1
|
Nie Y, Ma Z, Zhang B, Sun M, Zhang D, Li HH, Song X. The role of the immunoproteasome in cardiovascular disease. Pharmacol Res 2024; 204:107215. [PMID: 38744399 DOI: 10.1016/j.phrs.2024.107215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
The ubiquitinproteasome system (UPS) is the main mechanism responsible for the intracellular degradation of misfolded or damaged proteins. Under inflammatory conditions, the immunoproteasome, an isoform of the proteasome, can be induced, enhancing the antigen-presenting function of the UPS. Furthermore, the immunoproteasome also serves nonimmune functions, such as maintaining protein homeostasis and regulating signalling pathways, and is involved in the pathophysiological processes of various cardiovascular diseases (CVDs). This review aims to provide a comprehensive summary of the current research on the involvement of the immunoproteasome in cardiovascular diseases, with the ultimate goal of identifying novel strategies for the treatment of these conditions.
Collapse
Affiliation(s)
- Yifei Nie
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Zhao Ma
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Baoen Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Meichen Sun
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Dongfeng Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Hui-Hua Li
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| | - Xiantao Song
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| |
Collapse
|
2
|
Ott C. Mapping the interplay of immunoproteasome and autophagy in different heart failure phenotypes. Free Radic Biol Med 2024; 218:149-165. [PMID: 38570171 DOI: 10.1016/j.freeradbiomed.2024.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
Proper protein degradation is required for cellular protein homeostasis and organ function. Particularly, in post-mitotic cells, such as cardiomyocytes, unbalanced proteolysis due to inflammatory stimuli and oxidative stress contributes to organ dysfunction. To ensure appropriate protein turnover, eukaryotic cells exert two main degradation systems, the ubiquitin-proteasome-system and the autophagy-lysosome-pathway. It has been shown that proteasome activity affects the development of cardiac dysfunction differently, depending on the type of heart failure. Studies analyzing the inducible subtype of the proteasome, the immunoproteasome (i20S), demonstrated that the i20S plays a double role in diseased hearts. While i20S subunits are increased in cardiac hypertrophy, atrial fibrillation and partly in myocarditis, the opposite applies to diabetic cardiomyopathy and ischemia/reperfusion injury. In addition, the i20S appears to play a role in autophagy modulation depending on heart failure phenotype. This review summarizes the current literature on the i20S in different heart failure phenotypes, emphasizing the two faces of i20S in injured hearts. A selection of established i20S inhibitors is introduced and signaling pathways linking the i20S to autophagy are highlighted. Mapping the interplay of the i20S and autophagy in different types of heart failure offers potential approaches for developing treatment strategies against heart failure.
Collapse
Affiliation(s)
- Christiane Ott
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Molecular Toxicology, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
| |
Collapse
|
3
|
Nahum-Ankonina O, Kurtzwald-Josefson E, Ciechanover A, Waldman M, Shwartz-Rohaker O, Hochhauser E, Meyer SJ, Aravot D, Phillip M, Barac YD. Ubiquitin Proteasome System Role in Diabetes-Induced Cardiomyopathy. Int J Mol Sci 2023; 24:15376. [PMID: 37895057 PMCID: PMC10607702 DOI: 10.3390/ijms242015376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
This study investigated modifications to the ubiquitin proteasome system (UPS) in a mouse model of type 2 diabetes mellitus (T2DM) and their relationship to heart complications. db/db mice heart tissues were compared with WT mice tissues using RNA sequencing, qRT-PCR, and protein analysis to identify cardiac UPS modifications associated with diabetes. The findings unveiled a distinctive gene profile in the hearts of db/db mice with decreased levels of nppb mRNA and increased levels of Myh7, indicating potential cardiac dysfunction. The mRNA levels of USP18 (deubiquitinating enzyme), PSMB8, and PSMB9 (proteasome β-subunits) were down-regulated in db/db mice, while the mRNA levels of RNF167 (E3 ligase) were increased. Corresponding LMP2 and LMP7 proteins were down-regulated in db/db mice, and RNF167 was elevated in Adult diabetic mice. The reduced expression of LMP2 and LMP7, along with increased RNF167 expression, may contribute to the future cardiac deterioration commonly observed in diabetes. This study enhances our understanding of UPS imbalances in the hearts of diabetic mice and raises questions about the interplay between the UPS and other cellular processes, such as autophagy. Further exploration in this area could provide valuable insights into the mechanisms underlying diabetic heart complications and potential therapeutic targets.
Collapse
Affiliation(s)
- Ortal Nahum-Ankonina
- The Division of Cardiovascular and Thoracic Surgery, Rabin Medical Center, Petach-Tikva 4941492, Israel; (O.N.-A.); (E.K.-J.); (M.W.); (O.S.-R.); (E.H.); (S.J.M.); (D.A.)
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Efrat Kurtzwald-Josefson
- The Division of Cardiovascular and Thoracic Surgery, Rabin Medical Center, Petach-Tikva 4941492, Israel; (O.N.-A.); (E.K.-J.); (M.W.); (O.S.-R.); (E.H.); (S.J.M.); (D.A.)
| | - Aaron Ciechanover
- The Ruth & Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3109601, Israel;
| | - Maayan Waldman
- The Division of Cardiovascular and Thoracic Surgery, Rabin Medical Center, Petach-Tikva 4941492, Israel; (O.N.-A.); (E.K.-J.); (M.W.); (O.S.-R.); (E.H.); (S.J.M.); (D.A.)
| | - Orna Shwartz-Rohaker
- The Division of Cardiovascular and Thoracic Surgery, Rabin Medical Center, Petach-Tikva 4941492, Israel; (O.N.-A.); (E.K.-J.); (M.W.); (O.S.-R.); (E.H.); (S.J.M.); (D.A.)
| | - Edith Hochhauser
- The Division of Cardiovascular and Thoracic Surgery, Rabin Medical Center, Petach-Tikva 4941492, Israel; (O.N.-A.); (E.K.-J.); (M.W.); (O.S.-R.); (E.H.); (S.J.M.); (D.A.)
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Sam J. Meyer
- The Division of Cardiovascular and Thoracic Surgery, Rabin Medical Center, Petach-Tikva 4941492, Israel; (O.N.-A.); (E.K.-J.); (M.W.); (O.S.-R.); (E.H.); (S.J.M.); (D.A.)
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Dan Aravot
- The Division of Cardiovascular and Thoracic Surgery, Rabin Medical Center, Petach-Tikva 4941492, Israel; (O.N.-A.); (E.K.-J.); (M.W.); (O.S.-R.); (E.H.); (S.J.M.); (D.A.)
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Moshe Phillip
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
- The Division of Endocrinology, Schneider Medical Center, Petach-Tikva 4920235, Israel
| | - Yaron D. Barac
- The Division of Cardiovascular and Thoracic Surgery, Rabin Medical Center, Petach-Tikva 4941492, Israel; (O.N.-A.); (E.K.-J.); (M.W.); (O.S.-R.); (E.H.); (S.J.M.); (D.A.)
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
| |
Collapse
|
4
|
Efentakis P, Andreadou I, Iliodromitis KE, Triposkiadis F, Ferdinandy P, Schulz R, Iliodromitis EK. Myocardial Protection and Current Cancer Therapy: Two Opposite Targets with Inevitable Cost. Int J Mol Sci 2022; 23:14121. [PMID: 36430599 PMCID: PMC9696420 DOI: 10.3390/ijms232214121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022] Open
Abstract
Myocardial protection against ischemia/reperfusion injury (IRI) is mediated by various ligands, activating different cellular signaling cascades. These include classical cytosolic mediators such as cyclic-GMP (c-GMP), various kinases such as Phosphatydilinositol-3- (PI3K), Protein Kinase B (Akt), Mitogen-Activated-Protein- (MAPK) and AMP-activated (AMPK) kinases, transcription factors such as signal transducer and activator of transcription 3 (STAT3) and bioactive molecules such as vascular endothelial growth factor (VEGF). Most of the aforementioned signaling molecules constitute targets of anticancer therapy; as they are also involved in carcinogenesis, most of the current anti-neoplastic drugs lead to concomitant weakening or even complete abrogation of myocardial cell tolerance to ischemic or oxidative stress. Furthermore, many anti-neoplastic drugs may directly induce cardiotoxicity via their pharmacological effects, or indirectly via their cardiovascular side effects. The combination of direct drug cardiotoxicity, indirect cardiovascular side effects and neutralization of the cardioprotective defense mechanisms of the heart by prolonged cancer treatment may induce long-term ventricular dysfunction, or even clinically manifested heart failure. We present a narrative review of three therapeutic interventions, namely VEGF, proteasome and Immune Checkpoint inhibitors, having opposing effects on the same intracellular signal cascades thereby affecting the heart. Moreover, we herein comment on the current guidelines for managing cardiotoxicity in the clinical setting and on the role of cardiovascular confounders in cardiotoxicity.
Collapse
Affiliation(s)
- Panagiotis Efentakis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | | | | | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
| | - Rainer Schulz
- Institute of Physiology, Justus Liebig University Giessen, 35390 Giessen, Germany
| | | |
Collapse
|
5
|
Kötter S, Krüger M. Protein Quality Control at the Sarcomere: Titin Protection and Turnover and Implications for Disease Development. Front Physiol 2022; 13:914296. [PMID: 35846001 PMCID: PMC9281568 DOI: 10.3389/fphys.2022.914296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/10/2022] [Indexed: 11/26/2022] Open
Abstract
Sarcomeres are mainly composed of filament and signaling proteins and are the smallest molecular units of muscle contraction and relaxation. The sarcomere protein titin serves as a molecular spring whose stiffness mediates myofilament extensibility in skeletal and cardiac muscle. Due to the enormous size of titin and its tight integration into the sarcomere, the incorporation and degradation of the titin filament is a highly complex task. The details of the molecular processes involved in titin turnover are not fully understood, but the involvement of different intracellular degradation mechanisms has recently been described. This review summarizes the current state of research with particular emphasis on the relationship between titin and protein quality control. We highlight the involvement of the proteasome, autophagy, heat shock proteins, and proteases in the protection and degradation of titin in heart and skeletal muscle. Because the fine-tuned balance of degradation and protein expression can be disrupted under pathological conditions, the review also provides an overview of previously known perturbations in protein quality control and discusses how these affect sarcomeric proteins, and titin in particular, in various disease states.
Collapse
|
6
|
Zhang X, Hu C, Yuan XP, Yuan YP, Song P, Kong CY, Teng T, Hu M, Xu SC, Ma ZG, Tang QZ. Osteocrin, a novel myokine, prevents diabetic cardiomyopathy via restoring proteasomal activity. Cell Death Dis 2021; 12:624. [PMID: 34135313 PMCID: PMC8209005 DOI: 10.1038/s41419-021-03922-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023]
Abstract
Proteasomal activity is compromised in diabetic hearts that contributes to proteotoxic stresses and cardiac dysfunction. Osteocrin (OSTN) acts as a novel exercise-responsive myokine and is implicated in various cardiac diseases. Herein, we aim to investigate the role and underlying molecular basis of OSTN in diabetic cardiomyopathy (DCM). Mice received a single intravenous injection of the cardiotrophic adeno-associated virus serotype 9 to overexpress OSTN in the heart and then were exposed to intraperitoneal injections of streptozotocin (STZ, 50 mg/kg) for consecutive 5 days to generate diabetic models. Neonatal rat cardiomyocytes were isolated and stimulated with high glucose to verify the role of OSTN in vitro. OSTN expression was reduced by protein kinase B/forkhead box O1 dephosphorylation in diabetic hearts, while its overexpression significantly attenuated cardiac injury and dysfunction in mice with STZ treatment. Besides, OSTN incubation prevented, whereas OSTN silence aggravated cardiomyocyte apoptosis and injury upon hyperglycemic stimulation in vitro. Mechanistically, OSTN treatment restored protein kinase G (PKG)-dependent proteasomal function, and PKG or proteasome inhibition abrogated the protective effects of OSTN in vivo and in vitro. Furthermore, OSTN replenishment was sufficient to prevent the progression of pre-established DCM and had synergistic cardioprotection with sildenafil. OSTN protects against DCM via restoring PKG-dependent proteasomal activity and it is a promising therapeutic target to treat DCM.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Can Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Xiao-Pin Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Yu-Pei Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Peng Song
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Chun-Yan Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Teng Teng
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Min Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Si-Chi Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Zhen-Guo Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China.
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China.
| |
Collapse
|
7
|
Abstract
The 26S proteasome is the most complex ATP-dependent protease machinery, of ~2.5 MDa mass, ubiquitously found in all eukaryotes. It selectively degrades ubiquitin-conjugated proteins and plays fundamentally indispensable roles in regulating almost all major aspects of cellular activities. To serve as the sole terminal "processor" for myriad ubiquitylation pathways, the proteasome evolved exceptional adaptability in dynamically organizing a large network of proteins, including ubiquitin receptors, shuttle factors, deubiquitinases, AAA-ATPase unfoldases, and ubiquitin ligases, to enable substrate selectivity and processing efficiency and to achieve regulation precision of a vast diversity of substrates. The inner working of the 26S proteasome is among the most sophisticated, enigmatic mechanisms of enzyme machinery in eukaryotic cells. Recent breakthroughs in three-dimensional atomic-level visualization of the 26S proteasome dynamics during polyubiquitylated substrate degradation elucidated an extensively detailed picture of its functional mechanisms, owing to progressive methodological advances associated with cryogenic electron microscopy (cryo-EM). Multiple sites of ubiquitin binding in the proteasome revealed a canonical mode of ubiquitin-dependent substrate engagement. The proteasome conformation in the act of substrate deubiquitylation provided insights into how the deubiquitylating activity of RPN11 is enhanced in the holoenzyme and is coupled to substrate translocation. Intriguingly, three principal modes of coordinated ATP hydrolysis in the heterohexameric AAA-ATPase motor were discovered to regulate intermediate functional steps of the proteasome, including ubiquitin-substrate engagement, deubiquitylation, initiation of substrate translocation and processive substrate degradation. The atomic dissection of the innermost working of the 26S proteasome opens up a new era in our understanding of the ubiquitin-proteasome system and has far-reaching implications in health and disease.
Collapse
Affiliation(s)
- Youdong Mao
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, 02215, Massachusetts, USA. .,School of Physics, Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| |
Collapse
|
8
|
Mishra S, Dunkerly-Eyring BL, Keceli G, Ranek MJ. Phosphorylation Modifications Regulating Cardiac Protein Quality Control Mechanisms. Front Physiol 2020; 11:593585. [PMID: 33281625 PMCID: PMC7689282 DOI: 10.3389/fphys.2020.593585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Many forms of cardiac disease, including heart failure, present with inadequate protein quality control (PQC). Pathological conditions often involve impaired removal of terminally misfolded proteins. This results in the formation of large protein aggregates, which further reduce cellular viability and cardiac function. Cardiomyocytes have an intricately collaborative PQC system to minimize cellular proteotoxicity. Increased expression of chaperones or enhanced clearance of misfolded proteins either by the proteasome or lysosome has been demonstrated to attenuate disease pathogenesis, whereas reduced PQC exacerbates pathogenesis. Recent studies have revealed that phosphorylation of key proteins has a potent regulatory role, both promoting and hindering the PQC machinery. This review highlights the recent advances in phosphorylations regulating PQC, the impact in cardiac pathology, and the therapeutic opportunities presented by harnessing these modifications.
Collapse
Affiliation(s)
- Sumita Mishra
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Brittany L Dunkerly-Eyring
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, United States
| | - Gizem Keceli
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mark J Ranek
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
9
|
Kaur N, Raja R, Ruiz-Velasco A, Liu W. Cellular Protein Quality Control in Diabetic Cardiomyopathy: From Bench to Bedside. Front Cardiovasc Med 2020; 7:585309. [PMID: 33195472 PMCID: PMC7593653 DOI: 10.3389/fcvm.2020.585309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022] Open
Abstract
Heart failure is a serious comorbidity and the most common cause of mortality in diabetes patients. Diabetic cardiomyopathy (DCM) features impaired cellular structure and function, culminating in heart failure; however, there is a dearth of specific clinical therapy for treating DCM. Protein homeostasis is pivotal for the maintenance of cellular viability under physiological and pathological conditions, particularly in the irreplaceable cardiomyocytes; therefore, it is tightly regulated by a protein quality control (PQC) system. Three evolutionarily conserved molecular processes, the unfolded protein response (UPR), the ubiquitin-proteasome system (UPS), and autophagy, enhance protein turnover and preserve protein homeostasis by suppressing protein translation, degrading misfolded or unfolded proteins in cytosol or organelles, disposing of damaged and toxic proteins, recycling essential amino acids, and eliminating insoluble protein aggregates. In response to increased cellular protein demand under pathological insults, including the diabetic condition, a coordinated PQC system retains cardiac protein homeostasis and heart performance, on the contrary, inappropriate PQC function exaggerates cardiac proteotoxicity with subsequent heart dysfunction. Further investigation of the PQC mechanisms in diabetes propels a more comprehensive understanding of the molecular pathogenesis of DCM and opens new prospective treatment strategies for heart disease and heart failure in diabetes patients. In this review, the function and regulation of cardiac PQC machinery in diabetes mellitus, and the therapeutic potential for the diabetic heart are discussed.
Collapse
Affiliation(s)
- Namrita Kaur
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| | - Rida Raja
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| | - Andrea Ruiz-Velasco
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| | - Wei Liu
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
10
|
Lino CA, Demasi M, Barreto-Chaves ML. Ubiquitin proteasome system (UPS) activation in the cardiac hypertrophy of hyperthyroidism. Mol Cell Endocrinol 2019; 493:110451. [PMID: 31112742 DOI: 10.1016/j.mce.2019.110451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/13/2019] [Accepted: 05/17/2019] [Indexed: 11/16/2022]
Abstract
Ubiquitin proteasome system (UPS) is the main proteolytic pathway in eukaryotic cells. Changes in proteasome expression and activity have been associated to cardiovascular diseases as cardiac hypertrophy. Considering that cardiac hypertrophy is commonly associated to hyperthyroidism condition, the present study aimed to investigate the contribution of UPS in cardiac hypertrophy induced by thyroid hormones. Hyperthyroidism was induced in male Wistar rats by intraperitoneal injections of triiodothyronine (T3; 7 μg/100 g of body weight) for 7 days and confirmed by raised levels of total T3 and decreased levels of total T4. In addition, systolic blood pressure and heart rate were significantly increased in hyperthyroid group. Cardiac hypertrophy was confirmed in hyperthyroid group by increased heart weight/tibia length ratio and by increased α-MHC/β-MHC relative expression. Both catalytic (20SPT) and regulatory subunits (19SPT) of the constitutive proteasome were upregulated in hyperthyroid hearts. In addition, the transcripts that encode immunoproteasome subunits were also elevated. Furthermore, ATP-dependent chymotrypsin-like activity (26SPT) was significantly increased in hyperthyroid group. Despite the upregulation and activation of UPS in hyperthyroid hearts, the content of polyubiquitinated proteins was unaltered in relation to control. Together, these results evidence the activation of cardiac proteasome by thyroid hormones, which possibly contribute to the maintenance of protein quality control and regulation of cardiac hypertrophy in response to thyroid hormones.
Collapse
Affiliation(s)
- Caroline Antunes Lino
- Laboratory of Cellular Biology and Functional Anatomy, Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Marilene Demasi
- Laboratory of Biochemistry and Biophysics, Butantan Institute, Sao Paulo, Brazil
| | - Maria Luiza Barreto-Chaves
- Laboratory of Cellular Biology and Functional Anatomy, Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
11
|
Laubertová L, Koňariková K, Gbelcová H, Ďuračková Z, Muchová J, Garaiova I, Žitňanová I. Fish oil emulsion supplementation might improve quality of life of diabetic patients due to its antioxidant and anti-inflammatory properties. Nutr Res 2017; 46:49-58. [PMID: 28893413 DOI: 10.1016/j.nutres.2017.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 07/26/2017] [Accepted: 07/31/2017] [Indexed: 10/19/2022]
Abstract
Diabetes-related complications, including cardiovascular disease, retinopathy, nephropathy, and neuropathy, are a significant cause of increased morbidity and mortality among people with diabetes. Previous studies have confirmed that hyperglycemia has pro-oxidative and proinflammatory properties which cause diabetic complications. We hypothesized that supplementation of fish oil emulsion (FOE), rich in omega-3 polyunsaturated fatty acids, to diabetic patients might reduce hyperglycemia-induced pathological changes due to specific properties of FOE. Omega-3 polyunsaturated fatty acids have a wide range of biological effects. In this project, we have examined the potential protective effect of the FOE on hyperglycemia-induced oxidative stress and cytokine generation in monocytes/macrophages U937 system in vitro. The monocytes/macrophages U937 were cultivated under normal or hyperglycemic (35 mmol/L glucose) conditions with/without FOE for 72 hours. We have focused on specific markers of oxidative stress (antioxidant capacity; superoxide dismutase activity; oxidative damage to DNA, proteins, and lipids) and inflammation (tumor necrosis factor, interleukin-6, interleukin-8, monocytic chemotactic protein-1). Hyperglycemia caused reduction of antioxidant capacity, induction of DNA damage, and proinflammatory cytokine secretion. FOE significantly increased antioxidant capacity of cells as well as superoxide dismutase activity and significantly reduced tumor necrosis factor, interleukin-6, interleukin-8, and monocytic chemotactic protein-1 release. No effect was observed on oxidative damage to DNA, proteins, and lipids. Our results indicate that FOE can reduce hyperglycemia-induced pathological mechanisms by its antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Lucia Laubertová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Sasinkova 2, 813 72 Bratislava, Slovakia.
| | - Katarína Koňariková
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Sasinkova 2, 813 72 Bratislava, Slovakia.
| | - Helena Gbelcová
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 813 72 Bratislava, Slovakia.
| | - Zdeňka Ďuračková
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Sasinkova 2, 813 72 Bratislava, Slovakia.
| | - Jana Muchová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Sasinkova 2, 813 72 Bratislava, Slovakia.
| | - Iveta Garaiova
- Research and Development Department, Cultech Ltd, Port Talbot, SA12 7BZ, United Kingdom.
| | - Ingrid Žitňanová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Sasinkova 2, 813 72 Bratislava, Slovakia.
| |
Collapse
|
12
|
Bozi LH, Campos JC. Targeting the ubiquitin proteasome system in diabetic cardiomyopathy. J Mol Cell Cardiol 2017; 109:61-63. [DOI: 10.1016/j.yjmcc.2017.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/19/2017] [Accepted: 06/26/2017] [Indexed: 12/14/2022]
|
13
|
Cardiac proteasome functional insufficiency plays a pathogenic role in diabetic cardiomyopathy. J Mol Cell Cardiol 2016; 102:53-60. [PMID: 27913284 DOI: 10.1016/j.yjmcc.2016.11.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/21/2016] [Accepted: 11/24/2016] [Indexed: 01/23/2023]
Abstract
BACKGROUND Diabetic cardiomyopathy is a major risk factor in diabetic patients but its pathogenesis remains poorly understood. The ubiquitin-proteasome system (UPS) facilitates protein quality control by degrading unnecessary and damaged proteins in eukaryotic cells, and dysfunction of UPS is implicated in various cardiac diseases. However, the overall functional status of the UPS and its pathophysiological role in diabetic cardiomyopathy have not been determined. METHODS AND RESULTS Type I diabetes was induced in wild-type and transgenic mice expressing a UPS functional reporter (GFPdgn) by injections of streptozotocin (STZ). STZ-induced diabetes progressively impaired cardiac UPS function as evidenced by the accumulation of GFPdgn proteins beginning two weeks after diabetes induction, and by a buildup of total and lysine (K) 48-linked polyubiquitinated proteins in the heart. To examine the functional role of the UPS in diabetic cardiomyopathy, cardiac overexpression of PA28α (PA28αOE) was used to enhance proteasome function in diabetic mouse hearts. PA28αOE diabetic mice displayed exhibited restoration of cardiac UPS function, as demonstrated by the diminished accumulation of GFPdgn and polyubiquitinated proteins. Moreover, PA28αOE diabetic mice exhibited reduced myocardial collagen deposition, decreased cardiomyocyte apoptosis, and improved cardiac systolic and diastolic function. CONCLUSION Impairment of cardiac UPS function is an early event in STZ-induced diabetes. Overexpression of PA28α attenuates diabetes-induced proteotoxic stress and cardiomyopathy, suggesting a potential therapeutic role for enhancement of cardiac proteasome function in this disorder.
Collapse
|
14
|
Deshpande M, Mali VR, Pan G, Xu J, Yang XP, Thandavarayan RA, Palaniyandi SS. Increased 4-hydroxy-2-nonenal-induced proteasome dysfunction is correlated with cardiac damage in streptozotocin-injected rats with isoproterenol infusion. Cell Biochem Funct 2016; 34:334-42. [PMID: 27273517 DOI: 10.1002/cbf.3195] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/11/2016] [Accepted: 05/16/2016] [Indexed: 12/21/2022]
Abstract
Increase in 4-hydroxy-2-nonenal (4HNE) due to oxidative stress has been observed in a variety of cardiac diseases such as diabetic cardiomyopathy. 4HNE exerts a damaging effect in the myocardium by interfering with subcellular organelles like mitochondria by forming adducts. Therefore, we hypothesized that increased 4HNE adduct formation in the heart results in proteasome inactivation in isoproterenol (ISO)-infused type 1 diabetes mellitus (DM) rats. Eight-week-old male Sprague Dawley rats were injected with streptozotocin (STZ, 65 mg kg(-1) ). The rats were infused with ISO (5 mg kg(-1) ) for 2 weeks by mini pumps, after 8 weeks of STZ injection. We studied normal control (n = 8) and DM + ISO (n = 10) groups. Cardiac performance was assessed by echocardiography and Millar catheter at the end of the protocol at 20 weeks. Initially, we found an increase in 4HNE adducts in the hearts of the DM + ISO group. There was also a decrease in myocardial proteasomal peptidase (chymotrypsin and trypsin-like) activity. Increases in cardiomyocyte area (446 ± 32·7 vs 221 ± 10·83) (µm(2) ), per cent area of cardiac fibrosis (7·4 ± 0·7 vs 2·7 ± 0·5) and cardiac dysfunction were also found in DM + ISO (P < 0·05) relative to controls. We also found increased 4HNE adduct formation on proteasomal subunits. Furthermore, reduced aldehyde dehydrogenase 2 activity was observed in the myocardium of the DM + ISO group. Treatment with 4HNE (100 μM) for 4 h on cultured H9c2 cardiomyocytes attenuated proteasome activity. Therefore, we conclude that the 4HNE-induced decrease in proteasome activity may be involved in the cardiac pathology in STZ-injected rats infused with ISO. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Mandar Deshpande
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Vishal R Mali
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Guodong Pan
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Jiang Xu
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Xiao-Ping Yang
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Rajarajan A Thandavarayan
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, USA
| | - Suresh Selvaraj Palaniyandi
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| |
Collapse
|
15
|
Activation of the cardiac proteasome promotes angiotension II-induced hypertrophy by down-regulation of ATRAP. J Mol Cell Cardiol 2015; 79:303-14. [DOI: 10.1016/j.yjmcc.2014.12.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 12/08/2014] [Indexed: 01/15/2023]
|
16
|
Abstract
This chapter presents two methods for assessment of proteasome function. The first is a modification of the standard fluorogenic peptide cleavage assay which takes into account the effect of ATP on proteasome activity. This method is described in both its macro and high throughput micro-assay forms. The second is the Proteasome Constitutive Immuno-Subunit (active site) ELISA or ProCISE method. ProCISE is a modification of active site directed probe analysis and allows for convenient differentiation between active constitutive and immuno-subunits. While the utility of measuring proteasome activity and its relationship to cytokine action and inflammation are clear, the assessment and interpretation is not always straightforward. Therefore, we also discuss the pitfalls of the standard fluorogenic assay, particularly in the interpretation of results obtained, and the advantages of the newer, ProCISE assay.
Collapse
Affiliation(s)
- Christopher J Kirk
- Onyx Pharmaceuticals, 249 Grand Avenue South, San Francisco, CA, 94080, USA
| | | | | |
Collapse
|
17
|
Cascio P. PA28αβ: the enigmatic magic ring of the proteasome? Biomolecules 2014; 4:566-84. [PMID: 24970231 PMCID: PMC4101498 DOI: 10.3390/biom4020566] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/15/2014] [Accepted: 06/08/2014] [Indexed: 11/16/2022] Open
Abstract
PA28αβ is a γ-interferon-induced 11S complex that associates with the ends of the 20S proteasome and stimulates in vitro breakdown of small peptide substrates, but not proteins or ubiquitin-conjugated proteins. In cells, PA28 also exists in larger complexes along with the 19S particle, which allows ATP-dependent degradation of proteins; although in vivo a large fraction of PA28 is present as PA28αβ-20S particles whose exact biological functions are largely unknown. Although several lines of evidence strongly indicate that PA28αβ plays a role in MHC class I antigen presentation, the exact molecular mechanisms of this activity are still poorly understood. Herein, we review current knowledge about the biochemical and biological properties of PA28αβ and discuss recent findings concerning its role in modifying the spectrum of proteasome's peptide products, which are important to better understand the molecular mechanisms and biological consequences of PA28αβ activity.
Collapse
Affiliation(s)
- Paolo Cascio
- Department of Veterinary Sciences, University of Turin, Grugliasco 10095, Italy.
| |
Collapse
|
18
|
Abstract
Proper protein turnover is required for cardiac homeostasis and, accordingly, impaired proteasomal function appears to contribute to heart disease. Specific proteasomal degradation mechanisms underlying cardiovascular biology and disease have been identified, and such cellular pathways have been proposed to be targets of clinical relevance. This review summarizes the latest literature regarding the specific E3 ligases involved in heart biology, and the general ways that the proteasome regulates protein quality control in heart disease. The potential for therapeutic intervention in Ubiquitin Proteasome System function in heart disease is discussed.
Collapse
Affiliation(s)
- Julia Pagan
- Department of Translational Medical Sciences, Via Sergio Pansini, 5, 80131 Naples, Italy
| | | | | | | |
Collapse
|
19
|
Abstract
It is believed that cardiac remodeling due to geometric and structural changes is a major mechanism for the progression of heart failure in different pathologies including hypertension, hypertrophic cardiomyopathy, dilated cardiomyopathy, diabetic cardiomyopathy, and myocardial infarction. Increases in the activities of proteolytic enzymes such as matrix metalloproteinases, calpains, cathepsins, and caspases contribute to the process of cardiac remodeling. In addition to modifying the extracellular matrix, both matrix metalloproteinases and cathepsins have been shown to affect the activities of subcellular organelles in cardiomyocytes. The activation of calpains and caspases has been identified to induce subcellular remodeling in failing hearts. Proteolytic activities associated with different proteins including caspases, calpain, and the ubiquitin-proteasome system have been shown to be involved in cardiomyocyte apoptosis, which is an integral part of cardiac remodeling. This article discusses and compares how the activities of various proteases are involved in different cardiac abnormalities with respect to alterations in apoptotic pathways, cardiac remodeling, and cardiac dysfunction. An imbalance appears to occur between the activities of some proteases and their endogenous inhibitors in various types of hypertrophied and failing hearts, and this is likely to further accentuate subcellular remodeling and cardiac dysfunction. The importance of inhibiting the activities of both extracellular and intracellular proteases specific to distinct etiologies, in attenuating cardiac remodeling and apoptosis as well as biochemical changes of subcellular organelles, in heart failure has been emphasized. It is suggested that combination therapy to inhibit different proteases may prove useful for the treatment of heart failure.
Collapse
Affiliation(s)
- Alison L Müller
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | | |
Collapse
|
20
|
Radak Z, Zhao Z, Koltai E, Ohno H, Atalay M. Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling. Antioxid Redox Signal 2013; 18:1208-46. [PMID: 22978553 PMCID: PMC3579386 DOI: 10.1089/ars.2011.4498] [Citation(s) in RCA: 396] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The complexity of human DNA has been affected by aerobic metabolism, including endurance exercise and oxygen toxicity. Aerobic endurance exercise could play an important role in the evolution of Homo sapiens, and oxygen was not important just for survival, but it was crucial to redox-mediated adaptation. The metabolic challenge during physical exercise results in an elevated generation of reactive oxygen species (ROS) that are important modulators of muscle contraction, antioxidant protection, and oxidative damage repair, which at moderate levels generate physiological responses. Several factors of mitochondrial biogenesis, such as peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), mitogen-activated protein kinase, and SIRT1, are modulated by exercise-associated changes in the redox milieu. PGC-1α activation could result in decreased oxidative challenge, either by upregulation of antioxidant enzymes and/or by an increased number of mitochondria that allows lower levels of respiratory activity for the same degree of ATP generation. Endogenous thiol antioxidants glutathione and thioredoxin are modulated with high oxygen consumption and ROS generation during physical exercise, controlling cellular function through redox-sensitive signaling and protein-protein interactions. Endurance exercise-related angiogenesis, up to a significant degree, is regulated by ROS-mediated activation of hypoxia-inducible factor 1α. Moreover, the exercise-associated ROS production could be important to DNA methylation and post-translation modifications of histone residues, which create heritable adaptive conditions based on epigenetic features of chromosomes. Accumulating data indicate that exercise with moderate intensity has systemic and complex health-promoting effects, which undoubtedly involve regulation of redox homeostasis and signaling.
Collapse
Affiliation(s)
- Zsolt Radak
- Faculty of Physical Education and Sport Science, Institute of Sport Science, Semmelweis University, Budapest, Hungary.
| | | | | | | | | |
Collapse
|
21
|
Day SM, Divald A, Wang P, Davis F, Bartolone S, Jones R, Powell SR. Impaired assembly and post-translational regulation of 26S proteasome in human end-stage heart failure. Circ Heart Fail 2013; 6:544-9. [PMID: 23515276 DOI: 10.1161/circheartfailure.112.000119] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND This study examined the hypothesis that 26S proteasome dysfunction in human end-stage heart failure is associated with decreased docking of the 19S regulatory particle to the 20S proteasome. Previous studies have demonstrated that 26S proteasome activity is diminished in human end-stage heart failure associated with oxidation of the 19S regulatory particle Rpt5 subunit. Docking of the 19S regulatory particle to the 20S proteasome requires functional Rpt subunit ATPase activity and phosphorylation of the α-type subunits. METHODS AND RESULTS An enriched proteasome fraction was prepared from 7 human nonfailing and 10 failing heart explants. Native gel electrophoresis assessed docking of 19S to 20S proteasome revealing 3 proteasome populations (20S, 26S, and 30S proteasomes). In failing hearts, 30S proteasomes were significantly lower (P=0.048) by 37% suggesting diminished docking. Mass spectrometry-based phosphopeptide analysis demonstrated that the relative ratio of phosphorylated:non phosphorylated α7 subunit (serine250) of the 20S proteasome was significantly less (P=0.011) by almost 80% in failing hearts. Rpt ATPase activity was determined in the enriched fraction and after immunoprecipitation with an Rpt6 antibody. ATPase activity (ρmol PO4/μg protein per hour) of the total fraction was lowered from 291±97 to 194±27 and in the immunoprecipitated fraction from 42±12 to 3±2 (P=0.005) in failing hearts. CONCLUSIONS These studies suggest that diminished 26S activity in failing human hearts may be related to impaired docking of the 19S to the 20S as a result of decreased Rpt subunit ATPase activity and α7 subunit phosphorylation.
Collapse
Affiliation(s)
- Sharlene M Day
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Maintenance of protein quality control is a critical function of the ubiquitin proteasome system (UPS). Evidence is rapidly mounting to link proteasome dysfunction with a multitude of cardiac diseases, including ischemia, reperfusion, atherosclerosis, hypertrophy, heart failure, and cardiomyopathies. Recent studies have demonstrated a remarkable level of complexity in the regulation of the UPS in the heart and suggest that our understanding of how UPS dysfunction might contribute to the pathophysiology of such a wide range of cardiac afflictions is still very limited. Whereas experimental systems, including animal models, are invaluable for exploring mechanisms and establishing pathogenicity of UPS dysfunction in cardiac disease, studies using human heart tissue provide a vital adjunct for establishing clinical relevance of experimental findings and promoting new hypotheses. Accordingly, this review will focus on UPS dysfunction in human dilated and hypertrophic cardiomyopathies and highlight areas rich for further study in this expanding field.
Collapse
Affiliation(s)
- Sharlene M Day
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA.
| |
Collapse
|
23
|
Abstract
The ubiquitin proteasome system (UPS) has been the subject of intensive research over the past 20 years to define its role in normal physiology and in pathophysiology. Many of these studies have focused in on the cardiovascular system and have determined that the UPS becomes dysfunctional in several pathologies such as familial and idiopathic cardiomyopathies, atherosclerosis, and myocardial ischemia. This review presents a synopsis of the literature as it relates to the role of the UPS in myocardial ischemia. Studies have shown that the UPS is dysfunctional during myocardial ischemia, and recent studies have shed some light on possible mechanisms. Other studies have defined a role for the UPS in ischemic preconditioning which is best associated with myocardial ischemia and is thus presented here. Very recent studies have started to define roles for specific proteasome subunits and components of the ubiquitination machinery in various aspects of myocardial ischemia. Lastly, despite the evidence linking myocardial ischemia and proteasome dysfunction, there are continuing suggestions that proteasome inhibitors may be useful to mitigate ischemic injury. This review presents the rationale behind this and discusses both supportive and nonsupportive studies and presents possible future directions that may help in clarifying this controversy.
Collapse
Affiliation(s)
- Justine Calise
- Center for Heart and Lung Research, The Feinstein Institute for Medical Research, Manhasset, New York 11030, USA
| | | |
Collapse
|
24
|
Mapanga RF, Rajamani U, Dlamini N, Zungu-Edmondson M, Kelly-Laubscher R, Shafiullah M, Wahab A, Hasan MY, Fahim MA, Rondeau P, Bourdon E, Essop MF. Oleanolic acid: a novel cardioprotective agent that blunts hyperglycemia-induced contractile dysfunction. PLoS One 2012; 7:e47322. [PMID: 23091615 PMCID: PMC3473042 DOI: 10.1371/journal.pone.0047322] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 09/14/2012] [Indexed: 01/08/2023] Open
Abstract
Diabetes constitutes a major health challenge. Since cardiovascular complications are common in diabetic patients this will further increase the overall burden of disease. Furthermore, stress-induced hyperglycemia in non-diabetic patients with acute myocardial infarction is associated with higher in-hospital mortality. Previous studies implicate oxidative stress, excessive flux through the hexosamine biosynthetic pathway (HBP) and a dysfunctional ubiquitin-proteasome system (UPS) as potential mediators of this process. Since oleanolic acid (OA; a clove extract) possesses antioxidant properties, we hypothesized that it attenuates acute and chronic hyperglycemia-mediated pathophysiologic molecular events (oxidative stress, apoptosis, HBP, UPS) and thereby improves contractile function in response to ischemia-reperfusion. We employed several experimental systems: 1) H9c2 cardiac myoblasts were exposed to 33 mM glucose for 48 hr vs. controls (5 mM glucose); and subsequently treated with two OA doses (20 and 50 µM) for 6 and 24 hr, respectively; 2) Isolated rat hearts were perfused ex vivo with Krebs-Henseleit buffer containing 33 mM glucose vs. controls (11 mM glucose) for 60 min, followed by 20 min global ischemia and 60 min reperfusion ± OA treatment; 3) In vivo coronary ligations were performed on streptozotocin treated rats ± OA administration during reperfusion; and 4) Effects of long-term OA treatment (2 weeks) on heart function was assessed in streptozotocin-treated rats. Our data demonstrate that OA treatment blunted high glucose-induced oxidative stress and apoptosis in heart cells. OA therapy also resulted in cardioprotection, i.e. for ex vivo and in vivo rat hearts exposed to ischemia-reperfusion under hyperglycemic conditions. In parallel, we found decreased oxidative stress, apoptosis, HBP flux and proteasomal activity following ischemia-reperfusion. Long-term OA treatment also improved heart function in streptozotocin-diabetic rats. These findings are promising since it may eventually result in novel therapeutic interventions to treat acute hyperglycemia (in non-diabetic patients) and diabetic patients with associated cardiovascular complications.
Collapse
Affiliation(s)
- Rudo F. Mapanga
- Cardio-Metabolic Research Group (CMRG), Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Uthra Rajamani
- Cardio-Metabolic Research Group (CMRG), Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Nonkululeko Dlamini
- Discipline of Physiology, School of Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | | | - Roisin Kelly-Laubscher
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| | - Mohammed Shafiullah
- Faculty of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Athiq Wahab
- Faculty of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Mohamed Y. Hasan
- Faculty of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Mohamed A. Fahim
- Faculty of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Philippe Rondeau
- Groupe d’Etude sur l’Inflammation Chronique et l’Obésité (GEICO), Université de La Réunion, Saint Denis de La Réunion, France
| | - Emmanuel Bourdon
- Groupe d’Etude sur l’Inflammation Chronique et l’Obésité (GEICO), Université de La Réunion, Saint Denis de La Réunion, France
| | - M. Faadiel Essop
- Cardio-Metabolic Research Group (CMRG), Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
25
|
Scruggs SB, Zong NC, Wang D, Stefani E, Ping P. Post-translational modification of cardiac proteasomes: functional delineation enabled by proteomics. Am J Physiol Heart Circ Physiol 2012; 303:H9-18. [PMID: 22523251 PMCID: PMC3404648 DOI: 10.1152/ajpheart.00189.2012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 04/13/2012] [Indexed: 01/07/2023]
Abstract
Proteasomes are ubiquitously expressed multicatalytic complexes that serve as key regulators of protein homeostasis. There are several lines of evidence indicating that proteasomes exist in heterogeneous subpopulations in cardiac muscle, differentiated, in part, by post-translational modifications (PTMs). PTMs regulate numerous facets of proteasome function, including catalytic activities, complex assembly, interactions with associating partners, subcellular localization, substrate preference, and complex turnover. Classical technologies used to identify PTMs on proteasomes have lacked the ability to determine site specificity, quantify stoichiometry, and perform large-scale, multi-PTM analysis. Recent advancements in proteomic technologies have largely overcome these limitations. We present here a discussion on the importance of PTMs in modulating proteasome function in cardiac physiology and pathophysiology, followed by the presentation of a state-of-the-art proteomic workflow for identifying and quantifying PTMs of cardiac proteasomes.
Collapse
Affiliation(s)
- Sarah B Scruggs
- Division of Cardiology, Department of Physiology, University of California, Los Angeles, USA
| | | | | | | | | |
Collapse
|
26
|
Cellular dysfunction in diabetes as maladaptive response to mitochondrial oxidative stress. EXPERIMENTAL DIABETES RESEARCH 2012; 2012:696215. [PMID: 22253615 PMCID: PMC3255456 DOI: 10.1155/2012/696215] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 09/27/2011] [Indexed: 12/20/2022]
Abstract
Oxidative stress has been implicated in diabetes long-term complications. In this paper, we summarize the growing evidence suggesting that hyperglycemia-induced overproduction of superoxide by mitochondrial electron transport chain triggers a maladaptive response by affecting several metabolic and signaling pathways involved in the pathophysiology of cellular dysfunction and diabetic complications. In particular, it is our goal to describe physiological mechanisms underlying the mitochondrial free radical production and regulation to explain the oxidative stress derived from a high intracellular glucose concentration and the resulting maladaptive response that leads to a cellular dysfunction and pathological state. Finally, we outline potential therapies for diabetes focused to the prevention of mitochondrial oxidative damage.
Collapse
|
27
|
Powell SR, Herrmann J, Lerman A, Patterson C, Wang X. The ubiquitin-proteasome system and cardiovascular disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 109:295-346. [PMID: 22727426 DOI: 10.1016/b978-0-12-397863-9.00009-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Over the past decade, the role of the ubiquitin-proteasome system (UPS) has been the subject of numerous studies to elucidate its role in cardiovascular physiology and pathophysiology. There have been many advances in this field including the use of proteomics to achieve a better understanding of how the cardiac proteasome is regulated. Moreover, improved methods for the assessment of UPS function and the development of genetic models to study the role of the UPS have led to the realization that often the function of this system deviates from the norm in many cardiovascular pathologies. Hence, dysfunction has been described in atherosclerosis, familial cardiac proteinopathies, idiopathic dilated cardiomyopathies, and myocardial ischemia. This has led to numerous studies of the ubiquitin protein (E3) ligases and their roles in cardiac physiology and pathophysiology. This has also led to the controversial proposition of treating atherosclerosis, cardiac hypertrophy, and myocardial ischemia with proteasome inhibitors. Furthering our knowledge of this system may help in the development of new UPS-based therapeutic modalities for mitigation of cardiovascular disease.
Collapse
Affiliation(s)
- Saul R Powell
- Center for Heart and Lung Research, The Feinstein Institute for Medical Research, Manhasset, New York, USA
| | | | | | | | | |
Collapse
|
28
|
Burniston JG, Kenyani J, Wastling JM, Burant CF, Qi NR, Koch LG, Britton SL. Proteomic analysis reveals perturbed energy metabolism and elevated oxidative stress in hearts of rats with inborn low aerobic capacity. Proteomics 2011; 11:3369-79. [PMID: 21751351 DOI: 10.1002/pmic.201000593] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Selection on running capacity has created rat phenotypes of high-capacity runners (HCRs) that have enhanced cardiac function and low-capacity runners (LCRs) that exhibit risk factors of metabolic syndrome. We analysed hearts of HCRs and LCRs from generation 22 of selection using DIGE and identified proteins from MS database searches. The running capacity of HCRs was six-fold greater than LCRs. DIGE resolved 957 spots and proteins were unambiguously identified in 369 spots. Protein expression profiling detected 67 statistically significant (p<0.05; false discovery rate <10%, calculated using q-values) differences between HCRs and LCRs. Hearts of HCR rats exhibited robust increases in the abundance of each enzyme of the β-oxidation pathway. In contrast, LCR hearts were characterised by the modulation of enzymes associated with ketone body or amino acid metabolism. LCRs also exhibited enhanced expression of antioxidant enzymes such as catalase and greater phosphorylation of α B-crystallin at serine 59, which is a common point of convergence in cardiac stress signalling. Thus, proteomic analysis revealed selection on low running capacity is associated with perturbations in cardiac energy metabolism and provided the first evidence that the LCR cardiac proteome is exposed to greater oxidative stress.
Collapse
Affiliation(s)
- Jatin G Burniston
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.
| | | | | | | | | | | | | |
Collapse
|
29
|
Wang X, Li J, Zheng H, Su H, Powell SR. Proteasome functional insufficiency in cardiac pathogenesis. Am J Physiol Heart Circ Physiol 2011; 301:H2207-19. [PMID: 21949118 DOI: 10.1152/ajpheart.00714.2011] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The ubiquitin-proteasome system (UPS) is responsible for the degradation of most cellular proteins. Alterations in cardiac UPS, including changes in the degradation of regulatory proteins and proteasome functional insufficiency, are observed in many forms of heart disease and have been shown to play an important role in cardiac pathogenesis. In the past several years, remarkable progress in understanding the mechanisms that regulate UPS-mediated protein degradation has been achieved. A transgenic mouse model of benign enhancement of cardiac proteasome proteolytic function has been created. This has led to the first demonstration of the necessity of proteasome functional insufficiency in the genesis of important pathological processes. Cardiomyocyte-restricted enhancement of proteasome proteolytic function by overexpression of proteasome activator 28α protects against cardiac proteinopathy and myocardial ischemia-reperfusion injury. Additionally, exciting advances have recently been achieved in the search for a pharmacological agent to activate the proteasome. These breakthroughs are expected to serve as an impetus to further investigation into the involvement of UPS dysfunction in molecular pathogenesis and to the development of new therapeutic strategies for combating heart disease. An interplay between the UPS and macroautophagy is increasingly suggested in noncardiac systems but is not well understood in the cardiac system. Further investigations into the interplay are expected to provide a more comprehensive picture of cardiac protein quality control and degradation.
Collapse
Affiliation(s)
- Xuejun Wang
- Division of Basic Biomedical Sciences, Protein Quality Control and Degradation Research Center, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota 57069, USA.
| | | | | | | | | |
Collapse
|
30
|
Scruggs SB, Ping P, Zong C. Heterogeneous cardiac proteasomes: mandated by diverse substrates? Physiology (Bethesda) 2011; 26:106-14. [PMID: 21487029 DOI: 10.1152/physiol.00039.2010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Proteasome biology has taken central stage in cardiac physiology and pathophysiology. The molecular heterogeneity of proteasome subpopulations supports the specificity of proteasome function to degrade diverse substrate repertoires. Unveiling the dynamics of proteasome function should inspire new therapeutic strategies for combating cardiac disease.
Collapse
Affiliation(s)
- Sarah B Scruggs
- Departments of Physiology and Medicine, Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | | | | |
Collapse
|
31
|
Li YF, Wang X. The role of the proteasome in heart disease. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1809:141-9. [PMID: 20840877 PMCID: PMC3021001 DOI: 10.1016/j.bbagrm.2010.09.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Revised: 09/01/2010] [Accepted: 09/02/2010] [Indexed: 01/23/2023]
Abstract
Intensive investigations into the pathophysiological significance of the proteasome in the heart did not start until the beginning of the past decade but exciting progress has been made and summarized here as two fronts. First, strong evidence continues to emerge to support a novel hypothesis that proteasome functional insufficiency represents a common pathological phenomenon in a large subset of heart disease, compromises protein quality control in heart muscle cells, and thereby acts as a major pathogenic factor promoting the progression of the subset of heart disease to congestive heart failure. This front is represented by the studies on the ubiquitin-proteasome system (UPS) in cardiac proteinopathy, which have taken advantage of a transgenic mouse model expressing a fluorescence reporter for UPS proteolytic function. Second, pharmacological inhibition of the proteasome has been explored experimentally as a potential therapeutic strategy to intervene on some forms of heart disease, such as pressure-overload cardiac hypertrophy, viral myocarditis, and myocardial ischemic injury. Not only between the two fronts but also within each one, a multitude of inconsistencies and controversies remain to be explained and clarified. At present, the controversy perhaps reflects the sophistication of cardiac proteasomes in terms of the composition, assembly, and regulation, as well as the intricacy and diversity of heart disease in terms of its etiology and pathogenesis. A definitive role of altered proteasome function in the development of various forms of heart disease remains to be established. This article is part of a Special Issue entitled The 26S Proteasome: When degradation is just not enough!
Collapse
Affiliation(s)
- Yi-Fan Li
- Division of Basic, Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD 57069, USA
| | | |
Collapse
|
32
|
Li J, Powell SR, Wang X. Enhancement of proteasome function by PA28α overexpression protects against oxidative stress. FASEB J 2010; 25:883-93. [PMID: 21098724 DOI: 10.1096/fj.10-160895] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The principal function of the proteasome is targeted degradation of intracellular proteins. Proteasome dysfunction has been observed in experimental cardiomyopathies and implicated in human congestive heart failure. Measures to enhance proteasome proteolytic function are currently lacking but would be beneficial in testing the pathogenic role of proteasome dysfunction and could have significant therapeutic potential. The association of proteasome activator 28 (PA28) with the 20S proteasome may play a role in antigen processing. It is unclear, however, whether the PA28 plays any important role outside of antigen presentation, although up-regulation of PA28 has been observed in certain types of cardiomyopathy. Here, we show that PA28α overexpression (PA28αOE) stabilized PA28β, increased 11S proteasomes, and enhanced the degradation of a previously validated proteasome surrogate substrate (GFPu) in cultured neonatal rat cardiomyocytes. PA28αOE significantly attenuated H(2)O(2)-induced increases in the protein carbonyls and markedly suppressed apoptosis in cultured cardiomyocytes under basal conditions or when stressed by H(2)O(2). We conclude that PA28αOE is sufficient to up-regulate 11S proteasomes, enhance proteasome-mediated removal of misfolded and oxidized proteins, and protect against oxidative stress in cardiomyocytes, providing a highly sought means to increase proteasomal degradation of abnormal cellular proteins.
Collapse
Affiliation(s)
- Jie Li
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, 414 East Clark St., Lee Medical Bldg., Vermillion, SD 57069, USA
| | | | | |
Collapse
|
33
|
Dewey S, Gomes AV. Non-antigen processing immunoproteasomes in diabetic hearts? J Mol Cell Cardiol 2010; 49:1-4. [PMID: 20382154 DOI: 10.1016/j.yjmcc.2010.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 03/29/2010] [Accepted: 03/31/2010] [Indexed: 01/10/2023]
|
34
|
Abstract
The ubiquitin-proteasome system (UPS) is a major proteolytic system that regulates the degradation of intracellular proteins in the heart. The UPS regulates the turnover of misfolded and damaged proteins, in addition to numerous cellular processes, by affecting the stability of short-lived proteins such as transcription factors and cell signaling pathways. The UPS is tightly regulated by the specificity of ubiquitin ligases that recognize specific substrates and direct the addition of ubiquitin, targeting the substrates for degradation by the 26S proteasome. An increasing number of cardiac ubiquitin ligases have been identified, and the number of substrates each one is known to recognize also has increased, expanding their roles. Although mainly cardioprotective roles have been attributed to ubiquitin ligases, new studies have identified exceptions to this rule. This review discusses the mechanisms of cardiac ubiquitin ligases and identifies their role in common cardiac diseases including cardiac hypertrophy, cardiac atrophy, ischemic heart disease, and diabetic cardiomyopathy.
Collapse
|
35
|
Predmore JM, Wang P, Davis F, Bartolone S, Westfall MV, Dyke DB, Pagani F, Powell SR, Day SM. Ubiquitin proteasome dysfunction in human hypertrophic and dilated cardiomyopathies. Circulation 2010; 121:997-1004. [PMID: 20159828 DOI: 10.1161/circulationaha.109.904557] [Citation(s) in RCA: 202] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The ubiquitin proteasome system maintains a dynamic equilibrium of proteins and prevents accumulation of damaged and misfolded proteins, yet its role in human cardiac dysfunction is not well understood. The present study evaluated ubiquitin proteasome system function in human heart failure and hypertrophic cardiomyopathy (HCM). METHODS AND RESULTS Proteasome function was studied in human nonfailing donor hearts, explanted failing hearts, and myectomy samples from patients with HCM. Proteasome proteolytic activities were markedly reduced in failing and HCM hearts compared with nonfailing hearts (P<0.01). This activity was partially restored after mechanical unloading in failing hearts (P<0.01) and was significantly lower in HCM hearts with pathogenic sarcomere mutations than in those lacking these mutations (P<0.05). There were no changes in the protein content of ubiquitin proteasome system subunits (ie, 11S, 20S, and 19S) or in active-site labeling of the 20S proteolytic subunit beta-5 among groups to explain decreased ubiquitin proteasome system activity in HCM and failing hearts. Examination of protein oxidation revealed that total protein carbonyls, 4-hydroxynonenylated proteins, and oxidative modification to 19S ATPase subunit Rpt 5 were increased in failing compared with nonfailing hearts. CONCLUSIONS Proteasome activity in HCM and failing human hearts is impaired in the absence of changes in proteasome protein content or availability of proteolytic active sites. These data provide strong evidence that posttranslational modifications to the proteasome may account for defective protein degradation in human cardiomyopathies.
Collapse
Affiliation(s)
- Jaime M Predmore
- 1150 W Medical Center Dr, 7301 MSRB III, Ann Arbor, MI 48109-0644, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Zu L, Bedja D, Fox-Talbot K, Gabrielson KL, Van Kaer L, Becker LC, Cai ZP. Evidence for a role of immunoproteasomes in regulating cardiac muscle mass in diabetic mice. J Mol Cell Cardiol 2010; 49:5-15. [PMID: 20153750 DOI: 10.1016/j.yjmcc.2010.02.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 02/04/2010] [Accepted: 02/05/2010] [Indexed: 12/26/2022]
Abstract
The ubiquitin-proteasome system plays an important role in regulating muscle mass. Inducible immunoproteasome subunits LMP-2 and LMP-7 are constitutively expressed in the heart; however, their regulation and functions are poorly understood. We here investigated the hypothesis that immunoproteasomes regulate cardiac muscle mass in diabetic mice. Type 1 diabetes was induced in wildtype mice by streptozotocin. After hyperglycemia developed, insulin and the proteasome inhibitor epoxomicin were used to treat diabetic mice for 6weeks. Isolated mouse hearts were perfused with control or high glucose solution. Catalytic proteasome beta-subunits and proteolytic activities were analyzed in the heart by immunoblotting and fluorogenic peptide degradation assays, respectively. Insulin and epoxomicin blocked loss of heart weight and improved cardiac function in diabetic mice. LMP-7 and its corresponding chymotryptic-like proteasome activity were increased in diabetic hearts and high glucose-treated hearts. Myosin heavy chain protein was decreased in diabetic hearts, which was largely reversed by epoxomicin. High glucose decreased LMP-2 protein levels in perfused hearts. In diabetic hearts, LMP-2 expression was downregulated whereas expression of the phosphatase and tensin homologue deleted on chromosome ten (PTEN) and the muscle atrophy F-box were upregulated. Moreover, mice with muscle-specific knockout of PTEN gene demonstrated increased cardiac muscle mass, while mice with LMP-2 deficiency demonstrated PTEN accumulation, muscle mass loss, and contractile impairment in the heart. Therefore, we concluded that high glucose regulates immunoproteasome subunits and modifies proteasome activities in the heart, and that dysregulated immunoproteasome subunits may mediate loss of cardiac muscle mass in experimental diabetic mice.
Collapse
Affiliation(s)
- Lingyun Zu
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Powell SR, Divald A. The ubiquitin-proteasome system in myocardial ischaemia and preconditioning. Cardiovasc Res 2009; 85:303-11. [PMID: 19793765 DOI: 10.1093/cvr/cvp321] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) represents the major pathway for degradation of intracellular proteins. This article reviews the major components and configurations of the UPS including the 26S proteasome and 11S activated proteasome relevant to myocardial ischaemia. We then present the evidence that the UPS is dysfunctional during myocardial ischaemia as well as potential consequences of this, including dysregulation of target substrates, many of them active signalling proteins, and accumulation of oxidized proteins. As part of this discussion, potential mechanisms, including ATP depletion, inhibition by insoluble protein aggregates, and oxidation of proteasome and regulatory particle subunits, are discussed. Finally, the evidence suggesting a role for the UPS in ischaemic preconditioning is presented. Much of this is inferential but clearly indicates the need for additional research.
Collapse
Affiliation(s)
- Saul R Powell
- The Cardiac Metabolism Laboratory, The Feinstein Institute for Medical Research, Long Island Jewish Medical Center, 270-05 76th Avenue, Suite B-387, New Hyde Park, NY 11042, USA.
| | | |
Collapse
|
38
|
Su H, Wang X. The ubiquitin-proteasome system in cardiac proteinopathy: a quality control perspective. Cardiovasc Res 2009; 85:253-62. [PMID: 19696071 DOI: 10.1093/cvr/cvp287] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Protein quality control (PQC) depends on elegant collaboration between molecular chaperones and targeted proteolysis in the cell. The latter is primarily carried out by the ubiquitin-proteasome system, but recent advances in this area of research suggest a supplementary role for the autophagy-lysosomal pathway in PQC-related proteolysis. The (patho)physiological significance of PQC in the heart is best illustrated in cardiac proteinopathy, which belongs to a family of cardiac diseases caused by expression of aggregation-prone proteins in cardiomyocytes. Cardiac proteasome functional insufficiency (PFI) is best studied in desmin-related cardiomyopathy, a bona fide cardiac proteinopathy. Emerging evidence suggests that many common forms of cardiomyopathy may belong to proteinopathy. This review focuses on examining current evidence, as it relates to the hypothesis that PFI impairs PQC in cardiomyocytes and contributes to the progression of cardiac proteinopathies to heart failure.
Collapse
Affiliation(s)
- Huabo Su
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Lee Medical Building, 414 E Clark Street, Vermillion, SD 57069, USA
| | | |
Collapse
|
39
|
Tsukamoto O, Minamino T, Kitakaze M. Functional alterations of cardiac proteasomes under physiological and pathological conditions. Cardiovasc Res 2009; 85:339-46. [PMID: 19684034 DOI: 10.1093/cvr/cvp282] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The cardiac proteasome is a complex, heterogeneous, and dynamic organelle. Its function is regulated by its molecular organization, post-translational modifications, and associated partner proteins. Pressure overload, ischaemic heart disease, or genetic mutations in contractile proteins can cause heart failure, during which misfolded protein levels are elevated. At the same time, numerous interconnected signal transduction pathways are activated that may modulate any of the three proteasomal regulatory mechanisms mentioned above, resulting in functional changes in cardiac proteasomes. Many lines of evidence support the important role of the ubiquitin-proteasome system (UPS) in the development of heart diseases. Many researchers have focused on the UPS, applying new drug discovery methods not only in the field of cancer research but also in cardiovascular fields such as cardiac hypertrophy and ischaemic heart diseases. More understanding of UPS in the pathophysiology of heart diseases will lead to new routes for therapy.
Collapse
Affiliation(s)
- Osamu Tsukamoto
- Department of Cardiovascular Medicine, National Cardiovascular Center, Suita 565-8565, Japan
| | | | | |
Collapse
|
40
|
Abstract
Activation of the ubiquitin-proteasome system has been described in different models of cardiac hypertrophy. Cardiac cell growth in response to pressure or volume overload, as well as physiological adaptive hypertrophy, is accompanied by an increase in protein ubiquitination, proteasome subunit expression, and proteasome activity. Importantly, an inhibition of proteasome activity prevents and reverses cardiac hypertrophy and remodelling in vivo. The focus of this review is to provide an update about the mechanisms by which proteasome inhibitors affect cardiac cell growth in adaptive and maladaptive models of cardiac hypertrophy. In the first part, we summarize how the proteasome affects both proteolysis and protein synthesis in a context of cardiac cell growth. In the second part, we show how proteasome inhibition can prevent and reverse cardiac hypertrophy and remodelling in response to different conditions of overload.
Collapse
Affiliation(s)
- Nadia Hedhli
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, 185 South Orange Avenue, MSB G-609, Newark, NJ 07103, USA
| | | |
Collapse
|
41
|
Kloss A, Meiners S, Ludwig A, Dahlmann B. Multiple cardiac proteasome subtypes differ in their susceptibility to proteasome inhibitors. Cardiovasc Res 2009; 85:367-75. [PMID: 19564153 DOI: 10.1093/cvr/cvp217] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS The proteasome is the proteolytically active core of the ubiquitin-proteasome system, which regulates vital processes and which can cause various diseases when it malfunctions. Therefore, the proteasome has become an attractive target for pharmaceutical interventions. Inhibition of the cardiac proteasome by specific proteasome inhibitors has been shown to attenuate cardiac hypertrophy and ischaemia reperfusion injury of the heart. We have resolved the cardiac proteasome into its subtypes and have addressed the key question of how proteasome inhibitors affect single cardiac proteasomal subtypes. METHODS AND RESULTS The 20S proteasome from rat heart was dissected into three different subpopulations (groups I-III), each comprising 4-7 different subtypes. The major group (group II) comprises standard proteasome subtypes; the two minor subpopulations (groups I and III) contain intermediate proteasome subtypes. All subtypes exhibit chymotrypsin-, trypsin-, and caspase-like activity but to different degrees. We have tested the effect of two common proteasome inhibitors on the chymotrypsin-like activity of all subtypes: 20-30 nmol/L MG132 caused 50% inhibition of all subtypes from groups I and II, whereas 100 nmol/L was necessary to affect group III subtypes to the same extent. However, another inhibitor, bortezomib (VELCADE), already used clinically, inhibited 50% of the activity of group III proteasome subtypes even below 20 nmol/L, a concentration showing almost no effect on group I and II proteasome subtypes. The caspase-like activity of group II proteasome subtypes was not affected by MG132 and was inhibited by bortezomib only at concentrations above 100 nmol/L. CONCLUSION These data show that different inhibitors have differential inhibitory effects on the various cardiac proteasome subtypes. Different cardiac subtypes are inhibited by the same dose of proteasome inhibitor to a different extent.
Collapse
Affiliation(s)
- Alexander Kloss
- Institut für Biochemie/CCM, Charité-Universitätsmedizin Berlin, Monbijoustr 2, Berlin 10117, Germany
| | | | | | | |
Collapse
|
42
|
Yu X, Patterson E, Kem DC. Targeting proteasomes for cardioprotection. Curr Opin Pharmacol 2008; 9:167-72. [PMID: 19097937 DOI: 10.1016/j.coph.2008.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Accepted: 11/05/2008] [Indexed: 10/21/2022]
Abstract
The ubiquitin-proteasome system (UPS) plays a central role in intracellular protein degradation and regulates many cellular processes, including cell proliferation, inflammation, adaptation to stress, cell death, and the removal of damaged or misfolded proteins. Numerous studies have demonstrated that altered UPS function is involved in the pathogenesis of a wide range of cardiac diseases including hypertrophy and failure, myocardial ischemia, atherosclerosis, and diabetic cardiovascular disease. Impairment of proteasome function is a common feature of cardiac disease; however several studies have also demonstrated increased proteasome activity in models similar but not identical with those having decreased function. Recent studies have shown that use of proteasome inhibitors before or following production of the model of cardiac disease may confer cardioprotection under certain conditions.
Collapse
Affiliation(s)
- Xichun Yu
- Endocrinology/Harold Hamm Oklahoma Diabetes Center & Heart Rhythm Institute, University of Oklahoma Health Sciences Center, 1200 Everett Dr, Oklahoma City, OK 73104, United States.
| | | | | |
Collapse
|
43
|
Mearini G, Schlossarek S, Willis MS, Carrier L. The ubiquitin–proteasome system in cardiac dysfunction. Biochim Biophys Acta Mol Basis Dis 2008; 1782:749-63. [DOI: 10.1016/j.bbadis.2008.06.009] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 06/12/2008] [Accepted: 06/18/2008] [Indexed: 12/31/2022]
|
44
|
Wang X, Su H, Ranek MJ. Protein quality control and degradation in cardiomyocytes. J Mol Cell Cardiol 2008; 45:11-27. [PMID: 18495153 DOI: 10.1016/j.yjmcc.2008.03.025] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 03/23/2008] [Accepted: 03/29/2008] [Indexed: 12/19/2022]
Abstract
The heart is constantly under stress and cardiomyocytes face enormous challenges to correctly fold nascent polypeptides and keep mature proteins from denaturing. To meet the challenge, cardiomyocytes have developed multi-layered protein quality control (PQC) mechanisms which are carried out primarily by chaperones and ubiquitin-proteasome system mediated proteolysis. Autophagy may also participate in PQC in cardiomyocytes, especially under pathological conditions. Cardiac PQC often becomes inadequate in heart disease, which may play an important role in the development of congestive heart failure.
Collapse
Affiliation(s)
- Xuejun Wang
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD 57069, USA.
| | | | | |
Collapse
|