1
|
Zhang Y, Qin Y, Ju H, Liu J, Chang F, Junaid M, Duan D, Zhang J, Diao X. Mechanistic toxicity and growth abnormalities mediated by subacute exposure to environmentally relevant levels of benzophenone-3 in clown anemonefish (Amphiprion ocellaris). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166308. [PMID: 37595922 DOI: 10.1016/j.scitotenv.2023.166308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/17/2023] [Accepted: 08/12/2023] [Indexed: 08/20/2023]
Abstract
Benzophenone-3 (BP-3) is a UV filter that is ubiquitously present in the environment due to its photostability and degradation resistance and has wide applications in personal care products. BP-3 will eventually be discharged into the ocean. Studies shows BP-3 interferes with endocrine system of aquatic organisms, especially fish. However, the toxicity and mechanisms of subacute exposure of the coral reef fish to BP-3 remain elusive. Here, we exposed the one-month-old clown anemonefish to BP-3 at 1 and 10 μg/L for 14 and 28 days, respectively. After chronic exposure, the effects of BP-3 on the growth of clown anemonefish were investigated in terms of growth-related hormones, immune enzyme activity, digestive enzyme activity, transcriptional profiling of feeding- and obesity-related genes and digital RNA sequencing. The body weight in the BP-3 groups were abnormally increased (1 μg/L group in 14 days treatment and all groups in 28 days treatment), altered insulin content (28 days exposure), immune-related and digestive-related enzymatic activities. At the molecular level, BP-3 interferes with the expression of feeding- and obesity-related genes. Digital RNA sequencing analysis showed that BP-3 interferes with Kyoto encyclopedia of genes and genomes (KEGG) pathways related to growth, social behavior (learning behavior), Mitogen-Activated Protein Kinase (MAPK) signaling pathway, PI3K-Akt signaling pathway, and insulin secretion. Notably, in the insulin secretion, BP-3 induced Ca2+ up-regulation that may damage β cells. Growth abnormalities and social behavior (learning behavior) KEGG pathway disturbances may have potential impacts on populations of clown anemonefish. Our results reveal the toxicological effects of subacute exposure to BP-3, and provides insight into the effects and mechanisms of BP-3 on clown anemonefish growth.
Collapse
Affiliation(s)
- Yankun Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou 571158, China; College of Life Science Hainan Normal University, Haikou, Hainan 571158, China
| | - Yongqiang Qin
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou 571158, China; College of Life Science Hainan Normal University, Haikou, Hainan 571158, China
| | - Hanye Ju
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou 571158, China; College of Life Science Hainan Normal University, Haikou, Hainan 571158, China
| | - Jin Liu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou 571158, China; College of Life Science Hainan Normal University, Haikou, Hainan 571158, China
| | - Fengtong Chang
- College of Ecology and Environment Hainan University, Haikou, Hainan 570228, China
| | - Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - Dandan Duan
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou 571158, China; College of Life Science Hainan Normal University, Haikou, Hainan 571158, China
| | - Jiliang Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou 571158, China; College of Life Science Hainan Normal University, Haikou, Hainan 571158, China
| | - Xiaoping Diao
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou 571158, China; College of Life Science Hainan Normal University, Haikou, Hainan 571158, China.
| |
Collapse
|
2
|
Schwerdtfeger J, Sauerwein H, Albrecht E, Mazzuoli-Weber G, von Soosten D, Dänicke S, Kuhla B. The effect of N-arachidonoylethanolamide administration on energy and fat metabolism of early lactating dairy cows. Sci Rep 2023; 13:14665. [PMID: 37673919 PMCID: PMC10482912 DOI: 10.1038/s41598-023-41938-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/04/2023] [Indexed: 09/08/2023] Open
Abstract
The aim of the study was to investigate the effect of N-arachidonoylethanolamide (AEA), an endocannabinoid with orexigenic characteristics, on plasma endocannabinoid concentrations, feed intake, energy balance, lipomobilisation, and hepatic lipid metabolism of early-lactating dairy cows. The experiment involved 10 pairs of Holstein half-sibling cows (end of 2nd-3rd pregnancy). Half-sibs of each pair were randomly assigned to either AEA (n = 10) or control (CON) group (n = 10). From day 1 to 30 postpartum, the AEA group received 5 intraperitoneal injections per week of 3 µg/kg body weight AEA and the CON group 0.9% NaCl. In week 1-3 postpartum, AEA administration had no effect on dry matter intake, body weight, or lipomobilisation, but increased plasma triglyceride concentration on d 21 p.p. and mRNA abundances of genes related to hepatic triglyceride synthesis. In week 4 postpartum, the AEA group showed reduced feed intake and whole-body carbohydrate oxidation, but increased whole-body fat oxidation and hepatic lipid accumulation, likely as a result of a counter-regulatory leptin increase. In conclusion, the present study shows a tissue-specific AEA insensitivity and may point to a leptin-controlled regulation of the ECS in early-lactation.
Collapse
Affiliation(s)
- Jessica Schwerdtfeger
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Helga Sauerwein
- Institute of Physiology, Biochemistry and Animal Hygiene, Bonn University, Katzenburgweg 7-9, 53115, Bonn, Germany
| | - Elke Albrecht
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Gemma Mazzuoli-Weber
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - Dirk von Soosten
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Bundesallee 37, 38116, Brunswick, Germany
| | - Sven Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Bundesallee 37, 38116, Brunswick, Germany
| | - Björn Kuhla
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| |
Collapse
|
3
|
Bradshaw HB, Johnson CT. Measuring the Content of Endocannabinoid-Like Compounds in Biological Fluids: A Critical Overview of Sample Preparation Methodologies. Methods Mol Biol 2023; 2576:21-40. [PMID: 36152175 PMCID: PMC10845095 DOI: 10.1007/978-1-0716-2728-0_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Different mass spectrometric techniques have been used over the past decade to quantify endocannabinoids (eCBs) and related lipids. Even with the level of molecular fingerprinting accuracy of an instrument like the most advanced triple quadrupole mass spectrometer, if one is not getting the most optimized sample to the detector in a way that this improved technology can be of use, then advancements can be stymied. Here, our focus is on review and discussion of sample preparation methodologies used to isolate the eCB anandamide and its close congeners N-acyl ethanolamines and structural congeners (i.e., lipo amino acids, lipoamines, N-acyl amides) in biological fluids. Most of our focus will be on the analysis of these lipids in plasma/serum, but we will also discuss how the same techniques can be used for the analysis of saliva and breast milk.
Collapse
Affiliation(s)
- Heather B Bradshaw
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA.
| | - Clare T Johnson
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| |
Collapse
|
4
|
Chivite M, Comesaña S, Calo J, Soengas JL, Conde-Sieira M. Endocannabinoid receptors are involved in enhancing food intake in rainbow trout. Horm Behav 2022; 146:105277. [PMID: 36356457 DOI: 10.1016/j.yhbeh.2022.105277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022]
Abstract
The mechanisms involved in hedonic regulation of food intake, including endocannabinoid system (ECs) are scarcely known in fish. We recently demonstrate in rainbow trout the presence of a rewarding response mediated by ECs in hypothalamus and telencephalon when fish fed a lipid-enriched diet, and that central administration of main agonists of ECs namely AEA or 2-AG exert a bimodal effect on feed intake in fish with low doses inducing an increase that disappears with the high dose of both endocannabinoids (EC). To assess the precise involvement of the different receptors of the ECs (CNR1, TRPV1, and GPR55) in this response we injected intracerebroventricularly AEA or 2-AG in the absence/presence of specific receptor antagonists (AM251, capsazepine, and ML193; respectively). The presence of antagonists clearly counteracts the effect of EC supporting the specificity of EC action inducing changes not only in ECs but also in GABA and glutamate metabolism ultimately leading to the increase observed in food intake response.
Collapse
Affiliation(s)
- Mauro Chivite
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Spain
| | - Sara Comesaña
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Spain
| | - Jessica Calo
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Spain
| | - José L Soengas
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Spain
| | - Marta Conde-Sieira
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Spain.
| |
Collapse
|
5
|
Kuhla B, van Ackern I. Effects of intracerebroventricular anandamide administration on feed intake and milk yield of dairy cows. JDS COMMUNICATIONS 2022; 3:138-141. [PMID: 36339733 PMCID: PMC9623742 DOI: 10.3168/jdsc.2021-0185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/05/2022] [Indexed: 11/20/2022]
Abstract
Intracerebroventricular N-arachidonylethanolamide (AEA) injection increases short-term feed intake of cows. Intracerebroventricular injection of AEA has no long-term effect on feed intake. Intracerebroventricular AEA injection reduces daily milk production.
Among the endocannabinoids, N-arachidonylethanolamide (AEA; anandamide) plays a key role in regulating energy homeostasis and energy intake. Recent studies suggest the existence of a peripheral mechanism by which AEA increases feed intake in the short term and modulates whole-body energy metabolism in dairy cows. Here, we aimed to test the hypothesis that AEA has a long-lasting central effect in increasing feed intake that leads to an increase in milk yield of dairy cows. In the present pilot study, 3 nonpregnant Holstein dairy cows were equipped with an intracerebroventricular (i.c.v.) catheter. Cows were deprived from feed for 2 h and received either no injection or an i.c.v. injection of either 12 μg of AEA or DMSO (control), followed by measurement of feed intake for 10 h and milk yield. Administration of AEA increased 10-h dry matter intake (DMI) by between 1.13 and 2.06 kg, whereas 22-h DMI was only marginally altered. However, compared with the control treatment, AEA reduced daily milk yield by 0.3 to 1.4 L/d in all 3 cows. The results demonstrate that i.c.v. administration of 12 µg of AEA increased 10-h DMI but decreased daily milk yield by a central mechanism.
Collapse
|
6
|
Díaz-Rúa A, Chivite M, Comesaña S, Conde-Sieira M, Soengas JL. The Opioid System in Rainbow Trout Telencephalon Is Probably Involved in the Hedonic Regulation of Food Intake. Front Physiol 2022; 13:800218. [PMID: 35299666 PMCID: PMC8921556 DOI: 10.3389/fphys.2022.800218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
We hypothesize that opioids are involved in the regulation of food intake in fish through homeostatic and hedonic mechanisms. Therefore, we evaluated in rainbow trout (Oncorhynchus mykiss) hypothalamus and telencephalon changes in precursors, endogenous ligands and receptors of the opioid system under different situations aimed to induce changes in the homeostatic (through fasted/fed/refed fish) and hedonic (through feeding fish a control or a palatable high-fat diet) regulation of food intake. No major changes occurred in parameters assessed related with the nutritional condition of fish (fasted/fed/refed), allowing us to suggest that the opioid system seems not to have an important role in the homeostatic regulation of food intake in rainbow trout. The responses observed in telencephalon of rainbow trout fed the palatable high-fat diet included a decrease in mRNA abundance of the opioid precursor penka, in a way similar to that known in mammals, and increased mRNA abundance of the opioid receptors oprd1 and oprk1 supporting a role for telencephalic opioid system in the hedonic regulation of food intake in fish.
Collapse
|