1
|
Rager C, Klöpper T, Tasch S, Whittaker MR, Exintaris B, Mietens A, Middendorff R. The Influence of Cell Isolation and Culturing on Natriuretic Peptide Receptors in Aortic Vascular Smooth Muscle Cells. Cells 2025; 14:51. [PMID: 39791752 PMCID: PMC11720613 DOI: 10.3390/cells14010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/22/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025] Open
Abstract
Vascular smooth muscle cell (SMC) relaxation by guanylyl cyclases (GCs) and cGMP is mediated by NO and its receptor soluble GC (sGC) or natriuretic peptides (NPs) ANP/BNP and CNP with the receptors GC-A and GC-B, respectively. It is commonly accepted that cultured SMCs differ from those in intact vessels. Nevertheless, cell culture often remains the first step for signaling investigations and drug testing. Previously, we showed that even popular reference genes changed dramatically after SMC isolation from aorta. Regarding NP receptors, a substantial amount of data relies on cell culture. We hypothesize that the NP/cGMP system in intact aortic tunica media differs from isolated and cultured aortic SMCs. Therefore, we studied isolation and culturing effects on the expression of NP receptors GC-A, GC-B, and NP clearance receptor (NPRC) compared to sGC. We investigated intact tunica media and primary SMCs from the longitudinal halves of the same rat aorta. GC activity was monitored by cyclic guanosine monophosphate (cGMP). In addition, we hypothesize that there are sex-dependent differences in the NP/cGMP cascade in both intact tissue and cultured cells. We, therefore, analyzed a male and female cohort. Expression was quantified by RT-qPCR comparing aortic media and SMCs with our recently validated reference gene (RG) small nuclear ribonucleoprotein 2 (U2). Only GC-A was stably expressed. In intact media, GC-A exceeded GC-B and NPRC. However, GC-B, NPRC, and sGC were dramatically upregulated in cultured SMCs of the same aortae different from the stable GC-A. The expression was mirrored by NP-induced GC activity. In cultured cells, changes in GC activity were delayed compared to receptor expression. Minor differences between both sexes could also be revealed. Thus, isolation and culture fundamentally alter the cGMP system in vascular SMCs with potential impact on drug testing and scRNAseq. Especially, the dramatic increase in the clearance receptor NPRC in culture might distort all physiological ANP, BNP, and CNP effects.
Collapse
MESH Headings
- Animals
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Receptors, Atrial Natriuretic Factor/metabolism
- Receptors, Atrial Natriuretic Factor/genetics
- Male
- Rats
- Female
- Aorta/cytology
- Aorta/metabolism
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/cytology
- Cells, Cultured
- Cyclic GMP/metabolism
- Cell Separation
- Rats, Wistar
- Cell Culture Techniques/methods
Collapse
Affiliation(s)
- Christine Rager
- Institute of Anatomy & Cell Biology, Faculty of Medicine, Justus-Liebig-University, Aulweg 123, 35392 Giessen, Germany; (C.R.)
- Drug Delivery, Disposition, and Dynamics (D4), Monash Institute of Pharmacy & Pharmaceutical Sciences (MIPS), Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia;
| | - Tobias Klöpper
- Institute of Anatomy & Cell Biology, Faculty of Medicine, Justus-Liebig-University, Aulweg 123, 35392 Giessen, Germany; (C.R.)
| | - Sabine Tasch
- Institute of Anatomy & Cell Biology, Faculty of Medicine, Justus-Liebig-University, Aulweg 123, 35392 Giessen, Germany; (C.R.)
| | - Michael Raymond Whittaker
- Drug Delivery, Disposition, and Dynamics (D4), Monash Institute of Pharmacy & Pharmaceutical Sciences (MIPS), Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia;
| | - Betty Exintaris
- Pharmacy and Pharmaceutical Sciences Education, Monash Institute of Pharmacy & Pharmaceutical Sciences (MIPS), Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Andrea Mietens
- Institute of Anatomy & Cell Biology, Faculty of Medicine, Justus-Liebig-University, Aulweg 123, 35392 Giessen, Germany; (C.R.)
| | - Ralf Middendorff
- Institute of Anatomy & Cell Biology, Faculty of Medicine, Justus-Liebig-University, Aulweg 123, 35392 Giessen, Germany; (C.R.)
| |
Collapse
|
2
|
Lu YY, Li SJ, Zhang Z, He S, Guo YT, Hong MN, Shao S, Wang RQ, Zhang J, Wang JG, Gao PJ, Li XD. C-atrial natriuretic peptide (ANP) 4-23 attenuates renal fibrosis in deoxycorticosterone-acetate-salt hypertensive mice. Exp Cell Res 2023; 431:113738. [PMID: 37572787 DOI: 10.1016/j.yexcr.2023.113738] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/08/2023] [Accepted: 08/04/2023] [Indexed: 08/14/2023]
Abstract
Epithelial-mesenchymal transition (EMT) plays a critical role in hypertension-induced renal fibrosis, a final pathway that leads to end-stage renal failure. C-Atrial natriuretic peptide (ANP)4-23, a specific agonist of natriuretic peptide receptor-C (NPR-C), has been reported to have protective effects against hypertension. However, the role of C-ANP4-23 in hypertension-associated renal fibrosis has not yet been elucidated. In this study, mice were randomly divided into SHAM group, DOCA-salt group and DOCA-salt + C-ANP4-23 group. Renal morphology changes, renal function and fibrosis were detected. Human proximal tubular epithelial cells (HK2) stimulated by aldosterone were used for cell function and mechanism study. The DOCA-salt treated mice exhibited hypertension, kidney fibrosis and renal dysfunction, which were attenuated by C-ANP4-23. Moreover, C-ANP4-23 inhibited DOCA-salt treatment-induced renal EMT as evidenced by decrease of the mesenchymal marker alpha-smooth muscle actin (ACTA2) and vimentin and increase of epithelial cell marker E-cadherin. In HK2 cells, aldosterone induced EMT response, which was also suppressed by C-ANP4-23. The key transcription factors (twist, snail, slug and ZEB1) involved in EMT were increased in the kidney of DOCA-salt-treated mice, which were also suppressed by C-ANP4-23. Mechanistically, C-ANP4-23 inhibited the aldosterone-induced translocation of MR from cytosol to nucleus without change of MR expression. Furthermore, C-ANP4-23 rescued the enhanced expression of NADPH oxidase (NOX) 4 and oxidative stress after aldosterone stimulation. Aldosterone-induced Akt and Erk1/2 activation was also suppressed by C-ANP4-23. Our data suggest that C-ANP4-23 attenuates renal fibrosis, likely through inhibition of MR activation, enhanced oxidative stress and Akt and Erk1/2 signaling pathway.
Collapse
Affiliation(s)
- Yuan-Yuan Lu
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China; Shanghai Geriatric Medical Center, Shanghai, China; Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shi-Jin Li
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China; State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Zhong Zhang
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Shun He
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Yue-Tong Guo
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Mo-Na Hong
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Shuai Shao
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Rui-Qi Wang
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Jia Zhang
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Ji-Guang Wang
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Ping-Jin Gao
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Xiao-Dong Li
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China.
| |
Collapse
|
3
|
Natriuretic peptide receptor-C releases and activates guanine nucleotide-exchange factor H1 in a ligand-dependent manner. Biochem Biophys Res Commun 2021; 552:9-16. [PMID: 33740666 DOI: 10.1016/j.bbrc.2021.03.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/02/2021] [Accepted: 03/06/2021] [Indexed: 01/07/2023]
Abstract
Although natriuretic peptide receptor-C (NPR-C) is involved in the clearance of natriuretic peptides from plasma, it also possesses other physiological functions, such as inhibition of adenylyl cyclase activity through Gαi. However, the physiological roles and intracellular signaling pathways of NPR-C have yet been not fully elucidated. In this study, we identified a RhoA-specific guanine nucleotide-exchange factor, GEF-H1, as a novel binding protein of NPR-C. We demonstrated that endogenous NPR-C interacted with GEF-H1 in HeLa cells, and that the interaction between NPR-C and GEF-H1 was dependent on a 37-amino acid cytoplasmic region of NPR-C. In contrast, another natriuretic peptide receptor, NPR-A, which includes the kinase homology and guanylyl cyclase domains in the intracellular region, did not interact with GEF-H1. We also revealed that the ligands of NPR-C (i.e., ANP, CNP, and osteocrin) caused dissociation of GEF-H1 from NPR-C. Furthermore, osteocrin treatment induced phosphorylation of GEF-H1 at Ser-886, enhanced the interaction of GEF-H1 with 14-3-3, and increased the amount of activated GEF-H1. These findings strongly supported that NPR-C may be involved in diverse physiological roles by regulating GEF-H1 signaling.
Collapse
|
4
|
Hossain E, Li Y, Anand-Srivastava MB. Role of the JAK2/STAT3 pathway in angiotensin II-induced enhanced expression of Giα proteins and hyperproliferation of aortic vascular smooth muscle cells. Can J Physiol Pharmacol 2021; 99:237-246. [PMID: 33002365 DOI: 10.1139/cjpp-2020-0415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We earlier showed that angiotensin (Ang) II-induced overexpression of Giα proteins contributes to the hyperproliferation of vascular smooth muscle cells (VSMC). In addition, the implication of the JAK2/STAT3 pathway in Ang II-induced hyperproliferation of VSMC has also been reported. However, the role of the JAK2/STAT3 pathway in Ang II-induced overexpression of Giα proteins and hyperproliferation of VSMC remains unexplored. In the present study, we show that inhibition or knockdown of the JAK2/STAT3 pathway by a specific inhibitor "cucurbitacin I" (CuI) or siRNAs attenuated Ang II-induced overexpression of Giα proteins and hyperproliferation of VSMC. In addition, the enhanced expression of cell cycle proteins induced by Ang II was also attenuated by CuI. Furthermore, Ang II-induced enhanced production of the superoxide anion (O2 -), H2O2, and NADPH oxidase activity, as well as the enhanced expression of NADPH oxidase subunits implicated in enhanced expression of Giα proteins and hyperproliferation, were also attenuated by inhibition of the JAK2/STAT3 pathway. On the other hand, Ang II-induced inhibition and augmentation of the levels of nitric oxide and peroxynitrite, respectively, in VSMC were restored to control levels by CuI. In summary, our results demonstrate that Ang II through the JAK2/STAT3 pathway increases nitroxidative stress, which contributes to the overexpression of Giα proteins and cell cycle proteins and the hyperproliferation of VSMC.
Collapse
MESH Headings
- Animals
- Rats
- Angiotensin II/pharmacology
- Aorta/drug effects
- Aorta/metabolism
- Aorta/cytology
- Cell Proliferation/drug effects
- Cells, Cultured
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- Janus Kinase 2/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- NADPH Oxidases/metabolism
- Rats, Sprague-Dawley
- Signal Transduction/drug effects
- STAT3 Transcription Factor/metabolism
- Male
Collapse
Affiliation(s)
- Ekhtear Hossain
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Yuan Li
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Madhu B Anand-Srivastava
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
5
|
Fish-Trotter H, Ferguson JF, Patel N, Arora P, Allen NB, Bachmann KN, Daniels LB, Reilly MP, Lima JAC, Wang TJ, Gupta DK. Inflammation and Circulating Natriuretic Peptide Levels. Circ Heart Fail 2020; 13:e006570. [PMID: 32507024 DOI: 10.1161/circheartfailure.119.006570] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND NPs (natriuretic peptides) are cardiac-derived hormones that promote natriuresis, diuresis, and vasodilation. Preclinical evidence suggests that nonhemodynamic triggers for NP release exist, with a few studies implicating inflammatory stimuli. We examined the association between inflammation and NP levels in humans. METHODS The associations between inflammation and NP levels were examined in 3 independent studies. First, in 5481 MESA (Multi-Ethnic Study of Atherosclerosis) participants, the cross-sectional (exam 1) and longitudinal (exams 1 to 3) associations between circulating IL6 (interleukin-6) and NT-proBNP (N terminal pro B-type natriuretic peptide) levels were examined in multivariable-adjusted models. Second, in a prospective study of 115 healthy individuals, changes in NP levels were quantified following exposure to lipopolysaccharide as an inflammatory stimulus. Third, in 13 435 hospitalized patients, the association between acute inflammatory conditions and circulating NP levels was assessed using multivariable-adjusted models. RESULTS At the baseline MESA exam, each 1-unit higher natural log IL6 was associated with 16% higher NT-proBNP level ([95% CI, 10%-22%]; P=0.002). Each 1-unit higher baseline natural log IL6 level also associated with 6% higher NT-proBNP level ([95% CI, 1%-11%]; P=0.02) at 4-year follow-up. In the lipopolysaccharide study, median NT-proBNP levels rose from 21 pg/mL pre-lipopolysaccharide to 54 pg/mL post-lipopolysaccharide, P<0.001. In the hospitalized patient study, acute inflammatory conditions were associated with 36% higher NP levels ([95% CI, 17%-60%]; P<0.001). CONCLUSIONS Inflammation appears to be associated with NP release. Interpretation of NP levels should therefore take into account inflammatory conditions.
Collapse
Affiliation(s)
- Hannah Fish-Trotter
- Vanderbilt Translational and Clinical Cardiovascular Research Center, University Medical Center, Nashville, TN (H.F.-T., J.F.F., K.N.B., D.K.G)
| | - Jane F Ferguson
- Vanderbilt Translational and Clinical Cardiovascular Research Center, University Medical Center, Nashville, TN (H.F.-T., J.F.F., K.N.B., D.K.G)
| | - Nirav Patel
- Department of Medicine (N.P.), University of Alabama-Birmingham, Birmingham, AL
| | - Pankaj Arora
- Division of Cardiovascular Medicine (P.A.), University of Alabama-Birmingham, Birmingham, AL
| | - Norrina B Allen
- Department of Preventive Medicine, Northwestern University, Chicago, IL (N.B.A.)
| | - Katherine N Bachmann
- Vanderbilt Translational and Clinical Cardiovascular Research Center, University Medical Center, Nashville, TN (H.F.-T., J.F.F., K.N.B., D.K.G).,Veterans Health Administration, Tennessee Valley Healthcare System, Clinical Sciences Research and Development, Nashville, TN (K.N.B.).,Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (K.N.B.)
| | - Lori B Daniels
- Division of Cardiovascular Medicine, University of California-San Diego, La Jolla, CA (L.B.D.)
| | - Muredach P Reilly
- Irving Institute for Clinical and Translational Research and Division of Cardiology, Columbia University Medical Center, New York, NY (M.P.R.)
| | - Joao A C Lima
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD (J.A.C.L.)
| | - Thomas J Wang
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX (T.J.W.)
| | - Deepak K Gupta
- Vanderbilt Translational and Clinical Cardiovascular Research Center, University Medical Center, Nashville, TN (H.F.-T., J.F.F., K.N.B., D.K.G)
| |
Collapse
|
6
|
Zhu XL, Zhang T, Xu ZQ, Ma XC, Wang ZJ, Zou CW, Li JX, Jing HY. High salt-induced weakness of anti-oxidative function of natriuretic peptide receptor-C and podocyte damage in the kidneys of Dahl rats. Chin Med J (Engl) 2020; 133:1182-1191. [PMID: 32433050 PMCID: PMC7249711 DOI: 10.1097/cm9.0000000000000752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Atrial natriuretic peptide (ANP) and its natriuretic peptide receptors A (NPR-A) and C (NPR-C) are involved in the regulation of physiological and pathophysiological process of blood pressure. The present study aimed to determine the role of NPR-C in the development of salt-sensitive hypertension. METHODS The Dahl salt-sensitive (DS) and salt-resistant (DR) rats were used in this study. Animals were matched according to their age and weight, and then placed on either a high-salt (HS, 8%) or a normal-salt (NS, 0.4%) diet for 6 weeks randomly using random number table. The systolic blood pressure (SBP), plasmatic sodium concentration (PLNa), urinary sodium excretion (UVNa), and serum creatinine concentration (Scr) were measured. The concentration of ANP in blood and tissues (heart and kidney) was detected by enzyme-linked immunosorbent assay. The expression of ANP, NPR-A, and NPR-C in kidney was evaluated with western blot analysis. Regarding renal redox state, the concentration changes in malondialdehyde (MDA), lipofuscin, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox), and nitric oxide synthase (NOS) in kidney were detected by a spectrophotometric method. The kidney damage was evaluated using pathological techniques and the succinodehydrogenase (SDHase) examination. Furthermore, after an intra-peritoneal injection of C-atrial natriuretic peptide (ANP)4-23 (C-ANP4-23), an NPR-C receptor agonist, the SBP, biochemical values in blood and urine, and renal redox state were evaluated. The paired Student's t test and analysis of variance followed by the Bonferroni test were performed for statistical analyses of the comparisons between two groups and multiple groups, respectively. RESULTS The baseline SBP in all groups was within the normal range. At the end of the 6-week experiment, HS diet significantly increased the SBP in DS rats from 116.63 ± 2.90 mmHg to 162.25 ± 2.15 mmHg (t = -10.213, P < 0.001). The changes of SBP were not significant in DS rats on an NS diet and DR rats on an NS diet or on an HS diet (all P > 0.05). The significant increase of PLNa, UVNa, and Scr related to an HS diet was found in both DS and DR rats (all P < 0.05). However, significant changes in the concentration (t = -21.915, P < 0.001) and expression of renal ANP (t = -3.566, P = 0.016) and the expression of renal NPR-C (t = 5.864, P = 0.002) were only observed in DS hypertensive rats. The significantly higher desmin immunochemical staining score (t = -5.715, P = 0.005) and mitochondrial injury score (t = -6.325, P = 0.003) accompanied by the lower SDHase concentration (t = 3.972, P = 0.017) revealed mitochondrial pathologic abnormalities in podocytes in DS rats with an HS diet. The distinct increases of MDA (t = -4.685, P = 0.009), lipofuscin (t = -8.195, P = 0.001), and Nox (t = -12.733, P < 0.001) but not NOS (t = -0.328, P = 0.764) in kidneys were also found in DS hypertensive rats. C-ANP4-23 treatment significantly decreased the SBP induced by HS in DS rats (P < 0.05), which was still higher than NS groups with the vehicle or C-ANP4-23 treatment (P < 0.05). Moreover, the HS-induced increase of MDA, lipofuscin, Nox concentrations, and Nox4 expression in DS rats was significantly attenuated by C-ANP4-23 treatment as compared with those with HS diet and vehicle injection (all P < 0.05). CONCLUSIONS The results indicated that the renal NPR-C might be involved in the salt-sensitive hypertension through the damage of mitochondria in podocytes and the reduction of the anti-oxidative function. Hence, C-ANP4-23 might serve as a therapeutic agent in treating salt-sensitive hypertension.
Collapse
Affiliation(s)
- Xiao-Long Zhu
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Tao Zhang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Zhen-Qiang Xu
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Xiao-Chun Ma
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Zheng-Jun Wang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Cheng-Wei Zou
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Jing-Xin Li
- Department of Physiology, Medical School of Shandong University, Jinan, Shandong 250021, China
| | - Hai-Yan Jing
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| |
Collapse
|
7
|
Sarkar O, Li Y, Anand-Srivastava MB. Resveratrol prevents the development of high blood pressure in spontaneously hypertensive rats through the inhibition of enhanced expression of Giα proteins. Can J Physiol Pharmacol 2019; 97:872-879. [DOI: 10.1139/cjpp-2019-0040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Resveratrol (RV), a polyphenolic component of red wine, has been shown to attenuate high blood pressure (BP) in spontaneously hypertensive rats (SHRs). We previously found that the enhanced expression of Giα proteins plays a role in the pathogenesis of hypertension in SHRs. In the present study, we investigated whether this RV-induced decrease in BP in SHRs can be attributed to the ability of RV to inhibit the enhanced expression of Giα proteins and the upstream signaling molecules implicated in the overexpression of Giα proteins. Administration of RV (50 mg/kg per day) to prehypertensive 2-week-old SHRs for 6 weeks prevented the development of high BP and inhibited the enhanced expression of Giα proteins, the enhanced levels of superoxide anion (O2−) and NADPH oxidase activity, the enhanced activation (phosphorylation) of c-Src and growth factor receptors, as well as the enhanced levels of extracellular signal-regulated kinase 1/2 (ERK1/2) and protein kinase B (Akt) exhibited by vascular smooth muscle cells isolated from SHRs. In conclusion, these results indicate that RV attenuates the development of high BP in SHRs through the inhibition of enhanced levels of Giα proteins, oxidative stress, and the upstream signaling molecules that contribute to the overexpression of Giα proteins. These findings suggest that RV could potentially be used as a therapeutic agent in the treatment of cardiovascular complications including hypertension.
Collapse
Affiliation(s)
- Oli Sarkar
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Yuan Li
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Madhu B. Anand-Srivastava
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
8
|
Caniffi C, Cerniello FM, Bouchet G, Sueiro ML, Tomat A, Maglio DG, Toblli JE, Arranz C. Chronic treatment with C-type natriuretic peptide impacts differently in the aorta of normotensive and hypertensive rats. Pflugers Arch 2019; 471:1103-1115. [DOI: 10.1007/s00424-019-02287-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 12/24/2022]
|
9
|
Hossain E, Sarkar O, Li Y, Anand-Srivastava MB. Inhibition of overexpression of Giα proteins and nitroxidative stress contribute to sodium nitroprusside-induced attenuation of high blood pressure in SHR. Physiol Rep 2019; 6:e13658. [PMID: 29595917 PMCID: PMC5875540 DOI: 10.14814/phy2.13658] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/13/2017] [Accepted: 01/15/2018] [Indexed: 01/08/2023] Open
Abstract
We earlier showed that vascular smooth muscle cells (VSMC) from spontaneously hypertensive rats (SHR) exhibit enhanced expression of Giα proteins which was attributed to the decreased levels of nitric oxide (NO), because elevation of the intracellular levels of NO by NO donors; sodium nitroprusside (SNP) and S-Nitroso-N-acetyl-DL-penicillamine (SNAP), attenuated the enhanced expression of Giα proteins. Since the enhanced expression of Giα proteins is implicated in the pathogenesis of hypertension, the present study was undertaken to investigate if treatment of SHR with SNP could also attenuate the development of high blood pressure (BP) and explore the underlying molecular mechanisms. Intraperitoneal injection of SNP at a concentration of 0.5 mg/kg body weight twice a week for 2 weeks into SHR attenuated the high blood pressure by about 80 mmHg without affecting the BP in WKY rats. SNP treatment also attenuated the enhanced levels of superoxide anion (O2- ), hydrogen peroxide (H2 O2 ), peroxynitrite (ONOO- ), and NADPH oxidase activity in VSMC from SHR to control levels. In addition, the overexpression of different subunits of NADPH oxidase; Nox-1, Nox-2, Nox-4, P22phox , and P47phox , and Giα proteins in VSMC from SHR were also attenuated by SNP treatment. On the other hand, SNP treatment augmented the decreased levels of intracellular NO, eNOS, and cGMP in VSMC from SHR. These results suggest that SNP treatment attenuates the development of high BP in SHR through the elevation of intracellular levels of cGMP and inhibition of the enhanced levels of Giα proteins and nitroxidative stress.
Collapse
Affiliation(s)
- Ekhtear Hossain
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Oli Sarkar
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Yuan Li
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Madhu B Anand-Srivastava
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, Canada
| |
Collapse
|
10
|
Natriuretic peptide receptor-C activation attenuates angiotensin II-induced enhanced oxidative stress and hyperproliferation of aortic vascular smooth muscle cells. Mol Cell Biochem 2018; 448:77-89. [DOI: 10.1007/s11010-018-3316-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/01/2018] [Indexed: 01/26/2023]
|
11
|
Sarkar O, Li Y, Anand-Srivastava MB. Nitric oxide attenuates overexpression of Giα proteins in vascular smooth muscle cells from SHR: Role of ROS and ROS-mediated signaling. PLoS One 2017; 12:e0179301. [PMID: 28692698 PMCID: PMC5503203 DOI: 10.1371/journal.pone.0179301] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/26/2017] [Indexed: 11/18/2022] Open
Abstract
Vascular smooth muscle cells (VSMC) from spontaneously hypertensive rats (SHR) exhibit decreased levels of nitric oxide (NO) that may be responsible for the overexpression of Giα proteins that has been shown as a contributing factor for the pathogenesis of hypertension in SHR. The present study was undertaken to investigate if increasing the intracellular levels of NO by NO donor S-Nitroso-N-acetyl-DL-penicillamine (SNAP) could attenuate the enhanced expression of Giα proteins in VSMC from SHR and explore the underlying mechanisms responsible for this response. The expression of Giα proteins and phosphorylation of ERK1/2, growth factor receptors and c-Src was determined by Western blotting using specific antibodies. Treatment of VSMC from SHR with SNAP for 24 hrs decreased the enhanced expression of Giα-2 and Giα-3 proteins and hyperproliferation that was not reversed by 1H (1, 2, 4) oxadiazole (4, 3-a) quinoxalin-1-one (ODQ), an inhibitor of soluble guanylyl cyclase, however, PD98059, a MEK inhibitor restored the SNAP-induced decreased expression of Giα proteins towards control levels. In addition, the increased production of superoxide anion, NAD(P)H oxidase activity, overexpression of AT1 receptor, Nox4, p22phox and p47phox proteins, enhanced levels of TBARS and protein carbonyl, increased phosphorylation of PDGF-R, EGF-R, c-Src and ERK1/2 in VSMC from SHR were all decreased to control levels by SNAP treatment. These results suggest that NO decreased the enhanced expression of Giα-2/3 proteins and hyperproliferation of VSMC from SHR by cGMP-independent mechanism and involves ROS and ROS-mediated transactivation of EGF-R/PDGF-R and MAP kinase signaling pathways.
Collapse
MESH Headings
- Animals
- Cell Proliferation/drug effects
- Cyclic GMP/analogs & derivatives
- Cyclic GMP/pharmacology
- DNA/biosynthesis
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Flavonoids/pharmacology
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- Male
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/metabolism
- NADPH Oxidases/metabolism
- Nitric Oxide/pharmacology
- Nitric Oxide Donors/pharmacology
- Nitroprusside/pharmacology
- Oxadiazoles/pharmacology
- Oxidative Stress/drug effects
- Phosphorylation/drug effects
- Protein Carbonylation/drug effects
- Rats, Inbred SHR
- Rats, Inbred WKY
- Reactive Oxygen Species/metabolism
- Receptor, Angiotensin, Type 1/metabolism
- S-Nitroso-N-Acetylpenicillamine/pharmacology
- Signal Transduction/drug effects
- Superoxides/metabolism
- Thiobarbituric Acid Reactive Substances/metabolism
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- Oli Sarkar
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montréal, Montréal, Canada
| | - Yuan Li
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montréal, Montréal, Canada
| | - Madhu B. Anand-Srivastava
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montréal, Montréal, Canada
- * E-mail:
| |
Collapse
|
12
|
Ali El-Basyuni Y, Li Y, Anand-Srivastava MB. Knockdown of Inhibitory Guanine Nucleotide Binding Protein Giα-2 by Antisense Oligodeoxynucleotides Attenuates the Development of Hypertension and Tachycardia in Spontaneously Hypertensive Rats. J Am Heart Assoc 2016; 5:e004594. [PMID: 27912212 PMCID: PMC5210347 DOI: 10.1161/jaha.116.004594] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 09/30/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND We previously showed that the levels of both Giα-2 and Giα-3 proteins were augmented in spontaneously hypertensive rats (SHRs) before the onset of hypertension. In addition, intraperitoneal injection of pertussis toxin, which inactivates both Giα proteins, prevented the development of hypertension in SHRs. The aim of the present study was to determine the specific contributions of Giα-2 and Giα-3 proteins to the development of hypertension. METHODS AND RESULTS Antisense oligodeoxynucleotide of Giα-2 and Giα-3 encapsulated in PEG/DOTAP/DOPE cationic liposomes were administrated intravenously into 3-week-old prehypertensive SHRs and Wistar Kyoto rats, whereas the control Wistar Kyoto rats and SHRs received PBS, empty liposomes, or sense. The knockdown of Giα-2 but not Giα-3 protein attenuated tachycardia and prevented the development of hypertension up to age 6 weeks; thereafter, blood pressure started increasing and reached the same level as that of untreated SHRs at 9 weeks. Furthermore, Giα-2 and Giα-3 antisense oligodeoxynucleotide treatments significantly decreased the enhanced levels of Giα-2 and Giα-3 proteins, respectively, and enhanced levels of superoxide anion and NADPH oxidase activity in heart, aorta, and kidney and hyperproliferation of vascular smooth muscle cells from SHRs aged 6 weeks. In addition, antisense oligodeoxynucleotide treatment with Giα-2 but not Giα-3 restored enhanced inhibition of adenylyl cyclase by oxotremorine to WKY levels. CONCLUSIONS These results suggested that the enhanced expression of Giα-2 but not Giα-3 protein plays an important role in the pathogenesis of hypertension and tachycardia in SHRs.
Collapse
MESH Headings
- Adenylyl Cyclase Inhibitors/pharmacology
- Animals
- Aorta/metabolism
- Blood Pressure/physiology
- Cells, Cultured
- Disease Models, Animal
- GTP-Binding Protein alpha Subunit, Gi2/deficiency
- GTP-Binding Protein alpha Subunit, Gi2/physiology
- GTP-Binding Protein alpha Subunits, Gi-Go/deficiency
- GTP-Binding Protein alpha Subunits, Gi-Go/physiology
- Gene Knockdown Techniques
- Heart Rate/physiology
- Hypertension/prevention & control
- Kidney/metabolism
- Liposomes/administration & dosage
- Male
- Muscle, Smooth, Vascular/metabolism
- Myocardium/metabolism
- Oligodeoxyribonucleotides, Antisense/physiology
- Rats, Inbred SHR
- Rats, Inbred WKY
- Signal Transduction/physiology
- Tachycardia/prevention & control
- Transfection/methods
Collapse
Affiliation(s)
- Yousra Ali El-Basyuni
- Department of Molecular and Integrative Physiology, Faculty of Medicine, University of Montreal, Quebec, Canada
| | - Yuan Li
- Department of Molecular and Integrative Physiology, Faculty of Medicine, University of Montreal, Quebec, Canada
| | - Madhu B Anand-Srivastava
- Department of Molecular and Integrative Physiology, Faculty of Medicine, University of Montreal, Quebec, Canada
| |
Collapse
|
13
|
Signaling pathways involved in renal oxidative injury: role of the vasoactive peptides and the renal dopaminergic system. JOURNAL OF SIGNAL TRANSDUCTION 2014; 2014:731350. [PMID: 25436148 PMCID: PMC4243602 DOI: 10.1155/2014/731350] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/16/2014] [Indexed: 12/24/2022]
Abstract
The physiological hydroelectrolytic balance and the redox steady state in the kidney are accomplished by an intricate interaction between signals from extrarenal and intrarenal sources and between antinatriuretic and natriuretic factors. Angiotensin II, atrial natriuretic peptide and intrarenal dopamine play a pivotal role in this interactive network. The balance between endogenous antioxidant agents like the renal dopaminergic system and atrial natriuretic peptide, by one side, and the prooxidant effect of the renin angiotensin system, by the other side, contributes to ensuring the normal function of the kidney. Different pathological scenarios, as nephrotic syndrome and hypertension, where renal sodium excretion is altered, are associated with an impaired interaction between two natriuretic systems as the renal dopaminergic system and atrial natriuretic peptide that may be involved in the pathogenesis of renal diseases. The aim of this review is to update and comment the most recent evidences about the intracellular pathways involved in the relationship between endogenous antioxidant agents like the renal dopaminergic system and atrial natriuretic peptide and the prooxidant effect of the renin angiotensin system in the pathogenesis of renal inflammation.
Collapse
|
14
|
Davel AP, Brum PC, Rossoni LV. Isoproterenol induces vascular oxidative stress and endothelial dysfunction via a Giα-coupled β2-adrenoceptor signaling pathway. PLoS One 2014; 9:e91877. [PMID: 24622771 PMCID: PMC3951496 DOI: 10.1371/journal.pone.0091877] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 02/17/2014] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVE Sustained β-adrenergic stimulation is a hallmark of sympathetic hyperactivity in cardiovascular diseases. It is associated with oxidative stress and altered vasoconstrictor tone. This study investigated the β-adrenoceptor subtype and the signaling pathways implicated in the vascular effects of β-adrenoceptor overactivation. METHODS AND RESULTS Mice lacking the β1- or β2-adrenoceptor subtype (β1KO, β2KO) and wild-type (WT) were treated with isoproterenol (ISO, 15 μg.g(-1) x day(-1), 7 days). ISO significantly enhanced the maximal vasoconstrictor response (Emax) of the aorta to phenylephrine in WT (+34%) and β1KO mice (+35%) but not in β2KO mice. The nitric oxide synthase (NOS) inhibitor L-NAME abolished the differences in phenylephrine response between the groups, suggesting that ISO impaired basal NO availability in the aorta of WT and β1KO mice. Superoxide dismutase (SOD), pertussis toxin (PTx) or PD 98,059 (p-ERK 1/2 inhibitor) incubation reversed the hypercontractility of aortic rings from ISO-treated WT mice; aortic contraction of ISO-treated β2KO mice was not altered. Immunoblotting revealed increased aortic expression of Giα-3 protein (+50%) and phosphorylated ERK1/2 (+90%) and decreased eNOS dimer/monomer ratio in ISO-treated WT mice. ISO enhanced the fluorescence response to dihydroethidium (+100%) in aortas from WT mice, indicating oxidative stress that was normalized by SOD, PTx and L-NAME. The ISO effects were abolished in β2KO mice. CONCLUSIONS The β2-adrenoceptor/Giα signaling pathway is implicated in the enhanced vasoconstrictor response and eNOS uncoupling-mediated oxidative stress due to ISO treatment. Thus, long-term β2-AR activation might results in endothelial dysfunction.
Collapse
MESH Headings
- Animals
- Aorta/drug effects
- Aorta/metabolism
- Aorta/physiology
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- Gene Expression Regulation/drug effects
- Gene Knockout Techniques
- Isoproterenol/pharmacology
- Male
- Mice
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- Nitric Oxide/metabolism
- Nitric Oxide Synthase Type III/chemistry
- Oxidative Stress/drug effects
- Phenylephrine/pharmacology
- Phosphorylation/drug effects
- Protein Multimerization/drug effects
- Protein Structure, Quaternary
- Receptors, Adrenergic, beta-2/deficiency
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Signal Transduction/drug effects
- Vasoconstriction/drug effects
Collapse
Affiliation(s)
- Ana P. Davel
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas-UNICAMP, Campinas, SP, Brazil
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Patricia C. Brum
- School of Physical Education and Sport, University of São Paulo, São Paulo, SP, Brazil
| | - Luciana V. Rossoni
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
15
|
Li Y, Sarkar O, Brochu M, Anand-Srivastava MB. Natriuretic peptide receptor-C attenuates hypertension in spontaneously hypertensive rats: role of nitroxidative stress and Gi proteins. Hypertension 2014; 63:846-55. [PMID: 24470461 DOI: 10.1161/hypertensionaha.113.01772] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
C-Atrial natriuretic peptide (ANP)4-23, a ring deleted analog of ANP that specifically interacts with natriuretic peptide receptor-C (NPR-C), has been shown to decrease the enhanced expression of Giα proteins implicated in the pathogenesis of hypertension. In the present study, we investigated whether in vivo treatment of spontaneously hypertensive rats (SHRs) with C-ANP4-23 could attenuate the development of high blood pressure (BP) and explored the underlying mechanisms responsible for this response. Intraperitoneal injection of C-ANP4-23 at the concentration of 2 or 10 nmol/kg body weight to prehypertensive SHRs attenuated the development of high BP, and at 8 weeks it was decreased by ≈20 and 50 mm Hg, respectively; however, this treatment did not affect BP in Wistar-Kyoto rats. C-ANP4-23 treatment of adult SHRs for 2 weeks also attenuated high BP, heart rate, and restored the impaired vasorelaxation toward control levels. In addition, the enhanced levels of superoxide anion (O2(-)), peroxynitrite, NADPH oxidase activity, and the enhanced expression of Giα proteins, NOX4, p47(phox), nitrotyrosine, and decreased levels of endothelial nitric oxide synthase (eNOS or NOS3) and NO in SHRs were attenuated by C-ANP4-23 treatment; however, the altered levels of NPR-A/NPR-C were not affected by this treatment. In conclusion, these results indicate that NPR-C activation by C-ANP4-23 attenuates the development of high BP in SHRs through the inhibition of enhanced levels of Giα proteins and nitroxidative stress and not through eNOS/cGMP pathway and suggest that NPR-C ligand may have the potential to be used as therapeutic agent in the treatment of cardiovascular complications including hypertension.
Collapse
Affiliation(s)
- Yuan Li
- Department of Physiology, Faculty of Medicine, University of Montreal, C.P. 6128, Succ. Centre-ville, Montréal, Québec H3C 3J7, Canada.
| | | | | | | |
Collapse
|
16
|
De Vito P, Incerpi S, Affabris E, Percario Z, Borgatti M, Gambari R, Pedersen JZ, Luly P. Effect of atrial natriuretic peptide on reactive oxygen species-induced by hydrogen peroxide in THP-1 monocytes: role in cell growth, migration and cytokine release. Peptides 2013; 50:100-8. [PMID: 24120989 DOI: 10.1016/j.peptides.2013.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 09/02/2013] [Accepted: 09/03/2013] [Indexed: 11/26/2022]
Abstract
Atrial natriuretic peptide (ANP), a cardiovascular hormone, elicits different biological actions in the immune system. The aim of the present study was to investigate in THP-1 monocytes the ANP effect on hydrogen peroxide (H2O2)-induced Reactive Oxygen Species (ROS), cell proliferation and migration. A significant increase of H2O2-dependent ROS production was induced by physiological concentration of ANP (10(-10)M). The ANP action was partially affected by cell pretreatment with PD98059, an inhibitor of mitogen activated-protein kinases (MAPK) as well as by wortmannin, an inhibitor of phosphatidylinositol 3-kinase (PI3K) and totally suppressed by diphenylene iodonium (DPI), an inhibitor of the enzyme nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. The hormone effect was mimicked by cANF and an ANP/NPR-C signaling pathway was studied using pertussis toxin (PTX). A significant increase of H2O2-induced cell migration was observed after ANP (10(-10)M) treatment, conversely a decrease of THP-1 proliferation, due to cell death, was found. Both ANP actions were partially prevented by DPI. Moreover, H2O2-induced release of IL-9, TNF-α, MIP-1α and MIP-1β was not counteracted by DPI, whereas no effect was observed in any experimental condition for both IL-6 and IL-1β. Our results support the view that ANP can play a key role during the inflammatory process.
Collapse
Affiliation(s)
- Paolo De Vito
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Sex differences in the beneficial cardiac effects of chronic treatment with atrial natriuretic Peptide in spontaneously hypertensive rats. PLoS One 2013; 8:e71992. [PMID: 23951276 PMCID: PMC3741274 DOI: 10.1371/journal.pone.0071992] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 07/11/2013] [Indexed: 02/07/2023] Open
Abstract
Introduction The aim of this study was to investigate both the effects of chronic treatment with atrial natriuretic peptide (ANP) on systolic blood pressure (SBP), cardiac nitric oxide (NO) system, oxidative stress, hypertrophy, fibrosis and apoptosis in spontaneously hypertensive rats (SHR), and sex-related differences in the response to the treatment. Methods 10 week-old male and female SHR were infused with ANP (100 ng/hr/rat) or saline (NaCl 0.9%) for 14 days (subcutaneous osmotic pumps). SBP was recorded and nitrites and nitrates excretion (NOx) were determined. After treatment, NO synthase (NOS) activity, eNOS expression, thiobarbituric acid-reactive substances (TBARS) and glutathione concentration were determined in left ventricle, as well as the activity of glutathione peroxidase (GPx), catalase (CAT) and superoxide dismutase (SOD). Morphological studies in left ventricle were performed in slices stained with hematoxylin-eosin or Sirius red to identify collagen as a fibrosis indicator; immunohistochemistry was employed for identification of transforming growth factor beta; and apoptosis was evaluated by Tunel assay. Results Female SHR showed lower SBP, higher NO-system activity and less oxidative stress, fibrosis and hypertrophy in left ventricle, as well as higher cardiac NOS activity, eNOS protein content and NOx excretion than male SHR. Although ANP treatment lowered blood pressure and increased NOS activity and eNOS expression in both sexes, cardiac NOS response to ANP was more marked in females. In left ventricle, ANP reduced TBARS and increased glutathione concentration and activity of CAT and SOD enzymes in both sexes, as well as GPx activity in males. ANP decreased fibrosis and apoptosis in hearts from male and female SHR but females showed less end-organ damage in heart. Chronic ANP treatment would ameliorate hypertension and end-organ damage in heart by reducing oxidative stress, increasing NO-system activity, and diminishing fibrosis and hypertrophy.
Collapse
|
18
|
Gusan S, Anand-Srivastava MB. cAMP attenuates the enhanced expression of Gi proteins and hyperproliferation of vascular smooth muscle cells from SHR: role of ROS and ROS-mediated signaling. Am J Physiol Cell Physiol 2013; 304:C1198-209. [PMID: 23576581 DOI: 10.1152/ajpcell.00269.2012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously showed that angiotensin II (ANG II)-induced overexpression of inhibitory G proteins (Gi) was attenuated by dibutyryl-cAMP (db-cAMP) in A10 vascular smooth muscle cells (VSMC). Since enhanced levels of endogenous ANG II contributed to the overexpression of Gi protein and hyperproliferation of VSMC from spontaneously hypertensive rats (SHR), the present study was therefore undertaken to examine if cAMP could also attenuate the overexpression of Gi proteins and hyperproliferation of VSMC from SHR and to explore the underlying molecular mechanisms responsible for this response. The enhanced expression of Giα proteins in VSMC from SHR and Nω-nitro-L-arginine methyl ester hypertensive rats was decreased by db-cAMP. In addition, enhanced inhibition of adenylyl cyclase by inhibitory hormones and forskolin-stimulated adenylyl cyclase activity by low concentration of GTPγS in VSMC from SHR was also restored to Wistar-Kyoto (WKY) levels by db-cAMP. Furthermore, db-cAMP also attenuated the hyperproliferation and the increased production of superoxide anion, NAD(P)H oxidase activity, overexpression of Nox1/Nox2/Nox4 and p47phox proteins, increased phosphorylation of PDGF-receptor (R), EGF-R, c-Src, and ERK1/2 to control levels. In addition, the protein kinase A (PKA) inhibitor reversed the effects of db-cAMP on the expression of Nox4 and Giα proteins and hyperproliferation of VSMC from SHR to WKY levels, while stimulation of the exchange protein directly activated by cAMP did not have any effect on these parameters. These results suggest that cAMP via PKA pathway attenuates the overexpression of Gi proteins and hyperproliferation of VSMC from SHR through the inhibition of ROS and ROS-mediated transactivation of EGF-R/PDGF-R and MAPK signaling pathways.
Collapse
Affiliation(s)
- Svetlana Gusan
- Department of Physiology, Université de Montréal, Montreal, Quebec, Canada
| | | |
Collapse
|
19
|
Sciarretta S, Marchitti S, Bianchi F, Moyes A, Barbato E, Di Castro S, Stanzione R, Cotugno M, Castello L, Calvieri C, Eberini I, Sadoshima J, Hobbs AJ, Volpe M, Rubattu S. C2238 atrial natriuretic peptide molecular variant is associated with endothelial damage and dysfunction through natriuretic peptide receptor C signaling. Circ Res 2013; 112:1355-64. [PMID: 23529183 DOI: 10.1161/circresaha.113.301325] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
RATIONALE C2238 atrial natriuretic peptide (ANP) minor allele (substitution of thymidine with cytosine in position 2238) associates with increased risk of cardiovascular events. OBJECTIVE We investigated the mechanisms underlying the vascular effects of C2238-αANP. METHODS AND RESULTS In vitro, human umbilical vein endothelial cell were exposed to either wild-type (T2238)- or mutant (C2238)-αANP. Cell survival and apoptosis were tested by Trypan blue, annexin V, and cleaved caspase-3 assays. C2238-αANP significantly reduced human umbilical vein endothelial cell survival and increased apoptosis. In addition, C2238-αANP reduced endothelial tube formation, as assessed by matrigel. C2238-αANP did not differentially modulate natriuretic peptide receptor (NPR)-A/B activity with respect to T2238-αANP, as evaluated by intracellular cGMP levels. In contrast, C2238-αANP, but not T2238-αANP, markedly reduced intracellular cAMP levels in an NPR-C-dependent manner. Accordingly, C2238-αANP showed higher affinity binding to NPR-C, than T2238-αANP. Either NPR-C inhibition by antisense oligonucleotide or NPR-C gene silencing by small interfering RNA rescued survival and tube formation of human umbilical vein endothelial cell exposed to C2238-αANP. Similar data were obtained in human aortic endothelial cell with NPR-C knockdown. NPR-C activation by C2238-αANP inhibited the protein kinase A/Akt1 pathway and increased reactive oxygen species. Adenovirus-mediated Akt1 reactivation rescued the detrimental effects of C2238-αANP. Overall, these data indicate that C2238-αANP affects endothelial cell integrity through NPR-C-dependent inhibition of the cAMP/protein kinase A/Akt1 pathway and increased reactive oxygen species production. Accordingly, C2238-αANP caused impairment of acetylcholine-dependent vasorelaxation ex vivo, which was rescued by NPR-C pharmacological inhibition. Finally, subjects carrying C2238 minor allele showed early endothelial dysfunction, which highlights the clinical relevance of our results. CONCLUSIONS C2238-αANP reduces endothelial cell survival and impairs endothelial function through NPR-C signaling. NPR-C targeting represents a potential strategy to reduce cardiovascular risk in C2238 minor-allele carriers.
Collapse
|
20
|
Chronic C-Type Natriuretic Peptide Infusion Attenuates Angiotensin II-Induced Myocardial Superoxide Production and Cardiac Remodeling. Int J Vasc Med 2012; 2012:246058. [PMID: 22848833 PMCID: PMC3405723 DOI: 10.1155/2012/246058] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 05/21/2012] [Accepted: 06/08/2012] [Indexed: 01/21/2023] Open
Abstract
Myocardial oxidative stress and inflammation are key mechanisms in cardiovascular remodeling. C-type natriuretic peptide (CNP) is an endothelium-derived cardioprotective factor, although its effect on cardiac superoxide generation has not been investigated in vivo. This study tested the hypothesis that suppression of superoxide production contributes to the cardioprotective action of CNP. Angiotensin II (Ang II) or saline was continuously infused subcutaneously into mice using an osmotic minipump. Simultaneously with the initiation of Ang II treatment, mice were infused with CNP (0.05 μg/kg/min) or vehicle for 2 weeks. The heart weight to tibial length ratio was significantly increased by Ang II in vehicle-treated mice. Treatment with CNP decreased Ang II-induced cardiac hypertrophy without affecting systolic blood pressure. Echocardiography showed that CNP attenuated Ang II-induced increase in wall thickness, left ventricular dilatation, and decrease in fractional shortening. CNP reduced Ang II-induced increases in cardiomyocyte size and interstitial fibrosis and suppressed hypertrophic- and fibrosis-related gene expression. Finally, CNP decreased Ang II-induced cardiac superoxide production. These changes were accompanied by suppression of NOX4 gene expression. Our data indicate that treatment with CNP attenuated Ang II-induced cardiac hypertrophy, fibrosis, and contractile dysfunction which were accompanied by reduced cardiac superoxide production.
Collapse
|
21
|
Anand-Srivastava MB. Modulation of Gi Proteins in Hypertension: Role of Angiotensin II and Oxidative Stress. Curr Cardiol Rev 2010; 6:298-308. [PMID: 22043206 PMCID: PMC3083811 DOI: 10.2174/157340310793566046] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 09/03/2010] [Accepted: 09/15/2010] [Indexed: 11/22/2022] Open
Abstract
Guanine nucleotide regulatory proteins (G-proteins) play a key role in the regulation of various signal transduction systems including adenylyl cyclase/cAMP and phospholipase C (PLC)/phosphatidyl inositol turnover (PI). These are implicated in the modulation of a variety of physiological functions such as platelet functions, cardiovascular functions, including arterial tone and reactivity. Several abnormalities in adenylyl cyclase activity, cAMP levels and G proteins have shown to be responsible for the altered cardiac performance and vascular functions observed in cardiovascular disease states. The enhanced or unaltered levels of inhibitory G-proteins (Giα-2 and Giα-3) and mRNA have been reported in different models of hypertension, whereas Gsα levels were shown to be unaltered. These changes in G-protein expression were associated with Gi functions. The enhanced levels of Giα proteins precede the development of blood pressure and suggest that overexpression of Gi proteins may be one of the contributing factors for the pathogenesis of hypertension. The augmented levels of vasoactive peptides, including angiotensin II (AngII), were shown to contribute to enhanced expression of Giα proteins and associated adenylyl cyclase signaling and thereby increased blood pressure. In addition, enhanced oxidative stress in hypertension due to Ang II may also be responsible for the enhanced expression of Giα proteins observed in hypertension. The mechanism by which oxidative stress enhances the expression of Gi proteins appears to be through the activation of mitogen activated protein (MAP) kinase activity.
Collapse
|
22
|
Skowrońska M, Zielińska M, Albrecht J. Stimulation of natriuretic peptide receptor C attenuates accumulation of reactive oxygen species and nitric oxide synthesis in ammonia-treated astrocytes. J Neurochem 2010; 115:1068-76. [PMID: 20854429 DOI: 10.1111/j.1471-4159.2010.07008.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Oxidative and nitrosative stress contribute to ammonia-induced astrocytic dysfunction in hepatic encephalopathy. Treatment of cultured astrocytes with 5 mmol/L ammonium chloride ('ammonia') increased the production of reactive oxygen species (ROS), including the toxic NADPH oxidase reaction product, •O(2)(-). Atrial natriuretic peptide (ANP), natriuretic peptide C and a selective natriuretic peptide receptor (NPR)-C ligand, cANP((4-23),) each decreased the total ROS content both in control cells and cells treated with ammonia. However, attenuation of •O(2)(-) accumulation by ANP and cANP((4-23),) was observed in ammonia-treated cells only and the effect of cANP((4-23)) was decreased when the NADPH oxidase-regulatory protein G(iα-2) was blocked with a specific anti-G(iα-2) antibody. Although in contrast to ANP, cANP((4-23)) did not elevate the cGMP content in control astrocytes, it decreased cAMP content and reduced the expression of G(iα-2), the NADPH oxidase-regulatory protein. The results show the presence of functional NPR-C in astrocytes, activation of which (i) attenuates basal ROS production, and (ii) prevents excessive accumulation of the toxic ROS species, •O(2)(-) by ammonia. Ammonia, ANP and cANP((4-23)) added separately, each stimulated formation of NO(x) (nitrates + nitrites) which was associated with up-regulation of the activity [cANP((4-23))] or/and expression (ammonia) of the endothelial isoform of nitric oxide synthase. However, the ammonia-induced increase of NO(x) was not augmented by co-addition of ANP, and was reduced to the control level by co-addition of cANP((4-23)) , indicating that activation of NPR-C may also reduce nitrosative stress. Future hepatic encephalopathy therapy might include the use of cANP((4-23)) or other NPR-C agonists to control oxidative/nitrosative stress induced by ammonia.
Collapse
Affiliation(s)
- Marta Skowrońska
- Department of Neurotoxicology, Mossakowski Medical Research Center, Polish Academy of Sciences, Warsaw, Poland
| | | | | |
Collapse
|
23
|
Li Y, Lévesque LO, Anand-Srivastava MB. Epidermal growth factor receptor transactivation by endogenous vasoactive peptides contributes to hyperproliferation of vascular smooth muscle cells of SHR. Am J Physiol Heart Circ Physiol 2010; 299:H1959-67. [PMID: 20852045 DOI: 10.1152/ajpheart.00526.2010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We showed previously that vascular smooth muscle cells (VMSC) from spontaneously hypertensive rats (SHR) exhibit increased proliferation. The present study was undertaken to examine whether the enhanced levels of endogenous angiotensin (ANG) II and endothelin (ET)-1 contribute to the enhanced proliferation of VSMC from SHR and to further investigate the underlying mechanisms responsible for this response. The enhanced proliferation of VSMC from SHR compared with Wistar-Kyoto (WKY) rats was attenuated by losartan, BQ-123, BQ-788, and AG-1478, inhibitors of AT(1), ET(A), ET(B) and epidermal growth factor (EGF-R) receptors, respectively. In addition, BQ-123 and BQ-788 also attenuated the enhanced production of superoxide anion (O(2)(-)) and NADPH oxidase activity. Furthermore, diphenyleneiodonium (DPI, inhibitor of NADPH oxidase), N-acetyl-L-cysteine (NAC, O(2)(-) scavenger), and PP2 (inhibitor of c-Src) also inhibited the augmented proliferation of VSMC from SHR to WKY levels. In addition, the enhanced phosphorylation of EGF-R in VSMC from SHR compared with WKY was also attenuated by inhibitors of AT(1), ET(A), ET(B), and EGF-R but not by inhibitors of platelet-derived growth factor receptor or insulin-like growth factor receptor. Furthermore, the enhanced phosphorylation of ERK1/2 in VSMC from SHR was also attenuated by AT(1), ET(A), ET(B), c-Src, and EGF-R inhibitors. The phosphorylation of c-Src was significantly augmented in VSMC from SHR compared with VSMC from WKY and was attenuated by DPI and NAC. These data suggest that endogenous vasoactive peptides, through increased oxidative stress and resultant activation of c-Src, transactivate EGF-R, which through mitogen-activated protein (MAP) kinase signaling may contribute to the hyperproliferation of VSMC from SHR.
Collapse
Affiliation(s)
- Yuan Li
- Department of Physiology, Faculty of Medicine, University of Montreal, Montréal, Québec, Canada
| | | | | |
Collapse
|
24
|
De Vito P, Incerpi S, Pedersen JZ, Luly P. Atrial natriuretic peptide and oxidative stress. Peptides 2010; 31:1412-9. [PMID: 20385186 DOI: 10.1016/j.peptides.2010.04.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 04/01/2010] [Accepted: 04/01/2010] [Indexed: 02/07/2023]
Abstract
Atrial natriuretic peptide (ANP) is a hormone, produced mainly by cardiomyocytes, with a major role in cardiovascular homeostatic mechanisms such as natriuresis and vasodilation, which serve to regulate blood pressure. However, ANP also acts as an autocrine/paracrine factor on other targets such as kidney, lung, thymus, liver and the immune system. ANP participates in the regulation of cell growth and proliferation, and evidence is accumulating that these effects are associated with the generation of reactive oxygen species (ROS). In vascular cells and cardiomyocytes ANP stimulates the antioxidant defense, but in other systems such as hepatoblastoma and macrophages ANP may produce either antioxidant or prooxidant effects, depending on experimental conditions and cell context. At present very little is known on the relationship between ANP and ROS production in the normal homeostatic processes or during the development of cardiovascular diseases and cancer. Our current knowledge of the role of ANP in signaling pathways leading to the generation of intracellular messengers such as diacylglycerol (DAG), and guanosine 3'-5'-cyclic monophosphate has been examined in order to clarify the mechanisms by which the hormone may counteract or contribute to the potentially dangerous effects of free radicals.
Collapse
Affiliation(s)
- Paolo De Vito
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| | | | | | | |
Collapse
|