1
|
Olshansky B, Bhatt DL, Miller M, Steg PG, Brinton EA, Jacobson TA, Ketchum SB, Doyle RT, Juliano RA, Jiao L, Kowey PR, Reiffel JA, Tardif J, Ballantyne CM, Chung MK. Cardiovascular Benefits of Icosapent Ethyl in Patients With and Without Atrial Fibrillation in REDUCE-IT. J Am Heart Assoc 2023; 12:e026756. [PMID: 36802845 PMCID: PMC10111466 DOI: 10.1161/jaha.121.026756] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/31/2022] [Indexed: 02/23/2023]
Abstract
Background In REDUCE-IT (Reduction of Cardiovascular Events With Icosapent Ethyl-Intervention Trial), icosapent ethyl (IPE) versus placebo) reduced cardiovascular death, myocardial infarction, stroke, coronary revascularization, or unstable angina requiring hospitalization, but was associated with increased atrial fibrillation/atrial flutter (AF) hospitalization (3.1% IPE versus 2.1% placebo; P=0.004). Methods and Results We performed post hoc efficacy and safety analyses of patients with or without prior AF (before randomization) and with or without in-study time-varying AF hospitalization to assess relationships of IPE (versus placebo) and outcomes. In-study AF hospitalization event rates were higher in patients with prior AF (12.5% versus 6.3%, IPE versus placebo; P=0.007) versus without prior AF (2.2% versus 1.6%, IPE versus placebo; P=0.09). Serious bleeding rates trended higher in patients with (7.3% versus 6.0%, IPE versus placebo; P=0.59) versus without prior AF (2.3% versus 1.7%, IPE versus placebo; P=0.08). With IPE, serious bleeding trended higher regardless of prior AF (interaction P value [Pint]=0.61) or postrandomization AF hospitalization (Pint=0.66). Patients with prior AF (n=751, 9.2%) versus without prior AF (n=7428, 90.8%) had similar relative risk reductions of the primary composite and key secondary composite end points with IPE versus placebo (Pint=0.37 and Pint=0.55, respectively). Conclusions In REDUCE-IT, in-study AF hospitalization rates were higher in patients with prior AF especially in those randomized to IPE. Although serious bleeding trended higher in those randomized to IPE versus placebo over the course of the study, serious bleeding was not different regardless of prior AF or in-study AF hospitalization. Patients with prior AF or in-study AF hospitalization had consistent relative risk reductions across primary, key secondary, and stroke end points with IPE. Registration URL: https://clinicaltrials.gov/ct2/show/NCT01492361; Unique Identifier: NCT01492361.
Collapse
Affiliation(s)
| | - Deepak L. Bhatt
- Mount Sinai HeartIcahn School of Medicine at Mount Sinai Health SystemNew YorkNYUSA
| | - Michael Miller
- Department of MedicineCrescenz Veterans Affairs Medical Center and Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
| | - Ph. Gabriel Steg
- French Alliance for Cardiovascular Trials, Hôpital BichatParisFrance
- Assistance Publique‐Hôpitaux de ParisUniversité Paris–Cité, INSERM UnitéParisFrance
| | | | - Terry A. Jacobson
- Lipid Clinic and Cardiovascular Risk Reduction Program, Department of MedicineEmory University School of MedicineAtlantaGAUSA
| | | | | | | | | | | | - James A. Reiffel
- Columbia University Vagelos College of Physicians & SurgeonsNew YorkNYUSA
| | | | | | | | | |
Collapse
|
2
|
Tajima K, Yamakawa K, Kuwabara Y, Miyazaki C, Sunaga H, Uezono S. Propofol anesthesia decreases the incidence of new-onset postoperative atrial fibrillation compared to desflurane in patients undergoing video-assisted thoracoscopic surgery: A retrospective single-center study. PLoS One 2023; 18:e0285120. [PMID: 37130135 PMCID: PMC10153745 DOI: 10.1371/journal.pone.0285120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/16/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND Postoperative atrial fibrillation (POAF) increases postoperative morbidity, mortality, and length of hospital stay. Propofol is reported to modulate atrial electrophysiology and the cardiac autonomic nervous system. Therefore, we retrospectively examined whether propofol suppresses POAF in patients undergoing video-assisted thoracoscopic surgery (VATS) compared to desflurane. METHODS We retrospectively recruited adult patients who underwent VATS during the period from January 2011 to May 2018 in an academic university hospital. Between continuous propofol and desflurane administration during anesthetic maintenance, we investigated the incidence of new-onset POAF (within 48 hours after surgery) before and after propensity score matching. RESULTS Of the 482 patients, 344 received propofol, and 138 received desflurane during anesthetic maintenance. The incidence of POAF in the propofol group was less than that in the desflurane group (4 [1.2%] vs. 8 patients [5.8%], odds ratio [OR]; 0.161, 95% confidence interval (CI), 0.040-0.653, p = 0.011) in the present study population. After adjustment for propensity score matching (n = 254, n = 127 each group), the incidence of POAF was still less in propofol group than desflurane group (1 [0.8%] vs. 8 patients [6.3%], OR; 0.068, 95% CI: 0.007-0.626, p = 0.018). CONCLUSIONS These retrospective data suggest propofol anesthesia significantly inhibits POAF compared to desflurane anesthesia in patients undergoing VATS. Further prospective studies are needed to elucidate the mechanism of propofol on the inhibition of POAF.
Collapse
Affiliation(s)
- Karin Tajima
- Department of Anesthesiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kentaro Yamakawa
- Department of Anesthesiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuki Kuwabara
- Department of Anesthesiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Chika Miyazaki
- Department of Anesthesiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Hiroshi Sunaga
- Department of Anesthesiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Shoichi Uezono
- Department of Anesthesiology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Leucine 434 is essential for docosahexaenoic acid-induced augmentation of L-glutamate transporter current. J Biol Chem 2022; 299:102793. [PMID: 36509140 PMCID: PMC9823230 DOI: 10.1016/j.jbc.2022.102793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022] Open
Abstract
Astrocytic excitatory amino acid transporter 2 (EAAT2) plays a major role in removing the excitatory neurotransmitter L-glutamate (L-Glu) from synaptic clefts in the forebrain to prevent excitotoxicity. Polyunsaturated fatty acids such as docosahexaenoic acid (DHA, 22:6 n-3) enhance synaptic transmission, and their target molecules include EAATs. Here, we aimed to investigate the effect of DHA on EAAT2 and identify the key amino acid for DHA/EAAT2 interaction by electrophysiological recording of L-Glu-induced current in Xenopus oocytes transfected with EAATs, their chimeras, and single mutants. DHA transiently increased the amplitude of EAAT2 but tended to decrease that of excitatory amino acid transporter subtype 1 (EAAT1), another astrocytic EAAT. Single mutation of leucine (Leu) 434 to alanine (Ala) completely suppressed the augmentation by DHA, while mutation of EAAT1 Ala 435 (corresponding to EAAT2 Leu434) to Leu changed the effect from suppression to augmentation. Other polyunsaturated fatty acids (docosapentaenoic acid, eicosapentaenoic acid, arachidonic acid, and α-linolenic acid) similarly augmented the EAAT2 current and suppressed the EAAT1 current. Finally, our docking analysis suggested the most stable docking site is the lipid crevice of EAAT2, in close proximity to the L-Glu and sodium binding sites, suggesting that the DHA/Leu434 interaction might affect the elevator-like slide and/or the shapes of the other binding sites. Collectively, our results highlight a key molecular detail in the DHA-induced regulation of synaptic transmission involving EAATs.
Collapse
|
4
|
Galán-Vidal J, Socuéllamos PG, Baena-Nuevo M, Contreras L, González T, Pérez-Poyato MS, Valenzuela C, González-Lamuño D, Gandarillas A. A novel loss-of-function mutation of the voltage-gated potassium channel Kv10.2 involved in epilepsy and autism. Orphanet J Rare Dis 2022; 17:345. [PMID: 36068614 PMCID: PMC9446776 DOI: 10.1186/s13023-022-02499-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Background Novel developmental mutations associated with disease are a continuous challenge in medicine. Clinical consequences caused by these mutations include neuron and cognitive alterations that can lead to epilepsy or autism spectrum disorders. Often, it is difficult to identify the physiological defects and the appropriate treatments. Results We have isolated and cultured primary cells from the skin of a patient with combined epilepsy and autism syndrome. A mutation in the potassium channel protein Kv10.2 was identified. We have characterised the alteration of the mutant channel and found that it causes loss of function (LOF). Primary cells from the skin displayed a very striking growth defect and increased differentiation. In vitro treatment with various carbonic anhydrase inhibitors with various degrees of specificity for potassium channels, (Brinzolamide, Acetazolamide, Retigabine) restored the activation capacity of the mutated channel. Interestingly, the drugs also recovered in vitro the expansion capacity of the mutated skin cells. Furthermore, treatment with Acetazolamide clearly improved the patient regarding epilepsy and cognitive skills. When the treatment was temporarily halted the syndrome worsened again. Conclusions By in vitro studying primary cells from the patient and the activation capacity of the mutated protein, we could first, find a readout for the cellular defects and second, test pharmaceutical treatments that proved to be beneficial. The results show the involvement of a novel LOF mutation of a Potassium channel in autism syndrome with epilepsy and the great potential of in vitro cultures of primary cells in personalised medicine of rare diseases.
Collapse
Affiliation(s)
- Jesús Galán-Vidal
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Paula G Socuéllamos
- Instituto de Investigaciones Biomédicas Alberto Sols, IIBM, CSIC-UAM, Madrid, Spain.,Spanish Network for Biomedical Research in Cardiovascular Research (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - María Baena-Nuevo
- Instituto de Investigaciones Biomédicas Alberto Sols, IIBM, CSIC-UAM, Madrid, Spain.,Spanish Network for Biomedical Research in Cardiovascular Research (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Lizbeth Contreras
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Teresa González
- Instituto de Investigaciones Biomédicas Alberto Sols, IIBM, CSIC-UAM, Madrid, Spain.,Spanish Network for Biomedical Research in Cardiovascular Research (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - María S Pérez-Poyato
- Neuropediatric, University Hospital Marqués de Valdecilla, 39008, Santander, Spain
| | - Carmen Valenzuela
- Instituto de Investigaciones Biomédicas Alberto Sols, IIBM, CSIC-UAM, Madrid, Spain. .,Spanish Network for Biomedical Research in Cardiovascular Research (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.
| | - Domingo González-Lamuño
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain. .,Paediatric Department, University of Cantabria University, Marqués de Valdecilla Hospital, 39008, Santander, Spain.
| | - Alberto Gandarillas
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain. .,INSERM, Occitanie Méditerranée, 34394, Montpellier, France.
| |
Collapse
|
5
|
Perspectives on Potential Fatty Acid Modulations of Motility Associated Human Sperm Ion Channels. Int J Mol Sci 2022; 23:ijms23073718. [PMID: 35409078 PMCID: PMC8998313 DOI: 10.3390/ijms23073718] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Human spermatozoan ion channels are specifically distributed in the spermatozoan membrane, contribute to sperm motility, and are associated with male reproductive abnormalities. Calcium, potassium, protons, sodium, and chloride are the main ions that are regulated across this membrane, and their intracellular concentrations are crucial for sperm motility. Fatty acids (FAs) affect sperm quality parameters, reproductive pathologies, male fertility, and regulate ion channel functions in other cells. However, to date the literature is insufficient to draw any conclusions regarding the effects of FAs on human spermatozoan ion channels. Here, we aimed to discern the possible effects of FAs on spermatozoan ion channels and direct guidance for future research. After investigating the effects of FAs on characteristics related to human spermatozoan motility, reproductive pathologies, and the modulation of similar ion channels in other cells by FAs, we extrapolated polyunsaturated FAs (PUFAs) to have the highest potency in modulating sperm ion channels to increase sperm motility. Of the PUFAs, the ω-3 unsaturated fatty acids have the greatest effect. We speculate that saturated and monounsaturated FAs will have little to no effect on sperm ion channel activity, though the possible effects could be opposite to those of the PUFAs, considering the differences between FA structure and behavior.
Collapse
|
6
|
Polyunsaturated Fatty Acids and Their Potential Therapeutic Role in Cardiovascular System Disorders-A Review. Nutrients 2018; 10:nu10101561. [PMID: 30347877 PMCID: PMC6213446 DOI: 10.3390/nu10101561] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/11/2018] [Accepted: 10/19/2018] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular diseases are described as the leading cause of morbidity and mortality in modern societies. Therefore, the importance of cardiovascular diseases prevention is widely reflected in the increasing number of reports on the topic among the key scientific research efforts of the recent period. The importance of essential fatty acids (EFAs) has been recognized in the fields of cardiac science and cardiac medicine, with the significant effects of various fatty acids having been confirmed by experimental studies. Polyunsaturated fatty acids are considered to be important versatile mediators for improving and maintaining human health over the entire lifespan, however, only the cardiac effect has been extensively documented. Recently, it has been shown that omega-3 fatty acids may play a beneficial role in several human pathologies, such as obesity and diabetes mellitus type 2, and are also associated with a reduced incidence of stroke and atherosclerosis, and decreased incidence of cardiovascular diseases. A reasonable diet and wise supplementation of omega-3 EFAs are essential in the prevention and treatment of cardiovascular diseases prevention and treatment.
Collapse
|
7
|
Brini M, Leanza L, Szabo I. Lipid-Mediated Modulation of Intracellular Ion Channels and Redox State: Physiopathological Implications. Antioxid Redox Signal 2018; 28:949-972. [PMID: 28679281 DOI: 10.1089/ars.2017.7215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Ion channels play an important role in the regulation of organelle function within the cell, as proven by increasing evidence pointing to a link between altered function of intracellular ion channels and different pathologies ranging from cancer to neurodegenerative diseases, ischemic damage, and lysosomal storage diseases. Recent Advances: A link between these pathologies and redox state as well as lipid homeostasis and ion channel function is in the focus of current research. Critical Issues: Ion channels are target of modulation by lipids and lipid messengers, although in most cases the mechanistic details have not been clarified yet. Ion channel function importantly impacts production of reactive oxygen species (ROS), especially in the case of mitochondria and lysosomes. ROS, in turn, may modulate the function of intracellular channels triggering thereby a feedback control under physiological conditions. If produced in excess, ROS can be harmful to lipids and may produce oxidized forms of these membrane constituents that ultimately affect ion channel function by triggering a "circulus vitiosus." Future Directions: The present review summarizes our current knowledge about the contribution of intracellular channels to oxidative stress and gives examples of how these channels are modulated by lipids and how this modulation may affect ROS production in ROS-related diseases. Future studies need to address the importance of the regulation of intracellular ion channels and related oxidative stress by lipids in various physiological and pathological contexts. Antioxid. Redox Signal. 28, 949-972.
Collapse
Affiliation(s)
- Marisa Brini
- Department of Biology, University of Padova, Padova, Italy
| | - Luigi Leanza
- Department of Biology, University of Padova, Padova, Italy
| | - Ildiko Szabo
- Department of Biology, University of Padova, Padova, Italy.,CNR Institute of Neuroscience, Padova, Italy
| |
Collapse
|
8
|
Elinder F, Liin SI. Actions and Mechanisms of Polyunsaturated Fatty Acids on Voltage-Gated Ion Channels. Front Physiol 2017; 8:43. [PMID: 28220076 PMCID: PMC5292575 DOI: 10.3389/fphys.2017.00043] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/16/2017] [Indexed: 01/29/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) act on most ion channels, thereby having significant physiological and pharmacological effects. In this review we summarize data from numerous PUFAs on voltage-gated ion channels containing one or several voltage-sensor domains, such as voltage-gated sodium (NaV), potassium (KV), calcium (CaV), and proton (HV) channels, as well as calcium-activated potassium (KCa), and transient receptor potential (TRP) channels. Some effects of fatty acids appear to be channel specific, whereas others seem to be more general. Common features for the fatty acids to act on the ion channels are at least two double bonds in cis geometry and a charged carboxyl group. In total we identify and label five different sites for the PUFAs. PUFA site 1: The intracellular cavity. Binding of PUFA reduces the current, sometimes as a time-dependent block, inducing an apparent inactivation. PUFA site 2: The extracellular entrance to the pore. Binding leads to a block of the channel. PUFA site 3: The intracellular gate. Binding to this site can bend the gate open and increase the current. PUFA site 4: The interface between the extracellular leaflet of the lipid bilayer and the voltage-sensor domain. Binding to this site leads to an opening of the channel via an electrostatic attraction between the negatively charged PUFA and the positively charged voltage sensor. PUFA site 5: The interface between the extracellular leaflet of the lipid bilayer and the pore domain. Binding to this site affects slow inactivation. This mapping of functional PUFA sites can form the basis for physiological and pharmacological modifications of voltage-gated ion channels.
Collapse
Affiliation(s)
- Fredrik Elinder
- Department of Clinical and Experimental Medicine, Linköping University Linköping, Sweden
| | - Sara I Liin
- Department of Clinical and Experimental Medicine, Linköping University Linköping, Sweden
| |
Collapse
|
9
|
Antollini SS, Barrantes FJ. Fatty Acid Regulation of Voltage- and Ligand-Gated Ion Channel Function. Front Physiol 2016; 7:573. [PMID: 27965583 PMCID: PMC5124694 DOI: 10.3389/fphys.2016.00573] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/09/2016] [Indexed: 12/25/2022] Open
Abstract
Free fatty acids (FFA) are essential components of the cell, where they play a key role in lipid and carbohydrate metabolism, and most particularly in cell membranes, where they are central actors in shaping the physicochemical properties of the lipid bilayer and the cellular adaptation to the environment. FFA are continuously being produced and degraded, and a feedback regulatory function has been attributed to their turnover. The massive increase observed under some pathological conditions, especially in brain, has been interpreted as a protective mechanism possibly operative on ion channels, which in some cases is of stimulatory nature and in other cases inhibitory. Here we discuss the correlation between the structure of FFA and their ability to modulate protein function, evaluating the influence of saturation/unsaturation, number of double bonds, and cis vs. trans isomerism. We further focus on the mechanisms of FFA modulation operating on voltage-gated and ligand-gated ion channel function, contrasting the still conflicting evidence on direct vs. indirect mechanisms of action.
Collapse
Affiliation(s)
- Silvia S Antollini
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (CONICET-UNS)Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del SurBahía Blanca, Argentina
| | | |
Collapse
|
10
|
Moreno C, de la Cruz A, Valenzuela C. In-Depth Study of the Interaction, Sensitivity, and Gating Modulation by PUFAs on K + Channels; Interaction and New Targets. Front Physiol 2016; 7:578. [PMID: 27933000 PMCID: PMC5121229 DOI: 10.3389/fphys.2016.00578] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/11/2016] [Indexed: 02/05/2023] Open
Abstract
Voltage gated potassium channels (KV) are membrane proteins that allow selective flow of K+ ions in a voltage-dependent manner. These channels play an important role in several excitable cells as neurons, cardiomyocytes, and vascular smooth muscle. Over the last 20 years, it has been shown that omega-3 polyunsaturated fatty acids (PUFAs) enhance or decrease the activity of several cardiac KV channels. PUFAs-dependent modulation of potassium ion channels has been reported to be cardioprotective. However, the precise cellular mechanism underlying the cardiovascular benefits remained unclear in part because new PUFAs targets and signaling pathways continue being discovered. In this review, we will focus on recent data available concerning the following aspects of the KV channel modulation by PUFAs: (i) the exact residues involved in PUFAs-KV channels interaction; (ii) the structural PUFAs determinants important for their effects on KV channels; (iii) the mechanism of the gating modulation of KV channels and, finally, (iv) the PUFAs modulation of a few new targets present in smooth muscle cells (SMC), KCa1.1, K2P, and KATP channels, involved in vascular relaxation.
Collapse
Affiliation(s)
- Cristina Moreno
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre Maastricht, Netherlands
| | - Alicia de la Cruz
- Departamento de Modelos Experimentales de Enfermedades Humanas, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC - Universidad Autónoma de Madrid Madrid, Spain
| | - Carmen Valenzuela
- Departamento de Modelos Experimentales de Enfermedades Humanas, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC - Universidad Autónoma de Madrid Madrid, Spain
| |
Collapse
|
11
|
Valenzuela C. M-channels and n-3 polyunsaturated fatty acids: role in pain and epilepsy. Acta Physiol (Oxf) 2016; 218:7-9. [PMID: 27287186 DOI: 10.1111/apha.12734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- C. Valenzuela
- Instituto de Investigaciones Biomédicas ‘Alberto Sols’ CSIC-UAM; Madrid Spain
| |
Collapse
|
12
|
Farag NE, Jeong D, Claydon T, Warwicker J, Boyett MR. Polyunsaturated fatty acids inhibit Kv1.4 by interacting with positively charged extracellular pore residues. Am J Physiol Cell Physiol 2016; 311:C255-68. [PMID: 27281482 DOI: 10.1152/ajpcell.00277.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 06/06/2016] [Indexed: 11/22/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) modulate voltage-gated K(+) channel inactivation by an unknown site and mechanism. The effects of ω-6 and ω-3 PUFAs were investigated on the heterologously expressed Kv1.4 channel. PUFAs inhibited wild-type Kv1.4 during repetitive pulsing as a result of slowing of recovery from inactivation. In a mutant Kv1.4 channel lacking N-type inactivation, PUFAs reversibly enhanced C-type inactivation (Kd, 15-43 μM). C-type inactivation was affected by extracellular H(+) and K(+) as well as PUFAs and there was an interaction among the three: the effect of PUFAs was reversed during acidosis and abolished on raising K(+) Replacement of two positively charged residues in the extracellular pore (H508 and K532) abolished the effects of the PUFAs (and extracellular H(+) and K(+)) on C-type inactivation but had no effect on the lipoelectric modulation of voltage sensor activation, suggesting two separable interaction sites/mechanisms of action of PUFAs. Charge calculations suggest that the acidic head group of the PUFAs raises the pKa of H508 and this reduces the K(+) occupancy of the selectivity filter, stabilizing the C-type inactivated state.
Collapse
Affiliation(s)
- N E Farag
- Cardiovascular Medicine, School of Medicine, University of Manchester, Core Technology Facility, Manchester, United Kingdom
| | - D Jeong
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada; and
| | - T Claydon
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada; and
| | - J Warwicker
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - M R Boyett
- Cardiovascular Medicine, School of Medicine, University of Manchester, Core Technology Facility, Manchester, United Kingdom;
| |
Collapse
|
13
|
D'Espessailles A, Dossi CG, Espinosa A, González-Mañán D, Tapia GS. Dietary Rosa mosqueta (Rosa rubiginosa) oil prevents high diet-induced hepatic steatosis in mice. Food Funct 2015. [DOI: 10.1039/c5fo00741k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effects of dietary Rosa mosqueta (RM, Rosa rubiginosa) oil, rich in α-linolenic acid, in the prevention of liver steatosis were studied in mice fed a high fat diet (HFD).
Collapse
Affiliation(s)
- Amanda D'Espessailles
- Molecular and Clinical Pharmacology Program
- Institute of Biomedical Sciences
- Faculty of Medicine
- University of Chile
- Santiago
| | - Camila G. Dossi
- Molecular and Clinical Pharmacology Program
- Institute of Biomedical Sciences
- Faculty of Medicine
- University of Chile
- Santiago
| | - Alejandra Espinosa
- Department of Medical Technology
- Faculty of Medicine
- University of Chile
- Santiago
- Chile
| | - Daniel González-Mañán
- Molecular and Clinical Pharmacology Program
- Institute of Biomedical Sciences
- Faculty of Medicine
- University of Chile
- Santiago
| | - Gladys S. Tapia
- Molecular and Clinical Pharmacology Program
- Institute of Biomedical Sciences
- Faculty of Medicine
- University of Chile
- Santiago
| |
Collapse
|
14
|
Moreno C, de la Cruz A, Oliveras A, Kharche SR, Guizy M, Comes N, Starý T, Ronchi C, Rocchetti M, Baró I, Loussouarn G, Zaza A, Severi S, Felipe A, Valenzuela C. Marine n-3 PUFAs modulate IKs gating, channel expression, and location in membrane microdomains. Cardiovasc Res 2014; 105:223-32. [PMID: 25497550 DOI: 10.1093/cvr/cvu250] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Polyunsaturated fatty n-3 acids (PUFAs) have been reported to exhibit antiarrhythmic properties. However, the mechanisms of action remain unclear. We studied the electrophysiological effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on IKs, and on the expression and location of Kv7.1 and KCNE1. METHODS AND RESULTS Experiments were performed using patch-clamp, western blot, and sucrose gradient techniques in COS7 cells transfected with Kv7.1/KCNE1 channels. Acute perfusion with both PUFAs increased Kv7.1/KCNE1 current, this effect being greater for DHA than for EPA. Similar results were found in guinea pig cardiomyocytes. Acute perfusion of either PUFA slowed the activation kinetics and EPA shifted the activation curve to the left. Conversely, chronic EPA did not modify Kv7.1/KCNE1 current magnitude and shifted the activation curve to the right. Chronic PUFAs decreased the expression of Kv7.1, but not of KCNE1, and induced spatial redistribution of Kv7.1 over the cell membrane. Cholesterol depletion with methyl-β-cyclodextrin increased Kv7.1/KCNE1 current magnitude. Under these conditions, acute EPA produced similar effects than those induced in non-cholesterol-depleted cells. A ventricular action potential computational model suggested antiarrhythmic efficacy of acute PUFA application under IKr block. CONCLUSIONS We provide evidence that acute application of PUFAs increases Kv7.1/KCNE1 through a probably direct effect, and shows antiarrhythmic efficacy under IKr block. Conversely, chronic EPA application modifies the channel activity through a change in the Kv7.1/KCNE1 voltage-dependence, correlated with a redistribution of Kv7.1 over the cell membrane. This loss of function may be pro-arrhythmic. This shed light on the controversial effects of PUFAs regarding arrhythmias.
Collapse
Affiliation(s)
- Cristina Moreno
- Instituto de Investigaciones Biomédicas 'Alberto Sols' CSIC-UAM, C/Arturo Duperier 4, 28029 Madrid, Spain
| | - Alicia de la Cruz
- Instituto de Investigaciones Biomédicas 'Alberto Sols' CSIC-UAM, C/Arturo Duperier 4, 28029 Madrid, Spain
| | - Anna Oliveras
- Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Sanjay R Kharche
- Biomedical Engineering Laboratory D.E.I.S., University of Bologna, 47521 Cesena, Italy
| | - Miriam Guizy
- Instituto de Investigaciones Biomédicas 'Alberto Sols' CSIC-UAM, C/Arturo Duperier 4, 28029 Madrid, Spain
| | - Nùria Comes
- Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Tomáš Starý
- Biomedical Engineering Laboratory D.E.I.S., University of Bologna, 47521 Cesena, Italy
| | - Carlotta Ronchi
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Marcella Rocchetti
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Isabelle Baró
- L'Institut du Thorax, Unité Inserm UMR 1087/CNRS UMR 6291, Nantes, France
| | - Gildas Loussouarn
- L'Institut du Thorax, Unité Inserm UMR 1087/CNRS UMR 6291, Nantes, France
| | - Antonio Zaza
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Stefano Severi
- Biomedical Engineering Laboratory D.E.I.S., University of Bologna, 47521 Cesena, Italy
| | - Antonio Felipe
- Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Carmen Valenzuela
- Instituto de Investigaciones Biomédicas 'Alberto Sols' CSIC-UAM, C/Arturo Duperier 4, 28029 Madrid, Spain
| |
Collapse
|
15
|
F 16915 prevents heart failure-induced atrial fibrillation: a promising new drug as upstream therapy. Naunyn Schmiedebergs Arch Pharmacol 2014; 387:667-77. [DOI: 10.1007/s00210-014-0975-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 03/12/2014] [Indexed: 11/26/2022]
|
16
|
Cardiac physiology and clinical efficacy of dietary fish oil clarified through cellular mechanisms of omega-3 polyunsaturated fatty acids. Eur J Appl Physiol 2014; 114:1333-56. [DOI: 10.1007/s00421-014-2876-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 03/20/2014] [Indexed: 01/18/2023]
|
17
|
Billman GE. The effects of omega-3 polyunsaturated fatty acids on cardiac rhythm: a critical reassessment. Pharmacol Ther 2013; 140:53-80. [PMID: 23735203 DOI: 10.1016/j.pharmthera.2013.05.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 05/17/2013] [Indexed: 11/28/2022]
Abstract
Although epidemiological studies provide strong evidence for an inverse relationship between omega-3 polyunsaturated fatty acids (n-3 PUFAs) and cardiac mortality, inconsistent and often conflicting results have been obtained from both animal studies and clinical prevention trials. Despite these heterogeneous results, some general conclusions can be drawn from these studies: 1) n-PUFAs have potent effects on ion channels and calcium regulatory proteins that vary depending on the route of administration. Circulating (acute administration) n-3 PUFAs affect ion channels directly while incorporation (long-term supplementation) of these lipids into cell membranes indirectly alter cardiac electrical activity via alteration of membrane properties. 2) n-3 PUFAs reduce baseline HR and increase HRV via alterations in intrinsic pacemaker rate rather than from changes in cardiac autonomic neural regulation. 3) n-3 PUFAs may be only effective if given before electrophysiological or structural remodeling has begun and have no efficacy against atrial fibrillation. 5) Despite initial encouraging results, more recent clinical prevention and animal studies have not only failed to reduce sudden cardiac death but actually increased mortality in angina patients and increased rather than decreased malignant arrhythmias in animal models of regional ischemia. 6) Given the inconsistent benefits reported in clinical and experimental studies and the potential adverse actions on cardiac rhythm noted during myocardial ischemia, n-3 PUFA must be prescribed with caution and generalized recommendations to increase fish intake or to take n-3 PUFA supplements need to be reconsidered.
Collapse
Affiliation(s)
- George E Billman
- Department of Physiology and Cell Biology, The Ohio State University, 304 Hamilton Hall, 1645 Neil Ave., Columbus, OH 43210-1218, United States.
| |
Collapse
|
18
|
Kirkhus B, Lundon AR, Haugen JE, Vogt G, Borge GIA, Henriksen BIF. Effects of environmental factors on edible oil quality of organically grown Camelina sativa. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:3179-3185. [PMID: 23514260 DOI: 10.1021/jf304532u] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The aim of the present study was to evaluate the potential for the production of edible oil from organically grown camelina ( Camelina sativa L. Crantz), focusing on the influence of environmental factors on nutritional quality parameters. Field experiments with precrop barley were conducted in Norway in the growing seasons 2007, 2008, and 2009. Trials were fully randomized with two levels of nitrogen (N) fertilization, 0 and 120 kg total N ha(-1), and two levels of sulfur (S) fertilization, 0 and 20 kg total S ha(-1). Weather conditions, that is, temperature and precipitation, were recorded. Additional experiments were performed in the years 2008 and 2009 to evaluate the effects of replacing precrop barley with precrop pea. Seed oil content was measured by near-infrared transmittance, and crude oil compositions of fatty acids, phytosterols, tocopherols, and phospholipids were analyzed by chromatography and mass spectrometry. Results showed significant seasonal variations in seed oil content and oil composition of fatty acids, tocopherols, phytosterols, and phospholipids that to a great extent could be explained by the variations in weather conditions. Furthermore, significant effects of N fertilization were observed. Seed oil content decreased at the highest level of N fertilization, whereas the oil concentrations of α-linolenic acid (18:3n-3), erucic acid (22:1n-9), tocopherols, and campesterol increased. Pea compared to barley as precrop also increased the 18:3n-3 content of oil. S fertilization had little impact on oil composition, but an increase in tocopherols and a decrease in brassicasterol were observed. In conclusion, organically grown camelina seems to be well suited for the production of edible oil. Variations in nutritional quality parameters were generally small, but significantly influenced by season and fertilization.
Collapse
Affiliation(s)
- Bente Kirkhus
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Tromsø, Norway.
| | | | | | | | | | | |
Collapse
|
19
|
Smithers N, Bolivar JH, Lee AG, East JM. Characterizing the fatty acid binding site in the cavity of potassium channel KcsA. Biochemistry 2012; 51:7996-8002. [PMID: 22971149 PMCID: PMC3466778 DOI: 10.1021/bi3009196] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
We show that interactions of fatty acids with the central
cavity of potassium channel KcsA can be characterized using the fluorescence
probe 11-dansylaminoundecanoic acid (Dauda). The fluorescence emission
spectrum of Dauda bound to KcsA in bilayers of dioleoylphosphatidylcholine
contains three components, which can be attributed to KcsA-bound and
lipid-bound Dauda together with unbound Dauda. The binding of Dauda
to KcsA was characterized by a dissociation constant of 0.47 ±
0.10 μM with 0.94 ± 0.06 binding site per KcsA tetramer.
Displacement of KcsA-bound Dauda by the tetrabutylammonium (TBA) ion
confirmed that the Dauda binding site was in the central cavity of
KcsA. Dissociation constants for a range of fatty acids were determined
by displacement of Dauda: binding of fatty acids increased in strength
with an increasing chain length from C14 to C20 but then decreased
in strength from C20 to C22. Increasing the number of double bonds
in the chain from one to four had little effect on binding, dissociation
constants for oleic acid and arachidonic acid, for example, being
2.9 ± 0.2 and 3.0 ± 0.4 μM, respectively. Binding
of TBA to KcsA was very slow, whereas binding of Dauda was fast, suggesting
that TBA can enter the cavity only through an open channel whereas
Dauda can bind to the closed channel, presumably entering the cavity
via the lipid bilayer.
Collapse
Affiliation(s)
- Natalie Smithers
- Centre for Biological Sciences, Life Sciences Building, University of Southampton , Southampton SO17 1BJ, UK
| | | | | | | |
Collapse
|
20
|
Moreno C, Macias A, Prieto A, De La Cruz A, Valenzuela C. Polyunsaturated Fatty acids modify the gating of kv channels. Front Pharmacol 2012; 3:163. [PMID: 22973228 PMCID: PMC3437463 DOI: 10.3389/fphar.2012.00163] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/20/2012] [Indexed: 11/13/2022] Open
Abstract
Polyunsaturated fatty acids (PUFAs) have been reported to exhibit antiarrhythmic properties, which are attributed to their capability to modulate ion channels. This PUFAs ability has been reported to be due to their effects on the gating properties of ion channels. In the present review, we will focus on the role of PUFAs on the gating of two Kv channels, Kv1.5 and Kv11.1. Kv1.5 channels are blocked by n-3 PUFAs of marine [docosahexaenoic acid (DHA) and eicosapentaenoic acid] and plant origin (alpha-linolenic acid, ALA) at physiological concentrations. The blockade of Kv1.5 channels by PUFAs steeply increased in the range of membrane potentials coinciding with those of Kv1.5 channel activation, suggesting that PUFAs-channel binding may derive a significant fraction of its voltage sensitivity through the coupling to channel gating. A similar shift in the activation voltage was noted for the effects of n-6 arachidonic acid (AA) and DHA on Kv1.1, Kv1.2, and Kv11.1 channels. PUFAs-Kv1.5 channel interaction is time-dependent, producing a fast decay of the current upon depolarization. Thus, Kv1.5 channel opening is a prerequisite for the PUFA-channel interaction. Similar to the Kv1.5 channels, the blockade of Kv11.1 channels by AA and DHA steeply increased in the range of membrane potentials that coincided with the range of Kv11.1 channel activation, suggesting that the PUFAs-Kv channel interactions are also coupled to channel gating. Furthermore, AA regulates the inactivation process in other Kv channels, introducing a fast voltage-dependent inactivation in non-inactivating Kv channels. These results have been explained within the framework that AA closes voltage-dependent potassium channels by inducing conformational changes in the selectivity filter, suggesting that Kv channel gating is lipid dependent.
Collapse
Affiliation(s)
- Cristina Moreno
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid Madrid, Spain
| | | | | | | | | |
Collapse
|
21
|
Moreno C, Macías A, Prieto A, de la Cruz A, González T, Valenzuela C. Effects of n-3 Polyunsaturated Fatty Acids on Cardiac Ion Channels. Front Physiol 2012; 3:245. [PMID: 22934003 PMCID: PMC3429023 DOI: 10.3389/fphys.2012.00245] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 06/14/2012] [Indexed: 12/20/2022] Open
Abstract
Dietary n−3 polyunsaturated fatty acids (PUFAs) have been reported to exhibit antiarrhythmic properties, and these effects have been attributed to their capability to modulate ion channels. In the present review, we will focus on the effects of PUFAs on a cardiac sodium channel (Nav1.5) and two potassium channels involved in cardiac atrial and ventricular repolarization (Kv) (Kv1.5 and Kv11.1). n−3 PUFAs of marine (docosahexaenoic, DHA and eicosapentaenoic acid, EPA) and plant origin (alpha-linolenic acid, ALA) block Kv1.5 and Kv11.1 channels at physiological concentrations. Moreover, DHA and EPA decrease the expression levels of Kv1.5, whereas ALA does not. DHA and EPA also decrease the magnitude of the currents elicited by the activation of Nav1.5 and calcium channels. These effects on sodium and calcium channels should theoretically shorten the cardiac action potential duration (APD), whereas the blocking actions of n−3 PUFAs on Kv channels would be expected to produce a lengthening of cardiac action potential. Indeed, the effects of n−3 PUFAs on the cardiac APD and, therefore, on cardiac arrhythmias vary depending on the method of application, the animal model, and the underlying cardiac pathology.
Collapse
Affiliation(s)
- Cristina Moreno
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM) Madrid, Spain
| | | | | | | | | | | |
Collapse
|
22
|
Tamiji J, Crawford DA. The neurobiology of lipid metabolism in autism spectrum disorders. Neurosignals 2011; 18:98-112. [PMID: 21346377 DOI: 10.1159/000323189] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 11/29/2010] [Indexed: 01/17/2023] Open
Abstract
Autism is a neurodevelopmental disorder characterized by impairments in communication and reciprocal social interaction, coupled with repetitive behavior, which typically manifests by 3 years of age. Multiple genes and early exposure to environmental factors are the etiological determinants of the disorder that contribute to variable expression of autism-related traits. Increasing evidence indicates that altered fatty acid metabolic pathways may affect proper function of the nervous system and contribute to autism spectrum disorders. This review provides an overview of the reported abnormalities associated with the synthesis of membrane fatty acids in individuals with autism as a result of insufficient dietary supplementation or genetic defects. Moreover, we discuss deficits associated with the release of arachidonic acid from the membrane phospholipids and its subsequent metabolism to bioactive prostaglandins via phospholipase A(2)-cyclooxygenase biosynthetic pathway in autism spectrum disorders. The existing evidence for the involvement of lipid neurobiology in the pathology of neurodevelopmental disorders such as autism is compelling and opens up an interesting possibility for further investigation of this metabolic pathway.
Collapse
Affiliation(s)
- Javaneh Tamiji
- Department of Biology, York University, Toronto, Ont., Canada
| | | |
Collapse
|
23
|
Haim TE, Wang W, Flagg TP, Tones MA, Bahinski A, Numann RE, Nichols CG, Nerbonne JM. Palmitate attenuates myocardial contractility through augmentation of repolarizing Kv currents. J Mol Cell Cardiol 2009; 48:395-405. [PMID: 19857498 DOI: 10.1016/j.yjmcc.2009.10.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 09/12/2009] [Accepted: 10/05/2009] [Indexed: 02/08/2023]
Abstract
There is considerable evidence to support a role for lipotoxicity in the development of diabetic cardiomyopathy, although the molecular links between enhanced saturated fatty acid uptake/metabolism and impaired cardiac function are poorly understood. In the present study, the effects of acute exposure to the saturated fatty acid, palmitate, on myocardial contractility and excitability were examined directly. Exposure of isolated (adult mouse) ventricular myocytes to palmitate, complexed to bovine serum albumin (palmitate:BSA) as in blood, rapidly reduced (by 54+/-4%) mean (+/-SEM) unloaded fractional cell shortening. The amplitudes of intracellular Ca(2+) transients decreased in parallel. Current-clamp recordings revealed that exposure to palmitate:BSA markedly shortened action potential durations at 20%, 50%, and 90% repolarization. These effects were reversible and were occluded when the K(+) in the recording pipettes was replaced with Cs(+), suggesting a direct effect on repolarizing K(+) currents. Indeed, voltage-clamp recordings revealed that palmitate:BSA reversibly and selectively increased peak outward voltage-gated K(+) (Kv) current amplitudes by 20+/-2%, whereas inwardly rectifying K(+) (Kir) currents and voltage-gated Ca(2+) currents were unaffected. Further analyses revealed that the individual Kv current components I(to,f), I(K,slow) and I(ss), were all increased (by 12+/-2%, 37+/-4%, and 34+/-4%, respectively) in cells exposed to palmitate:BSA. Consistent with effects on both components of I(K,slow) (I(K,slow1) and I(K,slow)(2)) the magnitude of the palmitate-induced increase was attenuated in ventricular myocytes isolated from animals in which the Kv1.5 (I(K,slow)(1)) or the Kv2.1 (I(K,slow)(2)) locus was disrupted and I(K,slow)(1) or I(K,slow2) is eliminated. Both the enhancement of I(K,slow) and the negative inotropic effect of palmitate:BSA were reduced in the presence of the Kv1.5 selective channel blocker, diphenyl phosphine oxide-1 (DPO-1).Taken together, these results suggest that elevations in circulating saturated free fatty acids, as occurs in diabetes, can directly augment repolarizing myocardial Kv currents and impair excitation-contraction coupling.
Collapse
Affiliation(s)
- Todd E Haim
- Pfizer Global Research and Development, Chesterfield, MO 63017, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Gilbertson T, Yu T, Shah B. Gustatory Mechanisms for Fat Detection. Front Neurosci 2009. [DOI: 10.1201/9781420067767-c3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
25
|
Hatem SN, Coulombe A, Balse E. Specificities of atrial electrophysiology: Clues to a better understanding of cardiac function and the mechanisms of arrhythmias. J Mol Cell Cardiol 2009; 48:90-5. [PMID: 19744488 DOI: 10.1016/j.yjmcc.2009.08.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 08/14/2009] [Accepted: 08/29/2009] [Indexed: 11/19/2022]
Abstract
The electrical properties of the atria and ventricles differ in several aspects reflecting the distinct role of the atria in cardiac physiology. The study of atrial electrophysiology had greatly contributed to the understanding of the mechanisms of atrial fibrillation (AF). Only the atrial L-type calcium current is regulated by serotonine or, under basal condition, by phosphodiesterases. These distinct regulations can contribute to I(Ca) down-regulation observed during AF, which is an important determinant of action potential refractory period shortening. The voltage-gated potassium current, I(Kur), has a prominent role in the repolarization of the atrial but not ventricular AP. In many species, this current is based on the functional expression of K(V)1.5 channels, which might represent a specific therapeutic target for AF. Mechanisms regulating the trafficking of K(V)1.5 channels to the plasma membrane are being actively investigated. The resting potential of atrial myocytes is maintained by various inward rectifier currents which differ with ventricle currents by a reduced density of I(K1), the presence of a constitutively active I(KACh) and distinct regulation of I(KATP). Stretch-sensitive or mechanosensitive ion channels are particularly active in atrial myocytes and are involved in the secretion of the natriuretic peptide. Integration of knowledge on electrical properties of atrial myocytes in comprehensive schemas is now necessary for a better understanding of the physiology of atria and the mechanisms of AF.
Collapse
|
26
|
Barana A, Amorós I, Caballero R, Gómez R, Osuna L, Lillo MP, Blázquez C, Guzmán M, Delpón E, Tamargo J. Endocannabinoids and cannabinoid analogues block cardiac hKv1.5 channels in a cannabinoid receptor-independent manner. Cardiovasc Res 2009; 85:56-67. [DOI: 10.1093/cvr/cvp284] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
27
|
Alpha-linolenic acid and its conversion to longer chain n-3 fatty acids: benefits for human health and a role in maintaining tissue n-3 fatty acid levels. Prog Lipid Res 2009; 48:355-74. [PMID: 19619583 DOI: 10.1016/j.plipres.2009.07.002] [Citation(s) in RCA: 375] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 06/13/2009] [Accepted: 07/14/2009] [Indexed: 11/22/2022]
Abstract
There is little doubt regarding the essential nature of alpha-linolenic acid (ALA), yet the capacity of dietary ALA to maintain adequate tissue levels of long chain n-3 fatty acids remains quite controversial. This simple point remains highly debated despite evidence that removal of dietary ALA promotes n-3 fatty acid inadequacy, including that of docosahexaenoic acid (DHA), and that many experiments demonstrate that dietary inclusion of ALA raises n-3 tissue fatty acid content, including DHA. Herein we propose, based upon our previous work and that of others, that ALA is elongated and desaturated in a tissue-dependent manner. One important concept is to recognize that ALA, like many other fatty acids, rapidly undergoes beta-oxidation and that the carbons are conserved and reused for synthesis of other products including cholesterol and fatty acids. This process and the differences between utilization of dietary DHA or liver-derived DHA as compared to ALA have led to the dogma that ALA is not a useful fatty acid for maintaining tissue long chain n-3 fatty acids, including DHA. Herein, we propose that indeed dietary ALA is a crucial dietary source of n-3 fatty acids and its dietary inclusion is critical for maintaining tissue long chain n-3 levels.
Collapse
|
28
|
Endocannabinoids and cannabinoid analogues block human cardiac Kv4.3 channels in a receptor-independent manner. J Mol Cell Cardiol 2009; 48:201-10. [PMID: 19616555 DOI: 10.1016/j.yjmcc.2009.07.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 07/06/2009] [Accepted: 07/09/2009] [Indexed: 10/20/2022]
Abstract
Endocannabinoids are amides and esters of long chain fatty acids that can modulate ion channels through both receptor-dependent and receptor-independent effects. Nowadays, their effects on cardiac K(+) channels are unknown even when they can be synthesized within the heart. We have analyzed the direct effects of endocannabinoids, such as anandamide (AEA), 2-arachidonoylglycerol (2-AG), the endogenous lipid lysophosphatidylinositol, and cannabinoid analogues such as palmitoylethanolamide (PEA), and oleoylethanolamide, as well as the fatty acids from which they are endogenously synthesized, on human cardiac Kv4.3 channels, which generate the transient outward K(+) current (I(to1)). Currents were recorded in Chinese hamster ovary cells, which do not express cannabinoid receptors, by using the whole-cell patch-clamp. All these compounds inhibited I(Kv4.3) in a concentration-dependent manner, AEA and 2-AG being the most potent (IC(50) approximately 0.3-0.4 microM), while PEA was the least potent. The potency of block increased as the complexity and the number of C atoms in the fatty acyl chain increased. The effects were not mediated by modifications in the lipid order and microviscosity of the membrane and were independent of the presence of MiRP2 or DPP6 subunits in the channel complex. Indeed, effects produced by AEA were reproduced in human atrial I(to1) recorded in isolated myocytes. Moreover, AEA effects were exclusively apparent when it was applied to the external surface of the cell membrane. These results indicate that at low micromolar concentrations the endocannabinoids AEA and 2-AG directly block human cardiac Kv4.3 channels, which represent a novel molecular target for these compounds.
Collapse
|
29
|
Effects of docosahexaenoic acid on large-conductance Ca2+-activated K+ channels and voltage-dependent K+ channels in rat coronary artery smooth muscle cells. Acta Pharmacol Sin 2009; 30:314-20. [PMID: 19262555 DOI: 10.1038/aps.2009.7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
AIM To investigate the effects of docosahexaenoic acid (DHA) on large-conductance Ca(2+)-activated K(+)(BK(Ca)) channels and voltage-dependent K(+) (K(V)) channels in rat coronary artery smooth muscle cells (CASMCs). METHODS Rat CASMCs were isolated by an enzyme digestion method. BK(Ca) and K(V) currents in individual CASMCs were recorded by the patch-clamp technique in a whole-cell configuration at room temperature. Effects of DHA on BK(Ca) and K(V) channels were observed when it was applied at 10, 20, 30, 40, 50, 60, 70, and 80 micromol/L. RESULTS When DHA concentrations were greater than 10 micromol/L, BK(Ca) currents increased in a dose-dependent manner. At a testing potential of +80 mV, 6.1%+/-0.3%, 76.5%+/-3.8%, 120.6%+/-5.5%, 248.0%+/-12.3%, 348.7%+/-17.3%, 374.2%+/-18.7%, 432.2%+/-21.6%, and 443.1%+/-22.1% of BK(Ca) currents were increased at the above concentrations, respectively. The half-effective concentration (EC(50)) of DHA on BK(Ca) currents was 37.53+/-1.65 micromol/L. When DHA concentrations were greater than 20 micromol/L, K(V) currents were gradually blocked by increasing concentrations of DHA. At a testing potential of +50 mV, 0.40%+/-0.02%, 1.37%+/-0.06%, 11.80%+/-0.59%, 26.50%+/-1.75%, 56.50%+/-2.89%, 73.30%+/-3.66%, 79.70%+/-3.94%, and 78.1%+/-3.91% of K(V) currents were blocked at the different concentrations listed above, respectively. The EC(50) of DHA on K(V) currents was 44.20+/-0.63 micromol/L. CONCLUSION DHA can activate BK(Ca) channels and block K(V) channels in rat CASMCs, and the EC(50) of DHA for BK(Ca) channels is lower than that for K(V) channels; these findings indicate that the vasorelaxation effects of DHA on vascular smooth muscle cells are mainly due to its activation of BK(Ca) channels.
Collapse
|
30
|
Koshida S, Kurata Y, Notsu T, Hirota Y, Kuang TY, Li P, Bahrudin U, Harada S, Miake J, Yamamoto Y, Hoshikawa Y, Igawa O, Higaki K, Soma M, Yoshida A, Ninomiya H, Shiota G, Shirayoshi Y, Hisatome I. Stabilizing effects of eicosapentaenoic acid on Kv1.5 channel protein expressed in mammalian cells. Eur J Pharmacol 2009; 604:93-102. [DOI: 10.1016/j.ejphar.2008.12.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 11/24/2008] [Accepted: 12/09/2008] [Indexed: 10/21/2022]
|
31
|
Polyunsaturated fatty acid modulation of voltage-gated ion channels. Cell Biochem Biophys 2008; 52:59-84. [PMID: 18830821 DOI: 10.1007/s12013-008-9027-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2008] [Indexed: 01/03/2023]
Abstract
Arachidonic acid (AA) was found to inhibit the function of whole-cell voltage-gated (VG) calcium currents nearly 16 years ago. There are now numerous examples demonstrating that AA and other polyunsaturated fatty acids (PUFAs) modulate the function of VG ion channels, primarily in neurons and muscle cells. We will review and extract some common features about the modulation by PUFAs of VG calcium, sodium, and potassium channels and discuss the impact of this modulation on the excitability of neurons and cardiac myocytes. We will describe the fatty acid nature of the membrane, how fatty acids become available to function as modulators of VG channels, and the physiologic importance of this type of modulation. We will review the evidence for molecular mechanisms and assess our current understanding of the structural basis for modulation. With guidance from research on the structure of fatty acid binding proteins, the role of lipids in gating mechanosensitive (MS) channels, and the impact of membrane lipid composition on membrane-embedded proteins, we will highlight some avenues for future investigations.
Collapse
|