1
|
Burashnikov A, Antzelevitch C. The Efficacy of I Na Block to Cardiovert Atrial Fibrillation Is Enhanced by Inhibition of I K1. J Cardiovasc Pharmacol 2024; 84:434-439. [PMID: 39115816 DOI: 10.1097/fjc.0000000000001617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/13/2024] [Indexed: 10/05/2024]
Abstract
ABSTRACT There is a need for more efficient pharmacological cardioversion of atrial fibrillation (AF). We tested the hypothesis that inhibition of I K1 significantly enhances the efficacy of I Na block to depress atrial excitability and to cardiovert AF. The study was conducted in canine isolated arterially perfused right atrial preparations with rim of ventricular tissue. AF was induced in the presence of acetylcholine (ACh; 0.5 µM). BaCl 2 (10 µM) was used to inhibit I K1 and flecainide (1.5 µM) to block I Na . Sustained AF (>45 minutes) was recorded in 100% atria (5/5) in the presence of ACh alone. Flecainide cardioverted AF in 50% of atria (4/8), BaCl 2 in 0% (0/5), and their combination in 100% (5/5). AF cardioversion occurred in 15 ± 9 minutes with flecainide alone (n = 4) and in 8 ± 9 minutes with the combination (n = 5). Following drug-induced AF cardioversion, AF was inducible in 4/4 atria with flecainide alone (≤5 minutes duration) and in 2/5 atria with the combination (≤30 seconds duration). Atrial excitability was significantly more depressed by combined versus monotherapies. There was little to no effect on ventricular excitability under any condition tested. Thus, inhibition of I K1 significantly enhances the efficacy of flecainide to depress atrial excitability and to cardiovert AF in our experimental setting. A combination of I Na and I K1 inhibition may be an effective approach for cardioversion of AF.
Collapse
Affiliation(s)
- Alexander Burashnikov
- Lankenau Institute for Medical Research, Wynnewood, PA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA; and
| | - Charles Antzelevitch
- Lankenau Institute for Medical Research, Wynnewood, PA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA; and
- Lankenau Heart Institute, Main Line Health System, Wynnewood, PA
| |
Collapse
|
2
|
Varró A, Tomek J, Nagy N, Virág L, Passini E, Rodriguez B, Baczkó I. Cardiac transmembrane ion channels and action potentials: cellular physiology and arrhythmogenic behavior. Physiol Rev 2020; 101:1083-1176. [PMID: 33118864 DOI: 10.1152/physrev.00024.2019] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cardiac arrhythmias are among the leading causes of mortality. They often arise from alterations in the electrophysiological properties of cardiac cells and their underlying ionic mechanisms. It is therefore critical to further unravel the pathophysiology of the ionic basis of human cardiac electrophysiology in health and disease. In the first part of this review, current knowledge on the differences in ion channel expression and properties of the ionic processes that determine the morphology and properties of cardiac action potentials and calcium dynamics from cardiomyocytes in different regions of the heart are described. Then the cellular mechanisms promoting arrhythmias in congenital or acquired conditions of ion channel function (electrical remodeling) are discussed. The focus is on human-relevant findings obtained with clinical, experimental, and computational studies, given that interspecies differences make the extrapolation from animal experiments to human clinical settings difficult. Deepening the understanding of the diverse pathophysiology of human cellular electrophysiology will help in developing novel and effective antiarrhythmic strategies for specific subpopulations and disease conditions.
Collapse
Affiliation(s)
- András Varró
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - Jakub Tomek
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Norbert Nagy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - László Virág
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Elisa Passini
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
3
|
Árpádffy-Lovas T, Baczkó I, Baláti B, Bitay M, Jost N, Lengyel C, Nagy N, Takács J, Varró A, Virág L. Electrical Restitution and Its Modifications by Antiarrhythmic Drugs in Undiseased Human Ventricular Muscle. Front Pharmacol 2020; 11:479. [PMID: 32425771 PMCID: PMC7203420 DOI: 10.3389/fphar.2020.00479] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/26/2020] [Indexed: 01/02/2023] Open
Abstract
Introduction Re-entry is a basic mechanism of ventricular fibrillation, which can be elicited by extrasystolic activity, but the timing of an extrasystole can be critical. The action potential duration (APD) of an extrasystole depends on the proximity of the preceding beat, and the relation between its timing and its APD is called electrical restitution. The aim of the present work was to study and compare the effect of several antiarrhythmic drugs on restitution in preparations from undiseased human ventricular muscle, and other mammalian species. Methods Action potentials were recorded in preparations obtained from rat, guinea pig, rabbit, and dog hearts; and from undiseased human donor hearts using the conventional microelectrode technique. Preparations were stimulated with different basic cycle lengths (BCLs) ranging from 300 to 5,000 ms. To study restitution, single test pulses were applied at every 20th beat while the preparation was driven at 1,000 ms BCL. Results Marked differences were found between the animal and human preparations regarding restitution and steady-state frequency dependent curves. In human ventricular muscle, restitution kinetics were slower in preparations with large phase 1 repolarization with shorter APDs at 1000 ms BCL compared to preparations with small phase 1. Preparations having APD longer than 300 ms at 1000 ms BCL had slower restitution kinetics than those having APD shorter than 250 ms. The selective IKr inhibitors E-4031 and sotalol increased overall APD and slowed the restitution kinetics, while IKs inhibition did not influence APD and electrical restitution. Mexiletine and nisoldipine shortened APD, but only mexiletine slowed restitution kinetics. Discussion Frequency dependent APD changes, including electrical restitution, were partly determined by the APD at the BCL. Small phase 1 associated with slower restitution suggests a role of Ito in restitution. APD prolonging drugs slowed restitution, while mexiletine, a known inhibitor of INa, shortened basic APD but also slowed restitution. These results indicate that although basic APD has an important role in restitution, other transmembrane currents, such as INa or Ito, can also affect restitution kinetics. This raises the possibility that ion channel modifier drugs slowing restitution kinetics may have antiarrhythmic properties by altering restitution.
Collapse
Affiliation(s)
- Tamás Árpádffy-Lovas
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Beáta Baláti
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Miklós Bitay
- Department of Cardiac Surgery, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Norbert Jost
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary.,MTA-SZTE Research Group for Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged, Hungary
| | - Csaba Lengyel
- First Department of Internal Medicine, University of Szeged, Szeged, Hungary
| | - Norbert Nagy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Research Group for Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged, Hungary
| | - János Takács
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - András Varró
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary.,MTA-SZTE Research Group for Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged, Hungary
| | - László Virág
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| |
Collapse
|
4
|
Gong JQX, Susilo ME, Sher A, Musante CJ, Sobie EA. Quantitative analysis of variability in an integrated model of human ventricular electrophysiology and β-adrenergic signaling. J Mol Cell Cardiol 2020; 143:96-106. [PMID: 32330487 DOI: 10.1016/j.yjmcc.2020.04.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/24/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023]
Abstract
In ventricular myocytes, stimulation of β-adrenergic receptors activates critical cardiac signaling pathways, leading to shorter action potentials and increased contraction strength during the "fight-or-flight" response. These changes primarily result, at the cellular level, from the coordinated phosphorylation of multiple targets by protein kinase A. Although mathematical models of the intracellular signaling downstream of β-adrenergic receptor activation have previously been described, only a limited number of studies have explored quantitative interactions between intracellular signaling and electrophysiology in human ventricular myocytes. Accordingly, our objective was to develop an integrative mathematical model of β-adrenergic receptor signaling, electrophysiology, and intracellular calcium (Ca2+) handling in the healthy human ventricular myocyte. We combined published mathematical models of intracellular signaling and electrophysiology, then calibrated the model results against voltage clamp data and physiological changes occurring after stimulation of β-adrenergic receptors with isoproterenol. We subsequently: (1) explored how molecular variability in different categories of model parameters translated into phenotypic variability; (2) identified the most important parameters determining physiological cellular outputs in the model before and after β-adrenergic receptor stimulation; and (3) investigated which molecular level alterations can produce a phenotype indicative of heart failure with preserved ejection fraction (HFpEF). Major results included: (1) variability in parameters that controlled intracellular signaling caused qualitatively different behavior than variability in parameters controlling ion transport pathways; (2) the most important model parameters determining action potential duration and intracellular Ca2+ transient amplitude were generally consistent before and after β-adrenergic receptor stimulation, except for a shift in the importance of K+ currents in determining action potential duration; and (3) decreased Ca2+ uptake into the sarcoplasmic reticulum, increased Ca2+ extrusion through Na+/Ca2+ exchanger and decreased Ca2+ leak from the sarcoplasmic reticulum may contribute to HFpEF. Overall, this study provided novel insight into the phenotypic consequences of molecular variability, and our integrated model may be useful in the design and interpretation of future experimental studies of interactions between β-adrenergic signaling and cellular physiology in human ventricular myocytes.
Collapse
Affiliation(s)
- Jingqi Q X Gong
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Monica E Susilo
- Early Clinical Development, Pfizer Worldwide Research, Development and Medical, Cambridge, MA, USA
| | - Anna Sher
- Early Clinical Development, Pfizer Worldwide Research, Development and Medical, Cambridge, MA, USA
| | - Cynthia J Musante
- Early Clinical Development, Pfizer Worldwide Research, Development and Medical, Cambridge, MA, USA
| | - Eric A Sobie
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
5
|
Nánási PP, Szabó Z, Kistamás K, Horváth B, Virág L, Jost N, Bányász T, Almássy J, Varró A. Implication of frequency-dependent protocols in antiarrhythmic and proarrhythmic drug testing. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 157:76-83. [PMID: 31726065 DOI: 10.1016/j.pbiomolbio.2019.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 01/20/2023]
Abstract
It has long been known that the electrophysiological effects of many cardioactive drugs strongly depend on the rate dependent frequency. This was recognized first for class I antiarrhythmic agents: their Vmax suppressive effect was attenuated at long cycle lengths. Later many Ca2+ channel blockers were also found to follow such kinetics. The explanation was provided by the modulated and the guarded receptor theories. Regarding the duration of cardiac action potentials (APD) an opposite frequency-dependence was observed, i.e. the drug-induced changes in APD were proportional with the cycle length of stimulation, therefore it was referred as "reverse rate-dependency". The beat-to-beat, or short term variability of APD (SV) has been recognized as an important proarrhythmic mechanism, its magnitude can be used as an arrhythmia predictor. SV is modulated by several cardioactive agents, however, these drugs modify also APD itself. In order to clear the drug-specific effects on SV from the concomitant unspecific APD-change related ones, the term of "relative variability" was introduced. Relative variability is increased by ion channel blockers that decrease the negative feedback control of APD (i.e. blockers of ICa, IKr and IKs) and also by elevation of cytosolic Ca2+. Cardiac arrhythmias are also often categorized according to the characteristic heart rate (tachy- and bradyarrhythmias). Tachycardia is proarrhythmic primarily due to the concomitant Ca2+ overload causing delayed afterdepolarizations. Early afterdepolarizations (EADs) are complications of the bradycardic heart. What is common in the reverse rate-dependent nature of drug action on APD, increased SV and EAD incidence associated with bradycardia.
Collapse
Affiliation(s)
- Péter P Nánási
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Department of Dental Physiology, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Zoltán Szabó
- Department of Emergency Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Kornél Kistamás
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balázs Horváth
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Virág
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary; Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Norbert Jost
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary; Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary; MTA-SZTE Research Group for Cardiovascular Pharmacology, Szeged, Hungary
| | - Tamás Bányász
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Almássy
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - András Varró
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary; Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary; MTA-SZTE Research Group for Cardiovascular Pharmacology, Szeged, Hungary.
| |
Collapse
|
6
|
Vehniäinen ER, Haverinen J, Vornanen M. Polycyclic Aromatic Hydrocarbons Phenanthrene and Retene Modify the Action Potential via Multiple Ion Currents in Rainbow Trout Oncorhynchus mykiss Cardiac Myocytes. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:2145-2153. [PMID: 31237719 DOI: 10.1002/etc.4530] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/23/2019] [Accepted: 06/20/2019] [Indexed: 06/09/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous contaminants in aqueous environments. They affect cardiovascular development and function in fishes. The 3-ring PAH phenanthrene has recently been shown to impair cardiac excitation-contraction coupling by inhibiting Ca2+ and K+ currents in marine warm-water scombrid fishes. To see if similar events take place in a boreal freshwater fish, we studied whether the PAHs phenanthrene and retene (an alkylated phenanthrene) modify the action potential (AP) via effects on Na+ (INa ), Ca2+ (ICaL ), or K+ (IKr , IK1 ) currents in the ventricular myocytes of the rainbow trout (Oncorhynchus mykiss) heart. Electrophysiological characteristics of myocytes were measured using whole-cell patch clamp. Micromolar concentrations of phenanthrene and retene modified the shape of the ventricular AP, and retene profoundly shortened the AP at low micromolar concentrations. Both PAHs increased INa and reduced ICaL and IKr , but retene was more potent. Neither of the PAHs had an effect on IK1 . Our results show that phenanthrene and retene affect cardiac function in rainbow trout by a mechanism that involves multiple cardiac ion channels, and the final outcome of these changes (shortening of AP) is opposite to that observed in scombrid fishes (prolongation of AP). The results also show that retene and aryl hydrocarbon receptor (AhR) agonist have an additional mechanism of toxicity besides the previously known AhR-mediated, transcription-dependent one. Environ Toxicol Chem 2019;38:2145-2153. © 2019 SETAC.
Collapse
Affiliation(s)
- Eeva-Riikka Vehniäinen
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Jaakko Haverinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Matti Vornanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
7
|
Shattock MJ, Park KC, Yang HY, Lee AWC, Niederer S, MacLeod KT, Winter J. Restitution slope is principally determined by steady-state action potential duration. Cardiovasc Res 2018; 113:817-828. [PMID: 28371805 PMCID: PMC5437364 DOI: 10.1093/cvr/cvx063] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/22/2017] [Indexed: 12/02/2022] Open
Abstract
Aims The steepness of the action potential duration (APD) restitution curve and local tissue refractoriness are both thought to play important roles in arrhythmogenesis. Despite this, there has been little recognition of the apparent association between steady-state APD and the slope of the restitution curve. The objective of this study was to test the hypothesis that restitution slope is determined by APD and to examine the relationship between restitution slope, refractoriness and susceptibility to VF. Methods and results Experiments were conducted in isolated hearts and ventricular myocytes from adult guinea pigs and rabbits. Restitution curves were measured under control conditions and following intervention to prolong (clofilium, veratridine, bretylium, low [Ca]e, chronic transverse aortic constriction) or shorten (catecholamines, rapid pacing) ventricular APD. Despite markedly differing mechanisms of action, all interventions that prolonged the action potential led to a steepening of the restitution curve (and vice versa). Normalizing the restitution curve as a % of steady-state APD abolished the difference in restitution curves with all interventions. Effects on restitution were preserved when APD was modulated by current injection in myocytes pre-treated with the calcium chelator BAPTA-AM – to abolish the intracellular calcium transient. The non-linear relation between APD and the rate of repolarization of the action potential is shown to underpin the common influence of APD on the slope of the restitution curve. Susceptibility to VF was found to parallel changes in APD/refractoriness, rather than restitution slope. Conclusion(s) Steady-state APD is the principal determinant of the slope of the ventricular electrical restitution curve. In the absence of post-repolarization refractoriness, factors that prolong the action potential would be expected to steepen the restitution curve. However, concomitant changes in tissue refractoriness act to reduce susceptibility to sustained VF. Dependence on steady-state APD may contribute to the failure of restitution slope to predict sudden cardiac death.
Collapse
Affiliation(s)
- Michael J Shattock
- Cardiovascular Division, King's College London, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH, UK
| | - Kyung Chan Park
- Cardiovascular Division, King's College London, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH, UK
| | - Hsiang-Yu Yang
- NHLI, ICTEM Building, Hammersmith Campus, Du Cane Road, London W12 0NN, UK.,Department of Surgery, Division of Cardiovascular Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Angela W C Lee
- Biomedical Engineering, King's College London, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH, UK
| | - Steven Niederer
- Biomedical Engineering, King's College London, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH, UK
| | - Kenneth T MacLeod
- NHLI, ICTEM Building, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - James Winter
- Cardiovascular Division, King's College London, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH, UK
| |
Collapse
|
8
|
Winter J, Bishop MJ, Wilder CDE, O'Shea C, Pavlovic D, Shattock MJ. Sympathetic Nervous Regulation of Calcium and Action Potential Alternans in the Intact Heart. Front Physiol 2018; 9:16. [PMID: 29410631 PMCID: PMC5787134 DOI: 10.3389/fphys.2018.00016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/08/2018] [Indexed: 11/29/2022] Open
Abstract
Rationale: Arrhythmogenic cardiac alternans are thought to be an important determinant for the initiation of ventricular fibrillation. There is limited information on the effects of sympathetic nerve stimulation (SNS) on alternans in the intact heart and the conclusions of existing studies, focused on investigating electrical alternans, are conflicted. Meanwhile, several lines of evidence implicate instabilities in Ca handling, not electrical restitution, as the primary mechanism underpinning alternans. Despite this, there have been no studies on Ca alternans and SNS in the intact heart. The present study sought to address this, by application of voltage and Ca optical mapping for the simultaneous study of APD and Ca alternans in the intact guinea pig heart during direct SNS. Objective: To determine the effects of SNS on APD and Ca alternans in the intact guinea pig heart and to examine the mechanism(s) by which the effects of SNS are mediated. Methods and Results: Studies utilized simultaneous voltage and Ca optical mapping in isolated guinea pig hearts with intact innervation. Alternans were induced using a rapid dynamic pacing protocol. SNS was associated with rate-independent shortening of action potential duration (APD) and the suppression of APD and Ca alternans, as indicated by a shift in the alternans threshold to faster pacing rates. Qualitatively similar results were observed with exogenous noradrenaline perfusion. In contrast with previous reports, both SNS and noradrenaline acted to flatten the slope of the electrical restitution curve. Pharmacological block of the slow delayed rectifying potassium current (IKs), sufficient to abolish IKs-mediated APD-adaptation, partially reversed the effects of SNS on pacing-induced alternans. Treatment with cyclopiazonic acid, an inhibitor of the sarco(endo)plasmic reticulum ATPase, had opposite effects to that of SNS, acting to increase susceptibility to alternans, and suggesting that accelerated Ca reuptake into the sarcoplasmic reticulum is a major mechanism by which SNS suppresses alternans in the guinea pig heart. Conclusions: SNS suppresses calcium and action potential alternans in the intact guinea pig heart by an action mediated through accelerated Ca handling and via increased IKs.
Collapse
Affiliation(s)
- James Winter
- School of Cardiovascular Medicine and Sciences, King's College London, United Kingdom.,Institute of Cardiovascular Sciences, College of Medicine and Dental Sciences, University of Birmingham, United Kingdom
| | - Martin J Bishop
- Biomedical Engineering Department, King's College London, United Kingdom
| | - Catherine D E Wilder
- School of Cardiovascular Medicine and Sciences, King's College London, United Kingdom
| | - Christopher O'Shea
- Institute of Cardiovascular Sciences, College of Medicine and Dental Sciences, University of Birmingham, United Kingdom
| | - Davor Pavlovic
- Institute of Cardiovascular Sciences, College of Medicine and Dental Sciences, University of Birmingham, United Kingdom
| | - Michael J Shattock
- School of Cardiovascular Medicine and Sciences, King's College London, United Kingdom
| |
Collapse
|
9
|
Zaza A, Ronchi C, Malfatto G. Arrhythmias and Heart Rate: Mechanisms and Significance of a Relationship. Arrhythm Electrophysiol Rev 2018; 7:232-237. [PMID: 30588310 DOI: 10.15420/aer.2018.12.3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 05/17/2018] [Indexed: 11/04/2022] Open
Abstract
The occurrence of arrhythmia is often related to basic heart rate. Prognostic significance is associated with such a relationship; furthermore, heart rate modulation may result as an ancillary effect of therapy, or be considered as a therapeutic tool. This review discusses the cellular mechanisms underlying arrhythmia occurrence during tachycardia or bradycardia, considering rate changes per se or as a mirror of autonomic modulation. Besides the influence of steady-state heart rate, dynamic aspects of changes in rate and autonomic balance are considered. The discussion leads to the conclusion that the prognostic significance of arrhythmia relationship with heart rate, and the consequence of heart rate on arrhythmogenesis, may vary according to the substrate present in the specific case and should be considered accordingly.
Collapse
Affiliation(s)
- Antonio Zaza
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi Milano-Bicocca Milan, Italy.,CARIM, Maastricht University Maastricht, the Netherlands
| | - Carlotta Ronchi
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi Milano-Bicocca Milan, Italy
| | | |
Collapse
|
10
|
Sala L, Hegyi B, Bartolucci C, Altomare C, Rocchetti M, Váczi K, Mostacciuolo G, Szentandrássy N, Severi S, Pál Nánási P, Zaza A. Action potential contour contributes to species differences in repolarization response to β-adrenergic stimulation. Europace 2017; 20:1543-1552. [DOI: 10.1093/europace/eux236] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 06/29/2017] [Indexed: 12/13/2022] Open
Affiliation(s)
- Luca Sala
- Department of Biotechnology and Biosciences, University of Milano – Bicocca, Piazza della Scienza 2, Milano, Italy
| | - Bence Hegyi
- Faculty of Medicine, Department of Physiology, University of Debrecen, Egyetem tér 1, Debrecen, Hungary
| | - Chiara Bartolucci
- Biomedical Engineering Laboratory - D.E.I., University of Bologna, Via Venezia 52, Cesena, Italy
| | - Claudia Altomare
- Department of Biotechnology and Biosciences, University of Milano – Bicocca, Piazza della Scienza 2, Milano, Italy
| | - Marcella Rocchetti
- Department of Biotechnology and Biosciences, University of Milano – Bicocca, Piazza della Scienza 2, Milano, Italy
| | - Krisztina Váczi
- Faculty of Medicine, Department of Physiology, University of Debrecen, Egyetem tér 1, Debrecen, Hungary
| | - Gaspare Mostacciuolo
- Department of Biotechnology and Biosciences, University of Milano – Bicocca, Piazza della Scienza 2, Milano, Italy
| | - Norbert Szentandrássy
- Faculty of Medicine, Department of Physiology, University of Debrecen, Egyetem tér 1, Debrecen, Hungary
- Faculty of Dentistry, Department of Dental Physiology and Pharmacology, University of Debrecen, Egyetem tér 1, Debrecen, Hungary
| | - Stefano Severi
- Biomedical Engineering Laboratory - D.E.I., University of Bologna, Via Venezia 52, Cesena, Italy
| | - Péter Pál Nánási
- Faculty of Medicine, Department of Physiology, University of Debrecen, Egyetem tér 1, Debrecen, Hungary
- Faculty of Dentistry, Department of Dental Physiology and Pharmacology, University of Debrecen, Egyetem tér 1, Debrecen, Hungary
| | - Antonio Zaza
- Department of Biotechnology and Biosciences, University of Milano – Bicocca, Piazza della Scienza 2, Milano, Italy
| |
Collapse
|
11
|
Rocchetti M, Sala L, Dreizehnter L, Crotti L, Sinnecker D, Mura M, Pane LS, Altomare C, Torre E, Mostacciuolo G, Severi S, Porta A, De Ferrari GM, George AL, Schwartz PJ, Gnecchi M, Moretti A, Zaza A. Elucidating arrhythmogenic mechanisms of long-QT syndrome CALM1-F142L mutation in patient-specific induced pluripotent stem cell-derived cardiomyocytes. Cardiovasc Res 2017; 113:531-541. [PMID: 28158429 DOI: 10.1093/cvr/cvx006] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 01/15/2017] [Indexed: 12/29/2022] Open
Abstract
Aims Calmodulin (CaM) is a small protein, encoded by three genes (CALM1-3), exerting multiple Ca2+-dependent modulatory roles. A mutation (F142L) affecting only one of the six CALM alleles is associated with long QT syndrome (LQTS) characterized by recurrent cardiac arrests. This phenotypic severity is unexpected from the predicted allelic balance. In this work, the effects of heterozygous CALM1-F142L have been investigated in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) obtained from a LQTS patient carrying the F142L mutation, i.e. in the context of native allelic ratio and potential gene modifiers. Methods and Results Skin fibroblasts of the mutation carrier and two unrelated healthy subjects (controls) were reprogrammed to hiPSC and differentiated into hiPSC-CMs. Scanty IK1 expression, an hiPSC-CMs feature potentially biasing repolarization, was corrected by addition of simulated IK1 (Dynamic-Clamp). Abnormalities in repolarization rate-dependency (in single cells and cell aggregates), membrane currents and intracellular Ca2+ dynamics were evaluated as putative arrhythmogenic factors. CALM1-F142L prolonged repolarization, altered its rate-dependency and its response to isoproterenol. This was associated with severe impairment of Ca2+-dependent inactivation (CDI) of ICaL, resulting in augmented inward current during the plateau phase. As a result, the repolarization of mutant cells failed to adapt to high pacing rates, a finding well reproduced by using a recent hiPSC-CM action potential model. The mutation failed to affect IKs and INaL and changed If only marginally. Intracellular Ca2+ dynamics and Ca2+ store stability were not significantly modified. Mutation-induced repolarization abnormalities were reversed by verapamil. Conclusion The main functional derangement in CALM1-F142L was prolonged repolarization with altered rate-dependency and sensitivity to β-adrenergic stimulation. Impaired CDI of ICaL underlined the electrical abnormality, which was sensitive to ICaL blockade. High mutation penetrance was confirmed in the presence of the native genotype, implying strong dominance of effects.
Collapse
Affiliation(s)
- Marcella Rocchetti
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy
| | - Luca Sala
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy.,Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Lisa Dreizehnter
- I. Medical Department - Cardiology, Klinikum Rechts der Isar- Technische Universität München, Munich, Germany
| | - Lia Crotti
- Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Molecular Medicine - Unit of Cardiology, University of Pavia, Pavia, Italy
| | - Daniel Sinnecker
- I. Medical Department - Cardiology, Klinikum Rechts der Isar- Technische Universität München, Munich, Germany
| | - Manuela Mura
- Department of Molecular Medicine - Unit of Cardiology, University of Pavia, Pavia, Italy.,Department of Cardiothoracic and Vascular Sciences - Coronary Care Unit and Laboratory of Clinical and Experimental Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Luna Simona Pane
- I. Medical Department - Cardiology, Klinikum Rechts der Isar- Technische Universität München, Munich, Germany
| | - Claudia Altomare
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy
| | - Eleonora Torre
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy
| | - Gaspare Mostacciuolo
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy
| | - Stefano Severi
- Biomedical Engineering Laboratory D.E.I, University of Bologna, Cesena, Italy
| | - Alberto Porta
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.,Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, Milan, Italy
| | - Gaetano M De Ferrari
- Department of Molecular Medicine - Unit of Cardiology, University of Pavia, Pavia, Italy.,Department of Cardiothoracic and Vascular Sciences - Coronary Care Unit and Laboratory of Clinical and Experimental Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Peter J Schwartz
- Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Massimiliano Gnecchi
- Department of Molecular Medicine - Unit of Cardiology, University of Pavia, Pavia, Italy.,Department of Cardiothoracic and Vascular Sciences - Coronary Care Unit and Laboratory of Clinical and Experimental Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Alessandra Moretti
- I. Medical Department - Cardiology, Klinikum Rechts der Isar- Technische Universität München, Munich, Germany.,DZHK (German Centre for Cardiovascular Research) - Partner Site Munich Heart Alliance, Munich, Germany
| | - Antonio Zaza
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
12
|
Aguilar M, Feng J, Vigmond E, Comtois P, Nattel S. Rate-Dependent Role of I Kur in Human Atrial Repolarization and Atrial Fibrillation Maintenance. Biophys J 2017; 112:1997-2010. [PMID: 28494969 DOI: 10.1016/j.bpj.2017.03.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/06/2017] [Accepted: 03/23/2017] [Indexed: 11/24/2022] Open
Abstract
The atrial-specific ultrarapid delayed rectifier K+ current (IKur) inactivates slowly but completely at depolarized voltages. The consequences for IKur rate-dependence have not been analyzed in detail and currently available mathematical action-potential (AP) models do not take into account experimentally observed IKur inactivation dynamics. Here, we developed an updated formulation of IKur inactivation that accurately reproduces time-, voltage-, and frequency-dependent inactivation. We then modified the human atrial cardiomyocyte Courtemanche AP model to incorporate realistic IKur inactivation properties. Despite markedly different inactivation dynamics, there was no difference in AP parameters across a wide range of stimulation frequencies between the original and updated models. Using the updated model, we showed that, under physiological stimulation conditions, IKur does not inactivate significantly even at high atrial rates because the transmembrane potential spends little time at voltages associated with inactivation. Thus, channel dynamics are determined principally by activation kinetics. IKur magnitude decreases at higher rates because of AP changes that reduce IKur activation. Nevertheless, the relative contribution of IKur to AP repolarization increases at higher frequencies because of reduced activation of the rapid delayed-rectifier current IKr. Consequently, IKur block produces dose-dependent termination of simulated atrial fibrillation (AF) in the absence of AF-induced electrical remodeling. The inclusion of AF-related ionic remodeling stabilizes simulated AF and greatly reduces the predicted antiarrhythmic efficacy of IKur block. Our results explain a range of experimental observations, including recently reported positive rate-dependent IKur-blocking effects on human atrial APs, and provide insights relevant to the potential value of IKur as an antiarrhythmic target for the treatment of AF.
Collapse
Affiliation(s)
- Martin Aguilar
- Research Center, Montreal Heart Institute, Université de Montréal, Montreal, Québec, Canada; Department of Pharmacology and Physiology/Institute of Biomedical Engineering, Université de Montréal, Montreal, Québec, Canada
| | | | - Edward Vigmond
- L'Institut de Rythmologie et Modélisation Cardiaque LIRYC, Fondation Université de Bordeaux, Hôpital Xavier-Arnozan, Pessac, France; Institut de Mathématiques de Bordeaux, Université de Bordeaux, Talence, France
| | - Philippe Comtois
- Research Center, Montreal Heart Institute, Université de Montréal, Montreal, Québec, Canada; Department of Pharmacology and Physiology/Institute of Biomedical Engineering, Université de Montréal, Montreal, Québec, Canada
| | - Stanley Nattel
- Research Center, Montreal Heart Institute, Université de Montréal, Montreal, Québec, Canada; Department of Medicine, McGill University, Montreal, Québec, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Québec, Canada; Department of Medicine, Université de Montréal, Montreal, Québec, Canada; West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
13
|
Devenyi RA, Ortega FA, Groenendaal W, Krogh-Madsen T, Christini DJ, Sobie EA. Differential roles of two delayed rectifier potassium currents in regulation of ventricular action potential duration and arrhythmia susceptibility. J Physiol 2016; 595:2301-2317. [PMID: 27779762 DOI: 10.1113/jp273191] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/18/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Arrhythmias result from disruptions to cardiac electrical activity, although the factors that control cellular action potentials are incompletely understood. We combined mathematical modelling with experiments in heart cells from guinea pigs to determine how cellular electrical activity is regulated. A mismatch between modelling predictions and the experimental results allowed us to construct an improved, more predictive mathematical model. The balance between two particular potassium currents dictates how heart cells respond to perturbations and their susceptibility to arrhythmias. ABSTRACT Imbalances of ionic currents can destabilize the cardiac action potential and potentially trigger lethal cardiac arrhythmias. In the present study, we combined mathematical modelling with information-rich dynamic clamp experiments to determine the regulation of action potential morphology in guinea pig ventricular myocytes. Parameter sensitivity analysis was used to predict how changes in ionic currents alter action potential duration, and these were tested experimentally using dynamic clamp, a technique that allows for multiple perturbations to be tested in each cell. Surprisingly, we found that a leading mathematical model, developed with traditional approaches, systematically underestimated experimental responses to dynamic clamp perturbations. We then re-parameterized the model using a genetic algorithm, which allowed us to estimate ionic current levels in each of the cells studied. This unbiased model adjustment consistently predicted an increase in the rapid delayed rectifier K+ current and a drastic decrease in the slow delayed rectifier K+ current, and this prediction was validated experimentally. Subsequent simulations with the adjusted model generated the clinically relevant prediction that the slow delayed rectifier is better able to stabilize the action potential and suppress pro-arrhythmic events than the rapid delayed rectifier. In summary, iterative coupling of simulations and experiments enabled novel insight into how the balance between cardiac K+ currents influences ventricular arrhythmia susceptibility.
Collapse
Affiliation(s)
- Ryan A Devenyi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Francis A Ortega
- Physiology, Biophysics, and Systems Biology Graduate Program, Weill Cornell Graduate School, New York, NY, USA
| | - Willemijn Groenendaal
- Greenberg Division of Cardiology, Weill Cornell Medical College, New York, NY, USA.,IMEC, Holst Centre, Eindhoven, The Netherlands
| | - Trine Krogh-Madsen
- Greenberg Division of Cardiology, Weill Cornell Medical College, New York, NY, USA
| | - David J Christini
- Physiology, Biophysics, and Systems Biology Graduate Program, Weill Cornell Graduate School, New York, NY, USA.,Greenberg Division of Cardiology, Weill Cornell Medical College, New York, NY, USA
| | - Eric A Sobie
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
14
|
|
15
|
Winter J, Shattock MJ. Geometrical considerations in cardiac electrophysiology and arrhythmogenesis. Europace 2015; 18:320-31. [PMID: 26585597 DOI: 10.1093/europace/euv307] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 08/14/2015] [Indexed: 11/14/2022] Open
Abstract
The rate of repolarization (RRepol) and so the duration of the cardiac action potential are determined by the balance of inward and outward currents across the cardiac membrane (net ionic current). Plotting action potential duration (APD) as a function of the RRepol reveals an inverse non-linear relationship, arising from the geometric association between these two factors. From the RRepol-APD relationship, it can be observed that a longer action potential will exhibit a greater propensity to shorten, or prolong, for a given change in the RRepol (i.e. net ionic current), when compared with one that is initially shorter. This observation has recently been used to explain why so many interventions that prolong the action potential exert a greater effect at slow rates (reverse rate-dependence). In this article, we will discuss the broader implications of this simple principle and examine how common experimental observations on the electrical behaviour of the myocardium may be explained in terms of the RRepol-APD relationship. An argument is made, with supporting published evidence, that the non-linear relationship between the RRepol and APD is a fundamental, and largely overlooked, property of the myocardium. The RRepol-APD relationship appears to explain why interventions and disease with seemingly disparate mechanisms of action have similar electrophysiological consequences. Furthermore, the RRepol-APD relationship predicts that prolongation of the action potential, by slowing repolarization, will promote conditions of dynamic electrical instability, exacerbating several electrophysiological phenomena associated with arrhythmogenesis, namely, the rate dependence of dispersion of repolarization, APD restitution, and electrical alternans.
Collapse
Affiliation(s)
- James Winter
- Cardiovascular Division, The Rayne Institute, 4th Floor, Lambeth Wing, St Thomas' Hospital, King's College London, London SE1 7EH, UK
| | - Michael J Shattock
- Cardiovascular Division, The Rayne Institute, 4th Floor, Lambeth Wing, St Thomas' Hospital, King's College London, London SE1 7EH, UK
| |
Collapse
|
16
|
Altomare C, Bartolucci C, Sala L, Bernardi J, Mostacciuolo G, Rocchetti M, Severi S, Zaza A. I
Kr
Impact on Repolarization and Its Variability Assessed by Dynamic Clamp. Circ Arrhythm Electrophysiol 2015; 8:1265-75. [DOI: 10.1161/circep.114.002572] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 06/16/2015] [Indexed: 01/23/2023]
Abstract
Background—
Repolarization and its stability are exquisitely sensitive to
I
Kr
features. Information on the relative importance of specific
I
Kr
abnormalities is missing and would assist in the evaluation of arrhythmogenic risk.
Methods and Results—
In single guinea-pig myocytes, endogenous
I
Kr
was replaced by modeled
I
Kr
(m
I
Kr
) by dynamic clamp (DC) at a cycle length of 1 s. m
I
Kr
parameters were systematically modified, and the resulting changes in action potential duration (APD) and its short term variability (SD1) were measured. We observed that (1)
I
Kr
blockade increased SD1 more than expected by its dependency on APD; (2) m
I
Kr
completely reversed APD and SD1 changes caused by
I
Kr
blockade; (3) repolarization was most sensitive to inactivation shifts, which affected APD and SD1 concordantly; (4) activation shifts of the same magnitude had marginal impact on APD, but only when reducing m
I
Kr
, they significantly increased SD1; (5) changes in maximal conductance resulted in a pattern similar to that of activation shifts.
Conclusions—
The largest effect on repolarization and its stability are expected from changes in
I
Kr
inactivation. APD is less sensitive to changes in other
I
Kr
gating parameters, which are better revealed by SD1 changes. SD1 may be more sensitive than APD in detecting
I
Kr
-dependent repolarization abnormalities.
Collapse
Affiliation(s)
- Claudia Altomare
- From the Department of Biotechnologies & Biosciences, University of Milano-Bicocca, Milano (C.A., L.S., J.B., G.M., M.R., A.Z.); and Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi”, University of Bologna, Cesena, Italy (C.B., S.S.)
| | - Chiara Bartolucci
- From the Department of Biotechnologies & Biosciences, University of Milano-Bicocca, Milano (C.A., L.S., J.B., G.M., M.R., A.Z.); and Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi”, University of Bologna, Cesena, Italy (C.B., S.S.)
| | - Luca Sala
- From the Department of Biotechnologies & Biosciences, University of Milano-Bicocca, Milano (C.A., L.S., J.B., G.M., M.R., A.Z.); and Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi”, University of Bologna, Cesena, Italy (C.B., S.S.)
| | - Joyce Bernardi
- From the Department of Biotechnologies & Biosciences, University of Milano-Bicocca, Milano (C.A., L.S., J.B., G.M., M.R., A.Z.); and Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi”, University of Bologna, Cesena, Italy (C.B., S.S.)
| | - Gaspare Mostacciuolo
- From the Department of Biotechnologies & Biosciences, University of Milano-Bicocca, Milano (C.A., L.S., J.B., G.M., M.R., A.Z.); and Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi”, University of Bologna, Cesena, Italy (C.B., S.S.)
| | - Marcella Rocchetti
- From the Department of Biotechnologies & Biosciences, University of Milano-Bicocca, Milano (C.A., L.S., J.B., G.M., M.R., A.Z.); and Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi”, University of Bologna, Cesena, Italy (C.B., S.S.)
| | - Stefano Severi
- From the Department of Biotechnologies & Biosciences, University of Milano-Bicocca, Milano (C.A., L.S., J.B., G.M., M.R., A.Z.); and Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi”, University of Bologna, Cesena, Italy (C.B., S.S.)
| | - Antonio Zaza
- From the Department of Biotechnologies & Biosciences, University of Milano-Bicocca, Milano (C.A., L.S., J.B., G.M., M.R., A.Z.); and Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi”, University of Bologna, Cesena, Italy (C.B., S.S.)
| |
Collapse
|
17
|
Combined action potential- and dynamic-clamp for accurate computational modelling of the cardiac IKr current. J Mol Cell Cardiol 2015; 79:187-94. [DOI: 10.1016/j.yjmcc.2014.11.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/29/2014] [Accepted: 11/12/2014] [Indexed: 11/18/2022]
|
18
|
Khan JM, Lyon AR, Harding SE. The case for induced pluripotent stem cell-derived cardiomyocytes in pharmacological screening. Br J Pharmacol 2014; 169:304-17. [PMID: 22845396 DOI: 10.1111/j.1476-5381.2012.02118.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The current drug screening models are deficient, particularly in detecting cardiac side effects. Human stem cell-derived cardiomyocytes could aid both early cardiotoxicity detection and novel drug discovery. Work over the last decade has generated human embryonic stem cells as potentially accurate sources of human cardiomyocytes, but ethical constraints and poor efficacy in establishing cell lines limit their use. Induced pluripotent stem cells do not require the use of human embryos and have the added advantage of producing patient-specific cardiomyocytes, allowing both generic and disease- and patient-specific pharmacological screening, as well as drug development through disease modelling. A critical question is whether sufficient standards have been achieved in the reliable and reproducible generation of 'adult-like' cardiomyocytes from human fibroblast tissue to progress from validation to safe use in practice and drug discovery. This review will highlight the need for a new experimental system, assess the validity of human induced pluripotent stem cell-derived cardiomyocytes and explore what the future may hold for their use in pharmacology.
Collapse
Affiliation(s)
- Jaffar M Khan
- Royal Brompton and Harefield NHS Trust, London, UK National Heart and Lung Institute, Imperial College, London, UK
| | | | | |
Collapse
|
19
|
Zaniboni M, Cacciani F. Instantaneous current-voltage relationships during the course of the human cardiac ventricular action potential: new computational insights into repolarization dynamics. Europace 2014; 16:774-84. [PMID: 24798968 DOI: 10.1093/europace/eut397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS To adopt a novel three-dimensional (3D) representation of cardiac action potential (AP) to compactly visualize dynamical properties of human cellular ventricular repolarization. METHODS AND RESULTS We have recently established a novel 3D representation of cardiac AP, which is based on the iterative measurement of instantaneous ion current-voltage profiles during the course of an AP. Such an approach has been originally developed on real patch-clamped ventricular cells, and subsequently improved in silico on several cardiac ventricular AP models of different mammals, and on models of different AP types of the human heart. We apply it here on two different models of human ventricular AP, and show that it compactly provides further insights into repolarization dynamics. The 3D representation of the AP includes equilibrium points during repolarization, and can be screened in terms of what we have shown to be a region, during late repolarization, when membrane conductance becomes negative and repolarization therefore auto-regenerative. We have called this time window auto-regenerative-repolarization-phase (ARRP). CONCLUSION In addition to previous findings obtained through the same procedure, we show here that 3D current-voltage-time representations of human ventricular AP allow compact visualization of dynamical properties, which are relevant for the physiology and pathology of ventricular repolarization. In particular, we suggest that the volume under the current surface corresponding to the ARRP might be used as a predictor of safety of repolarization, in single cells and during AP conduction in cell pairs.
Collapse
Affiliation(s)
- Massimiliano Zaniboni
- Department of Life Sciences, University of Parma, Italy, Parco Area delle Scienze 11A, 43124 Parma, Italy
| | | |
Collapse
|
20
|
Yamanushi TT, Kabuto H, Hirakawa E, Janjua N, Takayama F, Mankura M. Oral administration of eicosapentaenoic acid or docosahexaenoic acid modifies cardiac function and ameliorates congestive heart failure in male rats. J Nutr 2014; 144:467-74. [PMID: 24523492 DOI: 10.3945/jn.113.175125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
This study assessed the effects of eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) on normal cardiac function (part 1) and congestive heart failure (CHF) (part 2) through electrocardiogram analysis and determination of EPA, DHA, and arachidonic acid (AA) concentrations in rat hearts. In part 2, pathologic assessments were also performed. For part 1 of this study, 4-wk-old male rats were divided into a control group and 2 experimental groups. The rats daily were orally administered (1 g/kg body weight) saline, EPA-ethyl ester (EPA-Et; E group), or DHA-ethyl ester (DHA-Et; D group), respectively, for 28 d. ECGs revealed that QT intervals were significantly shorter for groups E and D compared with the control group (P ≤ 0.05). Relative to the control group, the concentration of EPA was higher in the E group and concentrations of EPA and DHA were higher in the D group, although AA concentrations were lower (P ≤ 0.05). In part 2, CHF was produced by subcutaneous injection of monocrotaline into 5-wk-old rats. At 3 d before monocrotaline injection, rats were administered either saline, EPA-Et, or DHA-Et as mentioned above and then killed at 21 d. The study groups were as follows: normal + saline (control), CHF + saline (H group), CHF + EPA-Et (HE group), and CHF + DHA-Et (HD group). QT intervals were significantly shorter (P ≤ 0.05) in the control and HD groups compared with the H and HE groups. Relative to the H group, concentrations of EPA were higher in the HE group and those of DHA were higher in the control and HD groups (P ≤ 0.05). There was less mononuclear cell infiltration in the myocytes of the HD group than in the H group (P = 0.06). The right ventricles in the H, HE, and HD groups showed significantly increased weights (P ≤ 0.05) compared with controls. The administration of EPA-Et or DHA-Et may affect cardiac function by modification of heart fatty acid composition, and the administration of DHA-Et may ameliorate CHF.
Collapse
Affiliation(s)
- Tomoko T Yamanushi
- Kagawa Prefectural University of Health Sciences, Takamatsu City, Kagawa, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Cummins MA, Dalal PJ, Bugana M, Severi S, Sobie EA. Comprehensive analyses of ventricular myocyte models identify targets exhibiting favorable rate dependence. PLoS Comput Biol 2014; 10:e1003543. [PMID: 24675446 PMCID: PMC3967944 DOI: 10.1371/journal.pcbi.1003543] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 02/13/2014] [Indexed: 12/02/2022] Open
Abstract
Reverse rate dependence is a problematic property of antiarrhythmic drugs that prolong the cardiac action potential (AP). The prolongation caused by reverse rate dependent agents is greater at slow heart rates, resulting in both reduced arrhythmia suppression at fast rates and increased arrhythmia risk at slow rates. The opposite property, forward rate dependence, would theoretically overcome these parallel problems, yet forward rate dependent (FRD) antiarrhythmics remain elusive. Moreover, there is evidence that reverse rate dependence is an intrinsic property of perturbations to the AP. We have addressed the possibility of forward rate dependence by performing a comprehensive analysis of 13 ventricular myocyte models. By simulating populations of myocytes with varying properties and analyzing population results statistically, we simultaneously predicted the rate-dependent effects of changes in multiple model parameters. An average of 40 parameters were tested in each model, and effects on AP duration were assessed at slow (0.2 Hz) and fast (2 Hz) rates. The analysis identified a variety of FRD ionic current perturbations and generated specific predictions regarding their mechanisms. For instance, an increase in L-type calcium current is FRD when this is accompanied by indirect, rate-dependent changes in slow delayed rectifier potassium current. A comparison of predictions across models identified inward rectifier potassium current and the sodium-potassium pump as the two targets most likely to produce FRD AP prolongation. Finally, a statistical analysis of results from the 13 models demonstrated that models displaying minimal rate-dependent changes in AP shape have little capacity for FRD perturbations, whereas models with large shape changes have considerable FRD potential. This can explain differences between species and between ventricular cell types. Overall, this study provides new insights, both specific and general, into the determinants of AP duration rate dependence, and illustrates a strategy for the design of potentially beneficial antiarrhythmic drugs. Several drugs intended to treat cardiac arrhythmias have failed because of unfavorable rate-dependent properties. That is, the drugs fail to alter electrical activity at fast heart rates, where this would be beneficial, but they do affect electrical activity at slow rates, where this is unwanted. In targeted studies, several agents have been shown to exhibit these unfavorable properties, suggesting that these rate-dependent responses may be intrinsic to ventricular muscle. To determine whether drugs with desirable rate-dependent properties could be rationally designed, we performed comprehensive and systematic analyses of several heart cell models. These analyses calculated the rate-dependent properties of changes in any model parameter, thereby generating simultaneously a large number of model predictions. The analyses showed that targets with favorable rate-dependent properties could indeed be identified, and further simulations uncovered the mechanisms underlying these behaviors. Moreover, a quantitative comparison of results obtained in different models provided new insight in why a given drug applied to different species, or to different tissue types, might produce different rate-dependent behaviors. Overall this study shows how a comprehensive and systematic approach to heart cell models can both identify novel targets and produce more general insight into rate-dependent alterations to cardiac electrical activity.
Collapse
Affiliation(s)
- Megan A. Cummins
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Pavan J. Dalal
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | | | | | - Eric A. Sobie
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
22
|
Horvath B, Banyasz T, Jian Z, Hegyi B, Kistamas K, Nanasi PP, Izu LT, Chen-Izu Y. Dynamics of the late Na(+) current during cardiac action potential and its contribution to afterdepolarizations. J Mol Cell Cardiol 2013; 64:59-68. [PMID: 24012538 DOI: 10.1016/j.yjmcc.2013.08.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 08/06/2013] [Accepted: 08/28/2013] [Indexed: 11/15/2022]
Abstract
The objective of this work is to examine the contribution of late Na(+) current (INa,L) to the cardiac action potential (AP) and arrhythmogenic activities. In spite of the rapidly growing interest toward this current, there is no publication available on experimental recording of the dynamic INa,L current as it flows during AP with Ca(2+) cycling. Also unknown is how the current profile changes when the Ca(2+)-calmodulin dependent protein kinase II (CaMKII) signaling is altered, and how the current contributes to the development of arrhythmias. In this study we use an innovative AP-clamp Sequential Dissection technique to directly record the INa,L current during the AP with Ca(2+) cycling in the guinea pig ventricular myocytes. First, we found that the magnitude of INa,L measured under AP-clamp is substantially larger than earlier studies indicated. CaMKII inhibition using KN-93 significantly reduced the current. Second, we recorded INa,L together with IKs, IKr, and IK1 in the same cell to understand how these currents counterbalance to shape the AP morphology. We found that the amplitude and the total charge carried by INa,L exceed that of IKs. Third, facilitation of INa,L by Anemone toxin II prolonged APD and induced Ca(2+) oscillations that led to early and delayed afterdepolarizations and triggered APs; these arrhythmogenic activities were eliminated by buffering Ca(2+) with BAPTA. In conclusion, INa,L contributes a significantly large inward current that prolongs APD and unbalances the Ca(2+) homeostasis to cause arrhythmogenic APs.
Collapse
Affiliation(s)
- Balazs Horvath
- Department of Pharmacology, University of California, Davis, USA; Department of Physiology, University of Debrecen, MHSC, Debrecen, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Heijman J, Zaza A, Johnson DM, Rudy Y, Peeters RLM, Volders PGA, Westra RL. Determinants of beat-to-beat variability of repolarization duration in the canine ventricular myocyte: a computational analysis. PLoS Comput Biol 2013; 9:e1003202. [PMID: 23990775 PMCID: PMC3749940 DOI: 10.1371/journal.pcbi.1003202] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 06/10/2013] [Indexed: 12/26/2022] Open
Abstract
Beat-to-beat variability of repolarization duration (BVR) is an intrinsic characteristic of cardiac function and a better marker of proarrhythmia than repolarization prolongation alone. The ionic mechanisms underlying baseline BVR in physiological conditions, its rate dependence, and the factors contributing to increased BVR in pathologies remain incompletely understood. Here, we employed computer modeling to provide novel insights into the subcellular mechanisms of BVR under physiological conditions and during simulated drug-induced repolarization prolongation, mimicking long-QT syndromes type 1, 2, and 3. We developed stochastic implementations of 13 major ionic currents and fluxes in a model of canine ventricular-myocyte electrophysiology. Combined stochastic gating of these components resulted in short- and long-term variability, consistent with experimental data from isolated canine ventricular myocytes. The model indicated that the magnitude of stochastic fluctuations is rate dependent due to the rate dependence of action-potential (AP) duration (APD). This process (the “active” component) and the intrinsic nonlinear relationship between membrane current and APD (“intrinsic component”) contribute to the rate dependence of BVR. We identified a major role in physiological BVR for stochastic gating of the persistent Na+ current (INa) and rapidly activating delayed-rectifier K+ current (IKr). Inhibition of IKr or augmentation of INa significantly increased BVR, whereas subsequent β-adrenergic receptor stimulation reduced it, similar to experimental findings in isolated myocytes. In contrast, β-adrenergic stimulation increased BVR in simulated long-QT syndrome type 1. In addition to stochastic channel gating, AP morphology, APD, and beat-to-beat variations in Ca2+ were found to modulate single-cell BVR. Cell-to-cell coupling decreased BVR and this was more pronounced when a model cell with increased BVR was coupled to a model cell with normal BVR. In conclusion, our results provide new insights into the ionic mechanisms underlying BVR and suggest that BVR reflects multiple potentially proarrhythmic parameters, including increased ion-channel stochasticity, prolonged APD, and abnormal Ca2+ handling. Every heartbeat has an electrical recovery (repolarization) interval that varies in duration from beat to beat. Excessive beat-to-beat variability of repolarization duration has been shown to be a risk marker of potentially fatal heart-rhythm disorders, but the contributing subcellular mechanisms remain incompletely understood. Computational models have greatly enhanced our understanding of several basic electrophysiological mechanisms. We developed a detailed computer model of the ventricular myocyte that can simulate beat-to-beat changes in repolarization duration by taking into account stochastic changes in the opening and closing of individual ion channels responsible for all main ion currents. The model accurately reproduced experimental data from isolated myocytes under both physiological and pathological conditions. Using the model, we identified several mechanisms contributing to repolarization variability, including stochastic gating of ion channels, duration and morphology of the repolarization phase, and intracellular calcium handling, thereby providing insights into its basis as a proarrhythmic marker. Our computer model provides a detailed framework to study the dynamics of cardiac electrophysiology and arrhythmias.
Collapse
Affiliation(s)
- Jordi Heijman
- Department of Knowledge Engineering, Maastricht University, Maastricht, The Netherlands
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
- Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| | - Antonio Zaza
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Daniel M. Johnson
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Yoram Rudy
- Cardiac Bioelectricity and Arrhythmia Center, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Ralf L. M. Peeters
- Department of Knowledge Engineering, Maastricht University, Maastricht, The Netherlands
| | - Paul G. A. Volders
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
- * E-mail: (PGAV); (RLW)
| | - Ronald L. Westra
- Department of Knowledge Engineering, Maastricht University, Maastricht, The Netherlands
- * E-mail: (PGAV); (RLW)
| |
Collapse
|
24
|
Zaniboni M. Heterogeneity of Intrinsic Repolarization Properties Within the Human Heart: New Insights From Simulated Three-Dimensional Current Surfaces. IEEE Trans Biomed Eng 2012; 59:2372-80. [DOI: 10.1109/tbme.2012.2204880] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- M Zaniboni
- Department of Evolutionary and Functional Biology, University of Parma, Parma, Italy.
| |
Collapse
|
25
|
Zaniboni M. 3D current-voltage-time surfaces unveil critical repolarization differences underlying similar cardiac action potentials: A model study. Math Biosci 2011; 233:98-110. [PMID: 21781977 DOI: 10.1016/j.mbs.2011.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Revised: 06/18/2011] [Accepted: 06/27/2011] [Indexed: 11/27/2022]
Abstract
The number of mathematical models of cardiac cellular excitability is rapidly growing, and compact graphical representations of their properties can make new acquisitions available for a broader range of scientists in cardiac field. Particularly, the intrinsic over-determination of the model equations systems when fitted only to action potential (AP) waveform and the fact that they are frequently tuned on data covering only a relatively narrow range of dynamic conditions, often lead modellers to compare very similar AP profiles, which underlie though quite different excitable properties. In this study I discuss a novel compact 3D representation of the cardiac cellular AP, where the third dimension represents the instantaneous current-voltage profile of the membrane, measured as repolarization proceeds. Measurements of this type have been used previously for in vivo experiments, and are adopted here iteratively at a very high time, voltage, current-resolution on (i) the same human ventricular model, endowed with two different parameters sets which generate the same AP waveform, and on (ii) three different models of the same human ventricular cell type. In these 3D representations, the AP waveforms lie at the intersection between instantaneous time-voltage-current surfaces and the zero-current plane. Different surfaces can share the same intersection and therefore the same AP; in these cases, the morphology of the current surface provides a compact view of important differences within corresponding repolarization dynamics. Refractory period, supernormal excitability window, and extent of repolarization reserve can be visualized at once. Two pivotal dynamical properties can be precisely assessed, i.e. all-or-nothing repolarization window and membrane resistance during recovery. I discuss differences in these properties among the membranes under study, and show relevant implications for cardiac cellular repolarization.
Collapse
Affiliation(s)
- M Zaniboni
- Dipartimento di Biologia Evolutiva e Funzionale - Sezione Fisiologia, Università degli Studi di Parma, V.le G.P. Usberti 11 A, 43124 Parma, Italy.
| |
Collapse
|
26
|
Marangoni S, Di Resta C, Rocchetti M, Barile L, Rizzetto R, Summa A, Severi S, Sommariva E, Pappone C, Ferrari M, Benedetti S, Zaza A. A Brugada syndrome mutation (p.S216L) and its modulation by p.H558R polymorphism: standard and dynamic characterization. Cardiovasc Res 2011; 91:606-16. [PMID: 21705349 DOI: 10.1093/cvr/cvr142] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
AIMS The Na(+) channel mutation (p.S216L), previously associated with type 3 long-QT syndrome (LQT3) phenotype, and a common polymorphism (p.H558R) were detected in a patient with an intermittent Brugada syndrome (BS) ECG pattern. The study was aimed to assess the p.S216L electrical phenotype, its modulation by p.H558R, and to identify abnormalities compatible with a mixed BS-LQT3 phenotype. METHODS AND RESULTS The mutation was expressed alone (S216L channels), or in combination with the polymorphism (S216L-H558R channels), in a mammalian cell line (TSA201). Functional analysis included standard voltage clamp and dynamic clamp with endo- and epicardial action potential waveforms. Expression of S216L channels was associated with a 60% reduction in maximum Na(+) current (I(Na)) density, attributable to protein misfolding (rescued by mexiletine pretreatment) and moderate slowing of inactivation. I(Na) density partially recovered in S216L-H558R channels, but I(Na) inactivation and its recovery were further delayed. The persistent component of I(Na) (I(NaL)) was unchanged. Under dynamic clamp conditions, I(Na) decreased in S216L channels and displayed a 'resurgent' component during late repolarization. In S216L-H558R channels, I(Na) density partially recovered and did not display a resurgent component. I(Na) changes during dynamic clamp were interpreted by numerical modelling. CONCLUSION The BS pattern of p.S216L might result from a decrease in I(Na) density, which masked gating abnormalities that might otherwise result in a LQT phenotype. The p.H558R polymorphism decreased p.S216L expressivity, partly by lessening p.S216L effects and partly through the induction of further gating abnormalities suitable to blunt p.S216L effects during repolarization.
Collapse
Affiliation(s)
- Stefano Marangoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Wu L, Ma J, Li H, Wang C, Grandi E, Zhang P, Luo A, Bers DM, Shryock JC, Belardinelli L. Late sodium current contributes to the reverse rate-dependent effect of IKr inhibition on ventricular repolarization. Circulation 2011; 123:1713-20. [PMID: 21482963 DOI: 10.1161/circulationaha.110.000661] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND The reverse rate dependence (RRD) of actions of I(Kr)-blocking drugs to increase the action potential duration (APD) and beat-to-beat variability of repolarization (BVR) of APD is proarrhythmic. We determined whether inhibition of endogenous, physiological late Na(+) current (late I(Na)) attenuates the RRD and proarrhythmic effect of I(Kr) inhibition. METHODS AND RESULTS Duration of the monophasic APD (MAPD) was measured from female rabbit hearts paced at cycle lengths from 400 to 2000 milliseconds, and BVR was calculated. In the absence of a drug, duration of monophasic action potential at 90% completion of repolarization (MAPD(90)) and BVR increased as the cycle length was increased from 400 to 2000 milliseconds (n=36 and 26; P<0.01). Both E-4031 (20 nmol/L) and d-sotalol (10 μmol/L) increased MAPD(90) and BVR at all stimulation rates, and the increase was greater at slower than at faster pacing rates (n=19, 11, 12 and 7, respectively; P<0.01). Tetrodotoxin (1 μmol/L) and ranolazine significantly attenuated the RRD of MAPD(90,) reduced BVR (P<0.01), and abolished torsade de pointes in hearts treated with either 20 nmol/L E-4031 or 10 μmol/L d-sotalol. Endogenous late I(Na) in cardiomyocytes stimulated at cycle lengths from 500 to 4000 milliseconds was greater at slower than at faster stimulation rates, and rapidly decreased during the first several beats at faster but not at slower rates (n=8; P<0.01). In a computational model, simulated RRD of APD caused by E-4031 and d-sotalol was attenuated when late I(Na) was inhibited. CONCLUSION Endogenous late I(Na) contributes to the RRD of I(Kr) inhibitor-induced increases in APD and BVR and to bradycardia-related ventricular arrhythmias.
Collapse
Affiliation(s)
- Lin Wu
- Department of Biology, Gilead Sciences, 1651 Page Mill Road, Palo Alto, CA 94304, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Mandenius CF, Steel D, Noor F, Meyer T, Heinzle E, Asp J, Arain S, Kraushaar U, Bremer S, Class R, Sartipy P. Cardiotoxicity testing using pluripotent stem cell-derived human cardiomyocytes and state-of-the-art bioanalytics: a review. J Appl Toxicol 2011; 31:191-205. [DOI: 10.1002/jat.1663] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 12/30/2010] [Accepted: 12/31/2010] [Indexed: 12/13/2022]
Affiliation(s)
| | | | - Fozia Noor
- Biochemical Engineering; Saarland University; Saarbruecken; Germany
| | | | - Elmar Heinzle
- Biochemical Engineering; Saarland University; Saarbruecken; Germany
| | - Julia Asp
- Department of Clinical Chemistry and Transfusion Medicine; Institute of Biomedicine; the Sahlgrenska Academy; University of Gothenburg; Göteborg; Sweden
| | | | - Udo Kraushaar
- Natural and Medical Sciences Institute at the University of Tübingen; Germany
| | - Susanne Bremer
- ECVAM; Institute for Health and Consumer Protection (IHCP); European Commission Joint Research Center; Ispra; Italy
| | | | | |
Collapse
|
29
|
Malfatto G, Rocchetti M, Zaza A. The role of the autonomic system in rate-dependent repolarization changes. Heart Rhythm 2010; 7:1700-3. [PMID: 20621621 DOI: 10.1016/j.hrthm.2010.05.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 05/18/2010] [Indexed: 11/29/2022]
|
30
|
Reverse rate-dependent changes are determined by baseline action potential duration in mammalian and human ventricular preparations. Basic Res Cardiol 2010; 105:315-23. [DOI: 10.1007/s00395-009-0082-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 12/10/2009] [Accepted: 12/21/2009] [Indexed: 11/26/2022]
|
31
|
Grandi E, Pasqualini FS, Bers DM. A novel computational model of the human ventricular action potential and Ca transient. J Mol Cell Cardiol 2009; 48:112-21. [PMID: 19835882 DOI: 10.1016/j.yjmcc.2009.09.019] [Citation(s) in RCA: 305] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2009] [Revised: 08/18/2009] [Accepted: 09/30/2009] [Indexed: 11/17/2022]
Abstract
We have developed a detailed mathematical model for Ca handling and ionic currents in the human ventricular myocyte. Our aims were to: (1) simulate basic excitation-contraction coupling phenomena; (2) use realistic repolarizing K current densities; (3) reach steady-state. The model relies on the framework of the rabbit myocyte model previously developed by our group, with subsarcolemmal and junctional compartments where ion channels sense higher [Ca] vs. bulk cytosol. Ion channels and transporters have been modeled on the basis of the most recent experimental data from human ventricular myocytes. Rapidly and slowly inactivating components of I(to) have been formulated to differentiate between endocardial and epicardial myocytes. Transmural gradients of Ca handling proteins and Na pump were also simulated. The model has been validated against a wide set of experimental data including action potential duration (APD) adaptation and restitution, frequency-dependent increase in Ca transient peak and [Na](i). Interestingly, Na accumulation at fast heart rate is a major determinant of APD shortening, via outward shifts in Na pump and Na-Ca exchange currents. We investigated the effects of blocking K currents on APD and repolarization reserve: I(Ks) block does not affect the former and slightly reduces the latter; I(K1) blockade modestly increases APD and more strongly reduces repolarization reserve; I(Kr) blockers significantly prolong APD, an effect exacerbated as pacing frequency is decreased, in good agreement with experimental results in human myocytes. We conclude that this model provides a useful framework to explore excitation-contraction coupling mechanisms and repolarization abnormalities at the single myocyte level.
Collapse
Affiliation(s)
- Eleonora Grandi
- Department of Pharmacology, University of California, 451 Health Sciences Drive, GBSF Room 3513, Davis, CA 95616-8636, USA
| | | | | |
Collapse
|