: 10.1002/hipo.23507] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/14/2022] [Accepted: 01/19/2023] [Indexed: 02/16/2023]
Abstract
The hippocampus is critical for contextual memory and has recently been implicated in various kinds of social memory. Traditionally, studies of hippocampal context coding have manipulated elements of the background environment, such as the shape and color of the apparatus. These manipulations produce large shifts in the spatial firing patterns, a phenomenon known as remapping. These findings suggest that the hippocampus encodes and differentiates contexts by generating unique spatial firing patterns for each environment a subject encounters. However, we do not know whether the hippocampus encodes social contexts defined by the presence of particular conspecifics. We examined this by exposing rats to a series of manipulations of the social context, including the presence of familiar male, unfamiliar male and female conspecifics, in order to determine whether remapping is a plausible mechanism for encoding socially-defined contexts. Because the dorsal and ventral regions of the hippocampus are thought to play different roles in spatial and social cognition, we recorded neurons in both regions. Surprisingly, we found little evidence of remapping in response to manipulation of the social context in either the dorsal or ventral hippocampus, although we saw typical remapping in response to changing the background color. This result suggests that remapping is not the primary mechanism for encoding different social contexts. However, we found that a subset of hippocampal neurons fired selectively near the cages that contained the conspecifics, and these responses were most prevalent in the ventral hippocampus. We also found a striking increase in the spatial information content of ventral hippocampal firing patterns. These results indicate that the ventral hippocampus is sensitive to changes in the social context and neurons that respond selectively near the conspecific cages could play an important, if not fully understood role in encoding the conjunction of conspecifics, their location and the environment.
Collapse
Affiliation(s)
- Wen-Yi Wu
- Department of Psychology, Cornell University, Ithaca, New York, USA
| | - Eunice Yiu
- Department of Psychology, Cornell University, Ithaca, New York, USA
| | | | - David M Smith
- Department of Psychology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
7
|
Rice MA, Wong GH, Ophir AG. Impacts of spatial learning on male prairie vole mating tactics in seminatural field enclosures are context dependent. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Finton CJ, Ophir AG. Developmental exposure to intranasal vasopressin impacts adult prairie vole spatial memory. Psychoneuroendocrinology 2022; 141:105750. [PMID: 35397260 PMCID: PMC9149121 DOI: 10.1016/j.psyneuen.2022.105750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 11/18/2022]
Abstract
Spatial memory is critical for many tasks necessary for survival (i.e., locating mates and food resources). The two mammalian nonapeptides arginine vasopressin (AVP) and oxytocin (OT) are mechanistically important in modulating memory ability, albeit in contrasting ways. In general, AVP facilitates memory consolidation and retrieval while OT is an amnesic. Although AVP and OT are known to have these memory effects, past work has focused on their impact in social memory with little research on their effects on spatial memory. In this experiment, we tested the impact of AVP and OT on spatial memory as determined by performance in the Morris water maze (MWM). We administered doses of AVP, OT, or saline (a control) intranasally to male prairie voles (Microtus ochrogaster), a species whose spatial memory is hypothesized to impact their mating tactics. We also investigated if acute doses (given immediately prior to the memory trial in the MWM) and chronic doses (given daily during adolescence) had differing impacts on spatial cognition. We found that chronic intranasal administration of AVP during post-wean development improved spatial memory performance. In contrast, both chronic and acute administration of OT and acute administration of AVP had no impact on spatial memory. These results together suggest that 1) chronic exposure to AVP has organizational effects on spatial memory in the prairie vole, and 2) acute administration of nonapeptides does not impact the retrieval of spatial memories.
Collapse
Affiliation(s)
- Caitlyn J Finton
- Department of Psychology, Cornell University, Ithaca, NY 14850, USA
| | - Alexander G Ophir
- Department of Psychology, Cornell University, Ithaca, NY 14850, USA.
| |
Collapse
|
9
|
Forero SA, Ophir AG. Multi-Level Effects Driving Cognitive and Behavioral Variability among Prairie Voles: Insights into Reproductive Decision-Making from Biological Levels of Organization. BRAIN, BEHAVIOR AND EVOLUTION 2022; 97:225-240. [PMID: 35051922 PMCID: PMC9256755 DOI: 10.1159/000522109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/17/2022] [Indexed: 01/22/2023]
Abstract
Behavioral phenotypes play an active role in maximizing fitness and shaping the evolutionary trajectory of species by offsetting the ecological and social environmental factors individuals experience. How these phenotypes evolve and how they are expressed is still a major question in ethology today. In recent years, an increased focus on the mechanisms that regulate the interactions between an individual and its environment has offered novel insights into the expression of alternative phenotypes. In this review, we explore the proximate mechanisms driving the expression of alternative reproductive phenotypes in the male prairie vole (Microtus ochrogaster) as one example of how the interaction of an individual's social context and internal milieu has the potential to alter behavior, cognition, and reproductive decision-making. Ultimately, integrating the physiological and psychological mechanisms of behavior advances understanding into how variation in behavior arises. We take a "levels of biological organization" approach, with prime focus placed on the level of the organism to discuss how cognitive processes emerge as traits, and how they can be studied as important mechanisms driving the expression of behavior.
Collapse
|
10
|
Abstract
Oxytocin (OT) is a nonapeptide mainly produced in the supraoptic and paraventricular nuclei. OT in the brain and blood has extensive functions in both mental and physical activities. These functions are mediated by OT receptors (OTRs) that are distributed in a broad spectrum of tissues with dramatic sexual dimorphism. In both sexes, OT generally facilitates social cognition and behaviors, facilitates parental behavior and sexual activity and inhibits feeding and pain perception. However, there are significant differences in OT levels and distribution of OTRs in men from women. Thus, many OT functions in men are different from women, particularly in the reproduction. In men, the reproductive functions are relatively simple. In women, the reproductive functions involve menstrual cycle, pregnancy, parturition, lactation, and menopause. These functions make OT regulation of women's health and disease a unique topic of physiological and pathological studies. In menstruation, pre-ovulatory increase in OT secretion in the hypothalamus and the ovary can promote the secretion of gonadotropin-releasing hormone and facilitate ovulation. During pregnancy, increased OT synthesis and preterm release endow OT system the ability to promote maternal behavior and lactation. In parturition, cervix expansion-elicited pulse OT secretion and uterine OT release accelerate the expelling of fetus and reduce postpartum hemorrhage. During lactation, intermittent pulsatile OT secretion is necessary for the milk-ejection reflex and maternal behavior. Disorders in OT secretion can account for maternal depression and hypogalactia. In menopause, the reduction of OT secretion accounts for many menopausal symptoms and diseases. These issues are reviewed in this work.
Collapse
Affiliation(s)
- Ning Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Haipeng Yang
- Neonatal Division of the Department of Pediatrics, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liqun Han
- Department of Radiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mingxing Ma
- Department of Colorectal Cancer Surgery, Shengjing Hospital of China Medical University, Shenyang, China
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Mingxing Ma,
| |
Collapse
|
11
|
Decision-making in a social world: Integrating cognitive ecology and social neuroscience. Curr Opin Neurobiol 2021; 68:152-158. [PMID: 33915497 DOI: 10.1016/j.conb.2021.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 12/26/2022]
Abstract
Understanding animal decision-making involves simultaneously dissecting and reconstructing processes across levels of biological organization, such as behavior, physiology, and brain function, as well as considering the environment in which decisions are made. Over the past few decades, foundational breakthroughs originating from a variety of model systems and disciplines have painted an increasingly comprehensive picture of how individuals sense information, process it, and subsequently modify behavior or states. Still, our understanding of decision-making in social contexts is far from complete and requires integrating novel approaches and perspectives. The fields of social neuroscience and cognitive ecology have approached social decision-making from orthogonal perspectives. The integration of these perspectives (and fields) is critical in developing comprehensive and testable theories of the brain.
Collapse
|
12
|
Wallace KJ, Hofmann HA. Equal performance but distinct behaviors: sex differences in a novel object recognition task and spatial maze in a highly social cichlid fish. Anim Cogn 2021; 24:1057-1073. [PMID: 33718996 DOI: 10.1007/s10071-021-01498-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/23/2021] [Indexed: 02/08/2023]
Abstract
Sex differences in behavior and cognition can be driven by differential selection pressures from the environment and in the underlying neuromolecular mechanisms of decision-making. The highly social cichlid fish Astatotilapia burtoni exhibits dynamic and complex social hierarchies, yet explicit cognitive testing (outside of social contexts) and investigations of sex differences in cognition have yet to be fully explored. Here we assessed male and female A. burtoni in two cognitive tasks: a novel object recognition task and a spatial task. We hypothesized that males outperform females in a spatial learning task and exhibit more neophilic/exploratory behavior across both tasks. In the present study we find that both sexes prefer the familiar object in a novel object recognition task, but the time at which they exhibit this preference differs between the sexes. Females more frequently learned the spatial task, exhibiting longer decision latencies and quicker error correction, suggesting a potential speed-accuracy tradeoff. Furthermore, the sexes differ in space use in both tasks and in a principal component analysis of the spatial task. A model selection analysis finds that preference, approach, and interaction duration in the novel object recognition task reach a threshold of importance averaged across all models. This work highlights the need to explicitly test for sex differences in cognition to better understand how individuals navigate dynamic social environments.
Collapse
Affiliation(s)
- Kelly J Wallace
- Department of Integrative Biology, University of Texas, 1 University Station C0990, Austin, TX, 78712, USA.
| | - Hans A Hofmann
- Department of Integrative Biology, University of Texas, 1 University Station C0990, Austin, TX, 78712, USA
| |
Collapse
|
13
|
Oxytocin receptor binding in the titi monkey hippocampal formation is associated with parental status and partner affiliation. Sci Rep 2020; 10:17301. [PMID: 33057124 PMCID: PMC7560868 DOI: 10.1038/s41598-020-74243-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 09/25/2020] [Indexed: 01/01/2023] Open
Abstract
Social cognition is facilitated by oxytocin receptors (OXTR) in the hippocampus, a brain region that changes dynamically with pregnancy, parturition, and parenting experience. We investigated the impact of parenthood on hippocampal OXTR in male and female titi monkeys, a pair-bonding primate species that exhibits biparental care of offspring. We hypothesized that in postmortem brain tissue, OXTR binding in the hippocampal formation would differ between parents and non-parents, and that OXTR density would correlate with frequencies of observed parenting and affiliative behaviors between partners. Subjects were 10 adult titi monkeys. OXTR binding in the hippocampus (CA1, CA2/3, CA4, dentate gyrus, subiculum) and presubiculum layers (PSB1, PSB3) was determined using receptor autoradiography. The average frequency of partner affiliation (Proximity, Contact, and Tail Twining) and infant carrying were determined from longitudinal observations (5-6 per day). Analyses showed that parents exhibited higher OXTR binding than non-parents in PSB1 (t(8) = - 2.33, p = 0.048), and that OXTR binding in the total presubiculm correlated negatively with Proximity (r = - 0.88) and Contact (r = - 0.91), but not Tail Twining or infant carrying. These results suggest that OXTR binding in the presubiculum supports pair bonding and parenting behavior, potentially by mediating changes in hippocampal plasticity.
Collapse
|
14
|
Kelly AM, Ong JY, Witmer RA, Ophir AG. Paternal deprivation impairs social behavior putatively via epigenetic modification to lateral septum vasopressin receptor. SCIENCE ADVANCES 2020; 6:eabb9116. [PMID: 32917597 PMCID: PMC7467705 DOI: 10.1126/sciadv.abb9116] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/17/2020] [Indexed: 05/06/2023]
Abstract
Although it is well appreciated that the early-life social environment asserts subsequent long-term consequences on offspring brain and behavior, the specific mechanisms that account for this relationship remain poorly understood. Using a novel assay that forced biparental pairs or single mothers to prioritize caring for offspring or themselves, we investigated the impact of parental variation on adult expression of nonapeptide-modulated behaviors in prairie voles. We demonstrated that single mothers compensate for the lack of a co-parent. Moreover, mothers choose to invest in offspring over themselves when faced with a tradeoff, whereas fathers choose to invest in themselves. Furthermore, our study suggests a pathway whereby variation in parental behavior (specifically paternal care) may lead to alterations in DNA methylation within the vasopressin receptor 1a gene and gene expression in the lateral septum. These differences are concomitant with changes in social approach, a behavior closely associated with septal vasopressin receptor function.
Collapse
Affiliation(s)
- Aubrey M Kelly
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, USA
| | - Jie Yuen Ong
- Department of Psychology, Cornell University, 211 Uris Hall, Ithaca, NY 14853, USA
| | - Ruth A Witmer
- Department of Psychology, Cornell University, 211 Uris Hall, Ithaca, NY 14853, USA
| | - Alexander G Ophir
- Department of Psychology, Cornell University, 211 Uris Hall, Ithaca, NY 14853, USA.
| |
Collapse
|
15
|
Ávila-González D, Young LJ, Camacho F, Paredes RG, Díaz NF, Portillo W. Culture of Neurospheres Derived from the Neurogenic Niches in Adult Prairie Voles. J Vis Exp 2020. [PMID: 32597870 DOI: 10.3791/61402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Neurospheres are primary cell aggregates that comprise neural stem cells and progenitor cells. These 3D structures are an excellent tool to determine the differentiation and proliferation potential of neural stem cells, as well as to generate cell lines than can be assayed over time. Also, neurospheres can create a niche (in vitro) that allows the modeling of the dynamic changing environment, such as varying growth factors, hormones, neurotransmitters, among others. Microtus ochrogaster (prairie vole) is a unique model for understanding the neurobiological basis of socio-sexual behaviors and social cognition. However, the cellular mechanisms involved in these behaviors are not well known. The protocol aims to obtain neural progenitor cells from the neurogenic niches of the adult prairie vole, which are cultured under non-adherent conditions, to generate neurospheres. The size and number of neurospheres depend on the region (subventricular zone or dentate gyrus) and sex of the prairie vole. This method is a remarkable tool to study sex-dependent differences in neurogenic niches in vitro and the neuroplasticity changes associated with social behaviors such as pair bonding and biparental care. Also, cognitive conditions that entail deficits in social interactions (autism spectrum disorders and schizophrenia) could be examined.
Collapse
Affiliation(s)
- Daniela Ávila-González
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México;
| | - Larry J Young
- Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University
| | - Francisco Camacho
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México
| | - Raúl G Paredes
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México; Escuela Nacional de Estudios Superiores Juriquilla, Universidad Nacional Autónoma de México
| | - Néstor F Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología;
| | - Wendy Portillo
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México;
| |
Collapse
|
16
|
Newmaster KT, Nolan ZT, Chon U, Vanselow DJ, Weit AR, Tabbaa M, Hidema S, Nishimori K, Hammock EAD, Kim Y. Quantitative cellular-resolution map of the oxytocin receptor in postnatally developing mouse brains. Nat Commun 2020; 11:1885. [PMID: 32313029 PMCID: PMC7171089 DOI: 10.1038/s41467-020-15659-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 03/19/2020] [Indexed: 12/17/2022] Open
Abstract
The oxytocin receptor (OTR) plays critical roles in social behavior development. Despite its significance, brain-wide quantitative understanding of OTR expression remains limited in postnatally developing brains. Here, we develop postnatal 3D template brains to register whole brain images with cellular resolution to systematically quantify OTR cell densities. We utilize fluorescent reporter mice (Otrvenus/+) and find that cortical regions show temporally and spatially heterogeneous patterns with transient postnatal OTR expression without cell death. Cortical OTR cells are largely glutamatergic neurons with the exception of cells in layer 6b. Subcortical regions show similar temporal regulation except the hypothalamus and two hypothalamic nuclei display sexually dimorphic OTR expression. Lack of OTR expression correlates with reduced dendritic spine densities in selected cortical regions of developing brains. Lastly, we create a website to visualize our high-resolution imaging data. In summary, our research provides a comprehensive resource for postnatal OTR expression in the mouse brain.
Collapse
Affiliation(s)
- Kyra T Newmaster
- Department of Neural and Behavioral Sciences, Penn State University, Hershey, PA, USA
| | - Zachary T Nolan
- Department of Neural and Behavioral Sciences, Penn State University, Hershey, PA, USA
| | - Uree Chon
- Department of Neural and Behavioral Sciences, Penn State University, Hershey, PA, USA
| | - Daniel J Vanselow
- Department of Neural and Behavioral Sciences, Penn State University, Hershey, PA, USA
- Department of Pathology, College of Medicine, Penn State University, Hershey, PA, USA
| | - Abigael R Weit
- Department of Neural and Behavioral Sciences, Penn State University, Hershey, PA, USA
| | - Manal Tabbaa
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Shizu Hidema
- Tohoku University Graduate School of Agricultural Science, Miyagi, Japan
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University, Hikarigaoka 1, Fukushima City, Fukushima Prefecture, Japan
| | - Katsuhiko Nishimori
- Tohoku University Graduate School of Agricultural Science, Miyagi, Japan
- Department of Obesity and Internal Inflammation, Fukushima Medical University, Hikarigaoka 1, Fukushima City, Fukushima Prefecture, Japan
| | - Elizabeth A D Hammock
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Yongsoo Kim
- Department of Neural and Behavioral Sciences, Penn State University, Hershey, PA, USA.
| |
Collapse
|
17
|
Wallace KJ, Rausch RT, Ramsey ME, Cummings ME. Sex differences in cognitive performance and style across domains in mosquitofish (Gambusia affinis). Anim Cogn 2020; 23:655-669. [PMID: 32166514 DOI: 10.1007/s10071-020-01367-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/13/2020] [Accepted: 02/26/2020] [Indexed: 12/28/2022]
Abstract
Given that the sexes often differ in their ecological and sexual selection pressures, sex differences in cognitive properties are likely. While research on sexually dimorphic cognition often focuses on performance, it commonly overlooks how sexes diverge across cognitive domains and in behaviors exhibited during a cognitive task (cognitive style). We tested male and female western mosquitofish (Gambusia affinis) in three cognitive tasks: associative learning (numerical discrimination), cognitive flexibility (detour task), and spatio-temporal learning (shuttlebox). We characterized statistical relationships between cognitive performances and cognitive style during the associative learning task with measures of anxiety, boldness, exploration, reaction time, and activity. We found sex differences in performance, cognitive style, and the relationships between cognitive domains. Females outperformed males in the spatio-temporal learning task, while the sexes performed equally in associate learning and cognitive flexibility assays. Females (but not males) exhibited a 'fast-exploratory' cognitive style during associative learning trials. Meanwhile, only males showed a significant positive relationship between domains (associative learning and cognitive flexibility). We propose that these sexually dimorphic cognitive traits result from strong sexual conflict in this taxon; and emphasize the need to explore suites of sex-specific cognitive traits and broader comparative work examining sexual selection and cognition.
Collapse
Affiliation(s)
- Kelly J Wallace
- Department of Integrative Biology, University of Texas, 1 University Station C0990, Austin, TX, 78712, USA.
| | - Richie T Rausch
- Department of Integrative Biology, University of Texas, 1 University Station C0990, Austin, TX, 78712, USA
| | - Mary E Ramsey
- Department of Integrative Biology, University of Texas, 1 University Station C0990, Austin, TX, 78712, USA
| | - Molly E Cummings
- Department of Integrative Biology, University of Texas, 1 University Station C0990, Austin, TX, 78712, USA
| |
Collapse
|
18
|
Rice MA, Sanín G, Ophir AG. Social context alters spatial memory performance in free-living male prairie voles. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190743. [PMID: 31827827 PMCID: PMC6894606 DOI: 10.1098/rsos.190743] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
Spatial memory is crucial for mating success because it enables males to locate potential mates and potential competitors in space. Intraspecific competition and its varying intensity under certain conditions are potentially important for shaping spatial memory. For example, spatial memory could enable males to know where competitors are (contest competition), it could help males find mating partners (scramble competition) or both. We manipulated the intensity of intraspecific competition in two distinct contexts by altering the operational sex ratio of prairie voles (Microtus ochrogaster) living in outdoor enclosures by creating male- and female-biased sex ratios. After living freely under these contexts for four weeks, we compared males' performance in a laboratory spatial memory test. Males in the male-biased context demonstrated better spatial memory performance than males in the female-biased context. Notably, these data show that in spite of experiencing equally complex spatial contexts (i.e. natural outdoor enclosures), it was the social context that influenced spatial cognition, and it did so in a manner consistent with the hypothesis that spatial memory is particularly relevant for male-male interactions.
Collapse
Affiliation(s)
- Marissa A. Rice
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Gloria Sanín
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Alexander G. Ophir
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
19
|
Molina-García L, Barrios A. Sex differences in learning — shared principles across taxa. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2018.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Blankenship PA, Normann MC, Donaldson TN, Baumeister J, McNeal N, Grippo AJ, Wallace DG. Making waves: Comparing Morris water task performance in rats and prairie voles. Behav Brain Res 2018; 360:7-15. [PMID: 30472112 DOI: 10.1016/j.bbr.2018.11.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 11/26/2022]
Abstract
Spatial processing is a critical component for survival. This domain of information processing has been extensively studied in rats and mice. Limited work has examined the capacity of other rodent species, like the prairie vole (Microtus ochrogaster), to process spatial information. The Morris water task (MWT) is a classic spatial task that has been used to examine spatial cognition in rodents. This task involves an animal developing configural relationships between extra-maze cues and the location of a hidden platform to successfully escape from a pool of water. The current study compared performance in the MWT between rats and prairie voles. Rats were observed to outperform prairie voles in key aspects of the task including latency to find the platform, directness of swim paths to the platform, and degrees of heading error. These results may be attributed to potential interspecies differences in spatial cognition, stress reactivity, physiology, or motivation. This study provides the foundation for future work investigating the spatial cognition of prairie voles and the factors that contribute to water task performance in rodents.
Collapse
Affiliation(s)
| | - Marigny C Normann
- Psychology Department, Northern Illinois University, DeKalb, IL 60115-2892 USA
| | - Tia N Donaldson
- Psychology Department, Northern Illinois University, DeKalb, IL 60115-2892 USA
| | - Joanna Baumeister
- Psychology Department, Northern Illinois University, DeKalb, IL 60115-2892 USA
| | - Neal McNeal
- Psychology Department, Northern Illinois University, DeKalb, IL 60115-2892 USA
| | - Angela J Grippo
- Psychology Department, Northern Illinois University, DeKalb, IL 60115-2892 USA
| | - Douglas G Wallace
- Psychology Department, Northern Illinois University, DeKalb, IL 60115-2892 USA
| |
Collapse
|
21
|
|
22
|
Stevenson TJ, Alward BA, Ebling FJP, Fernald RD, Kelly A, Ophir AG. The Value of Comparative Animal Research: Krogh's Principle Facilitates Scientific Discoveries. ACTA ACUST UNITED AC 2017; 5:118-125. [PMID: 32743064 DOI: 10.1177/2372732217745097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Biomedical research is dominated by relatively few nonhuman animals to investigate healthy and disease conditions. Research has overrelied on these models due to their well-described genomes, the capability to control specific genes, and the high rate of reproduction. However, recent advances in large-scale molecular sequencing experiments have revealed, in some cases, the limited similarities in experimental outcomes observed in common rodents (i.e., mice) compared with humans. The value of more varied comparative animal models includes examples such as long-term body weight regulation in seasonally breeding hamsters as a means to help understand the obesity epidemic, vocal learning in songbirds to illuminate language acquisition and maintenance, and reproduction in cichlid fish to discover novel genes conserved in humans. Studying brain genes in prairie voles and cichlids advanced knowledge about social behavior. Taken together, experiments on diverse animal species highlight nontraditional systems for advancing our understanding of human health and well-being.
Collapse
|