1
|
Zhuang M, Zhu S, Su L, Liu L, Ji M, Dai C, Liu J, Zhang W, Pu H. PKCδ modulates SP1 mediated mitochondrial autophagy to exacerbate diacetylmorphine-induced ferroptosis in neurons. Int Immunopharmacol 2024; 143:113468. [PMID: 39490143 DOI: 10.1016/j.intimp.2024.113468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/14/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
Diacetylmorphine (DA) is widely implicated in neuronal injury; however, the underlying mechanisms remain unclear. We investigated the role of iron metamorphosis in DA-induced neurotoxicity using Sprague-Dawley rats and PC12 and SH-SY5Y cells. Tandem mass tag proteomics analysis showed that the upregulation of protein kinase C delta (PKCδ) and iron metabolism-related protein transferrin receptor (TFRC) significantly the enriched iron metabolism pathway. Subsequent experiments showed that DA exposure significantly upregulated PKCδ in PC12 cells, which increased the nuclear translocation of specificity protein 1 (SP1), and the intracellular free iron and lipid peroxide levels. In addition, silencing of PKCδ in rats improved behaviour and restored the expression level of glutathione peroxidase 4 (GPX4). In addition, DA exposure activated mitochondrial autophagy in PC12 cells, leading to a decrease in the mitochondrial membrane potential, accumulation of reactive oxygen species (ROS), elevation of LC3 (which plays a key role in autophagy), and a decrease in p62 expression. Following the inhibition of autophagy, the mitochondrial membrane potential and ROS were restored, as was the expression of voltage-dependent anion channel 1 (VDAC1) and GPX4. In conclusion, the present study suggests that PKCδ regulates SP1, further exacerbating DA-induced neuronal ferroptosis. Therefore, inhibition of PKCδ and mitochondrial autophagy or ferroptosis may be a key therapeutic target to ameliorate neurotoxicity following DA exposure.
Collapse
Affiliation(s)
- Mengjie Zhuang
- Xinjiang Medical University, School of Basic Medical Science, Urumqi 830017, China
| | - Sensen Zhu
- Xinjiang Medical University, School of Basic Medical Science, Urumqi 830017, China
| | - Liping Su
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Li Liu
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Min Ji
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Chenlu Dai
- Xinjiang Medical University, School of Basic Medical Science, Urumqi 830017, China
| | - Jingyu Liu
- Xinjiang Medical University, School of Basic Medical Science, Urumqi 830017, China
| | - Wei Zhang
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China.
| | - Hongwei Pu
- Xinjiang Medical University, School of Basic Medical Science, Urumqi 830017, China; Key Laboratory of Forensic Medicine, School of Basic Medical Sciences, Xinjiang Medical University, China; Department of Discipline Construction, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China.
| |
Collapse
|
2
|
Qin P, He C, Ye P, Li Q, Cai C, Li Y. PKCδ regulates the vascular biology in diabetic atherosclerosis. Cell Commun Signal 2023; 21:330. [PMID: 37974282 PMCID: PMC10652453 DOI: 10.1186/s12964-023-01361-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023] Open
Abstract
Diabetes mellitus, known for its complications, especially vascular complications, is becoming a globally serious social problem. Atherosclerosis has been recognized as a common vascular complication mechanism in diabetes. The diacylglycerol (DAG)-protein kinase C (PKC) pathway plays an important role in atherosclerosis. PKCs can be divided into three subgroups: conventional PKCs (cPKCs), novel PKCs (nPKCs), and atypical PKCs (aPKCs). The aim of this review is to provide a comprehensive overview of the role of the PKCδ pathway, an isoform of nPKC, in regulating the function of endothelial cells, vascular smooth muscle cells, and macrophages in diabetic atherosclerosis. In addition, potential therapeutic targets regarding the PKCδ pathway are summarized. Video Abstract.
Collapse
Affiliation(s)
- Peiliang Qin
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Changhuai He
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Pin Ye
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qin Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chuanqi Cai
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yiqing Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
3
|
Fu D, Wu S, Jiang X, You T, Li Y, Xin J, Feng X, Wen J, Huang Y, Hu C. Caveolin-1 alleviates acetaminophen-induced vascular oxidative stress and inflammation in non-alcoholic fatty liver disease. Free Radic Biol Med 2023; 195:245-257. [PMID: 36596386 DOI: 10.1016/j.freeradbiomed.2022.12.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023]
Abstract
Acetaminophen (APAP) is one of the most widely used drugs in the world. The literature shows that excessive or long-term use of APAP can lead to increased cardiovascular dysfunction. An acute increase in angiotensin Ⅱ (Ang Ⅱ) caused by APAP use in fatty liver disease may increase the risk and severity of vascular injury. However, the underlying mechanism remains unclear. Caveolin-1 (CAV1) is a broad-spectrum kinase inhibitor that significantly determines endothelial function. This study aimed to observe the effects of APAP on the vasculature in non-alcoholic fatty liver disease (NAFLD) and to determine whether CAV1 could alleviate vascular oxidative stress and inflammation by targeting Ang Ⅱ or its downstream pathways. In this study, 7-week-old C57BL/6 male mice (18-20 g) were administered APAP by gavage after eight weeks of a high-fat diet. Any resulting vascular oxidative stress and inflammation were assessed. Levels of Ang Ⅱ, CAV1, and other related proteins were measured using ELISA and western blotting. In APAP-treated NAFLD mice, CAV1 expression was downregulated and Ang Ⅱ expression was upregulated compared to normal APAP-treated mice. In vitro, HUVECs were incubated with Ang Ⅱ (300 nM) for 48 h. Overexpression of CAV1 in HUVECs attenuated Ang Ⅱ-induced oxidative stress and inflammation and downregulated the expression of Protein kinase C (PKC) and p-P38/P38. After intervention with CAV1-siRNA, immunofluorescence results showed that the fluorescence intensity of PKC on mitochondria was further increased, and flow cytometry results showed that the mitochondrial membrane potential increased. PKC inhibitors alleviated Ang Ⅱ-induced endothelial injury. In conclusion, our findings confirmed that CAV1 exerts a protective effect against vascular injury by inhibiting oxidative stress and inflammation through the PKC/MAPK pathway. Therefore, restoration of CAV1 may have clinical benefits in reducing APAP-induced vascular damage in NAFLD patients.
Collapse
Affiliation(s)
- Dongdong Fu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
| | - Shuai Wu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
| | - Xiangfu Jiang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
| | - Tingyu You
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
| | - Yu Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
| | - Jiao Xin
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
| | - Xiaowen Feng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
| | - Jiagen Wen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
| | - Yan Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
| | - Chengmu Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China.
| |
Collapse
|
4
|
Lu X, Li H, Wang S. Hydrogen Sulfide Protects Against Uremic Accelerated Atherosclerosis via nPKCδ/Akt Signal Pathway. Front Mol Biosci 2021; 7:615816. [PMID: 33644113 PMCID: PMC7903246 DOI: 10.3389/fmolb.2020.615816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/22/2020] [Indexed: 01/09/2023] Open
Abstract
Background: Cardiovascular disease is the most common complication and leading cause of death in maintenance hemodialysis patients. Previous studies have found that disorders of cystathionine-gamma-lyase/hydrogen sulfide (CSE/H2S) system in maintenance hemodialysis patients are correlated with the risk of cardiovascular disease. Although the role of CSE/H2S system in UAAS has been preliminarily explored, the molecular mechanism of CSE/H2S is still not systematically elaborated, and the molecular mechanism of nPKCδ and its related signaling pathway in UAAS is still not thoroughly studied. Methods: Forty chronic kidney disease (CHD) patients were studied and the activation of nPKCδ in peripheral blood mononuclear cells (PBMCs) were detected. ApoE−/− mice aged 6 weeks were treated with 5/6 nephrectomy and high-fat diet to make UAAS model. They were divided into Sham group (Sham group), UAAS group (UAAS group), UAAS+L-cysteine group (UAAS+L-cys group), UAAS+sodium hydrosulfide group (UAAS+NaHS group) and UAAS+propargylglycine group (UAAS+PPG group). The UAAS+L-cys group, UAAS+NaHS group and UAAS+PPG group were respectively given L-cys, NaHS and PPG by intraperitoneal injection. The aorta was taken 6 weeks after surgery. Western blot was used to detect the activation of nPKCδ, the phosphorylation of Akt, and the expression of VCAM-1 in the aorta of mice. Results: The membrane translocation of nPKCδ in CHD patients with plaque was higher than that in CHD patients without plaque. The membrane translocation of nPKCδ and the expression of VCAM-1 in UAAS group was higher than sham group, L-cys or NaHS injection could suppress the membrane translocation of nPKCδ and the expression of VCAM-1, but PPG treatment resulted in more membrane translocation of nPKCδ and the expression of VCAM-1 (P<0.05, n=6 per group). Akt phosphorylation in UAAS group was lower than sham group, and L-cys or NaHS injection could suppress the degradation of Akt phosphorylation, but PPG treatment resulted in more decrease in the Akt phosphorylation (P<0.05, n=6 per group). Conclusion: Endogenous CSE/H2S system protected against the formation of UAAS via nPKCδ/Akt signal pathway. The imbalance of CSE/H2S system may participate in the formation of UAAS by affecting the expression of downstream molecule VCAM-1, which may be mediated by nPKCδ/Akt signaling pathway.
Collapse
Affiliation(s)
- Xiangxue Lu
- Department of Blood Purification, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Han Li
- Department of Blood Purification, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Shixiang Wang
- Department of Blood Purification, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
5
|
Nitric Oxide/Cyclic GMP-Dependent Calcium Signalling Mediates IL-6- and TNF-α-Induced Expression of Glial Fibrillary Acid Protein. J Mol Neurosci 2020; 71:854-866. [PMID: 32964397 PMCID: PMC7969574 DOI: 10.1007/s12031-020-01708-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/07/2020] [Indexed: 12/24/2022]
Abstract
Astrocyte activation is characterized by hypertrophy with increased glial fibrillary acidic protein (GFAP), whose expression may involve pro-inflammatory cytokines. In this study, the effects of pro-inflammatory IL-6 and TNF-α and anti-inflammatory cytokines IL-4 and IL-10 on nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) signalling, intracellular calcium concentration ([Ca2+]i) and GFAP expression were investigated. In human glioblastoma astrocytoma U-373 MG cells, IL-6 and TNF-α, but not IL-4 or IL-10, increased iNOS, cGMP, [Ca2+]i and GFAP expression. The inhibitors of iNOS (1400 W), soluble guanylyl cyclase (ODQ) and IP3 receptors (ryanodine and 2-APB) reversed the increase in cGMP or [Ca2+]i, respectively, and prevented GFAP expression. In rat striatal slices, IL-6 and TNF-α, at variance with IL-4 and IL-10, promoted a concentration-dependent increase in Ca2+ efflux, an effect prevented by 1400 W, ODQ and RY/2APB. These data were confirmed by in vivo studies, where IL-6, TNF-α or the NO donor DETA/NO injected in the striatum of anaesthetised rats increased cGMP levels and increased GFAP expression. The present findings point to NO/cGMP-dependent calcium signalling as part of the mechanism mediating IL-6- and TNF-α-induced GFAP expression. As this process plays a fundamental role in driving neurotoxicity, targeting NO/cGMP-dependent calcium signalling may constitute a new approach for therapeutic interventions in neurological disorders.
Collapse
|
6
|
Jang S, Lee S, Park H. β-Cyclodextrin Inhibits Monocytic Adhesion to Endothelial Cells through Nitric Oxide-Mediated Depletion of Cell Adhesion Molecules. Molecules 2020; 25:molecules25163575. [PMID: 32781622 PMCID: PMC7464935 DOI: 10.3390/molecules25163575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 11/16/2022] Open
Abstract
Cyclodextrins (CDs) are used as drug delivery agents. In this study, we examined whether CDs have an inflammatory effect on endothelial cells. First, we found that β-CD promoted cell proliferation in bovine aortic endothelial cells and elevated nitric oxide (NO) production through dephosphorylation of threonine-495 (T-495) in endothelial nitric oxide synthetase (eNOS). Dephosphorylation of T-495 is known to activate eNOS. Phosphorylation of T-495 was found to be catalyzed by protein kinase Cε (PKCε). We then found that β-CD inhibits binding of PKCε to diacylglycerol (DAG) via formation of a β-CD-DAG complex, indicating that β-CD inactivates PKCε. Furthermore, β-CD controls activation of PKCε by reducing the recruitment of PKCε into the plasma membrane. Finally, β-CD inhibits expression of intercellular and vascular cell adhesion molecule-1 by increasing NO via control of PKCε/eNOS and suppression of THP-1 cell adhesion to endothelial cells. These findings imply that β-CD plays an important role in anti-inflammatory processes.
Collapse
Affiliation(s)
| | | | - Heonyong Park
- Correspondence: ; Tel.: +82-41-550-3489; Fax: +82-41-559-7941
| |
Collapse
|
7
|
Sharma N, Shin EJ, Kim NH, Cho EH, Nguyen BT, Jeong JH, Jang CG, Nah SY, Kim HC. Far-infrared Ray-mediated Antioxidant Potentials are Important for Attenuating Psychotoxic Disorders. Curr Neuropharmacol 2020; 17:990-1002. [PMID: 30819085 PMCID: PMC7052827 DOI: 10.2174/1570159x17666190228114318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/02/2019] [Accepted: 02/14/2019] [Indexed: 12/14/2022] Open
Abstract
Far-infrared ray (FIR) is an electromagnetic wave that produces various health benefits against pathophysiological conditions, such as diabetes mellitus, renocardiovascular disorders, stress, and depression etc. However, the therapeutic ap-plication on the FIR-mediated protective potentials remains to be further extended. To achieve better understanding on FIR-mediated therapeutic potentials, we summarized additional findings in the present study that exposure to FIR ameliorates stressful condition, memory impairments, drug dependence, and mitochondrial dysfunction in the central nervous system. In this review, we underlined that FIR requires modulations of janus kinase 2 / signal transducer and activator of transcription 3 (JAK2/STAT3), nuclear factor E2-related factor 2 (Nrf-2), muscarinic M1 acetylcholine receptor (M1 mAChR), dopamine D1 receptor, protein kinase C δ gene, and glutathione peroxidase-1 gene for exerting the protective potentials in response to neuropsychotoxic conditions
Collapse
Affiliation(s)
- Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon 24341, Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon 24341, Korea
| | - Nam Hun Kim
- College of Forest and Environmental Sciences, Kangwon National University, Chunchon 24341, Korea
| | - Eun-Hee Cho
- Department of Internal Medicine, Medical School, Kangwon National University, Chunchon 24341, Korea
| | - Bao Trong Nguyen
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon 24341, Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Choon Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University Suwon 16419, Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon 24341, Korea
| |
Collapse
|
8
|
Nannelli G, Ziche M, Donnini S, Morbidelli L. Endothelial Aldehyde Dehydrogenase 2 as a Target to Maintain Vascular Wellness and Function in Ageing. Biomedicines 2020; 8:E4. [PMID: 31947800 PMCID: PMC7168060 DOI: 10.3390/biomedicines8010004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/28/2019] [Accepted: 12/31/2019] [Indexed: 12/16/2022] Open
Abstract
Endothelial cells are the main determinants of vascular function, since their dysfunction in response to a series of cardiovascular risk factors is responsible for disease progression and further consequences. Endothelial dysfunction, if not resolved, further aggravates the oxidative status and vessel wall inflammation, thus igniting a vicious cycle. We have furthermore to consider the physiological manifestation of vascular dysfunction and chronic low-grade inflammation during ageing, also known as inflammageing. Based on these considerations, knowledge of the molecular mechanism(s) responsible for endothelial loss-of-function can be pivotal to identify novel targets of intervention with the aim of maintaining endothelial wellness and vessel trophism and function. In this review we have examined the role of the detoxifying enzyme aldehyde dehydrogenase 2 (ALDH2) in the maintenance of endothelial function. Its impairment indeed is associated with oxidative stress and ageing, and in the development of atherosclerosis and neurodegenerative diseases. Strategies to improve its expression and activity may be beneficial in these largely diffused disorders.
Collapse
Affiliation(s)
- Ginevra Nannelli
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (G.N.); (S.D.)
| | - Marina Ziche
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Sandra Donnini
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (G.N.); (S.D.)
| | - Lucia Morbidelli
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (G.N.); (S.D.)
| |
Collapse
|
9
|
Sharma N, Shin EJ, Kim NH, Cho EH, Jeong JH, Jang CG, Nah SY, Nabeshima T, Yoneda Y, Cadet JL, Kim HC. Protective potentials of far-infrared ray against neuropsychotoxic conditions. Neurochem Int 2019; 122:144-148. [DOI: 10.1016/j.neuint.2018.11.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/19/2018] [Accepted: 11/27/2018] [Indexed: 12/30/2022]
|
10
|
Liu Z, Khalil RA. Evolving mechanisms of vascular smooth muscle contraction highlight key targets in vascular disease. Biochem Pharmacol 2018; 153:91-122. [PMID: 29452094 PMCID: PMC5959760 DOI: 10.1016/j.bcp.2018.02.012] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/12/2018] [Indexed: 12/11/2022]
Abstract
Vascular smooth muscle (VSM) plays an important role in the regulation of vascular function. Identifying the mechanisms of VSM contraction has been a major research goal in order to determine the causes of vascular dysfunction and exaggerated vasoconstriction in vascular disease. Major discoveries over several decades have helped to better understand the mechanisms of VSM contraction. Ca2+ has been established as a major regulator of VSM contraction, and its sources, cytosolic levels, homeostatic mechanisms and subcellular distribution have been defined. Biochemical studies have also suggested that stimulation of Gq protein-coupled membrane receptors activates phospholipase C and promotes the hydrolysis of membrane phospholipids into inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). IP3 stimulates initial Ca2+ release from the sarcoplasmic reticulum, and is buttressed by Ca2+ influx through voltage-dependent, receptor-operated, transient receptor potential and store-operated channels. In order to prevent large increases in cytosolic Ca2+ concentration ([Ca2+]c), Ca2+ removal mechanisms promote Ca2+ extrusion via the plasmalemmal Ca2+ pump and Na+/Ca2+ exchanger, and Ca2+ uptake by the sarcoplasmic reticulum and mitochondria, and the coordinated activities of these Ca2+ handling mechanisms help to create subplasmalemmal Ca2+ domains. Threshold increases in [Ca2+]c form a Ca2+-calmodulin complex, which activates myosin light chain (MLC) kinase, and causes MLC phosphorylation, actin-myosin interaction, and VSM contraction. Dissociations in the relationships between [Ca2+]c, MLC phosphorylation, and force have suggested additional Ca2+ sensitization mechanisms. DAG activates protein kinase C (PKC) isoforms, which directly or indirectly via mitogen-activated protein kinase phosphorylate the actin-binding proteins calponin and caldesmon and thereby enhance the myofilaments force sensitivity to Ca2+. PKC-mediated phosphorylation of PKC-potentiated phosphatase inhibitor protein-17 (CPI-17), and RhoA-mediated activation of Rho-kinase (ROCK) inhibit MLC phosphatase and in turn increase MLC phosphorylation and VSM contraction. Abnormalities in the Ca2+ handling mechanisms and PKC and ROCK activity have been associated with vascular dysfunction in multiple vascular disorders. Modulators of [Ca2+]c, PKC and ROCK activity could be useful in mitigating the increased vasoconstriction associated with vascular disease.
Collapse
Affiliation(s)
- Zhongwei Liu
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Aquaporin Membrane Channels in Oxidative Stress, Cell Signaling, and Aging: Recent Advances and Research Trends. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1501847. [PMID: 29770164 PMCID: PMC5892239 DOI: 10.1155/2018/1501847] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/29/2018] [Accepted: 02/20/2018] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) are produced as a result of aerobic metabolism and as by-products through numerous physiological and biochemical processes. While ROS-dependent modifications are fundamental in transducing intracellular signals controlling pleiotropic functions, imbalanced ROS can cause oxidative damage, eventually leading to many chronic diseases. Moreover, increased ROS and reduced nitric oxide (NO) bioavailability are main key factors in dysfunctions underlying aging, frailty, hypertension, and atherosclerosis. Extensive investigation aims to elucidate the beneficial effects of ROS and NO, providing novel insights into the current medical treatment of oxidative stress-related diseases of high epidemiological impact. This review focuses on emerging topics encompassing the functional involvement of aquaporin channel proteins (AQPs) and membrane transport systems, also allowing permeation of NO and hydrogen peroxide, a major ROS, in oxidative stress physiology and pathophysiology. The most recent advances regarding the modulation exerted by food phytocompounds with antioxidant action on AQPs are also reviewed.
Collapse
|
12
|
Mai HN, Sharma N, Shin EJ, Nguyen BT, Nguyen PT, Jeong JH, Jang CG, Cho EH, Nah SY, Kim NH, Nabeshima T, Kim HC. Exposure to far-infrared rays attenuates methamphetamine-induced recognition memory impairment via modulation of the muscarinic M1 receptor, Nrf2, and PKC. Neurochem Int 2018; 116:63-76. [PMID: 29572053 DOI: 10.1016/j.neuint.2018.03.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 01/15/2023]
Abstract
We demonstrated that activation of protein kinase Cδ (PKCδ) and inactivation of the glutathione peroxidase-1 (GPx-1)-dependent systems are critical for methamphetamine (MA)-induced recognition memory impairment. We also demonstrated that exposure to far-infrared rays (FIR) causes induction of the glutathione (GSH)-dependent system, including induction of the GPx-1 gene. Here, we investigated whether exposure to FIR rays affects MA-induced recognition memory impairment and whether it modulates PKC, cholinergic receptors, and the GSH-dependent system. Because the PKC activator bryostatin-1 mainly induces PKCα, PKCε, and PKCδ, we assessed expression of these proteins after MA treatment. MA treatment selectively increased PKCδ expression and its phosphorylation. Exposure to FIR rays significantly attenuated MA-induced increases in PKCδ phosphorylation. Importantly, bryostatin-1 potentiated MA-induced phosphorylation of PKCδ. MA treatment significantly decreased M1, M3, and M4 muscarinic acetylcholine receptors (mAChRs) and β2 nicotinic acetylcholine receptor expression. Of these, the decrease was most pronounced in M1 mAChR. Exposure to FIR significantly attenuated MA-induced decreases in the M1 mAChR and phospho-ERK1/2, while it facilitated Nrf2-dependent GSH induction. Dicyclomine, an M1 mAChR antagonist, and l-buthionine-(S, R)-sulfoximine (BSO), an inhibitor of GSH synthesis, counteracted against the protective potentials mediated by FIR. More importantly, the memory-enhancing potential of FIR rays was significantly counteracted by bryostatin-1, dicyclomine, and BSO. Our results suggest that exposure to FIR rays attenuates MA-induced impairment in recognition memory via up-regulation of M1 mAChR, Nrf2-dependent GSH induction, and ERK1/2 phosphorylation by inhibiting PKCδ phosphorylation by bryostatin-1.
Collapse
Affiliation(s)
- Huynh Nhu Mai
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Bao Trong Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Phuong Tram Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Eun-Hee Cho
- Department of Internal Medicine, Medical School, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, KonKuk University, Seoul 05029, Republic of Korea
| | - Nam Hun Kim
- College of Forest and Environmental Sciences, Kangwon National University, Chunchon 24341, Republic of Korea.
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Sciences, Aichi 470-1192, Japan; Aino University, Ibaragi, 567-0012, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea.
| |
Collapse
|
13
|
Pharmacological inhibition of MAGL attenuates experimental colon carcinogenesis. Pharmacol Res 2017; 119:227-236. [PMID: 28193521 DOI: 10.1016/j.phrs.2017.02.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 12/20/2022]
Abstract
Colorectal cancer (CRC) is a major health problem in Western countries. The endocannabinoid 2-arachidonoyl-glycerol (2-AG) exerts antiproliferative actions in a number of tumoral cell lines, including CRC cells. Monoacylglycerol lipase (MAGL), a serine hydrolase that inactivates 2-AG, is highly expressed in aggressive human cancer cells. Here, we investigated the role of MAGL in experimental colon carcinogenesis. The role of MAGL was assessed in vivo by using the xenograft and the azoxymethane models of colon carcinogenesis; MAGL expression was evaluated by RT-PCR and immunohistochemistry; 2-AG levels were measured by liquid chromatography mass spectrometry; angiogenesis was evaluated in tumor tissues [by microvessel counting and by investigating the expression of vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2) proteins] as well as in human umbilical vein endothelial cells (HUVEC); cyclin D1 was evaluated by RT-PCR. MAGL and 2-AG were strongly expressed in tumor tissues. The MAGL inhibitor URB602 reduced xenograft tumor volume, this effect being associated to down-regulation of VEGF and FGF-2, reduction in the number of vessels and down-regulation of cyclin D1. In HUVEC, URB602 exerted a direct antiangiogenic effect by inhibiting FGF-2 induced proliferation and migration, and by modulating pro/anti-angiogenic agents. In experiments aiming at investigating the role of MAGL in chemoprevention, URB602 attenuated azoxymethane-induced preneoplastic lesions, polyps and tumors. MAGL, possibly through modulation of angiogenesis, plays a pivotal role in experimental colon carcinogenesis. Pharmacological inhibition of MAGL could represent an innovative therapeutic approach to reduce colorectal tumor progression.
Collapse
|
14
|
Flow signaling and atherosclerosis. Cell Mol Life Sci 2016; 74:1835-1858. [PMID: 28039525 PMCID: PMC5391278 DOI: 10.1007/s00018-016-2442-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/12/2016] [Accepted: 12/15/2016] [Indexed: 12/26/2022]
Abstract
Atherosclerosis rarely develops in the region of arteries exposed to undisturbed flow (u-flow, unidirectional flow). Instead, atherogenesis occurs in the area exposed to disturbed flow (d-flow, multidirectional flow). Based on these general pathohistological observations, u-flow is considered to be athero-protective, while d-flow is atherogenic. The fact that u-flow and d-flow induce such clearly different biological responses in the wall of large arteries indicates that these two types of flow activate each distinct intracellular signaling cascade in vascular endothelial cells (ECs), which are directly exposed to blood flow. The ability of ECs to differentially respond to the two types of flow provides an opportunity to identify molecular events that lead to endothelial dysfunction and atherosclerosis. In this review, we will focus on various molecular events, which are differentially regulated by these two flow types. We will discuss how various kinases, ER stress, inflammasome, SUMOylation, and DNA methylation play roles in the differential flow response, endothelial dysfunction, and atherosclerosis. We will also discuss the interplay among the molecular events and how they coordinately regulate flow-dependent signaling and cellular responses. It is hoped that clear understanding of the way how the two flow types beget each unique phenotype in ECs will lead us to possible points of intervention against endothelial dysfunction and cardiovascular diseases.
Collapse
|
15
|
Finetti F, Terzuoli E, Donnini S, Uva M, Ziche M, Morbidelli L. Monitoring Endothelial and Tissue Responses to Cobalt Ferrite Nanoparticles and Hybrid Hydrogels. PLoS One 2016; 11:e0168727. [PMID: 28036325 PMCID: PMC5201301 DOI: 10.1371/journal.pone.0168727] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/05/2016] [Indexed: 11/19/2022] Open
Abstract
Iron oxide nanoparticles (NPs) have been proposed for many biomedical applications as in vivo imaging and drug delivery in cancer treatment, but their toxicity is an ongoing concern. When NPs are intravenously administered, the endothelium represents the first barrier to tissue diffusion/penetration. However, there is little information about the biological effects of NPs on endothelial cells. In this work we showed that cobalt-ferrite (CoFe2O4) NPs affect endothelial cell integrity by increasing permeability, oxidative stress, inflammatory profile and by inducing cytoskeletal modifications. To overcome these problems, NPs have be loaded into biocompatible gels to form nanocomposite hybrid material (polysaccharide hydrogels containing magnetic NPs) that can be further conjugated with anticancer drugs to allow their release close to the target. The organic part of hybrid biomaterials is a carboxymethylcellulose (CMC) polymer, while the inorganic part consists of CoFe2O4 NPs coated with (3-aminopropyl)trimethoxysilane. The biological activity of these hybrid hydrogels was evaluated in vitro and in vivo. Our findings showed that hybrid hydrogels, instead of NPs alone, were not toxic on endothelial, stromal and epithelial cells, safe and biodegradable in vivo. In conclusion, biohydrogels with paramagnetic NPs as cross-linkers can be further exploited for antitumor drug loading and delivery systems.
Collapse
Affiliation(s)
| | | | | | - Marianna Uva
- Dept. Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Marina Ziche
- Dept. Life Sciences, University of Siena, Siena, Italy
| | | |
Collapse
|
16
|
Barabutis N, Verin A, Catravas JD. Regulation of pulmonary endothelial barrier function by kinases. Am J Physiol Lung Cell Mol Physiol 2016; 311:L832-L845. [PMID: 27663990 DOI: 10.1152/ajplung.00233.2016] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/15/2016] [Indexed: 12/15/2022] Open
Abstract
The pulmonary endothelium is the target of continuous physiological and pathological stimuli that affect its crucial barrier function. The regulation, defense, and repair of endothelial barrier function require complex biochemical processes. This review examines the role of endothelial phosphorylating enzymes, kinases, a class with profound, interdigitating influences on endothelial permeability and lung function.
Collapse
Affiliation(s)
- Nektarios Barabutis
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia
| | - Alexander Verin
- Vascular Biology Center, Augusta University, Augusta, Georgia; and
| | - John D Catravas
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, .,School of Medical Diagnostic and Translational Sciences, College of Health Sciences, Old Dominion University, Norfolk, Virginia
| |
Collapse
|
17
|
Mason JC. Cytoprotective pathways in the vascular endothelium. Do they represent a viable therapeutic target? Vascul Pharmacol 2016; 86:41-52. [PMID: 27520362 DOI: 10.1016/j.vph.2016.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/08/2016] [Indexed: 12/28/2022]
Abstract
The vascular endothelium is a critical interface, which separates the organs from the blood and its contents. The endothelium has a wide variety of functions and maintenance of endothelial homeostasis is a multi-dimensional active process, disruption of which has potentially deleterious consequences if not reversed. Vascular injury predisposes to endothelial apoptosis, dysfunction and development of atherosclerosis. Endothelial dysfunction is an end-point, a central feature of which is increased ROS generation, a reduction in endothelial nitric oxide synthase and increased nitric oxide consumption. A dysfunctional endothelium is a common feature of diseases including rheumatoid arthritis, systemic lupus erythematosus, diabetes mellitus and chronic renal impairment. The endothelium is endowed with a variety of constitutive and inducible mechanisms that act to minimise injury and facilitate repair. Endothelial cytoprotection can be enhanced by exogenous factors such as vascular endothelial growth factor, prostacyclin and laminar shear stress. Target genes include endothelial nitric oxide synthase, heme oxygenase-1, A20 and anti-apoptotic members of the B cell lymphoma protein-2 family. In light of the importance of endothelial function, and the link between its disruption and the risk of atherothrombosis, interest has focused on therapeutic conditioning and reversal of endothelial dysfunction. A detailed understanding of cytoprotective signalling pathways, their regulation and target genes is now required to identify novel therapeutic targets. The ultimate aim is to add vasculoprotection to current therapeutic strategies for systemic inflammatory diseases, in an attempt to reduce vascular injury and prevent or retard atherogenesis.
Collapse
Affiliation(s)
- Justin C Mason
- Vascular Science, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, Hammersmith Hospital, London, UK.
| |
Collapse
|
18
|
Ringvold HC, Khalil RA. Protein Kinase C as Regulator of Vascular Smooth Muscle Function and Potential Target in Vascular Disorders. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 78:203-301. [PMID: 28212798 PMCID: PMC5319769 DOI: 10.1016/bs.apha.2016.06.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vascular smooth muscle (VSM) plays an important role in maintaining vascular tone. In addition to Ca2+-dependent myosin light chain (MLC) phosphorylation, protein kinase C (PKC) is a major regulator of VSM function. PKC is a family of conventional Ca2+-dependent α, β, and γ, novel Ca2+-independent δ, ɛ, θ, and η, and atypical ξ, and ι/λ isoforms. Inactive PKC is mainly cytosolic, and upon activation it undergoes phosphorylation, maturation, and translocation to the surface membrane, the nucleus, endoplasmic reticulum, and other cell organelles; a process facilitated by scaffold proteins such as RACKs. Activated PKC phosphorylates different substrates including ion channels, pumps, and nuclear proteins. PKC also phosphorylates CPI-17 leading to inhibition of MLC phosphatase, increased MLC phosphorylation, and enhanced VSM contraction. PKC could also initiate a cascade of protein kinases leading to phosphorylation of the actin-binding proteins calponin and caldesmon, increased actin-myosin interaction, and VSM contraction. Increased PKC activity has been associated with vascular disorders including ischemia-reperfusion injury, coronary artery disease, hypertension, and diabetic vasculopathy. PKC inhibitors could test the role of PKC in different systems and could reduce PKC hyperactivity in vascular disorders. First-generation PKC inhibitors such as staurosporine and chelerythrine are not very specific. Isoform-specific PKC inhibitors such as ruboxistaurin have been tested in clinical trials. Target delivery of PKC pseudosubstrate inhibitory peptides and PKC siRNA may be useful in localized vascular disease. Further studies of PKC and its role in VSM should help design isoform-specific PKC modulators that are experimentally potent and clinically safe to target PKC in vascular disease.
Collapse
Affiliation(s)
- H C Ringvold
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - R A Khalil
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
19
|
Anti-hypertensive property of a nickel-piperazine/NO donor in spontaneously hypertensive rats. Pharmacol Res 2016; 107:352-359. [DOI: 10.1016/j.phrs.2016.03.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/16/2016] [Accepted: 03/16/2016] [Indexed: 12/13/2022]
|
20
|
Morbidelli L, Donnini S, Ziche M. Targeting endothelial cell metabolism for cardio-protection from the toxicity of antitumor agents. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2016; 2:3. [PMID: 33530139 PMCID: PMC7837145 DOI: 10.1186/s40959-016-0010-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/16/2016] [Indexed: 12/17/2022]
Abstract
The vascular endothelium plays a fundamental role in the maintenance of tissue homeostasis, regulating local blood flow and other physiological processes. Chemotherapeutic drugs and target therapies, including antiangiogenic drugs targeting vascular endothelial growth factor (VEGF) or its receptors, not only efficiently act against tumor growth, but may also induce endothelial dysfunction and cardiovascular toxicity. Continued research efforts aim to better understand, prevent and mitigate these chemotherapy associated cardiovascular diseases. Conventional chemotherapeutic agents, such as anthracyclines, platinum compounds, and taxanes, and newer targeted agents, such as bevacizumab, trastuzumab, and tyrosine kinase inhibitors, have known risk of cardiovascular toxicity, which can limit their effectiveness by promoting increased morbidity and/or mortality. This review describes a) the activity of anticancer agents in inducing endothelial dysfunction, b) the metabolic pathways and signalling cascades which may be targeted by protective agents able to maintain or restore endothelial cell function, such as endothelial nitric oxide synthase/fibroblast growth factor-2 (eNOS-FGF-2) pathway, and c) the drugs/strategies reported to improve endothelial function and to reduce the risks of cardiovascular diseases such as angiotensin converting enzyme inhibitors (ACEi) and beta blockers, that are fundamental therapies in chronic heart failure (HF), as well as non-standard HF treatments such ad nitric oxide donors and antioxidant strategies. There is increasing interest in whether ACEi, beta-blockers, and/or statins might prevent and/or therapeutically control cardiotoxic effects in cancer patients. Maintaining endothelial function during or following treatments with chemotherapeutic agents, without affecting anti-tumor drug-effectiveness, is essential for preserving or recovering cardiovascular homeostasis. In this respect, the early detection and immediate therapy of cardiovascular toxicity appear crucial for substantial recovery of cardiac function in cancer patients.
Collapse
Affiliation(s)
- Lucia Morbidelli
- Department of Life Sciences, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Sandra Donnini
- Department of Life Sciences, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Marina Ziche
- Department of Life Sciences, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| |
Collapse
|
21
|
Griecsová L, Farkašová V, Gáblovský I, Khandelwal VKM, Bernátová I, Tatarková Z, Kaplan P, Ravingerová T. Effect of maturation on the resistance of rat hearts against ischemia. Study of potential molecular mechanisms. Physiol Res 2015; 64:S685-96. [PMID: 26674286 DOI: 10.33549/physiolres.933222] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Reduced tolerance to ischemia/reperfusion (IR) injury has been shown in elder human and animal hearts, however, the onset of this unfavorable phenotype and cellular mechanisms behind remain unknown. Moreover, aging may interfere with the mechanisms of innate cardioprotection (preconditioning, PC) and cause defects in protective cell signaling. We studied the changes in myocardial function and response to ischemia, as well as selected proteins involved in "pro-survival" pathways in the hearts from juvenile (1.5 months), younger adult (3 months) and mature adult (6 months) male Wistar rats. In Langendorff-perfused hearts exposed to 30-min ischemia/2-h reperfusion with or without prior PC (one cycle of 5-min ischemia/5-min reperfusion), we measured occurrence of reperfusion-induced arrhythmias, recovery of contractile function (left ventricular developed pressure, LVDP, in % of pre-ischemic values), and size of infarction (IS, in % of area at risk size, TTC staining and computerized planimetry). In parallel groups, LV tissue was sampled for the detection of protein levels (WB) of Akt kinase (an effector of PI3-kinase), phosphorylated (activated) Akt (p-Akt), its target endothelial NO synthase (eNOS) and protein kinase Cepsilon (PKCepsilon) as components of "pro-survival" cascades. Maturation did not affect heart function, however, it impaired cardiac response to lethal IR injury (increased IS) and promoted arrhythmogenesis. PC reduced the occurrence of malignant arrhythmias, IS and improved LVDP recovery in the younger animals, while its efficacy was attenuated in the mature adults. Loss of PC protection was associated with age-dependent reduced Akt phosphorylation and levels of eNOS and PKCepsilon in the hearts of mature animals compared with the younger ones, as well as with a failure of PC to upregulate these proteins. Aging-related alterations in myocardial response to ischemia may be caused by dysfunction of proteins involved in protective cell signaling that may occur already during the process of maturation.
Collapse
Affiliation(s)
- L Griecsová
- Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Lopes-Pires ME, Naime ACA, Almeida Cardelli NJ, Anjos DJ, Antunes E, Marcondes S. PKC and AKT Modulate cGMP/PKG Signaling Pathway on Platelet Aggregation in Experimental Sepsis. PLoS One 2015; 10:e0137901. [PMID: 26375024 PMCID: PMC4573322 DOI: 10.1371/journal.pone.0137901] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 08/23/2015] [Indexed: 12/25/2022] Open
Abstract
Sepsis severity has been positively correlated with platelet dysfunction, which may be due to elevations in nitric oxide (NO) and cGMP levels. Protein kinase C, Src kinases, PI3K and AKT modulate platelet activity in physiological conditions, but no studies evaluated the role of these enzymes in platelet aggregation in sepsis. In the present study we tested the hypothesis that in sepsis these enzymes positively modulate upstream the NO-cGMP pathway resulting in platelet inhibition. Rats were injected with lipopolysaccharide (LPS, 1 mg/kg, i.p.) and blood was collected after 6 h. Platelet aggregation was induced by ADP (10 μM). Western blotting assays were carried out to analyze c-Src and AKT activation in platelets. Intraplatelet cGMP levels were determined by enzyme immunoassay kit. Phosphorylation of c-SRC at Tyr416 was the same magnitude in platelets of control and LPS group. Incubation of the non-selective Src inhibitor PP2 (10 μM) had no effect on platelet aggregation of LPS-treated rats. LPS increased intraplatelet cGMP levels by 5-fold compared with control group, which was accompanied by 76% of reduction in ADP-induced platelet aggregation. The guanylyl cyclase inhibitor ODQ (25 μM) and the PKG inhibitor Rp-8-Br-PET-cGMPS (25 μM) fully reversed the inhibitory effect of LPS on platelet aggregation. Likewise, the PKC inhibitor GF109203X (10 μM) reversed the inhibition by LPS of platelet aggregation and decreased cGMP levels in platelets. AKT phosphorylation at Thr308 was significantly higher in platelets of LPS compared with control group, which was not reduced by PI3K inhibition. The AKT inhibitor API-1 (20 μM) significantly increased aggregation and reduced cGMP levels in platelets of LPS group. However, the PI3K inhibitor wortmannin and LY29004 had no effect on platelet aggregation of LPS-treated rats. Therefore, inhibition of ADP-induced platelet aggregation after LPS injection is mediated by cGMP/PKG-dependent mechanisms, and PKC and AKT act upstream upregulating this pathway.
Collapse
Affiliation(s)
- M. Elisa Lopes-Pires
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas (SP), Brazil
| | - Ana C. Antunes Naime
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas (SP), Brazil
| | - Nádia J. Almeida Cardelli
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas (SP), Brazil
| | - Débora J. Anjos
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas (SP), Brazil
| | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas (SP), Brazil
| | - Sisi Marcondes
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas (SP), Brazil
- * E-mail:
| |
Collapse
|
23
|
Kornfeld OS, Hwang S, Disatnik MH, Chen CH, Qvit N, Mochly-Rosen D. Mitochondrial reactive oxygen species at the heart of the matter: new therapeutic approaches for cardiovascular diseases. Circ Res 2015; 116:1783-99. [PMID: 25999419 DOI: 10.1161/circresaha.116.305432] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Reactive oxygen species (ROS) have been implicated in a variety of age-related diseases, including multiple cardiovascular disorders. However, translation of ROS scavengers (antioxidants) into the clinic has not been successful. These antioxidants grossly reduce total levels of cellular ROS including ROS that participate in physiological signaling. In this review, we challenge the traditional antioxidant therapeutic approach that targets ROS directly with novel approaches that improve mitochondrial functions to more effectively treat cardiovascular diseases.
Collapse
Affiliation(s)
- Opher S Kornfeld
- From the Department of Chemical and Systems Biology, Stanford University School of Medicine, CA
| | - Sunhee Hwang
- From the Department of Chemical and Systems Biology, Stanford University School of Medicine, CA
| | - Marie-Hélène Disatnik
- From the Department of Chemical and Systems Biology, Stanford University School of Medicine, CA
| | - Che-Hong Chen
- From the Department of Chemical and Systems Biology, Stanford University School of Medicine, CA
| | - Nir Qvit
- From the Department of Chemical and Systems Biology, Stanford University School of Medicine, CA
| | - Daria Mochly-Rosen
- From the Department of Chemical and Systems Biology, Stanford University School of Medicine, CA.
| |
Collapse
|
24
|
Mylroie H, Dumont O, Bauer A, Thornton CC, Mackey J, Calay D, Hamdulay SS, Choo JR, Boyle JJ, Samarel AM, Randi AM, Evans PC, Mason JC. PKCε-CREB-Nrf2 signalling induces HO-1 in the vascular endothelium and enhances resistance to inflammation and apoptosis. Cardiovasc Res 2015; 106:509-19. [PMID: 25883219 PMCID: PMC4431664 DOI: 10.1093/cvr/cvv131] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 04/03/2015] [Indexed: 12/25/2022] Open
Abstract
AIMS Vascular injury leading to endothelial dysfunction is a characteristic feature of chronic renal disease, diabetes mellitus, and systemic inflammatory conditions, and predisposes to apoptosis and atherogenesis. Thus, endothelial dysfunction represents a potential therapeutic target for atherosclerosis prevention. The observation that activity of either protein kinase C epsilon (PKCε) or haem oxygenase-1 (HO-1) enhances endothelial cell (EC) resistance to inflammation and apoptosis led us to test the hypothesis that HO-1 is a downstream target of PKCε. METHODS AND RESULTS Expression of constitutively active PKCε in human EC significantly increased HO-1 mRNA and protein, whereas conversely aortas or cardiac EC from PKCε-deficient mice exhibited reduced HO-1 when compared with wild-type littermates. Angiotensin II activated PKCε and induced HO-1 via a PKCε-dependent pathway. PKCε activation significantly attenuated TNFα-induced intercellular adhesion molecule-1, and increased resistance to serum starvation-induced apoptosis. These responses were reversed by the HO antagonist zinc protoporphyrin IX. Phosphokinase antibody array analysis identified CREB1((Ser133)) phosphorylation as a PKCε signalling intermediary, and cAMP response element-binding protein 1 (CREB1) siRNA abrogated PKCε-induced HO-1 up-regulation. Likewise, nuclear factor (erythroid-derived 2)-like 2 (Nrf2) was identified as a PKCε target using nuclear translocation and DNA-binding assays, and Nrf2 siRNA prevented PKCε-mediated HO-1 induction. Moreover, depletion of CREB1 inhibited PKCε-induced Nrf2 DNA binding, suggestive of transcriptional co-operation between CREB1 and Nrf2. CONCLUSIONS PKCε activity in the vascular endothelium regulates HO-1 via a pathway requiring CREB1 and Nrf2. Given the potent protective actions of HO-1, we propose that this mechanism is an important contributor to the emerging role of PKCε in the maintenance of endothelial homeostasis and resistance to injury.
Collapse
Affiliation(s)
- Hayley Mylroie
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Odile Dumont
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Andrea Bauer
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Clare C Thornton
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - John Mackey
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Damien Calay
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Shahir S Hamdulay
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Joan R Choo
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Joseph J Boyle
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Allen M Samarel
- The Cardiovascular Institute, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Anna M Randi
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Paul C Evans
- Department of Cardiovascular Sciences, University of Sheffield, Sheffield, UK
| | - Justin C Mason
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
25
|
Terzuoli E, Monti M, Vellecco V, Bucci M, Cirino G, Ziche M, Morbidelli L. Characterization of zofenoprilat as an inducer of functional angiogenesis through increased H2 S availability. Br J Pharmacol 2015; 172:2961-73. [PMID: 25631232 DOI: 10.1111/bph.13101] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 01/13/2015] [Accepted: 01/22/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Hydrogen sulfide (H2 S), an endogenous volatile mediator with pleiotropic functions, promotes vasorelaxation, exerts anti-inflammatory actions and regulates angiogenesis. Previously, the SH-containing angiotensin-converting enzyme inhibitor (ACEI), zofenopril, was identified as being effective in preserving endothelial function and inducing angiogenesis among ACEIs. Based on the H2 S donor property of its active metabolite zofenoprilat, the objective of this study was to evaluate whether zofenoprilat-induced angiogenesis was due to increased H2 S availability. EXPERIMENTAL APPROACH HUVECs were used for in vitro studies of angiogenesis, whereas the Matrigel plug assay was used for in vivo assessments. KEY RESULTS Zofenoprilat-treated HUVECs showed an increase in all functional features of the angiogenic process in vitro. As zofenoprilat induced the expression of CSE (cystathionine-γ-lyase) and the continuous production of H2 S, CSE inhibition or silencing blocked the ability of zofenoprilat to induce angiogenesis, both in vitro and in vivo. The molecular mechanisms underlying H2 S/zofenoprilat-induced angiogenesis were dependent on Akt, eNOS and ERK1/2 cascades. ATP-sensitive potassium (KATP ) channels, the molecular target that mediates part of the vascular functions of H2 S, were shown to be involved in the upstream activation of Akt and ERK1/2. Moreover, the up-regulation of fibroblast growth factor-2 was dependent on CSE-derived H2 S response to H2 S and KATP activation. CONCLUSIONS AND IMPLICATIONS Zofenoprilat induced a constant production of H2 S that stimulated the angiogenic process through a KATP channel/Akt/eNOS/ERK1/2 pathway. Thus, zofenopril can be considered as a pro-angiogenic drug acting through H2 S release and production, useful in cardiovascular pathologies where vascular functions need to be re-established and functional angiogenesis induced.
Collapse
Affiliation(s)
- E Terzuoli
- Department of Life Sciences, University of Siena, Siena, Italy
| | - M Monti
- Department of Life Sciences, University of Siena, Siena, Italy
| | - V Vellecco
- Department of Experimental Pharmacology, University of Naples Federico II, Naples, Italy
| | - M Bucci
- Department of Experimental Pharmacology, University of Naples Federico II, Naples, Italy
| | - G Cirino
- Department of Experimental Pharmacology, University of Naples Federico II, Naples, Italy
| | - M Ziche
- Department of Life Sciences, University of Siena, Siena, Italy
| | - L Morbidelli
- Department of Life Sciences, University of Siena, Siena, Italy
| |
Collapse
|
26
|
Monti M, Solito R, Puccetti L, Pasotti L, Roggeri R, Monzani E, Casella L, Morbidelli L. Protective effects of novel metal-nonoates on the cellular components of the vascular system. J Pharmacol Exp Ther 2014; 351:500-9. [PMID: 25238748 DOI: 10.1124/jpet.114.218404] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
At the cardiovascular level, nitric oxide (NO) controls smooth muscle functions, maintains vascular integrity, and exerts an antihypertensive effect. Metal-nonoates are a recently discovered class of NO donors, with NO release modulated through the complexation of the N-aminoethylpiperazine N-diazeniumdiolate ligand to metal ions, and thus representing a significant innovation with respect to the drugs traditionally used. In this study, we characterized the vascular protective effects of the most effective compound of this class, Ni(PipNONO)Cl, compared with the commercial N-diazeniumdiolate group derivate, diethylenetriamine/nitric oxide (DETA/NO). Ni(PipNONO)Cl induced a concentration-dependent relaxation of precontracted rat aortic rings. The ED50 was 0.67 µM, compared with 4.3 µM obtained with DETA/NO. When tested on cultured microvascular endothelial cells, Ni(PipNONO)Cl exerted a protective effect on the endothelium, promoting cell proliferation and survival in the picomolar range. The administration of Ni(PipNONO)Cl to vascular smooth muscle cells reduced the cell number, promoting their apoptosis at a high concentration (10 µM). Inhibition of smooth muscle cell migration, a hallmark of atherosclerosis, was accompanied by cytoskeletal rearrangement and loss of lamellipodia. When added to isolated platelets, Ni(PipNONO)Cl significantly reduced ADP-induced aggregation. Since atherosclerosis is accompanied by an inflammatory environment, cultured endothelial cells were exposed to interleukin (IL)-1β. In the presence of IL-1β, Ni(PipNONO)Cl inhibited cyclooxygenase-2 and inducible nitric oxide synthase upregulation, and reduced endothelial permeability and the platelet and monocyte adhesion markers CD31 and CD40 at the plasma membrane. Overall, these data indicate that Ni(PipNONO)Cl exerts vascular protective effects relevant for vascular dysfunction and prevention of atherosclerosis and thrombosis.
Collapse
Affiliation(s)
- Martina Monti
- Department of Life Sciences (M.M., R.S., L.M.) and Division of Hematology, Atherothrombosis Center (L.Pu.), University of Siena, Siena, Italy; Department of Chemistry, University of Pavia, Pavia, Italy (L.Pa., E.M., L.C.); and Noxamet Ltd., Milan, Italy (M.M., L.Pa., R.R., E.M., L.C., L.M.)
| | - Raffaella Solito
- Department of Life Sciences (M.M., R.S., L.M.) and Division of Hematology, Atherothrombosis Center (L.Pu.), University of Siena, Siena, Italy; Department of Chemistry, University of Pavia, Pavia, Italy (L.Pa., E.M., L.C.); and Noxamet Ltd., Milan, Italy (M.M., L.Pa., R.R., E.M., L.C., L.M.)
| | - Luca Puccetti
- Department of Life Sciences (M.M., R.S., L.M.) and Division of Hematology, Atherothrombosis Center (L.Pu.), University of Siena, Siena, Italy; Department of Chemistry, University of Pavia, Pavia, Italy (L.Pa., E.M., L.C.); and Noxamet Ltd., Milan, Italy (M.M., L.Pa., R.R., E.M., L.C., L.M.)
| | - Luca Pasotti
- Department of Life Sciences (M.M., R.S., L.M.) and Division of Hematology, Atherothrombosis Center (L.Pu.), University of Siena, Siena, Italy; Department of Chemistry, University of Pavia, Pavia, Italy (L.Pa., E.M., L.C.); and Noxamet Ltd., Milan, Italy (M.M., L.Pa., R.R., E.M., L.C., L.M.)
| | - Riccardo Roggeri
- Department of Life Sciences (M.M., R.S., L.M.) and Division of Hematology, Atherothrombosis Center (L.Pu.), University of Siena, Siena, Italy; Department of Chemistry, University of Pavia, Pavia, Italy (L.Pa., E.M., L.C.); and Noxamet Ltd., Milan, Italy (M.M., L.Pa., R.R., E.M., L.C., L.M.)
| | - Enrico Monzani
- Department of Life Sciences (M.M., R.S., L.M.) and Division of Hematology, Atherothrombosis Center (L.Pu.), University of Siena, Siena, Italy; Department of Chemistry, University of Pavia, Pavia, Italy (L.Pa., E.M., L.C.); and Noxamet Ltd., Milan, Italy (M.M., L.Pa., R.R., E.M., L.C., L.M.)
| | - Luigi Casella
- Department of Life Sciences (M.M., R.S., L.M.) and Division of Hematology, Atherothrombosis Center (L.Pu.), University of Siena, Siena, Italy; Department of Chemistry, University of Pavia, Pavia, Italy (L.Pa., E.M., L.C.); and Noxamet Ltd., Milan, Italy (M.M., L.Pa., R.R., E.M., L.C., L.M.)
| | - Lucia Morbidelli
- Department of Life Sciences (M.M., R.S., L.M.) and Division of Hematology, Atherothrombosis Center (L.Pu.), University of Siena, Siena, Italy; Department of Chemistry, University of Pavia, Pavia, Italy (L.Pa., E.M., L.C.); and Noxamet Ltd., Milan, Italy (M.M., L.Pa., R.R., E.M., L.C., L.M.)
| |
Collapse
|
27
|
Protein kinase C delta modulates endothelial nitric oxide synthase after cardiac arrest. J Cereb Blood Flow Metab 2014; 34:613-20. [PMID: 24447953 PMCID: PMC3982078 DOI: 10.1038/jcbfm.2013.232] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 11/25/2013] [Accepted: 11/28/2013] [Indexed: 12/21/2022]
Abstract
We previously showed that inhibition of protein kinase C delta (PKCδ) improves brain perfusion 24 hours after asphyxial cardiac arrest (ACA) and confers neuroprotection in the cortex and CA1 region of the hippocampus 7 days after arrest. Therefore, in this study, we investigate the mechanism of action of PKCδ-mediated hypoperfusion after ACA in the rat by using the two-photon laser scanning microscopy (TPLSM) to observe cortical cerebral blood flow (CBF) and laser Doppler flowmetry (LDF) detecting regional CBF in the presence/absence of δV1-1 (specific PKCδ inhibitor), nitric oxide synthase (NOS) substrate (L-arginine, L-arg) and inhibitor (N(ω)-Nitro-L-arginine, NLA), and nitric oxide (NO) donor (sodium nitroprusside, SNP). There was an increase in regional LDF and local (TPLSM) CBF in the presence of δV1-1+L-arg, but only an increase in regional CBF under δV1-1+SNP treatments. Systemic blood nitrite levels were measured 15 minutes and 24 hours after ACA. Nitrite levels were enhanced by pretreatment with δV1-1 30 minutes before ACA possibly attributable to enhanced endothelial NOS protein levels. Our results suggest that PKCδ can modulate NO machinery in cerebral vasculature. Protein kinase C delta can depress endothelial NOS blunting CBF resulting in hypoperfusion, but can be reversed with δV1-1 improving brain perfusion, thus providing subsequent neuroprotection after ACA.
Collapse
|
28
|
Kong J, Liu BB, Wu SD, Wang Y, Jiang QQ, Guo EL. Enhancement of interaction of BSEP and HAX-1 on the canalicular membrane of hepatocytes in a mouse model of cholesterol cholelithiasis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:1644-1650. [PMID: 24817961 PMCID: PMC4014245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 03/10/2014] [Indexed: 06/03/2023]
Abstract
We induced gallstones in C57L mice fed with a high cholesterol diet and examined the expression of bile salt export pump (BSEP) on the canalicular membrane of hepatocytes and its relation with PKCα and HAX-1.Twenty-four gallstone-prone C57L mice were randomly assigned to receive a high cholesterol diet or a regular diet. Gallstone formation was recorded. BSEP, PKCα and phospho-PKCα expression was examined by immunoblotting assays. Co-expression of BSEP and HAX-1 was studied by immunofluorescent microscopy and immunoprecipitations. Gallstones were formed in all 12 mice fed with the high cholesterol diet. In Gallstone group, BSEP levels on the canalicular membrane of hepatocytes were markedly lower while a significant increase was observed in phosphorylated PKCα. Immunofluorescent microscopy showed that BSEP and HAX-1 were co-localized on the canalicular membrane, which was apparently enhanced by feeding with the high cholesterol diet. The immunoprecipitation assays further demonstrated that BSEP and HAX-1 showed enhanced interaction in the hepatocytes of mice fed with the high cholesterol diet. Cholesterol gallstone formation is associated with downregulation of BSEP expression on the canalicular membrane of hepatocytes with increased phosphorylation of PKCα. BSEP and HAX-1 show enhanced interaction with one another on the canalicular membrane during gallstone formation.
Collapse
Affiliation(s)
- Jing Kong
- Department of Biliary and Minimally Invasive Surgery, China Medical University Shengjing Hospital Shenyang, Liaoning, China
| | - Bin-Bin Liu
- Department of Biliary and Minimally Invasive Surgery, China Medical University Shengjing Hospital Shenyang, Liaoning, China
| | - Shuo-Dong Wu
- Department of Biliary and Minimally Invasive Surgery, China Medical University Shengjing Hospital Shenyang, Liaoning, China
| | - Yu Wang
- Department of Biliary and Minimally Invasive Surgery, China Medical University Shengjing Hospital Shenyang, Liaoning, China
| | - Qing-Quan Jiang
- Department of Biliary and Minimally Invasive Surgery, China Medical University Shengjing Hospital Shenyang, Liaoning, China
| | - En-Ling Guo
- Department of Biliary and Minimally Invasive Surgery, China Medical University Shengjing Hospital Shenyang, Liaoning, China
| |
Collapse
|
29
|
Fan HC, Fernández-Hernando C, Lai JH. Protein kinase C isoforms in atherosclerosis: Pro- or anti-inflammatory? Biochem Pharmacol 2014; 88:139-49. [DOI: 10.1016/j.bcp.2014.01.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/06/2014] [Accepted: 01/07/2014] [Indexed: 12/12/2022]
|
30
|
Monti M, Terzuoli E, Ziche M, Morbidelli L. The sulphydryl containing ACE inhibitor Zofenoprilat protects coronary endothelium from Doxorubicin-induced apoptosis. Pharmacol Res 2013; 76:171-81. [PMID: 23965518 DOI: 10.1016/j.phrs.2013.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 08/02/2013] [Accepted: 08/08/2013] [Indexed: 12/11/2022]
Abstract
Pediatric and adult cancer patients, following the use of the antitumor drug Doxorubicin develop cardiotoxicity. Pharmacological protection of microvascular endothelium might produce a double benefit: (i) reduction of myocardial toxicity (the primary target of Doxorubicin action) and (ii) maintenance of the vascular functionality for the adequate delivery of chemotherapeutics to tumor cells. This study was aimed to evaluate the mechanisms responsible of the protective effects of the angiotensin converting enzyme inhibitor (ACEI) Zofenoprilat against the toxic effects exerted by Doxorubicin on coronary microvascular endothelium. We found that exposure of endothelial cells to Doxorubicin (0.1-1μM range) impaired cell survival by promoting their apoptosis. ERK1/2 related p53 activation, but not reactive oxygen species, was responsible for Doxorubicin induced caspase-3 cleavage. P53 mediated-apoptosis and impairment of survival were reverted by treatment with Zofenoprilat. The previously described PI-3K/eNOS/endogenous fibroblast growth factor signaling was not involved in the protective effect, which, instead, could be ascribed to cystathionine gamma lyase dependent availability of H2S from Zofenoprilat. Furthermore, considering the tumor environment, the treatment of endothelial/tumor co-cultures with Zofenoprilat did not affect the antitumor efficacy of Doxorubicin. In conclusion the ACEI Zofenoprilat exerts a protective effect on Doxorubicin induced endothelial damage, without affecting its antitumor efficacy. Thus, sulfhydryl containing ACEI may be a useful therapy for Doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Martina Monti
- Dept. Life Sciences, University of Siena, Via. A. Moro 2, Siena 53100, Italy
| | | | | | | |
Collapse
|
31
|
Taylor SY, Dixon HM, Yoganayagam S, Price N, Lang D. Folic acid modulates eNOS activity via effects on posttranslational modifications and protein-protein interactions. Eur J Pharmacol 2013; 714:193-201. [PMID: 23796957 PMCID: PMC3769861 DOI: 10.1016/j.ejphar.2013.05.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 05/10/2013] [Accepted: 05/24/2013] [Indexed: 02/07/2023]
Abstract
Folic acid enhances endothelial function and improves outcome in primary prevention of cardiovascular disease. The exact intracellular signalling mechanisms involved remain elusive and were therefore the subject of this study. Particular focus was placed on folic acid-induced changes in posttranslational modifications of endothelial nitric oxide synthase (eNOS). Cultured endothelial cells were exposed to folic acid in the absence or presence of phosphatidylinositol-3' kinase/Akt (PI3K/Akt) inhibitors. The phosphorylation status of eNOS was determined via western blotting. The activities of eNOS and PI3K/Akt were evaluated. The interaction of eNOS with caveolin-1, Heat-Shock Protein 90 and calmodulin was studied using co-immunoprecipitation. Intracellular localisation of eNOS was investigated using sucrose gradient centrifugation and confocal microscopy. Folic acid promoted eNOS dephosphorylation at negative regulatory sites, and increased phosphorylation at positive regulatory sites. Modulation of phosphorylation status was concomitant with increased cGMP concentrations, and PI3K/Akt activity. Inhibition of PI3K/Akt revealed specific roles for this kinase pathway in folic acid-mediated eNOS phosphorylation. Regulatory protein and eNOS protein associations were altered in favour of a positive regulatory effect in the absence of bulk changes in intracellular eNOS localisation. Folic acid-mediated eNOS activation involves the modulation of eNOS phosphorylation status at multiple residues and positive changes in important protein-protein interactions. Such intracellular mechanisms may in part explain improvements in clinical vascular outcome following folic acid treatment.
Collapse
Affiliation(s)
| | | | | | | | - Derek Lang
- Department of Pharmacology, Therapeutics & Toxicology, Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine, Heath Park Campus, Cardiff CF14 4XN, UK
| |
Collapse
|
32
|
Monti M, Donnini S, Morbidelli L, Giachetti A, Mochly-Rosen D, Mignatti P, Ziche M. PKCε activation promotes FGF-2 exocytosis and induces endothelial cell proliferation and sprouting. J Mol Cell Cardiol 2013; 63:107-17. [PMID: 23880610 DOI: 10.1016/j.yjmcc.2013.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 07/11/2013] [Indexed: 11/19/2022]
Abstract
Protein kinase C epsilon (PKCε) activation controls fibroblast growth factor-2 (FGF-2) angiogenic signaling. Here, we examined the effect of activating PKCε on FGF-2 dependent vascular growth and endothelial activation. ψεRACK, a selective PKCε agonist induces pro-angiogenic responses in endothelial cells, including formation of capillary like structures and cell growth. These effects are mediated by FGF-2 export to the cell membrane, as documented by biotinylation and immunofluorescence, and FGF-2/FGFR1 signaling activation, as attested by ERK1/2-STAT-3 phosphorylation and de novo FGF-2 synthesis. Similarly, vascular endothelial growth factor (VEGF) activates PKCε in endothelial cells, and promotes FGF-2 export and FGF-2/FGFR1 signaling activation. ψεRACK fails to elicit responses in FGF-2(-/-) endothelial cells, and in cells pretreated with methylamine (MeNH2), an exocytosis inhibitor, indicating that both intracellular FGF-2 and its export toward the membrane are required for the ψεRACK activity. In vivo ψεRACK does not induce angiogenesis in the rabbit cornea. However, ψεRACK promotes VEGF angiogenic responses, an effect sustained by endothelial FGF-2 release and synthesis, since anti-FGF-2 antibody strongly attenuates VEGF responses. The results demonstrate that PKCε stimulation promotes angiogenesis and modulates VEGF activity, by inducing FGF-2 release and autocrine signaling.
Collapse
Affiliation(s)
- Martina Monti
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | | | | | | | | | | | | |
Collapse
|
33
|
Protein kinase Cϵ activity induces anti-inflammatory and anti-apoptotic genes via an ERK1/2- and NF-κB-dependent pathway to enhance vascular protection. Biochem J 2012; 447:193-204. [DOI: 10.1042/bj20120574] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Vascular endothelial injury predisposes to endothelial dysfunction and atherogenesis. We have investigated the hypothesis that PKCϵ (protein kinase Cϵ) is an important upstream regulator of cytoprotective pathways in vascular ECs (endothelial cells). Depletion of PKCϵ in human ECs reduced expression of the cytoprotective genes A1, A20 and Bcl-2. Conversely, constitutively active PKCϵ expressed in human ECs increased mRNA and protein levels of these cytoprotective genes, with up-regulation dependent upon ERK1/2 (extracellular-signal-regulated kinase 1/2) activation. Furthermore, inhibition of NF-κB (nuclear factor κB) by the pharmacological antagonist BAY 11-7085 or an IκB (inhibitor of NF-κB) SuperRepressor prevented cytoprotective gene induction. Activation of PKCϵ enhanced p65 NF-κB DNA binding and elevated NF-κB transcriptional activity. Importantly, although NF-κB activation by PKCϵ induced cytoprotective genes, it did not up-regulate pro-inflammatory NF-κB targets [E-selectin, VCAM-1 (vascular cell adhesion molecule 1) and ICAM-1 (intercellular adhesion molecule 1)]. Indeed, PKCϵ exhibited cytoprotective and anti-inflammatory actions, including inhibition of TNFα (tumour necrosis factor α)-induced JNK (c-Jun N-terminal kinase) phosphorylation and ICAM-1 up-regulation, a response attenuated by depletion of A20. Thus we conclude that PKCϵ plays an essential role in endothelial homoeostasis, acting as an upstream co-ordinator of gene expression through activation of ERK1/2, inhibition of JNK and diversion of the NF-κB pathway to cytoprotective gene induction, and propose that PKCϵ represents a novel therapeutic target for endothelial dysfunction.
Collapse
|
34
|
Cataldi A, Zara S, Rapino M, Patruno A, di Giacomo V. Human gingival fibroblasts stress response to HEMA: A role for protein kinase C α. J Biomed Mater Res A 2012; 101:378-84. [DOI: 10.1002/jbm.a.34337] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 05/18/2012] [Accepted: 06/26/2012] [Indexed: 11/10/2022]
|
35
|
ROS and RNS signaling in heart disorders: could antioxidant treatment be successful? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2011; 2011:293769. [PMID: 21912722 PMCID: PMC3170796 DOI: 10.1155/2011/293769] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 05/30/2011] [Accepted: 06/02/2011] [Indexed: 11/29/2022]
Abstract
There is not too much success in the antioxidant treatment of heart deceases in humans. However a new approach is now developed that suggests that depending on their structures and concentrations antioxidants can exhibit much more complicated functions in many pathological disorders. It is now well established that physiological free radicals superoxide and nitric oxide together with their derivatives hydrogen peroxide and peroxynitrite (all are named reactive oxygen species (ROS) and reactive nitrogen species (RNS)) play a more important role in heart diseases through their signaling functions. Correspondingly this work is dedicated to the consideration of damaging signaling by ROS and RNS in various heart and vascular disorders: heart failure (congestive heart failure or CHF), left ventricular hypertrophy (LVH), coronary heart disease, cardiac arrhythmias, and so forth. It will be demonstrated that ROS overproduction (oxidative stress) is a main origin of the transformation of normal physiological signaling processes into the damaging ones. Furthermore the favorable effects of low/moderate oxidative stress through preconditioning mechanisms in ischemia/reperfusion will be considered. And in the last part we will discuss the possibility of efficient application of antioxidants and enzyme/gene inhibitors for the regulation of damaging ROS signaling in heart disorders.
Collapse
|
36
|
Zhang Y, Janssens SP, Wingler K, Schmidt HHHW, Moens AL. Modulating endothelial nitric oxide synthase: a new cardiovascular therapeutic strategy. Am J Physiol Heart Circ Physiol 2011; 301:H634-46. [PMID: 21622818 DOI: 10.1152/ajpheart.01315.2010] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The pathogenesis of many cardiovascular diseases is associated with reduced nitric oxide (NO) bioavailability and/or increased endothelial NO synthase (eNOS)-dependent superoxide formation. These findings support that restoring and conserving adequate NO signaling in the heart and blood vessels is a promising therapeutic intervention. In particular, modulating eNOS, e.g., through increasing the bioavailability of its substrate and cofactors, enhancing its transcription, and interfering with other modulators of eNOS pathway, such as netrin-1, has a high potential for effective treatments of cardiovascular diseases. This review provides an overview of the possibilities for modulating eNOS and how this may be translated to the clinic in addition to describing the genetic models used to study eNOS modulation.
Collapse
Affiliation(s)
- Yixuan Zhang
- Department of Cardiology, Maastricht University Medical Centre, Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands
| | | | | | | | | |
Collapse
|
37
|
Ginsenoside Rb1 prevents homocysteine-induced endothelial dysfunction via PI3K/Akt activation and PKC inhibition. Biochem Pharmacol 2011; 82:148-55. [PMID: 21515242 DOI: 10.1016/j.bcp.2011.04.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 04/05/2011] [Accepted: 04/06/2011] [Indexed: 01/23/2023]
Abstract
Hyperhomocysteinemia (HHcy), a risk factor for cardiovascular disease, is associated with endothelial dysfunction. Ginsenoside Rb1, the major active constituent of ginseng, potently attenuates homocysteine (Hcy)-induced endothelial damage. However, the underlying mechanism remains unknown. In this study, we have investigated the effect of Ginsenoside Rb1 on Hcy-induced endothelial dysfunction and its underlying signal pathway in vivo and in vitro. Ginsenosides prevented Hcy-induced impairment of endothelium-dependent relaxation and Rb1 reversed Hcy-induced reduction of NO production in a dose-dependent manner as detected by nitrate reductase method. Rb1 activated serine-1177 phosphorylation of endothelial nitric oxide synthase (eNOS) and serine-473 phosphorylation of Akt, while inhibited threonine-495 phosphorylation of eNOS as detected by western blotting. Rb1-induced phosphorylation of serine-1177 was significantly inhibited by wortmannin, PI3K inhibitor or SH-5, an Akt inhibitor, and partially reversed by Phorbol 12-myristate 13-acetate (PMA), a PKC activator. PMA also stimulated phosphorylation of threonine-495 which was inhibited by Rb1. Here we show for the first time that Rb1 prevents Hcy-induced endothelial dysfunction via PI3K/Akt activation and PKC inhibition. These findings demonstrate a novel mechanism of the action of Rb1 that may have value in prevention of HHcy associated cardiovascular disease.
Collapse
|
38
|
|
39
|
Nowak G, Bakajsova D, Samarel AM. Protein kinase C-epsilon activation induces mitochondrial dysfunction and fragmentation in renal proximal tubules. Am J Physiol Renal Physiol 2011; 301:F197-208. [PMID: 21289057 DOI: 10.1152/ajprenal.00364.2010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
PKC-ε activation mediates protection from ischemia-reperfusion injury in the myocardium. Mitochondria are a subcellular target of these protective mechanisms of PKC-ε. Previously, we have shown that PKC-ε activation is involved in mitochondrial dysfunction in oxidant-injured renal proximal tubular cells (RPTC; Nowak G, Bakajsova D, Clifton GL Am J Physiol Renal Physiol 286: F307-F316, 2004). The goal of this study was to examine the role of PKC-ε activation in mitochondrial dysfunction and to identify mitochondrial targets of PKC-ε in RPTC. The constitutively active and inactive mutants of PKC-ε were overexpressed in primary cultures of RPTC using the adenoviral technique. Increases in active PKC-ε levels were accompanied by PKC-ε translocation to mitochondria. Sustained PKC-ε activation resulted in decreases in state 3 respiration, electron transport rate, ATP production, ATP content, and activities of complexes I and IV and F(0)F(1)-ATPase. Furthermore, PKC-ε activation increased mitochondrial membrane potential and oxidant production and induced mitochondrial fragmentation and RPTC death. Accumulation of the dynamin-related protein in mitochondria preceded mitochondrial fragmentation. Antioxidants blocked PKC-ε-induced increases in the oxidant production but did not prevent mitochondrial fragmentation and cell death. The inactive PKC-ε mutant had no effect on mitochondrial functions, morphology, oxidant production, and RPTC viability. We conclude that active PKC-ε targets complexes I and IV and F(0)F(1)-ATPase in RPTC. PKC-ε activation mediates mitochondrial dysfunction, hyperpolarization, and fragmentation. It also induces oxidant generation and cell death, but oxidative stress is not the mechanism of RPTC death. These results show that in contrast to protective effects of PKC-ε activation in cardiomyocytes, sustained PKC-ε activation is detrimental to mitochondrial function and viability in RPTC.
Collapse
Affiliation(s)
- Grazyna Nowak
- University of Arkansas for Medical Sciences, Dept. of Pharmaceutical Sciences, 4301 West Markham St., Little Rock, AR 72205, USA.
| | | | | |
Collapse
|
40
|
Yakovlev VA, Mikkelsen RB. Protein tyrosine nitration in cellular signal transduction pathways. J Recept Signal Transduct Res 2010; 30:420-9. [PMID: 20843272 DOI: 10.3109/10799893.2010.513991] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
How specificity and reversibility in tyrosine nitration are defined biologically in cellular systems is poorly understood. As more investigations identify proteins involved in cell regulatory pathways in which only a small fraction of that protein pool is modified by nitration to affect cell function, the mechanisms of biological specificity and reversal should come into focus. In this review experimental evidence has been summarized to suggest that tyrosine nitration is a highly selective modification and under certain physiological conditions fulfills the criteria of a physiologically relevant signal. It can be specific, reversible, occurs on a physiological time scale, and, depending on a target, can result in either activation or inhibition.
Collapse
Affiliation(s)
- Vasily A Yakovlev
- Department of Radiation Oncology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | | |
Collapse
|
41
|
Kilpatrick LE, Standage SW, Li H, Raj NR, Korchak HM, Wolfson MR, Deutschman CS. Protection against sepsis-induced lung injury by selective inhibition of protein kinase C-δ (δ-PKC). J Leukoc Biol 2010; 89:3-10. [PMID: 20724665 DOI: 10.1189/jlb.0510281] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Inflammation and proinflammatory mediators are activators of δ-PKC. In vitro, δ-PKC regulates proinflammatory signaling in neutrophils and endothelial and epithelial cells, cells that can contribute to lung tissue damage associated with inflammation. In this study, a specific δ-PKC TAT peptide inhibitor was used to test the hypothesis that inhibition of δ-PKC would attenuate lung injury in an animal model of ARDS. Experimental ARDS was induced in rats via 2CLP, a model of polymicrobial sepsis. Following 2CLP surgery, the δ-PKC TAT inhibitory peptide (2CLP+δ-PKC TAT in PBS) or PBS (2CLP+PBS) was administered intratracheally. Controls consisted of SO, where animals underwent a laparotomy without 2CLP. Twenty-four hours after SO or 2CLP, blood, BALF, and lung tissue were collected. 2CLP induced δ-PKC phosphorylation in the lung within 24 h. Treatment with the δ-PKC TAT inhibitory peptide significantly decreased pulmonary δ-PKC phosphorylation, indicating effective inhibition of δ-PKC activation. Plasma and BALF levels of the chemokines CINC-1 and MIP-2 were elevated in 2CLP + PBS rats as compared with SO rats. Treatment with δ-PKC TAT reduced 2CLP-induced elevations in chemokine levels in BALF and plasma, suggesting that δ-PKC modulated chemokine expression. Most importantly, intratracheal administration of δ-PKC TAT peptide significantly attenuated inflammatory cell infiltration, disruption of lung architecture, and pulmonary edema associated with 2CLP. Thus, δ-PKC is an important regulator of proinflammatory events in the lung. Targeted inhibition of δ-PKC exerted a lung-protective effect 24 h after 2CLP.
Collapse
Affiliation(s)
- Laurie E Kilpatrick
- Temple University School of Medicine, 3307 North Broad St., PAH-206, Philadelphia, PA 19140, USA.
| | | | | | | | | | | | | |
Collapse
|