1
|
Joyce W, He K, Zhang M, Ogunsola S, Wu X, Joseph KT, Bogomolny D, Yu W, Springer MS, Xie J, Signore AV, Campbell KL. Genetic excision of the regulatory cardiac troponin I extension in high-heart rate mammal clades. Science 2024; 385:1466-1471. [PMID: 39325895 DOI: 10.1126/science.adi8146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 01/18/2024] [Accepted: 07/17/2024] [Indexed: 09/28/2024]
Abstract
Mammalian cardiac troponin I (cTnI) contains a highly conserved amino-terminal extension harboring protein kinase A targets [serine-23 and -24 (Ser23/24)] that are phosphorylated during β-adrenergic stimulation to defend diastolic filling by means of an increased cardiomyocyte relaxation rate. In this work, we show that the Ser23/24-encoding exon 3 of TNNI3 was pseudoexonized multiple times in shrews and moles to mimic Ser23/24 phosphorylation without adrenergic stimulation, facilitating the evolution of exceptionally high resting heart rates (~1000 beats per minute). We further reveal alternative exon 3 splicing in distantly related bat families and confirm that both cTnI splice variants are incorporated into cardiac myofibrils. Because exon 3 of human TNNI3 exhibits a relatively low splice strength score, our findings offer an evolutionarily informed strategy to excise this exon to improve diastolic function during heart failure.
Collapse
Affiliation(s)
- William Joyce
- Department of Biology - Zoophysiology, Aarhus University, 8000 Aarhus C, Denmark
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
| | - Kai He
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Mengdie Zhang
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Samuel Ogunsola
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Xini Wu
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Kelvin T Joseph
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - David Bogomolny
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Wenhua Yu
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Mark S Springer
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Jiuyong Xie
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Anthony V Signore
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Kevin L Campbell
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
2
|
Janssens JV, Raaijmakers AJA, Weeks KL, Bell JR, Mellor KM, Curl CL, Delbridge LMD. The cardiomyocyte origins of diastolic dysfunction: cellular components of myocardial "stiffness". Am J Physiol Heart Circ Physiol 2024; 326:H584-H598. [PMID: 38180448 DOI: 10.1152/ajpheart.00334.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/07/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
The impaired ability of the heart to relax and stretch to accommodate venous return is generally understood to represent a state of "diastolic dysfunction" and often described using the all-purpose noun "stiffness." Despite the now common qualitative usage of this term in fields of cardiac patho/physiology, the specific quantitative concept of stiffness as a molecular and biophysical entity with real practical interpretation in healthy and diseased hearts is sometimes obscure. The focus of this review is to characterize the concept of cardiomyocyte stiffness and to develop interpretation of "stiffness" attributes at the cellular and molecular levels. Here, we consider "stiffness"-related terminology interpretation and make links between cardiomyocyte stiffness and aspects of functional and structural cardiac performance. We discuss cross bridge-derived stiffness sources, considering the contributions of diastolic myofilament activation and impaired relaxation. This includes commentary relating to the role of cardiomyocyte Ca2+ flux and Ca2+ levels in diastole, the troponin-tropomyosin complex role as a Ca2+ effector in diastole, the myosin ADP dissociation rate as a modulator of cross bridge attachment and regulation of cross-bridge attachment by myosin binding protein C. We also discuss non-cross bridge-derived stiffness sources, including the titin sarcomeric spring protein, microtubule and intermediate filaments, and cytoskeletal extracellular matrix interactions. As the prevalence of conditions involving diastolic heart failure has escalated, a more sophisticated understanding of the molecular, cellular, and tissue determinants of cardiomyocyte stiffness offers potential to develop imaging and molecular intervention tools.
Collapse
Affiliation(s)
- Johannes V Janssens
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Antonia J A Raaijmakers
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Kate L Weeks
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
- Department of Diabetes, Monash University, Parkville, Victoria, Australia
| | - James R Bell
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, Victoria, Australia
| | - Kimberley M Mellor
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Physiology, University of Auckland, Auckland, New Zealand
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Claire L Curl
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Lea M D Delbridge
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Hasegawa M, Miki K, Kawamura T, Takei Sasozaki I, Higashiyama Y, Tsuchida M, Kashino K, Taira M, Ito E, Takeda M, Ishida H, Higo S, Sakata Y, Miyagawa S. Gene correction and overexpression of TNNI3 improve impaired relaxation in engineered heart tissue model of pediatric restrictive cardiomyopathy. Dev Growth Differ 2024; 66:119-132. [PMID: 38193576 PMCID: PMC11457505 DOI: 10.1111/dgd.12909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 01/10/2024]
Abstract
Research on cardiomyopathy models using engineered heart tissue (EHT) created from disease-specific induced pluripotent stem cells (iPSCs) is advancing rapidly. However, the study of restrictive cardiomyopathy (RCM), a rare and intractable cardiomyopathy, remains at the experimental stage because there is currently no established method to replicate the hallmark phenotype of RCM, particularly diastolic dysfunction, in vitro. In this study, we generated iPSCs from a patient with early childhood-onset RCM harboring the TNNI3 R170W mutation (R170W-iPSCs). The properties of R170W-iPSC-derived cardiomyocytes (CMs) and EHTs were evaluated and compared with an isogenic iPSC line in which the mutation was corrected. Our results indicated altered calcium kinetics in R170W-iPSC-CMs, including prolonged tau, and an increased ratio of relaxation force to contractile force in R170W-EHTs. These properties were reversed in the isogenic line, suggesting that our model recapitulates impaired relaxation of RCM, i.e., diastolic dysfunction in clinical practice. Furthermore, overexpression of wild-type TNNI3 in R170W-iPSC-CMs and -EHTs effectively rescued impaired relaxation. These results highlight the potential efficacy of EHT, a modality that can accurately recapitulate diastolic dysfunction in vitro, to elucidate the pathophysiology of RCM, as well as the possible benefits of gene therapies for patients with RCM.
Collapse
Affiliation(s)
- Moyu Hasegawa
- Department of Cardiovascular SurgeryOsaka University Graduate School of MedicineOsakaJapan
| | - Kenji Miki
- Premium Research Institute for Human Metaverse MedicineOsaka UniversityOsakaJapan
| | - Takuji Kawamura
- Department of Cardiovascular SurgeryOsaka University Graduate School of MedicineOsakaJapan
| | - Ikue Takei Sasozaki
- Department of Cardiovascular SurgeryOsaka University Graduate School of MedicineOsakaJapan
| | - Yuki Higashiyama
- Department of Cardiovascular SurgeryOsaka University Graduate School of MedicineOsakaJapan
| | - Masaru Tsuchida
- NTT Communication Science LaboratoriesMedia Information Research DepartmentKanagawaJapan
| | - Kunio Kashino
- Premium Research Institute for Human Metaverse MedicineOsaka UniversityOsakaJapan
- NTT Communication Science LaboratoriesMedia Information Research DepartmentKanagawaJapan
| | - Masaki Taira
- Department of Cardiovascular SurgeryOsaka University Graduate School of MedicineOsakaJapan
| | - Emiko Ito
- Department of Cardiovascular SurgeryOsaka University Graduate School of MedicineOsakaJapan
| | - Maki Takeda
- Department of Cardiovascular SurgeryOsaka University Graduate School of MedicineOsakaJapan
| | - Hidekazu Ishida
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| | - Shuichiro Higo
- Department of Medical Therapeutics for Heart FailureOsaka University Graduate School of MedicineOsakaJapan
| | - Yasushi Sakata
- Department of Cardiovascular MedicineOsaka University Graduate School of MedicineOsakaJapan
| | - Shigeru Miyagawa
- Department of Cardiovascular SurgeryOsaka University Graduate School of MedicineOsakaJapan
- Premium Research Institute for Human Metaverse MedicineOsaka UniversityOsakaJapan
| |
Collapse
|
4
|
Yang W, Zhu Y, Tang F, Jian Z, Xiao Y. Cardiac proteomic profiling suggests that hypertrophic and dilated cardiomyopathy share a common pathogenetic pathway of the calcium signalling pathway. Eur J Clin Invest 2023; 53:e14051. [PMID: 37381592 DOI: 10.1111/eci.14051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/04/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
OBJECTIVE Hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) are classified as different diseases but have many similar pathogenic genes and clinical symptoms. Previous research has focused on mutated genes. This study was conducted to identify key molecular mechanisms and explore effective therapeutic targets. METHODS Myocardial tissue was harvested from patients with HCM (n = 3) or DCM (n = 4) during surgery. Hearts donated by healthy traffic accident victims were treated as controls (n = 4). Total proteins were extracted for liquid chromatography-tandem mass spectrometry. Differentially expressed proteins (DEPs) were annotated via GO and KEGG analyses. Selected distinguishing protein abundance was confirmed by western blotting. RESULTS Compared with the control group, there were 121 and 76 DEPs in the HCM and DCM groups, respectively. GO terms for these two comparisons are associated with contraction-related components and actin binding. Additionally, the most significantly upregulated and downregulated proteins were periostin and tropomyosin alpha-3 chain in both comparisons. Moreover, when comparing the HCM and DCM groups, we found 60 significant DEPs, and the GO and KEGG terms are related to the calcium signalling pathway. Expression of the calcium regulation-related protein peptidyl-prolyl cis-trans isomerase (FKBP1A) was significantly upregulated in multiple samples. CONCLUSION HCM and DCM have many mutual pathogenetic pathways. Calcium ion-related processes are among the most significant factors affecting disease development. For HCM and DCM, research on regulating linchpin protein expression or interfering with key calcium-related pathways may be more beneficial than genetic research.
Collapse
Affiliation(s)
- Wenjuan Yang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Yu Zhu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Army Medical University, Chongqing, China
- Department of Cardiovascular Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, China
| | - Fuqin Tang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Zhao Jian
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Yingbin Xiao
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| |
Collapse
|
5
|
Feng HZ, Huang X, Jin JP. N-terminal truncated cardiac troponin I enhances Frank-Starling response by increasing myofilament sensitivity to resting tension. J Gen Physiol 2023; 155:e202012821. [PMID: 36880803 PMCID: PMC10005897 DOI: 10.1085/jgp.202012821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/09/2022] [Accepted: 12/29/2022] [Indexed: 03/08/2023] Open
Abstract
Cardiac troponin I (cTnI) of higher vertebrates has evolved with an N-terminal extension, of which deletion via restrictive proteolysis occurs as a compensatory adaptation in chronic heart failure to increase ventricular relaxation and stroke volume. Here, we demonstrate in a transgenic mouse model expressing solely N-terminal truncated cTnI (cTnI-ND) in the heart with deletion of the endogenous cTnI gene. Functional studies using ex vivo working hearts showed an extended Frank-Starling response to preload with reduced left ventricular end diastolic pressure. The enhanced Frank-Starling response effectively increases systolic ventricular pressure development and stroke volume. A novel finding is that cTnI-ND increases left ventricular relaxation velocity and stroke volume without increasing the end diastolic volume. Consistently, the optimal resting sarcomere length (SL) for maximum force development in cTnI-ND cardiac muscle was not different from wild-type (WT) control. Despite the removal of the protein kinase A (PKA) phosphorylation sites in cTnI, β-adrenergic stimulation remains effective on augmenting the enhanced Frank-Starling response of cTnI-ND hearts. Force-pCa relationship studies using skinned preparations found that while cTnI-ND cardiac muscle shows a resting SL-resting tension relationship similar to WT control, cTnI-ND significantly increases myofibril Ca2+ sensitivity to resting tension. The results demonstrate that restrictive N-terminal deletion of cTnI enhances Frank-Starling response by increasing myofilament sensitivity to resting tension rather than directly depending on SL. This novel function of cTnI regulation suggests a myofilament approach to utilizing Frank-Starling mechanism for the treatment of heart failure, especially diastolic failure where ventricular filling is limited.
Collapse
Affiliation(s)
- Han-Zhong Feng
- Department of Physiology and Biophysics, University of Illinois at Chicago School of Medicine, Chicago, IL, USA
| | - Xupei Huang
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Jian-Ping Jin
- Department of Physiology and Biophysics, University of Illinois at Chicago School of Medicine, Chicago, IL, USA
| |
Collapse
|
6
|
Langa P, Marszalek RJ, Warren CM, Chowdhury SK, Halas M, Batra A, Rafael-Clyke K, Bacon A, Goldspink PH, Solaro RJ, Wolska BM. Altered coronary artery function, arteriogenesis and endothelial YAP signaling in postnatal hypertrophic cardiomyopathy. Front Physiol 2023; 14:1136852. [PMID: 37064918 PMCID: PMC10102353 DOI: 10.3389/fphys.2023.1136852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Introduction: Hypertrophic cardiomyopathy (HCM) is a cardiovascular genetic disease caused largely by sarcomere protein mutations. Gaps in our understanding exist as to how maladaptive sarcomeric biophysical signals are transduced to intra- and extracellular compartments leading to HCM progression. To investigate early HCM progression, we focused on the onset of myofilament dysfunction during neonatal development and examined cardiac dynamics, coronary vascular structure and function, and mechano-transduction signaling in mice harboring a thin-filament HCM mutation. Methods: We studied postnatal days 7-28 (P7-P28) in transgenic (TG) TG-cTnT-R92Q and non-transgenic (NTG) mice using skinned fiber mechanics, echocardiography, biochemistry, histology, and immunohistochemistry. Results: At P7, skinned myofiber bundles exhibited an increased Ca2+-sensitivity (pCa50 TG: 5.97 ± 0.04, NTG: 5.84 ± 0.01) resulting from cTnT-R92Q expression on a background of slow skeletal (fetal) troponin I and α/β myosin heavy chain isoform expression. Despite the transition to adult isoform expressions between P7-P14, the increased Ca2+- sensitivity persisted through P28 with no apparent differences in gross morphology among TG and NTG hearts. At P7 significant diastolic dysfunction was accompanied by coronary flow perturbation (mean diastolic velocity, TG: 222.5 ± 18.81 mm/s, NTG: 338.7 ± 28.07 mm/s) along with localized fibrosis (TG: 4.36% ± 0.44%, NTG: 2.53% ± 0.47%). Increased phosphorylation of phospholamban (PLN) was also evident indicating abnormalities in Ca2+ homeostasis. By P14 there was a decline in arteriolar cross-sectional area along with an expansion of fibrosis (TG: 9.72% ± 0.73%, NTG: 2.72% ± 0.2%). In comparing mechano-transduction signaling in the coronary arteries, we uncovered an increase in endothelial YAP expression with a decrease in its nuclear to cytosolic ratio at P14 in TG hearts, which was reversed by P28. Conclusion: We conclude that those early mechanisms that presage hypertrophic remodeling in HCM include defective biophysical signals within the sarcomere that drive diastolic dysfunction, impacting coronary flow dynamics, defective arteriogenesis and fibrosis. Changes in mechano-transduction signaling between the different cellular compartments contribute to the pathogenesis of HCM.
Collapse
Affiliation(s)
- Paulina Langa
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Richard J. Marszalek
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Chad M. Warren
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Shamim K. Chowdhury
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Monika Halas
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Ashley Batra
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Koreena Rafael-Clyke
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Angelie Bacon
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Paul H. Goldspink
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - R. John Solaro
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Beata M. Wolska
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Department of Medicine, Division of Cardiology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
7
|
Wang BZ, Nash TR, Zhang X, Rao J, Abriola L, Kim Y, Zakharov S, Kim M, Luo LJ, Morsink M, Liu B, Lock RI, Fleischer S, Tamargo MA, Bohnen M, Welch CL, Chung WK, Marx SO, Surovtseva YV, Vunjak-Novakovic G, Fine BM. Engineered cardiac tissue model of restrictive cardiomyopathy for drug discovery. Cell Rep Med 2023; 4:100976. [PMID: 36921598 PMCID: PMC10040415 DOI: 10.1016/j.xcrm.2023.100976] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/19/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023]
Abstract
Restrictive cardiomyopathy (RCM) is defined as increased myocardial stiffness and impaired diastolic relaxation leading to elevated ventricular filling pressures. Human variants in filamin C (FLNC) are linked to a variety of cardiomyopathies, and in this study, we investigate an in-frame deletion (c.7416_7418delGAA, p.Glu2472_Asn2473delinAsp) in a patient with RCM. Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) with this variant display impaired relaxation and reduced calcium kinetics in 2D culture when compared with a CRISPR-Cas9-corrected isogenic control line. Similarly, mutant engineered cardiac tissues (ECTs) demonstrate increased passive tension and impaired relaxation velocity compared with isogenic controls. High-throughput small-molecule screening identifies phosphodiesterase 3 (PDE3) inhibition by trequinsin as a potential therapy to improve cardiomyocyte relaxation in this genotype. Together, these data demonstrate an engineered cardiac tissue model of RCM and establish the translational potential of this precision medicine approach to identify therapeutics targeting myocardial relaxation.
Collapse
Affiliation(s)
- Bryan Z Wang
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Trevor R Nash
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Xiaokan Zhang
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, NY 10032, USA
| | - Jenny Rao
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, NY 10032, USA
| | - Laura Abriola
- Yale Center for Molecular Discovery, Yale University, New Haven, CT 06520, USA
| | - Youngbin Kim
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Sergey Zakharov
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, NY 10032, USA
| | - Michael Kim
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, NY 10032, USA
| | - Lori J Luo
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Margaretha Morsink
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Bohao Liu
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Roberta I Lock
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Sharon Fleischer
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Manuel A Tamargo
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Michael Bohnen
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, NY 10032, USA
| | - Carrie L Welch
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Wendy K Chung
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Steven O Marx
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, NY 10032, USA
| | - Yulia V Surovtseva
- Yale Center for Molecular Discovery, Yale University, New Haven, CT 06520, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA; Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, NY 10032, USA; College of Dental Medicine, Columbia University, New York, NY 10032, USA
| | - Barry M Fine
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
8
|
Lu Q, Pan B, Bai H, Zhao W, Liu L, Li G, Liu R, Lv T, Huang X, Li X, Tian J. Intranuclear cardiac troponin I plays a functional role in regulating Atp2a2 expression in cardiomyocytes. Genes Dis 2022; 9:1689-1700. [PMID: 36157491 PMCID: PMC9485201 DOI: 10.1016/j.gendis.2021.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/11/2021] [Accepted: 04/15/2021] [Indexed: 11/21/2022] Open
Abstract
In the past studies, it is shown that cardiac troponin I (cTnI, encoded by TNNI3), as a cytoplasmic protein, is an inhibitory subunit in troponin complex, and involves in cardiomyocyte diastolic regulation. Here, we assessed a novel role of cTnI as a nucleoprotein. Firstly, the nuclear translocation of cTnI was found in mouse, human fetuses and rat heart tissues. In addition, there were differences in percentage of intranuclear cTnI in different conditions. Based on weighted gene co-expression network analyses (WGCNA) and verification in cell experiments, a strong expression correlation was found between TNNI3 and Atp2a2, which encodes sarco-endoplasmic reticulum Ca2+ ATPase isoform 2a (SERCA2a), and involves in ATP hydrolysis and Ca2+ transient. TNNI3 gain and loss caused Atpa2a2 increase/decrease in a dose-dependent manner both in mRNA and protein levels, in vivo and in vitro. By using ChIP-sequence we demonstrated specific binding DNA sequences of cTnI were enriched in ATP2a2 promoter −239∼–889 region and the specific binding sequence motif of cTnI was analyzed by software as "CCAT", which has been reported to be required for YY1 binding to the promoter region of YY1-related genes. Moreover, it was further verified that pcDNA3.1 (−)-TNNI3 could express cTnI proteins and increase the promoter activity of Atp2a2 through luciferase report assay. In the end, we evaluated beat frequencies, total ATP contents, Ca2+ transients in TNNI3-siRNA myocardial cells. These findings indicated, for the first time, cTnI may regulate Atp2a2 in cardiomyocytes as a co-regulatory factor and participate in the regulation of intracellular Ca ions.
Collapse
Affiliation(s)
- Qian Lu
- Department of Pediatric Cardiology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China.,Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China.,Department of Biomedical Science, Charlie E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Bo Pan
- Department of Pediatric Cardiology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China.,Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Haobo Bai
- Department of Orthopedic, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Weian Zhao
- Department of Pediatric Cardiology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China.,Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Lingjuan Liu
- Department of Pediatric Cardiology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China.,Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Gu Li
- Department of Pediatric Cardiology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China.,Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Ruimin Liu
- Department of Pediatric Cardiology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China.,Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Tiewei Lv
- Department of Pediatric Cardiology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China.,Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Xupei Huang
- Department of Biomedical Science, Charlie E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Xi Li
- Biology Science Institutes of Chongqing Medical University, Chongqing 400016, PR China
| | - Jie Tian
- Department of Pediatric Cardiology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China.,Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| |
Collapse
|
9
|
Genetic Insights into Primary Restrictive Cardiomyopathy. J Clin Med 2022; 11:jcm11082094. [PMID: 35456187 PMCID: PMC9027761 DOI: 10.3390/jcm11082094] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/04/2022] Open
Abstract
Restrictive cardiomyopathy is a rare cardiac disease causing severe diastolic dysfunction, ventricular stiffness and dilated atria. In consequence, it induces heart failure often with preserved ejection fraction and is associated with a high mortality. Since it is a poor clinical prognosis, patients with restrictive cardiomyopathy frequently require heart transplantation. Genetic as well as non-genetic factors contribute to restrictive cardiomyopathy and a significant portion of cases are of unknown etiology. However, the genetic forms of restrictive cardiomyopathy and the involved molecular pathomechanisms are only partially understood. In this review, we summarize the current knowledge about primary genetic restrictive cardiomyopathy and describe its genetic landscape, which might be of interest for geneticists as well as for cardiologists.
Collapse
|
10
|
Truncation of the N-terminus of cardiac troponin I initiates adaptive remodeling of the myocardial proteosome via phosphorylation of mechano-sensitive signaling pathways. Mol Cell Biochem 2022; 477:1803-1815. [PMID: 35316461 DOI: 10.1007/s11010-022-04414-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/10/2022] [Indexed: 10/18/2022]
Abstract
The cardiac isoform of troponin I has a unique N-terminal extension (~ 1-30 amino acids), which contributes to the modulation of cardiac contraction and relaxation. Hearts of various species including humans produce a truncated variant of cardiac troponin I (cTnI-ND) deleting the first ~ 30 amino acids as an adaption in pathophysiological conditions. In this study, we investigated the impact of cTnI-ND chronic expression in transgenic mouse hearts compared to wildtype (WT) controls (biological n = 8 in each group). We aimed to determine the global phosphorylation effects of cTnI-ND on the cardiac proteome, thereby determining the signaling pathways that have an impact on cardiac function. The samples were digested and isobarically labeled and equally mixed for relative quantification via nanoLC-MS/MS. The peptides were then enriched for phospho-peptides and bioinformatic analysis was done with Ingenuity Pathway Analysis (IPA). We found approximately 77% replacement of the endogenous intact cTnI with cTnI-ND in the transgenic mouse hearts with 1674 phospho-proteins and 2971 non-modified proteins. There were 73 significantly altered phospho-proteins; bioinformatic analysis identified the top canonical pathways as associated with integrin, protein kinase A, RhoA, and actin cytoskeleton signaling. Among the 73 phospho-proteins compared to controls cTnI-ND hearts demonstrated a significant decrease in paxillin and YAP1, which are known to play a role in cell mechano-sensing pathways. Our data indicate that cTnI-ND modifications in the sarcomere are sufficient to initiate changes in the phospho-signaling profile that may underly the chronic-adaptive response associated with cTnI cleavage in response to stressors by modifying mechano-sensitive signaling pathways.
Collapse
|
11
|
Li Z, Wang T, Xin C, Song Y, Kong J, Xu J, Liu Q, Teng Y, Hou N, Cheng X, Yang G, Liu W, Zhou B, Zhang Y, Yang X, Wang J. Hgs Deficiency Caused Restrictive Cardiomyopathy via Disrupting Proteostasis. Int J Biol Sci 2022; 18:2018-2031. [PMID: 35342336 PMCID: PMC8935245 DOI: 10.7150/ijbs.69024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/06/2022] [Indexed: 12/24/2022] Open
Abstract
The molecular mechanisms underlying restrictive cardiomyopathy (RCM) are not fully understood. Hepatocyte growth factor-regulated tyrosine kinase substrate (HGS) is a vital element of Endosomal sorting required for transport (ESCRT), which mediates protein sorting for degradation and is crucial for protein homeostasis (proteostasis) maintenance. However, the physiological function and underlying mechanisms of HGS in RCM are unexplored. We hypothesized that HGS may play vital roles in cardiac homeostasis. Cardiomyocyte-specific Hgs gene knockout mice were generated and developed a phenotype similar to human RCM. Proteomic analysis revealed that Hgs deficiency impaired lysosomal homeostasis in cardiomyocytes. Loss of Hgs disrupted cholesterol transport and lysosomal integrity, resulting in lysosomal storage disorder (LSD) with aberrant autophagosome accumulation and protein aggregation. Suppression of protein aggregation by doxycycline treatment attenuated cardiac fibrosis, and diastolic dysfunction in Hgs-knockout mice. These findings uncovered a novel physiological role of HGS in regulating cardiac lysosomal homeostasis and proteostasis, suggesting that the deficient HGS contributes to LSD-associated RCM-like cardiomyopathy.
Collapse
Affiliation(s)
- Zhenhua Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 100071, China
| | - Tianle Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 100071, China
| | - Chong Xin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 100071, China
| | - Yao Song
- Institute of Vascular Medicine, Peking University Third Hospital and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing 100191, China
| | - Jingyi Kong
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 100071, China
| | - Jingping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 100071, China
| | - Qiqi Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 100071, China
| | - Yan Teng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 100071, China
| | - Ning Hou
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 100071, China
| | - Xuan Cheng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 100071, China
| | - Guan Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 100071, China
| | - Wenjia Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 100071, China
| | - Bin Zhou
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Youyi Zhang
- Institute of Vascular Medicine, Peking University Third Hospital and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing 100191, China.,✉ Corresponding authors: Jian Wang, PhD, State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 100071, China. Phone: +86 10 63895937, E-mail: . or Xiao Yang, State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 100071, China. Phone: +86 10 63895937, E-mail: . or Youyi Zhang, Institute of Vascular Medicine, Peking University Third Hospital, Beijing 100191, China. Phone: +86 10 82802306, E-mail:
| | - Xiao Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 100071, China.,✉ Corresponding authors: Jian Wang, PhD, State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 100071, China. Phone: +86 10 63895937, E-mail: . or Xiao Yang, State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 100071, China. Phone: +86 10 63895937, E-mail: . or Youyi Zhang, Institute of Vascular Medicine, Peking University Third Hospital, Beijing 100191, China. Phone: +86 10 82802306, E-mail:
| | - Jian Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 100071, China.,✉ Corresponding authors: Jian Wang, PhD, State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 100071, China. Phone: +86 10 63895937, E-mail: . or Xiao Yang, State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 100071, China. Phone: +86 10 63895937, E-mail: . or Youyi Zhang, Institute of Vascular Medicine, Peking University Third Hospital, Beijing 100191, China. Phone: +86 10 82802306, E-mail:
| |
Collapse
|
12
|
Kaviarasan V, Mohammed V, Veerabathiran R. Genetic predisposition study of heart failure and its association with cardiomyopathy. Egypt Heart J 2022; 74:5. [PMID: 35061126 PMCID: PMC8782994 DOI: 10.1186/s43044-022-00240-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Heart failure (HF) is a clinical condition distinguished by structural and functional defects in the myocardium, which genetic and environmental factors can induce. HF is caused by various genetic factors that are both heterogeneous and complex. The incidence of HF varies depending on the definition and area, but it is calculated to be between 1 and 2% in developed countries. There are several factors associated with the progression of HF, ranging from coronary artery disease to hypertension, of which observed the most common genetic cause to be cardiomyopathy. The main objective of this study is to investigate heart failure and its association with cardiomyopathy with their genetic variants. The selected novel genes that have been linked to human inherited cardiomyopathy play a critical role in the pathogenesis and progression of HF. Research sources collected from the human gene mutation and several databases revealed that numerous genes are linked to cardiomyopathy and thus explained the hereditary influence of such a condition. Our findings support the understanding of the genetics aspect of HF and will provide more accurate evidence of the role of changing disease accuracy. Furthermore, a better knowledge of the molecular pathophysiology of genetically caused HF could contribute to the emergence of personalized therapeutics in future.
Collapse
Affiliation(s)
- Vaishak Kaviarasan
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu, 603103, India
| | - Vajagathali Mohammed
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu, 603103, India
| | - Ramakrishnan Veerabathiran
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu, 603103, India.
| |
Collapse
|
13
|
Sato T, Ito M. Fibroblast-Cardiomyocyte Interaction in Pediatric Restrictive Cardiomyopathy. Circ J 2021; 85:687-689. [PMID: 33678757 DOI: 10.1253/circj.cj-21-0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tatsuyuki Sato
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
| | - Masamichi Ito
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
- Department of Advanced Clinical Science and Therapeutics, Graduate School of Medicine, The University of Tokyo
| |
Collapse
|
14
|
Warren CM, Halas M, Feng HZ, Wolska BM, Jin JP, Solaro RJ. NH 2-Terminal Cleavage of Cardiac Troponin I Signals Adaptive Response to Cardiac Stressors. JOURNAL OF CELLULAR SIGNALING 2021; 2:162-171. [PMID: 34541579 PMCID: PMC8444995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/29/2022]
Abstract
Cardiac sarcomeres express a variant of troponin I (cTnI) that contains a unique N-terminal extension of ~30 amino acids with regulatory phosphorylation sites. The extension is important in the control of myofilament response to Ca2+, which contributes to the neuro-humoral regulation of the dynamics of cardiac contraction and relaxation. Hearts of various species including humans express a stress-induced truncated variant of cardiac troponin I (cTnI-ND) missing the first ~30 amino acids and functionally mimicking the phosphorylated state of cTnI. Studies have demonstrated that upregulation of cTnI-ND potentially represents a homeostatic mechanism as well as an adaptive response in pathophysiology including ischemia/reperfusion injury, beta adrenergic maladaptive activation, and aging. We present evidence showing that cTnI-ND can modify the trigger for hypertrophic cardiomyopathy (HCM) by reducing the Ca2+ sensitivity of myofilaments from hearts with an E180G mutation in α-tropomyosin. Induction of this truncation may represent a therapeutic approach to modifying Ca2+-responses in hearts with hypercontractility or heat failure with preserved ejection fraction.
Collapse
Affiliation(s)
- Chad M. Warren
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, USA
| | - Monika Halas
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, USA
| | - Han-Zhong Feng
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, USA
| | - Beata M. Wolska
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, USA,Division of Cardiology, Center for Cardiovascular Research, University of Illinois at Chicago, USA
| | - Jian-Ping Jin
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, USA
| | - R. John Solaro
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, USA,Correspondence should be addressed to R. John Solaro;
| |
Collapse
|
15
|
Hornos F, Feng HZ, Rizzuti B, Palomino-Schätzlein M, Wieczorek D, Neira JL, Jin JP. The muscle-relaxing C-terminal peptide from troponin I populates a nascent helix, facilitating binding to tropomyosin with a potent therapeutic effect. J Biol Chem 2021; 296:100228. [PMID: 33814345 PMCID: PMC7948816 DOI: 10.1074/jbc.ra120.016012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 11/06/2022] Open
Abstract
The conserved C-terminal end segment of troponin I (TnI) plays a critical role in regulating muscle relaxation. This function is retained in the isolated C-terminal 27 amino acid peptide (residues 184-210) of human cardiac TnI (HcTnI-C27): When added to skinned muscle fibers, HcTnI-C27 reduces the Ca2+-sensitivity of activated myofibrils and facilitates relaxation without decreasing the maximum force production. However, the underlying mechanism of HcTnI-C27 function is unknown. We studied the conformational preferences of HcTnI-C27 and a myopathic mutant, Arg192His, (HcTnI-C27-H). Both peptides were mainly disordered in aqueous solution with a nascent helix involving residues from Trp191 to Ile195, as shown by NMR analysis and molecular dynamics simulations. The population of nascent helix was smaller in HcTnI-C27-H than in HcTnI-C27, as shown by circular dichroism (CD) titrations. Fluorescence and isothermal titration calorimetry (ITC) showed that both peptides bound tropomyosin (αTm), with a detectably higher affinity (∼10 μM) of HcTnI-C27 than that of HcTnI-C27-H (∼15 μM), consistent with an impaired Ca2+-desensitization effect of the mutant peptide on skinned muscle strips. Upon binding to αTm, HcTnI-C27 acquired a weakly stable helix-like conformation involving residues near Trp191, as shown by transferred nuclear Overhauser effect spectroscopy and hydrogen/deuterium exchange experiments. With the potent Ca2+-desensitization effect of HcTnI-C27 on skinned cardiac muscle from a mouse model of hypertrophic cardiomyopathy, the data support that the C-terminal end domain of TnI can function as an isolated peptide with the intrinsic capacity of binding tropomyosin, providing a promising therapeutic approach to selectively improve diastolic function of the heart.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution
- Animals
- Binding Sites
- Calcium/metabolism
- Cardiomyopathy, Hypertrophic/genetics
- Cardiomyopathy, Hypertrophic/metabolism
- Cardiomyopathy, Hypertrophic/pathology
- Cardiomyopathy, Hypertrophic/prevention & control
- Disease Models, Animal
- Gene Expression
- Humans
- Kinetics
- Mice
- Molecular Docking Simulation
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Muscle Relaxation
- Mutation
- Myofibrils/drug effects
- Myofibrils/metabolism
- Myofibrils/pathology
- Peptides/chemistry
- Peptides/genetics
- Peptides/metabolism
- Peptides/pharmacology
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Interaction Domains and Motifs
- Sequence Alignment
- Sequence Homology, Amino Acid
- Substrate Specificity
- Tropomyosin/chemistry
- Tropomyosin/genetics
- Tropomyosin/metabolism
- Troponin I/chemistry
- Troponin I/genetics
- Troponin I/metabolism
Collapse
Affiliation(s)
- Felipe Hornos
- IDIBE, Universidad Miguel Hernández, Alicante, Spain
| | - Han-Zhong Feng
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Bruno Rizzuti
- CNR-NANOTEC, Licryl-UOS Cosenza and CEMIF.Cal, Department of Physics, University of Calabria, Cosenza, Italy
| | | | - David Wieczorek
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cinncinnnati, Ohio, USA
| | - José L Neira
- IDIBE, Universidad Miguel Hernández, Alicante, Spain; Instituto de Biocomputación y Física de Sistemas Complejos, Zaragoza, Spain.
| | - J-P Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA.
| |
Collapse
|
16
|
Holmes JB, Doh CY, Mamidi R, Li J, Stelzer JE. Strategies for targeting the cardiac sarcomere: avenues for novel drug discovery. Expert Opin Drug Discov 2020; 15:457-469. [PMID: 32067508 PMCID: PMC7065952 DOI: 10.1080/17460441.2020.1722637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/24/2020] [Indexed: 01/10/2023]
Abstract
Introduction: Heart failure remains one of the largest clinical challenges in the United States. Researchers have continually searched for more effective heart failure treatments that target the cardiac sarcomere but have found few successes despite numerous expensive cardiovascular clinical trials. Among many reasons, the high failure rate of cardiovascular clinical trials may be partly due to incomplete characterization of a drug candidate's complex interaction with cardiac physiology.Areas covered: In this review, the authors address the issue of preclinical cardiovascular studies of sarcomere-targeting heart failure therapies. The authors consider inherent tradeoffs made between mechanistic transparency and physiological fidelity for several relevant preclinical techniques at the atomic, molecular, heart muscle fiber, whole heart, and whole-organism levels. Thus, the authors suggest a comprehensive, bottom-up approach to preclinical cardiovascular studies that fosters scientific rigor and hypothesis-driven drug discovery.Expert opinion: In the authors' opinion, the implementation of hypothesis-driven drug discovery practices, such as the bottom-up approach to preclinical cardiovascular studies, will be imperative for the successful development of novel heart failure treatments. However, additional changes to clinical definitions of heart failure and current drug discovery culture must accompany the bottom-up approach to maximize the effectiveness of hypothesis-driven drug discovery.
Collapse
Affiliation(s)
- Joshua B Holmes
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Chang Yoon Doh
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Ranganath Mamidi
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jiayang Li
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Julian E Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
17
|
Landim-Vieira M, Johnston JR, Ji W, Mis EK, Tijerino J, Spencer-Manzon M, Jeffries L, Hall EK, Panisello-Manterola D, Khokha MK, Deniz E, Chase PB, Lakhani SA, Pinto JR. Familial Dilated Cardiomyopathy Associated With a Novel Combination of Compound Heterozygous TNNC1 Variants. Front Physiol 2020; 10:1612. [PMID: 32038292 PMCID: PMC6990120 DOI: 10.3389/fphys.2019.01612] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022] Open
Abstract
Familial dilated cardiomyopathy (DCM), clinically characterized by enlargement and dysfunction of one or both ventricles of the heart, can be caused by variants in sarcomeric genes including TNNC1 (encoding cardiac troponin C, cTnC). Here, we report the case of two siblings with severe, early onset DCM who were found to have compound heterozygous variants in TNNC1: p.Asp145Glu (D145E) and p.Asp132Asn (D132N), which were inherited from the parents. We began our investigation with CRISPR/Cas9 knockout of TNNC1 in Xenopus tropicalis, which resulted in a cardiac phenotype in tadpoles consistent with DCM. Despite multiple maneuvers, we were unable to rescue the tadpole hearts with either human cTnC wild-type or patient variants to investigate the cardiomyopathy phenotype in vivo. We therefore utilized porcine permeabilized cardiac muscle preparations (CMPs) reconstituted with either wild-type or patient variant forms of cTnC to examine effects of the patient variants on contractile function. Incorporation of 50% WT/50% D145E into CMPs increased Ca2+ sensitivity of isometric force, consistent with prior studies. In contrast, incorporation of 50% WT/50% D132N, which had not been previously reported, decreased Ca2+ sensitivity of isometric force. CMPs reconstituted 50–50% with both variants mirrored WT in regard to myofilament Ca2+ responsiveness. Sinusoidal stiffness (SS) (0.2% peak-to-peak) and the kinetics of tension redevelopment (kTR) at saturating Ca2+ were similar to WT for all preparations. Modeling of Ca2+-dependence of kTR support the observation from Ca2+ responsiveness of steady-state isometric force, that the effects on each mutant (50% WT/50% mutant) were greater than the combination of the two mutants (50% D132N/50% D145E). Further studies are needed to ascertain the mechanism(s) of these variants.
Collapse
Affiliation(s)
- Maicon Landim-Vieira
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, United States
| | - Jamie R Johnston
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, United States
| | - Weizhen Ji
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Emily K Mis
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Joshua Tijerino
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, United States
| | - Michele Spencer-Manzon
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale School of Medicine, Yale University, New Haven, CT, United States.,Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Lauren Jeffries
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - E Kevin Hall
- Department of Pediatrics, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - David Panisello-Manterola
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale School of Medicine, Yale University, New Haven, CT, United States.,Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Engin Deniz
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - P Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Saquib A Lakhani
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Jose Renato Pinto
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
18
|
Cardiac troponin I R193H mutant interacts with HDAC1 to repress phosphodiesterase 4D expression in cardiomyocytes. Genes Dis 2020; 8:569-579. [PMID: 34179318 PMCID: PMC8209310 DOI: 10.1016/j.gendis.2020.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/13/2019] [Accepted: 01/06/2020] [Indexed: 01/12/2023] Open
Abstract
Cardiac Troponin I (cTnI) is a subunit of the thin filament involved in regulation of heart contraction. Mutated cTnI accounts for most genetic mutations associated with restrictive cardiomyopathy (RCM). We previously found phosphodiesterase 4D (PDE4D) decreased in RCM mice with cTnIR193H mutation and the mutant cTnI might be involved in PDE4D reduction. This study aims to elucidate a novel role of cTnIR193H mutant as a gene regulator. Overexpression of cTnIR193H mutant in cardiomyocytes showed decrease in PDED4D protein expression, while the enrichment of histone deacetylase 1 (HDAC1) was increased along with decreases in acetylated lysine 4 (acH3K4) and 9 (acH3K9) levels in the PDE4D promoter. HDAC1 overexpression could also downregulate PDE4D via reducing acH3K4 and acH3K9 levels. Co-IP assays showed that cTnIR193H mutant owed increased binding ability to HDAC1 compared with wild type cTnI. EGCG as a HDAC1 inhibitor could diminish the strength of cTnIR193H-HDAC1 interactions and alleviate the reduction in PDE4D expression. Together, our data indicated that cTnIR193H mutant could repress PDE4D expression in cardiomyocytes through HDAC1 associated histone deacetylation modification. Unlike the typical function of cTnI in cytoplasm, our study suggested a novel role of cTnI mutants in nuclei in regulating gene expression.
Collapse
|
19
|
Quan J, Jia Z, Lv T, Zhang L, Liu L, Pan B, Zhu J, Gelb IJ, Huang X, Tian J. Green tea extract catechin improves cardiac function in pediatric cardiomyopathy patients with diastolic dysfunction. J Biomed Sci 2019; 26:32. [PMID: 31064352 PMCID: PMC6505250 DOI: 10.1186/s12929-019-0528-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/30/2019] [Indexed: 12/16/2022] Open
Abstract
Background Our previous studies have demonstrated that Ca2+ desensitizing catechin could correct diastolic dysfunction in experimental animals with restrictive cardiomyopathy. In this study, it is aimed to assess the effects of green tea extract catechin on cardiac function and other clinical features in pediatric patients with cardiomyopathies. Methods Twelve pediatric cardiomyopathy patients with diastolic dysfunction were enrolled for the study. Echocardiography, ECG, and laboratory tests were performed before and after the catechin administration for 12 months. Comparison has been made in these patients before and after the treatment with catechin. Next Generation Sequencing was conducted to find out the potential causative gene variants in all patients. Results A significant decrease of isovolumetric relaxation time (115 ± 46 vs 100 ± 42 ms, P = 0.047 at 6 months; 115 ± 46 vs 94 ± 30 ms, P = 0.033 at 12 months), an increase of left ventricle end diastolic volume (40 ± 28 vs 53 ± 28 ml, P = 0.028 at 6 months; 40 ± 28 vs 48 ± 33 ml, P = 0.011 at 12 months) and stroke volume (25 ± 16 vs 32 ± 17 ml, P = 0.022 at 6 months; 25 ± 16 vs 30 ± 17 ml, P = 0.021 at 12 months) were observed with echocardiography in these patients 6-month after the treatment with catechin. Ejection fraction, left ventricular wall thickness, biatrial dimension remained unchanged. No significant side effects were observed in the patients tested. Conclusions This study indicates that Ca2+ desensitizing green tea extract catechin, is helpful in correcting the impaired relaxation in pediatric cardiomyopathy patients with diastolic dysfunction. Electronic supplementary material The online version of this article (10.1186/s12929-019-0528-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Junjun Quan
- Department of Cardiology, Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Road, Yu Zhong District, Chongqing, 400014, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Zhongli Jia
- Department of Cardiology, Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Road, Yu Zhong District, Chongqing, 400014, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Tiewei Lv
- Department of Cardiology, Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Road, Yu Zhong District, Chongqing, 400014, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Lei Zhang
- Department of Cardiology, Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Road, Yu Zhong District, Chongqing, 400014, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Lingjuan Liu
- Department of Cardiology, Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Road, Yu Zhong District, Chongqing, 400014, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Bo Pan
- Department of Cardiology, Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Road, Yu Zhong District, Chongqing, 400014, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Jing Zhu
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Ira J Gelb
- Charlie E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Road, Boca Raton, FL, 33431, USA
| | - Xupei Huang
- Charlie E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Road, Boca Raton, FL, 33431, USA.
| | - Jie Tian
- Department of Cardiology, Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Road, Yu Zhong District, Chongqing, 400014, China. .,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China. .,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China. .,Chongqing Key Laboratory of Pediatrics, Chongqing, China.
| |
Collapse
|
20
|
Pantou MP, Gourzi P, Gkouziouta A, Armenis I, Kaklamanis L, Zygouri C, Constantoulakis P, Adamopoulos S, Degiannis D. A case report of recessive restrictive cardiomyopathy caused by a novel mutation in cardiac troponin I (TNNI3). BMC MEDICAL GENETICS 2019; 20:61. [PMID: 30953456 PMCID: PMC6451262 DOI: 10.1186/s12881-019-0793-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/27/2019] [Indexed: 12/02/2022]
Abstract
Background Restrictive cardiomyopathy is a rare cardiac disease, for which several genes including TNNT2, MYPN, FLNC and TNNI3 have been associated with its familial form. Case presentation Here we describe a female proband with a severely manifested restrictive phenotype leading to heart transplantation at the age of 41, who was found homozygous for the novel TNNI3 mutation: NM_000363.4:c.586G > C, p.(Asp196His). Her parents were third-degree cousins originating from a small village and although they were found heterozygous for the same variant they displayed no symptoms of the disease. Her older sister who was also found heterozygous was asymptomatic. Her twin sister and her brother who were homozygous for the same variant displayed a restrictive and a hypertrophic phenotype, respectively. Their children are all carriers of the mutation and remain asymptomatic until the age of 21. Conclusion These observations point to a recessive mode of inheritance reported for the first time for this combination of gene/disease.
Collapse
Affiliation(s)
- Malena P Pantou
- Molecular Immunopathology and Histocompatibility Unit, Division of Genetics, Onassis Cardiac Surgery Center, Syggrou Av, 356, 176 74, Athens, Greece
| | - Polyxeni Gourzi
- Molecular Immunopathology and Histocompatibility Unit, Division of Genetics, Onassis Cardiac Surgery Center, Syggrou Av, 356, 176 74, Athens, Greece.
| | - Aggeliki Gkouziouta
- Heart Failure, MCS and Transplant Unit, Onassis Cardiac Surgery Center, Athens, Greece
| | - Iakovos Armenis
- Heart Failure, MCS and Transplant Unit, Onassis Cardiac Surgery Center, Athens, Greece
| | - Loukas Kaklamanis
- Department of Pathology, Onassis Cardiac Surgery Center, Athens, Greece
| | - Christianna Zygouri
- Department of Molecular Genetics, BioAnalytica-Genotypes S.A, Athens, Greece
| | | | - Stamatis Adamopoulos
- Heart Failure, MCS and Transplant Unit, Onassis Cardiac Surgery Center, Athens, Greece
| | - Dimitrios Degiannis
- Molecular Immunopathology and Histocompatibility Unit, Division of Genetics, Onassis Cardiac Surgery Center, Syggrou Av, 356, 176 74, Athens, Greece
| |
Collapse
|
21
|
Dieseldorff Jones KM, Koh Y, Weller RS, Turna RS, Ahmad F, Huke S, Knollmann BC, Pinto JR, Hwang HS. Pathogenic troponin T mutants with opposing effects on myofilament Ca 2+ sensitivity attenuate cardiomyopathy phenotypes in mice. Arch Biochem Biophys 2018; 661:125-131. [PMID: 30445044 DOI: 10.1016/j.abb.2018.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/28/2018] [Accepted: 11/08/2018] [Indexed: 01/14/2023]
Abstract
Mutations in cardiac troponin T (TnT) associated with hypertrophic cardiomyopathy generally lead to an increase in the Ca2+ sensitivity of contraction and susceptibility to arrhythmias. In contrast, TnT mutations linked to dilated cardiomyopathy decrease the Ca2+ sensitivity of contraction. Here we tested the hypothesis that two TnT disease mutations with opposite effects on myofilament Ca2+ sensitivity can attenuate each other's phenotype. We crossed transgenic mice expressing the HCM TnT-I79N mutation (I79N) with a DCM knock-in mouse model carrying the heterozygous TnT-R141W mutation (HET). The results of the Ca2+ sensitivity in skinned cardiac muscle preparations ranked from highest to lowest were as follow: I79N > I79N/HET > NTg > HET. Echocardiographic measurements revealed an improvement in hemodynamic parameters in I79N/HET compared to I79N and normalization of left ventricular dimensions and volumes compared to both I79N and HET. Ex vivo testing showed that the I79N/HET mouse hearts had reduced arrhythmia susceptibility compared to I79N mice. These results suggest that two disease mutations in TnT that have opposite effects on the myofilament Ca2+ sensitivity can paradoxically ameliorate each other's disease phenotype. Normalizing myofilament Ca2+ sensitivity may be a promising new treatment approach for a variety of diseases.
Collapse
Affiliation(s)
| | - Yeojung Koh
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Rebecca S Weller
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Rajdeep S Turna
- Biomedical Sciences, Florida State University, Tallahassee, FL, USA
| | - Ferhaan Ahmad
- Department of Internal Medicine University of Iowa, Iowa City, IA, USA
| | - Sabine Huke
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, USA; Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Björn C Knollmann
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, USA
| | | | - Hyun Seok Hwang
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
22
|
Ding WH, Han L, Xiao YY, Mo Y, Yang J, Wang XF, Jin M. Role of Whole-exome Sequencing in Phenotype Classification and Clinical Treatment of Pediatric Restrictive Cardiomyopathy. Chin Med J (Engl) 2018; 130:2823-2828. [PMID: 29176140 PMCID: PMC5717861 DOI: 10.4103/0366-6999.219150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background: Restrictive cardiomyopathy (RCM) is the least common cardiomyopathy in which the walls are rigid and the heart is restricted from stretching and filling properly. Cardiac troponin I (cTnI) mutation-caused myofibril Ca2+ hypersensitivity has been shown to be associated with impaired diastolic function. This study aimed to investigate the linkage between the genotype and clinical therapy of RCM. Methods: Five sporadic pediatric RCM patients confirmed by echocardiography were enrolled in this study. Whole-exome sequencing (WES) was performed for the cohort to find out candidate causative gene variants. Sanger sequencing confirmed the WES-identified variants. Results: TNNI3 variants were found in all of the five patients. R192H mutation was shared in four patients while R204H mutation was found only in one patient. Structure investigation showed that the C terminus of TNNI3 was flexible and mutation on the C terminus was possible to cause the RCM. Catechins were prescribed for the five patients once genotype was confirmed. Ventricular diastolic function was improved in three patients during the follow-up. Conclusions: Our data demonstrated that TNNI3 mutation-induced RCM1 is the most common type of pediatric RCM in this study. In addition, WES is a reliable approach to identify likely pathogenic genes of RCM and might be useful for the guidance of clinical treatment scheme.
Collapse
Affiliation(s)
- Wen-Hong Ding
- Department of Pediatric Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Ling Han
- Department of Pediatric Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Yan-Yan Xiao
- Department of Pediatric Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Ying Mo
- Department of Pediatric Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Jing Yang
- Department of Pediatric Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Xiao-Fang Wang
- Department of Pediatric Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Mei Jin
- Department of Pediatric Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| |
Collapse
|
23
|
Alves ML, Warren CM, Simon JN, Gaffin RD, Montminy EM, Wieczorek DF, Solaro RJ, Wolska BM. Early sensitization of myofilaments to Ca2+ prevents genetically linked dilated cardiomyopathy in mice. Cardiovasc Res 2018; 113:915-925. [PMID: 28379313 DOI: 10.1093/cvr/cvx068] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 03/31/2017] [Indexed: 12/14/2022] Open
Abstract
Background Dilated cardiomoypathies (DCM) are a heterogeneous group of inherited and acquired diseases characterized by decreased contractility and enlargement of cardiac chambers and a major cause of morbidity and mortality. Mice with Glu54Lys mutation in α-tropomyosin (Tm54) demonstrate typical DCM phenotype with reduced myofilament Ca2+ sensitivity. We tested the hypothesis that early sensitization of the myofilaments to Ca2+ in DCM can prevent the DCM phenotype. Methods and results To sensitize Tm54 myofilaments, we used a genetic approach and crossbred Tm54 mice with mice expressing slow skeletal troponin I (ssTnI) that sensitizes myofilaments to Ca2+. Four groups of mice were used: non-transgenic (NTG), Tm54, ssTnI and Tm54/ssTnI (DTG). Systolic function was significantly reduced in the Tm54 mice compared to NTG, but restored in DTG mice. Tm54 mice also showed increased diastolic LV dimensions and HW/BW ratios, when compared to NTG, which were improved in the DTG group. β-myosin heavy chain expression was increased in the Tm54 animals compared to NTG and was partially restored in DTG group. Analysis by 2D-DIGE indicated a significant decrease in two phosphorylated spots of cardiac troponin I (cTnI) in the DTG animals compared to NTG and Tm54. Analysis by 2D-DIGE also indicated no significant changes in troponin T, regulatory light chain, myosin binding protein C and tropomyosin phosphorylation. Conclusion Our data indicate that decreased myofilament Ca2+ sensitivity is an essential element in the pathophysiology of thin filament linked DCM. Sensitization of myofilaments to Ca2+ in the early stage of DCM may be a useful therapeutic strategy in thin filament linked DCM.
Collapse
Affiliation(s)
- Marco L Alves
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois, 835 S Wolcott Ave. (M/C 901), Chicago, IL 60612, USA.,Center for Research in Echocardiography and Cardiology, Heart Institute, University of Sao Paulo, Avenida Dr. Eneas de Carvalho Aguiar 44, 05403-900, Sao Paulo, Brazil
| | - Chad M Warren
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois, 835 S Wolcott Ave. (M/C 901), Chicago, IL 60612, USA
| | - Jillian N Simon
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois, 835 S Wolcott Ave. (M/C 901), Chicago, IL 60612, USA
| | - Robert D Gaffin
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois, 835 S Wolcott Ave. (M/C 901), Chicago, IL 60612, USA
| | - Eric M Montminy
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois, 835 S Wolcott Ave. (M/C 901), Chicago, IL 60612, USA
| | - David F Wieczorek
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - R John Solaro
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois, 835 S Wolcott Ave. (M/C 901), Chicago, IL 60612, USA
| | - Beata M Wolska
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois, 835 S Wolcott Ave. (M/C 901), Chicago, IL 60612, USA.,Department of Medicine, Division of Cardiology, University of Illinois, 840 S Wood St. (M/C 715), Chicago, IL 60612, USA
| |
Collapse
|
24
|
Schnelle M, Catibog N, Zhang M, Nabeebaccus AA, Anderson G, Richards DA, Sawyer G, Zhang X, Toischer K, Hasenfuss G, Monaghan MJ, Shah AM. Echocardiographic evaluation of diastolic function in mouse models of heart disease. J Mol Cell Cardiol 2017; 114:20-28. [PMID: 29055654 PMCID: PMC5807035 DOI: 10.1016/j.yjmcc.2017.10.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/05/2017] [Accepted: 10/18/2017] [Indexed: 01/08/2023]
Abstract
Background Mouse models of heart disease are extensively employed. The echocardiographic characterization of contractile function is usually focused on systolic function with fewer studies assessing diastolic function. Furthermore, the applicability of diverse echocardiographic parameters of diastolic function that are commonly used in humans has not been extensively evaluated in different pathophysiological models in mice. Methods and results We used high resolution echocardiography to evaluate parameters of diastolic function in mouse models of chronic pressure overload (aortic constriction), volume overload (aorto-caval shunt), heart failure with preserved ejection fraction (HFpEF; DOCA-salt hypertension), and acute sarcoplasmic reticulum dysfunction induced by thapsigargin - all known to exhibit diastolic dysfunction. Left atrial area increased in all three chronic models while mitral E/A was difficult to quantify at high heart rates. Isovolumic relaxation time (IVRT) and Doppler E/E′ increased significantly and the peak longitudinal strain rate during early filling (peak reverse longitudinal strain rate) decreased significantly after aortic constriction, with the changes being proportional to the magnitude of hypertrophy. In the HFpEF model, reverse longitudinal strain rate decreased significantly but changes in IVRT and E/E′ were non-significant, consistent with less severe dysfunction. With volume overload, there was a significant increase in reverse longitudinal strain rate and decrease in IVRT, indicating a restrictive physiology. Acute thapsigargin treatment caused significant prolongation of IVRT and decrease in reverse longitudinal strain rate. Conclusion These results indicate that the combined measurement of left atrial area plus reverse longitudinal strain rate and/or IVRT provide an excellent overall assessment of diastolic function in the diseased mouse heart, allowing distinction between different types of pathophysiology. Several echocardiographic indices of diastolic function are applicable to mouse models. Isovolumic relaxation time (IVRT) and peak strain during filling are easily quantified. Left atrial area increases with pressure and volume overload as well as HFpEF. Changes in IVRT and strain during filling distinguish restrictive physiology. Combined left atrial area and diastolic strain provide an ideal diagnostic framework.
Collapse
Affiliation(s)
- Moritz Schnelle
- King's College London British Heart Foundation Centre of Excellence, Cardiovascular Division, London, United Kingdom; Department of Cardiology and Pneumology, University Medical Center Goettingen, Goettingen, Germany
| | - Norman Catibog
- King's College London British Heart Foundation Centre of Excellence, Cardiovascular Division, London, United Kingdom
| | - Min Zhang
- King's College London British Heart Foundation Centre of Excellence, Cardiovascular Division, London, United Kingdom
| | - Adam A Nabeebaccus
- King's College London British Heart Foundation Centre of Excellence, Cardiovascular Division, London, United Kingdom
| | - Grace Anderson
- King's College London British Heart Foundation Centre of Excellence, Cardiovascular Division, London, United Kingdom
| | - Daniel A Richards
- King's College London British Heart Foundation Centre of Excellence, Cardiovascular Division, London, United Kingdom
| | - Greta Sawyer
- King's College London British Heart Foundation Centre of Excellence, Cardiovascular Division, London, United Kingdom
| | - Xiaohong Zhang
- King's College London British Heart Foundation Centre of Excellence, Cardiovascular Division, London, United Kingdom
| | - Karl Toischer
- Department of Cardiology and Pneumology, University Medical Center Goettingen, Goettingen, Germany
| | - Gerd Hasenfuss
- Department of Cardiology and Pneumology, University Medical Center Goettingen, Goettingen, Germany
| | - Mark J Monaghan
- King's College London British Heart Foundation Centre of Excellence, Cardiovascular Division, London, United Kingdom
| | - Ajay M Shah
- King's College London British Heart Foundation Centre of Excellence, Cardiovascular Division, London, United Kingdom.
| |
Collapse
|
25
|
Soetkamp D, Raedschelders K, Mastali M, Sobhani K, Bairey Merz CN, Van Eyk J. The continuing evolution of cardiac troponin I biomarker analysis: from protein to proteoform. Expert Rev Proteomics 2017; 14:973-986. [PMID: 28984473 DOI: 10.1080/14789450.2017.1387054] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION The troponin complex consists of three proteins that fundamentally couple excitation with contraction. Circulating cardiac-specific Troponin I (cTnI) serves as diagnostic biomarker tools for risk stratification of acute coronary syndromes and acute myocardial infarction (MI). Within the heart, cTnI oscillates between inactive and active conformations to either block or disinhibit actinomyosin formation. This molecular mechanism is fine-tuned through extensive protein modifications whose profiles are maladaptively altered with co-morbidities including hypertrophic cardiomyopathy, diabetes, and heart failure. Technological advances in analytical platforms over the last decade enable routine baseline cTnI analysis in patients without cardiovascular complications, and hold potential to expand cTnI readouts that include modified cTnI proteoforms. Areas covered: This review covers the current state, advances, and prospects of analytical platforms that now enable routine baseline cTnI analysis in patients. In parallel, improved mass spectrometry instrumentation and workflows already reveal an array of modified cTnI proteoforms with promising diagnostic implications. Expert commentary: New analytical capabilities provide clinicians and researchers with an opportunity to address important questions surrounding circulating cTnI in the improved diagnosis of specific patient cohorts. These techniques also hold considerable promise for new predictive and prescriptive applications for individualized profiling and improve patient care.
Collapse
Affiliation(s)
- Daniel Soetkamp
- a Heart Institute , Cedars-Sinai Medical Center , Los Angeles , CA , USA
| | - Koen Raedschelders
- a Heart Institute , Cedars-Sinai Medical Center , Los Angeles , CA , USA
| | - Mitra Mastali
- a Heart Institute , Cedars-Sinai Medical Center , Los Angeles , CA , USA
| | - Kimia Sobhani
- b Pathology and Laboratory Medicine , Cedars-Sinai Medical Center , Los Angeles , CA , USA
| | - C Noel Bairey Merz
- c Women's Heart Center , Cedars-Sinai Medical Center , Los Angeles , CA , USA
| | - Jennifer Van Eyk
- a Heart Institute , Cedars-Sinai Medical Center , Los Angeles , CA , USA
| |
Collapse
|
26
|
Abstract
Cardiomyopathies represent a heterogeneous group of diseases that negatively affect heart function. Primary cardiomyopathies specifically target the myocardium, and may arise from genetic [hypertrophic cardiomyopathy (HCM), arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D), mitochondrial cardiomyopathy] or genetic and acquired [dilated cardiomyopathy (DCM), restrictive cardiomyopathy (RCM)] etiology. Modern genomics has identified mutations that are common in these populations, while in vitro and in vivo experimentation with these mutations have provided invaluable insight into the molecular mechanisms native to these diseases. For example, increased myosin heavy chain (MHC) binding and ATP utilization lead to the hypercontractile sarcomere in HCM, while abnormal protein–protein interaction and impaired Ca2+ flux underlie the relaxed sarcomere of DCM. Furthermore, expanded access to genetic testing has facilitated identification of potential risk factors that appear through inheritance and manifest sometimes only in the advanced stages of the disease. In this review, we discuss the genetic and molecular abnormalities unique to and shared between these primary cardiomyopathies and discuss some of the important advances made using more traditional basic science experimentation.
Collapse
|
27
|
Liu X, Zhang L, Pacciulli D, Zhao J, Nan C, Shen W, Quan J, Tian J, Huang X. Restrictive Cardiomyopathy Caused by Troponin Mutations: Application of Disease Animal Models in Translational Studies. Front Physiol 2016; 7:629. [PMID: 28066262 PMCID: PMC5165243 DOI: 10.3389/fphys.2016.00629] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 12/02/2016] [Indexed: 12/14/2022] Open
Abstract
Cardiac troponin I (cTnI) plays a critical role in regulation of cardiac function. Studies have shown that the deficiency of cTnI or mutations in cTnI (particularly in the C-terminus of cTnI) results in diastolic dysfunction (impaired relaxation) due to an increased myofibril sensitivity to calcium. The first clinical study revealing the association between restrictive cardiomyopathy (RCM) with cardiac troponin mutations was reported in 2003. In order to illustrate the mechanisms underlying the cTnI mutation caused cardiomyopathy, we have generated a cTnI gene knockout mouse model and transgenic mouse lines with the reported point mutations in cTnI C-terminus. In this paper, we summarize our studies using these animal models from our laboratory and the other in vitro studies using reconstituted filament and cultured cells. The potential mechanisms underlying diastolic dysfunction and heart failure caused by these cTnI C-terminal mutations are discussed as well. Furthermore, calcium desensitizing in correction of impaired relaxation in myocardial cells due to cTnI mutations is discussed. Finally, we describe a model of translational study, i.e., from bedside to bench and from bench to bedside. These studies may enrich our understanding of the mechanism underlying inherited cardiomyopathies and provide the clues to search for target-oriented medication aiming at the treatment of diastolic dysfunction and heart failure.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Cardiovascular Research Laboratory, Division of Cardiology, Chongqing Medical University Children's Hospital Chongqing, China
| | - Lei Zhang
- Cardiovascular Research Laboratory, Division of Cardiology, Chongqing Medical University Children's Hospital Chongqing, China
| | - Daniel Pacciulli
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University Boca Raton, FL, USA
| | - Jianquan Zhao
- Department of Cardiology, Bayannaoer City Hospital Bayannaoer, China
| | - Changlong Nan
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University Boca Raton, FL, USA
| | - Wen Shen
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University Boca Raton, FL, USA
| | - Junjun Quan
- Cardiovascular Research Laboratory, Division of Cardiology, Chongqing Medical University Children's Hospital Chongqing, China
| | - Jie Tian
- Cardiovascular Research Laboratory, Division of Cardiology, Chongqing Medical University Children's Hospital Chongqing, China
| | - Xupei Huang
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University Boca Raton, FL, USA
| |
Collapse
|
28
|
Salhi HE, Hassel NC, Siddiqui JK, Brundage EA, Ziolo MT, Janssen PML, Davis JP, Biesiadecki BJ. Myofilament Calcium Sensitivity: Mechanistic Insight into TnI Ser-23/24 and Ser-150 Phosphorylation Integration. Front Physiol 2016; 7:567. [PMID: 28018230 PMCID: PMC5156683 DOI: 10.3389/fphys.2016.00567] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/08/2016] [Indexed: 11/14/2022] Open
Abstract
Troponin I (TnI) is a major regulator of cardiac muscle contraction and relaxation. During physiological and pathological stress, TnI is differentially phosphorylated at multiple residues through different signaling pathways to match cardiac function to demand. The combination of these TnI phosphorylations can exhibit an expected or unexpected functional integration, whereby the function of two phosphorylations are different than that predicted from the combined function of each individual phosphorylation alone. We have shown that TnI Ser-23/24 and Ser-150 phosphorylation exhibit functional integration and are simultaneously increased in response to cardiac stress. In the current study, we investigated the functional integration of TnI Ser-23/24 and Ser-150 to alter cardiac contraction. We hypothesized that Ser-23/24 and Ser-150 phosphorylation each utilize distinct molecular mechanisms to alter the TnI binding affinity within the thin filament. Mathematical modeling predicts that Ser-23/24 and Ser-150 phosphorylation affect different TnI affinities within the thin filament to distinctly alter the Ca2+-binding properties of troponin. Protein binding experiments validate this assertion by demonstrating pseudo-phosphorylated Ser-150 decreases the affinity of isolated TnI for actin, whereas Ser-23/24 pseudo-phosphorylation is not different from unphosphorylated. Thus, our data supports that TnI Ser-23/24 affects TnI-TnC binding, while Ser-150 phosphorylation alters TnI-actin binding. By measuring force development in troponin-exchanged skinned myocytes, we demonstrate that the Ca2+ sensitivity of force is directly related to the amount of phosphate present on TnI. Furthermore, we demonstrate that Ser-150 pseudo-phosphorylation blunts Ser-23/24-mediated decreased Ca2+-sensitive force development whether on the same or different TnI molecule. Therefore, TnI phosphorylations can integrate across troponins along the myofilament. These data demonstrate that TnI Ser-23/24 and Ser-150 phosphorylation regulates muscle contraction in part by modulating different TnI interactions in the thin filament and it is the combination of these differential mechanisms that provides understanding of their functional integration.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Brandon J. Biesiadecki
- Department of Physiology and Cell Biology and Davis Heart and Lung Research Institute, Ohio State UniversityColumbus, OH, USA
| |
Collapse
|
29
|
Wang X, Zhang Z, Wu G, Nan C, Shen W, Hua Y, Huang X. Green tea extract catechin improves internal cardiac muscle relaxation in RCM mice. J Biomed Sci 2016; 23:51. [PMID: 27353642 PMCID: PMC4924244 DOI: 10.1186/s12929-016-0264-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/24/2016] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Diastolic dysfunction refers to an impaired relaxation and an abnormality in a heart's filling during diastole while left ventricular systolic function is preserved. Diastolic dysfunction is commonly observed in patients with primary hypertension, diabetes and cardiomyopathies such as hypertrophic cardiomyopathy or restrictive cardiomyopathy. We have generated a restrictive cardiomyopathy (RCM) mouse model with troponin mutations in the heart to mimic the human RCM patients carrying the same mutations. RESULTS In the present study, we have investigated the ventricular muscle internal dynamics and pressure developed during systole and diastole by inserting a micro-catheter into the left ventricle of the RCM mice with or without treatment of desensitizer green tea extracts catechins. Our results demonstrate that green tea catechin is able to correct diastolic dysfunction in RCM mainly by improving ventricular compliance and reducing the internal muscle rigidity caused by myofibril hypersensitivity to Ca(2+). CONCLUSION Green tea extract catechin is effective in correcting diastolic dysfunction and improving ventricular muscle intrinsic compliance in RCM caused by troponin mutations.
Collapse
Affiliation(s)
- Xiaoqin Wang
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Road, Boca Raton, FL, 33431, USA
| | - Zhengyu Zhang
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Road, Boca Raton, FL, 33431, USA
| | - Gang Wu
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Changlong Nan
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Road, Boca Raton, FL, 33431, USA
| | - Wen Shen
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Road, Boca Raton, FL, 33431, USA
| | - Yimin Hua
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Xupei Huang
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Road, Boca Raton, FL, 33431, USA.
| |
Collapse
|
30
|
Pan B, Xu ZW, Xu Y, Liu LJ, Zhu J, Wang X, Nan C, Zhang Z, Shen W, Huang XP, Tian J. Diastolic dysfunction and cardiac troponin I decrease in aging hearts. Arch Biochem Biophys 2016; 603:20-8. [PMID: 27184165 DOI: 10.1016/j.abb.2016.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 05/07/2016] [Accepted: 05/11/2016] [Indexed: 11/28/2022]
Abstract
Cardiac tropnoin I (cTnI) plays a critical role in the regulation of diastolic function, and its low expression may result in cardiac diastolic dysfunction, which is the most common form of cardiovascular disorders in older adults. In this study, cTnI expression levels were determined in mice at various ages and cardiac function was measured and compared between young adult mice (3 and 10 months) and older mice (18 months). The data indicated that the cTnI levels reached a peak high in young adult hearts (3 months), but decreased in older hearts (18 months). Furthermore, the older hearts showed a significant diastolic dysfunction observed by P-V loop and echocardiography measurements. To further define the mechanism underlying the cTnI decrease in aging hearts, we tested DNA methylation and histone acetylation modifications of cTnI gene. We found that acetylation of histone near the promoter region of cTnI gene played an important role in regulation of cTnI expression in the heart at different ages. Our study indicates that epigenetic modification caused cTnI expression decrease is one of the possible causes that result in a reduced cTnI level and diastolic dysfunction in the older hearts.
Collapse
Affiliation(s)
- B Pan
- Heart Centre, Children's Hospital of Chongqing Medical University, Chongqing, PR China; Key Laboratory of Developmental Disease in Childhood (Chongqing Medical University), Ministry of Education, Chongqing, PR China; Key Laboratory of Pediatrics in Chongqing, PR China; Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, PR China
| | - Z W Xu
- Heart Centre, Children's Hospital of Chongqing Medical University, Chongqing, PR China; Key Laboratory of Developmental Disease in Childhood (Chongqing Medical University), Ministry of Education, Chongqing, PR China; Key Laboratory of Pediatrics in Chongqing, PR China; Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, PR China
| | - Y Xu
- Heart Centre, Children's Hospital of Chongqing Medical University, Chongqing, PR China; Key Laboratory of Developmental Disease in Childhood (Chongqing Medical University), Ministry of Education, Chongqing, PR China; Key Laboratory of Pediatrics in Chongqing, PR China; Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, PR China
| | - L J Liu
- Key Laboratory of Developmental Disease in Childhood (Chongqing Medical University), Ministry of Education, Chongqing, PR China; Key Laboratory of Pediatrics in Chongqing, PR China; Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, PR China
| | - J Zhu
- Key Laboratory of Developmental Disease in Childhood (Chongqing Medical University), Ministry of Education, Chongqing, PR China; Key Laboratory of Pediatrics in Chongqing, PR China; Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, PR China
| | - X Wang
- Department of Biomedical Science, Charlie E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - C Nan
- Department of Biomedical Science, Charlie E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Z Zhang
- Department of Biomedical Science, Charlie E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - W Shen
- Department of Biomedical Science, Charlie E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - X P Huang
- Department of Biomedical Science, Charlie E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA.
| | - J Tian
- Heart Centre, Children's Hospital of Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
31
|
Warren CM, Karam CN, Wolska BM, Kobayashi T, de Tombe PP, Arteaga GM, Bos JM, Ackerman MJ, Solaro RJ. Green Tea Catechin Normalizes the Enhanced Ca2+ Sensitivity of Myofilaments Regulated by a Hypertrophic Cardiomyopathy-Associated Mutation in Human Cardiac Troponin I (K206I). ACTA ACUST UNITED AC 2015; 8:765-73. [PMID: 26553696 DOI: 10.1161/circgenetics.115.001234] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 11/06/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiovascular disease characterized by thickening of ventricular walls and decreased left ventricular chamber volume. The majority of HCM-associated mutations are found in genes encoding sarcomere proteins. Herein, we set out to functionally characterize a novel HCM-associated mutation (K206I-TNNI3) and elucidate the mechanism of dysfunction at the level of myofilament proteins. METHODS AND RESULTS The male index case was diagnosed with HCM after an out-of-hospital cardiac arrest, which was followed by comprehensive clinical evaluation, transthoracic echocardiography, and clinical genetic testing. To determine molecular mechanism(s) of the mutant human cardiac troponin I (K206I), we tested the Ca(2+) dependence of thin filament-activated myosin-S1-ATPase activity in a reconstituted, regulated, actomyosin system comparing wild-type human troponin complex, 50% mix of K206I/wildtype, or 100% K206I. We also exchanged native troponin detergent extracted fibers with reconstituted troponin containing either wildtype or a 65% mix of K206I/wildtype and measured force generation. The Ca(2+) sensitivity of the myofilaments containing the K206I variant was significantly increased, and when treated with 20 µmol/L (-)-epigallocatechin gallate (green tea) was restored back to wild-type levels in ATPase and force measurements. The K206I mutation impairs the ability of the troponin I to inhibit ATPase activity in the absence of calcium-bound human cardiac troponin C. The ability of calcium-bound human cardiac troponin C to neutralize the inhibition of K206I was greater than with wild-type TnI. CONCLUSIONS Compromised interactions of K206I with actin and hcTnC may lead to impaired relaxation and HCM.
Collapse
Affiliation(s)
- Chad M Warren
- From the Department of Physiology and Biophysics, Center for Cardiovascular Research (C.M.W., C.N.K., B.M.W., T.K., R.J.S.) and Division of Cardiology, Department of Medicine (B.M.W.), University of Illinois at Chicago; Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL (P.P.d.T.); and Division of Pediatric Critical Care and Physiology, Department of Pediatrics (G.M.A.), Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (J.M.B., M.J.A.), Division of Pediatric Cardiology, Department of Pediatrics (J.M.B., M.J.A.), and Division of Cardiovascular Diseases, Department of Medicine (M.J.A.), Mayo Clinic, Rochester, MN
| | - Chehade N Karam
- From the Department of Physiology and Biophysics, Center for Cardiovascular Research (C.M.W., C.N.K., B.M.W., T.K., R.J.S.) and Division of Cardiology, Department of Medicine (B.M.W.), University of Illinois at Chicago; Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL (P.P.d.T.); and Division of Pediatric Critical Care and Physiology, Department of Pediatrics (G.M.A.), Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (J.M.B., M.J.A.), Division of Pediatric Cardiology, Department of Pediatrics (J.M.B., M.J.A.), and Division of Cardiovascular Diseases, Department of Medicine (M.J.A.), Mayo Clinic, Rochester, MN
| | - Beata M Wolska
- From the Department of Physiology and Biophysics, Center for Cardiovascular Research (C.M.W., C.N.K., B.M.W., T.K., R.J.S.) and Division of Cardiology, Department of Medicine (B.M.W.), University of Illinois at Chicago; Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL (P.P.d.T.); and Division of Pediatric Critical Care and Physiology, Department of Pediatrics (G.M.A.), Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (J.M.B., M.J.A.), Division of Pediatric Cardiology, Department of Pediatrics (J.M.B., M.J.A.), and Division of Cardiovascular Diseases, Department of Medicine (M.J.A.), Mayo Clinic, Rochester, MN
| | - Tomoyoshi Kobayashi
- From the Department of Physiology and Biophysics, Center for Cardiovascular Research (C.M.W., C.N.K., B.M.W., T.K., R.J.S.) and Division of Cardiology, Department of Medicine (B.M.W.), University of Illinois at Chicago; Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL (P.P.d.T.); and Division of Pediatric Critical Care and Physiology, Department of Pediatrics (G.M.A.), Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (J.M.B., M.J.A.), Division of Pediatric Cardiology, Department of Pediatrics (J.M.B., M.J.A.), and Division of Cardiovascular Diseases, Department of Medicine (M.J.A.), Mayo Clinic, Rochester, MN
| | - Pieter P de Tombe
- From the Department of Physiology and Biophysics, Center for Cardiovascular Research (C.M.W., C.N.K., B.M.W., T.K., R.J.S.) and Division of Cardiology, Department of Medicine (B.M.W.), University of Illinois at Chicago; Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL (P.P.d.T.); and Division of Pediatric Critical Care and Physiology, Department of Pediatrics (G.M.A.), Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (J.M.B., M.J.A.), Division of Pediatric Cardiology, Department of Pediatrics (J.M.B., M.J.A.), and Division of Cardiovascular Diseases, Department of Medicine (M.J.A.), Mayo Clinic, Rochester, MN
| | - Grace M Arteaga
- From the Department of Physiology and Biophysics, Center for Cardiovascular Research (C.M.W., C.N.K., B.M.W., T.K., R.J.S.) and Division of Cardiology, Department of Medicine (B.M.W.), University of Illinois at Chicago; Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL (P.P.d.T.); and Division of Pediatric Critical Care and Physiology, Department of Pediatrics (G.M.A.), Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (J.M.B., M.J.A.), Division of Pediatric Cardiology, Department of Pediatrics (J.M.B., M.J.A.), and Division of Cardiovascular Diseases, Department of Medicine (M.J.A.), Mayo Clinic, Rochester, MN
| | - J Martijn Bos
- From the Department of Physiology and Biophysics, Center for Cardiovascular Research (C.M.W., C.N.K., B.M.W., T.K., R.J.S.) and Division of Cardiology, Department of Medicine (B.M.W.), University of Illinois at Chicago; Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL (P.P.d.T.); and Division of Pediatric Critical Care and Physiology, Department of Pediatrics (G.M.A.), Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (J.M.B., M.J.A.), Division of Pediatric Cardiology, Department of Pediatrics (J.M.B., M.J.A.), and Division of Cardiovascular Diseases, Department of Medicine (M.J.A.), Mayo Clinic, Rochester, MN
| | - Michael J Ackerman
- From the Department of Physiology and Biophysics, Center for Cardiovascular Research (C.M.W., C.N.K., B.M.W., T.K., R.J.S.) and Division of Cardiology, Department of Medicine (B.M.W.), University of Illinois at Chicago; Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL (P.P.d.T.); and Division of Pediatric Critical Care and Physiology, Department of Pediatrics (G.M.A.), Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (J.M.B., M.J.A.), Division of Pediatric Cardiology, Department of Pediatrics (J.M.B., M.J.A.), and Division of Cardiovascular Diseases, Department of Medicine (M.J.A.), Mayo Clinic, Rochester, MN
| | - R John Solaro
- From the Department of Physiology and Biophysics, Center for Cardiovascular Research (C.M.W., C.N.K., B.M.W., T.K., R.J.S.) and Division of Cardiology, Department of Medicine (B.M.W.), University of Illinois at Chicago; Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL (P.P.d.T.); and Division of Pediatric Critical Care and Physiology, Department of Pediatrics (G.M.A.), Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (J.M.B., M.J.A.), Division of Pediatric Cardiology, Department of Pediatrics (J.M.B., M.J.A.), and Division of Cardiovascular Diseases, Department of Medicine (M.J.A.), Mayo Clinic, Rochester, MN.
| |
Collapse
|
32
|
Wang X, Wang L, Jiang R, Yuan Y, Yu Q, Li Y. Exendin-4 antagonizes Aβ1-42-induced suppression of long-term potentiation by regulating intracellular calcium homeostasis in rat hippocampal neurons. Brain Res 2015; 1627:101-8. [DOI: 10.1016/j.brainres.2015.09.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 09/06/2015] [Accepted: 09/11/2015] [Indexed: 10/23/2022]
|
33
|
Sheng JJ, Jin JP. TNNI1, TNNI2 and TNNI3: Evolution, regulation, and protein structure-function relationships. Gene 2015; 576:385-94. [PMID: 26526134 DOI: 10.1016/j.gene.2015.10.052] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/21/2015] [Accepted: 10/20/2015] [Indexed: 12/11/2022]
Abstract
Troponin I (TnI) is the inhibitory subunit of the troponin complex in the sarcomeric thin filament of striated muscle and plays a central role in the calcium regulation of contraction and relaxation. Vertebrate TnI has evolved into three isoforms encoded by three homologous genes: TNNI1 for slow skeletal muscle TnI, TNNI2 for fast skeletal muscle TnI and TNNI3 for cardiac TnI, which are expressed under muscle type-specific and developmental regulations. To summarize the current knowledge on the TnI isoform genes and products, this review focuses on the evolution, gene regulation, posttranslational modifications, and structure-function relationship of TnI isoform proteins. Their physiological and medical significances are also discussed.
Collapse
Affiliation(s)
- Juan-Juan Sheng
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jian-Ping Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
34
|
Martins AS, Parvatiyar MS, Feng HZ, Bos JM, Gonzalez-Martinez D, Vukmirovic M, Turna RS, Sanchez-Gonzalez MA, Badger CD, Zorio DAR, Singh RK, Wang Y, Jin JP, Ackerman MJ, Pinto JR. In Vivo Analysis of Troponin C Knock-In (A8V) Mice: Evidence that TNNC1 Is a Hypertrophic Cardiomyopathy Susceptibility Gene. ACTA ACUST UNITED AC 2015; 8:653-664. [PMID: 26304555 DOI: 10.1161/circgenetics.114.000957] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 08/04/2015] [Indexed: 01/10/2023]
Abstract
BACKGROUND Mutations in thin-filament proteins have been linked to hypertrophic cardiomyopathy, but it has never been demonstrated that variants identified in the TNNC1 (gene encoding troponin C) can evoke cardiac remodeling in vivo. The goal of this study was to determine whether TNNC1 can be categorized as an hypertrophic cardiomyopathy susceptibility gene, such that a mouse model can recapitulate the clinical presentation of the proband. METHODS AND RESULTS The TNNC1-A8V proband diagnosed with severe obstructive hypertrophic cardiomyopathy at 34 years of age exhibited mild-to-moderate thickening in left and right ventricular walls, decreased left ventricular dimensions, left atrial enlargement, and hyperdynamic left ventricular systolic function. Genetically engineered knock-in (KI) mice containing the A8V mutation (heterozygote=KI-TnC-A8V(+/-); homozygote=KI-TnC-A8V(+/+)) were characterized by echocardiography and pressure-volume studies. Three-month-old KI-TnC-A8V(+/+) mice displayed decreased ventricular dimensions, mild diastolic dysfunction, and enhanced systolic function, whereas KI-TnC-A8V(+/-) mice displayed cardiac restriction at 14 months of age. KI hearts exhibited atrial enlargement, papillary muscle hypertrophy, and fibrosis. Liquid chromatography-mass spectroscopy was used to determine incorporation of mutant cardiac troponin C (≈ 21%) into the KI-TnC-A8V(+/-) cardiac myofilament. Reduced diastolic sarcomeric length, increased shortening, and prolonged Ca(2+) and contractile transients were recorded in intact KI-TnC-A8V(+/-) and KI-TnC-A8V(+/+) cardiomyocytes. Ca(2+) sensitivity of contraction in skinned fibers increased with mutant gene dose: KI-TnC-A8V(+/+)>KI-TnC-A8V(+/-)>wild-type, whereas KI-TnC-A8V(+/+) relaxed more slowly on flash photolysis of diazo-2. CONCLUSIONS The TNNC1-A8V mutant increases the Ca(2+)-binding affinity of the thin filament and elicits changes in Ca(2+) homeostasis and cellular remodeling, which leads to diastolic dysfunction. These in vivo alterations further implicate the role of TNNC1 mutations in the development of cardiomyopathy.
Collapse
Affiliation(s)
- Adriano S Martins
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee
| | - Michelle S Parvatiyar
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL
| | - Han-Zhong Feng
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI
| | - J Martijn Bos
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN
| | - David Gonzalez-Martinez
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee
| | - Milica Vukmirovic
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee
| | - Rajdeep S Turna
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee
| | - Marcos A Sanchez-Gonzalez
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee.,Department of Biomedical Sciences, Larkin Health Sciences Institute, South Miami, FL
| | - Crystal-Dawn Badger
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee
| | - Diego A R Zorio
- Department of Chemistry & Biochemistry, College of Medicine, Florida State University, Tallahassee
| | - Rakesh K Singh
- Translational Science Laboratory, College of Medicine, Florida State University, Tallahassee
| | - Yingcai Wang
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL
| | - J-P Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI
| | - Michael J Ackerman
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN.,Department of Medicine/Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN.,Department of Pediatrics/Division of Pediatric Cardiology, Mayo Clinic, Rochester, MN
| | - Jose R Pinto
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee
| |
Collapse
|
35
|
Zhang L, Nan C, Chen Y, Tian J, Jean-Charles PY, Getfield C, Wang X, Huang X. Calcium desensitizer catechin reverses diastolic dysfunction in mice with restrictive cardiomyopathy. Arch Biochem Biophys 2015; 573:69-76. [PMID: 25813360 DOI: 10.1016/j.abb.2015.03.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/16/2015] [Accepted: 03/18/2015] [Indexed: 11/26/2022]
Abstract
Diastolic dysfunction refers to an impaired relaxation and an abnormality in ventricular blood filling during diastole while systolic function is preserved. Cardiac myofibril hypersensitivity to Ca(2+) is a major factor that causes impaired relaxation of myocardial cells. The present study investigates the effect of the green tea extract catechins on myofibril calcium desensitization and restoration of diastolic function in a restrictive cardiomyopathy (RCM) mouse model with cardiac troponin mutations. Wild type (WT) and RCM mice were treated daily with catechin (epigallocatechin-3-gallate, EGCg, 50 mg/kg body weight) for 3 months. Echocardiography and cell based assays were performed to measure cardiac structure and flow-related variables including chamber dimensions, fraction shortening, trans-mitral flow patterns in the experimental mice. In addition, myocyte contractility and calcium dynamics were measured in WT and RCM cardiomyocytes treated in vitro with 5 μM EGCg. Our data indicated that RCM mice treated with EGCg showed an improved diastolic function while systolic function remained unchanged. At the cellular level, sarcomere relaxation and calcium decay were accelerated in RCM myocardial cells treated with EGCg. These results suggest that catechin is effective in reversing the impaired relaxation in RCM myocardial cells and rescuing the RCM mice with diastolic dysfunction.
Collapse
Affiliation(s)
- Lei Zhang
- Division of Cardiology, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Changlong Nan
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Boca Raton, FL 33431, USA; Center for Molecular Biology and Biotechnology, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Yuan Chen
- Division of Cardiology, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Jie Tian
- Division of Cardiology, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Pierre-Yves Jean-Charles
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Boca Raton, FL 33431, USA
| | - Cecile Getfield
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Boca Raton, FL 33431, USA
| | - Xiaoqing Wang
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Boca Raton, FL 33431, USA
| | - Xupei Huang
- Division of Cardiology, Children's Hospital, Chongqing Medical University, Chongqing, China; Department of Biomedical Science, Charles E. Schmidt College of Medicine, Boca Raton, FL 33431, USA; Center for Molecular Biology and Biotechnology, Florida Atlantic University, Boca Raton, FL 33431, USA.
| |
Collapse
|
36
|
Wijnker PJM, Li Y, Zhang P, Foster DB, dos Remedios C, Van Eyk JE, Stienen GJM, Murphy AM, van der Velden J. A novel phosphorylation site, Serine 199, in the C-terminus of cardiac troponin I regulates calcium sensitivity and susceptibility to calpain-induced proteolysis. J Mol Cell Cardiol 2015; 82:93-103. [PMID: 25771144 DOI: 10.1016/j.yjmcc.2015.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 03/04/2015] [Accepted: 03/05/2015] [Indexed: 12/28/2022]
Abstract
Phosphorylation of cardiac troponin I (cTnI) by protein kinase C (PKC) is implicated in cardiac dysfunction. Recently, Serine 199 (Ser199) was identified as a target for PKC phosphorylation and increased Ser199 phosphorylation occurs in end-stage failing compared with non-failing human myocardium. The functional consequences of cTnI-Ser199 phosphorylation in the heart are unknown. Therefore, we investigated the impact of phosphorylation of cTnI-Ser199 on myofilament function in human cardiac tissue and the susceptibility of cTnI to proteolysis. cTnI-Ser199 was replaced by aspartic acid (199D) or alanine (199A) to mimic phosphorylation and dephosphorylation, respectively, with recombinant wild-type (Wt) cTn as a negative control. Force development was measured at various [Ca(2+)] and at sarcomere lengths of 1.8 and 2.2 μm in demembranated cardiomyocytes in which endogenous cTn complex was exchanged with the recombinant human cTn complexes. In idiopathic dilated cardiomyopathy samples, myofilament Ca(2+)-sensitivity (pCa50) at 2.2 μm was significantly higher in 199D (pCa50 = 5.79 ± 0.01) compared to 199A (pCa50 = 5.65 ± 0.01) and Wt (pCa50 = 5.66 ± 0.02) at ~63% cTn exchange. Myofilament Ca(2+)-sensitivity was significantly higher even with only 5.9 ± 2.5% 199D exchange compared to 199A, and saturated at 12.3 ± 2.6% 199D exchange. Ser199 pseudo-phosphorylation decreased cTnI binding to both actin and actin-tropomyosin. Moreover, altered susceptibility of cTnI to proteolysis by calpain I was found when Ser199 was pseudo-phosphorylated. Our data demonstrate that low levels of cTnI-Ser199 pseudo-phosphorylation (~6%) increase myofilament Ca(2+)-sensitivity in human cardiomyocytes, most likely by decreasing the binding affinity of cTnI for actin-tropomyosin. In addition, cTnI-Ser199 pseudo-phosphorylation or mutation regulates calpain I mediated proteolysis of cTnI.
Collapse
Affiliation(s)
- Paul J M Wijnker
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands; Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands.
| | - Yuejin Li
- Department of Pediatrics, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Pingbo Zhang
- Department of Pediatrics, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - D Brian Foster
- Department of Pediatrics, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Cris dos Remedios
- Muscle Research Unit, Bosch Institute, The University of Sydney, Sydney, Australia
| | - Jennifer E Van Eyk
- The Advanced Clinical Biosystems Research Institute, The Heart Institute, Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Ger J M Stienen
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands; Department of Physics and Astronomy, VU University, Amsterdam, The Netherlands
| | - Anne M Murphy
- Department of Pediatrics, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Jolanda van der Velden
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands; ICIN-Netherlands Heart Institute, Utrecht, The Netherlands
| |
Collapse
|
37
|
Wei H, Jin JP. NH2-terminal truncations of cardiac troponin I and cardiac troponin T produce distinct effects on contractility and calcium homeostasis in adult cardiomyocytes. Am J Physiol Cell Physiol 2015; 308:C397-404. [PMID: 25518962 PMCID: PMC4346733 DOI: 10.1152/ajpcell.00358.2014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/10/2014] [Indexed: 12/12/2022]
Abstract
Cardiac troponin I (TnI) has an NH2-terminal extension that is an adult heart-specific regulatory structure. Restrictive proteolytic truncation of the NH2-terminal extension of cardiac TnI occurs in normal hearts and is upregulated in cardiac adaptation to hemodynamic stress or β-adrenergic deficiency. NH2-terminal truncated cardiac TnI (cTnI-ND) alters the conformation of the core structure of cardiac TnI similarly to that produced by PKA phosphorylation of Ser(23/24) in the NH2-terminal extension. At organ level, cTnI-ND enhances ventricular diastolic function. The NH2-terminal region of cardiac troponin T (TnT) is another regulatory structure that can be selectively cleaved via restrictive proteolysis. Structural variations in the NH2-terminal region of TnT also alter the molecular conformation and function. Transgenic mouse hearts expressing NH2-terminal truncated cardiac TnT (cTnT-ND) showed slower contractile velocity to prolong ventricular rapid-ejection time, resulting in higher stroke volume. Our present study compared the effects of cTnI-ND and cTnT-ND in cardiomyocytes isolated from transgenic mice on cellular morphology, contractility, and calcium kinetics. Resting cTnI-ND, but not cTnT-ND, cardiomyocytes had shorter length than wild-type cells with no change in sarcomere length. cTnI-ND, but not cTnT-ND, cardiomyocytes produced higher contractile amplitude and faster shortening and relengthening velocities in the absence of external load than wild-type controls. Although the baseline and peak levels of cytosolic Ca(2+) were not changed, Ca(2+) resequestration was faster in both cTnI-ND and cTnT-ND cardiomyocytes than in wild-type control. The distinct effects of cTnI-ND and cTnT-ND demonstrate their roles in selectively modulating diastolic or systolic functions of the heart.
Collapse
Affiliation(s)
- Hongguang Wei
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - J-P Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
38
|
Nonaka M, Morimoto S. Experimental models of inherited cardiomyopathy and its therapeutics. World J Cardiol 2014; 6:1245-1251. [PMID: 25548614 PMCID: PMC4278159 DOI: 10.4330/wjc.v6.i12.1245] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/08/2014] [Accepted: 10/16/2014] [Indexed: 02/06/2023] Open
Abstract
Cardiomyopathy is a disease of myocardium categorized into three major forms, hypertrophic (HCM), dilated (DCM) and restrictive cardiomyopathy (RCM), which has recently been demonstrated to be a monogenic disease due to mutations in various proteins expressed in cardiomyocytes. Mutations in HCM and RCM typically increase the myofilament sensitivity to cytoplasmic Ca2+, leading to systolic hyperfunction and diastolic dysfunction. In contrast, mutations in DCM typically decrease the myofilament sensitivity to cytoplasmic Ca2+ and/or force generation/transmission, leading to systolic dysfunction. Creation of genetically-manipulated transgenic and knock-in animals expressing mutant proteins exogenously and endogenously, respectively, in their hearts provides valuable animal models to discover the molecular and cellular mechanisms for pathogenesis and promising therapeutic strategy in vivo. Recently, cardiomyocytes have been differentiated from patient’s induced pluripotent stem cells as a model of inherited cardiomyopathies in vitro. In this review, we provide overview of experimental models of cardiomyopathies with a focus on revealed molecular and cellular pathogenic mechanisms and potential therapeutics.
Collapse
|
39
|
Dweck D, Sanchez-Gonzalez MA, Chang AN, Dulce RA, Badger CD, Koutnik AP, Ruiz EL, Griffin B, Liang J, Kabbaj M, Fincham FD, Hare JM, Overton JM, Pinto JR. Long term ablation of protein kinase A (PKA)-mediated cardiac troponin I phosphorylation leads to excitation-contraction uncoupling and diastolic dysfunction in a knock-in mouse model of hypertrophic cardiomyopathy. J Biol Chem 2014; 289:23097-23111. [PMID: 24973218 DOI: 10.1074/jbc.m114.561472] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cardiac troponin I (cTnI) R21C (cTnI-R21C) mutation has been linked to hypertrophic cardiomyopathy and renders cTnI incapable of phosphorylation by PKA in vivo. Echocardiographic imaging of homozygous knock-in mice expressing the cTnI-R21C mutation shows that they develop hypertrophy after 12 months of age and have abnormal diastolic function that is characterized by longer filling times and impaired relaxation. Electrocardiographic analyses show that older R21C mice have elevated heart rates and reduced cardiovagal tone. Cardiac myocytes isolated from older R21C mice demonstrate that in the presence of isoproterenol, significant delays in Ca(2+) decay and sarcomere relaxation occur that are not present at 6 months of age. Although isoproterenol and stepwise increases in stimulation frequency accelerate Ca(2+)-transient and sarcomere shortening kinetics in R21C myocytes from older mice, they are unable to attain the corresponding WT values. When R21C myocytes from older mice are treated with isoproterenol, evidence of excitation-contraction uncoupling is indicated by an elevation in diastolic calcium that is frequency-dissociated and not coupled to shorter diastolic sarcomere lengths. Myocytes from older mice have smaller Ca(2+) transient amplitudes (2.3-fold) that are associated with reductions (2.9-fold) in sarcoplasmic reticulum Ca(2+) content. This abnormal Ca(2+) handling within the cell may be attributed to a reduction (2.4-fold) in calsequestrin expression in conjunction with an up-regulation (1.5-fold) of Na(+)-Ca(2+) exchanger. Incubation of permeabilized cardiac fibers from R21C mice with PKA confirmed that the mutation prevents facilitation of mechanical relaxation. Altogether, these results indicate that the inability to enhance myofilament relaxation through cTnI phosphorylation predisposes the heart to abnormal diastolic function, reduced accessibility of cardiac reserves, dysautonomia, and hypertrophy.
Collapse
Affiliation(s)
- David Dweck
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306-4300
| | - Marcos A Sanchez-Gonzalez
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306-4300,; Family Institute, Florida State University, Tallahassee, Florida 32306
| | - Audrey N Chang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040
| | - Raul A Dulce
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida 33136, and
| | - Crystal-Dawn Badger
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306-4300
| | - Andrew P Koutnik
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306-4300
| | - Edda L Ruiz
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306-4300
| | - Brittany Griffin
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306-4300
| | - Jingsheng Liang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Mohamed Kabbaj
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306-4300
| | - Frank D Fincham
- Family Institute, Florida State University, Tallahassee, Florida 32306
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida 33136, and
| | - J Michael Overton
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306-4300
| | - Jose R Pinto
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306-4300,.
| |
Collapse
|
40
|
Brunet NM, Chase PB, Mihajlović G, Schoffstall B. Ca(2+)-regulatory function of the inhibitory peptide region of cardiac troponin I is aided by the C-terminus of cardiac troponin T: Effects of familial hypertrophic cardiomyopathy mutations cTnI R145G and cTnT R278C, alone and in combination, on filament sliding. Arch Biochem Biophys 2014; 552-553:11-20. [PMID: 24418317 PMCID: PMC4043889 DOI: 10.1016/j.abb.2013.12.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 12/10/2013] [Accepted: 12/28/2013] [Indexed: 01/10/2023]
Abstract
Investigations of cardiomyopathy mutations in Ca(2+) regulatory proteins troponin and tropomyosin provide crucial information about cardiac disease mechanisms, and also provide insights into functional domains in the affected polypeptides. Hypertrophic cardiomyopathy-associated mutations TnI R145G, located within the inhibitory peptide (Ip) of human cardiac troponin I (hcTnI), and TnT R278C, located immediately C-terminal to the IT arm in human cardiac troponin T (hcTnT), share some remarkable features: structurally, biochemically, and pathologically. Using bioinformatics, we find compelling evidence that TnI and TnT, and more specifically the affected regions of hcTnI and hcTnT, may be related not just structurally but also evolutionarily. To test for functional interactions of these mutations on Ca(2+)-regulation, we generated and characterized Tn complexes containing either mutation alone, or both mutations simultaneously. The most important results from in vitro motility assays (varying [Ca(2+)], temperature or HMM density) show that the TnT mutant "rescued" some deleterious effects of the TnI mutant at high Ca(2+), but exacerbated the loss of function, i.e., switching off the actomyosin interaction, at low Ca(2+). Taken together, our experimental results suggest that the C-terminus of cTnT aids Ca(2+)-regulatory function of cTnI Ip within the troponin complex.
Collapse
Affiliation(s)
- Nicolas M Brunet
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - P Bryant Chase
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA; Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| | - Goran Mihajlović
- Department of Physics, Florida State University, Tallahassee, FL 32306, USA
| | - Brenda Schoffstall
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
41
|
Sheng JJ, Jin JP. Gene regulation, alternative splicing, and posttranslational modification of troponin subunits in cardiac development and adaptation: a focused review. Front Physiol 2014; 5:165. [PMID: 24817852 PMCID: PMC4012202 DOI: 10.3389/fphys.2014.00165] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/10/2014] [Indexed: 12/19/2022] Open
Abstract
Troponin plays a central role in regulating the contraction and relaxation of vertebrate striated muscles. This review focuses on the isoform gene regulation, alternative RNA splicing, and posttranslational modifications of troponin subunits in cardiac development and adaptation. Transcriptional and posttranscriptional regulations such as phosphorylation and proteolysis modifications, and structure-function relationships of troponin subunit proteins are summarized. The physiological and pathophysiological significances are discussed for impacts on cardiac muscle contractility, heart function, and adaptations in health and diseases.
Collapse
Affiliation(s)
- Juan-Juan Sheng
- Department of Physiology, Wayne State University School of Medicine Detroit, MI, USA
| | - Jian-Ping Jin
- Department of Physiology, Wayne State University School of Medicine Detroit, MI, USA
| |
Collapse
|
42
|
Paul DS, Grevengoed TJ, Pascual F, Ellis JM, Willis MS, Coleman RA. Deficiency of cardiac Acyl-CoA synthetase-1 induces diastolic dysfunction, but pathologic hypertrophy is reversed by rapamycin. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:880-7. [PMID: 24631848 DOI: 10.1016/j.bbalip.2014.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 02/17/2014] [Accepted: 03/03/2014] [Indexed: 12/14/2022]
Abstract
In mice with temporally-induced cardiac-specific deficiency of acyl-CoA synthetase-1 (Acsl1(H-/-)), the heart is unable to oxidize long-chain fatty acids and relies primarily on glucose for energy. These metabolic changes result in the development of both a spontaneous cardiac hypertrophy and increased phosphorylated S6 kinase (S6K), a substrate of the mechanistic target of rapamycin, mTOR. Doppler echocardiography revealed evidence of significant diastolic dysfunction, indicated by a reduced E/A ratio and increased mean performance index, although the deceleration time and the expression of sarco/endoplasmic reticulum calcium ATPase and phospholamban showed no difference between genotypes. To determine the role of mTOR in the development of cardiac hypertrophy, we treated Acsl1(H-/-) mice with rapamycin. Six to eight week old Acsl1(H-/-) mice and their littermate controls were given i.p. tamoxifen to eliminate cardiac Acsl1, then concomitantly treated for 10weeks with i.p. rapamycin or vehicle alone. Rapamycin completely blocked the enhanced ventricular S6K phosphorylation and cardiac hypertrophy and attenuated the expression of hypertrophy-associated fetal genes, including α-skeletal actin and B-type natriuretic peptide. mTOR activation of the related Acsl3 gene, usually associated with pathologic hypertrophy, was also attenuated in the Acsl1(H-/-) hearts, indicating that alternative pathways of fatty acid activation did not compensate for the loss of Acsl1. Compared to controls, Acsl1(H-/-) hearts exhibited an 8-fold higher uptake of 2-deoxy[1-(14)C]glucose and a 35% lower uptake of the fatty acid analog 2-bromo[1-(14)C]palmitate. These data indicate that Acsl1-deficiency causes diastolic dysfunction and that mTOR activation is linked to the development of cardiac hypertrophy in Acsl1(H-/-) mice.
Collapse
Affiliation(s)
- David S Paul
- McAllister Heart Institute, University of NC at Chapel Hill, 27599, USA.
| | | | - Florencia Pascual
- Department of Nutrition, University of NC at Chapel Hill, 27599, USA.
| | - Jessica M Ellis
- Department of Nutrition, University of NC at Chapel Hill, 27599, USA.
| | - Monte S Willis
- McAllister Heart Institute, University of NC at Chapel Hill, 27599, USA; Department of Pathology and Laboratory Medicine, University of NC at Chapel Hill, 27599, USA.
| | - Rosalind A Coleman
- Department of Nutrition, University of NC at Chapel Hill, 27599, USA; McAllister Heart Institute, University of NC at Chapel Hill, 27599, USA.
| |
Collapse
|
43
|
Alves ML, Dias FAL, Gaffin RD, Simon JN, Montminy EM, Biesiadecki BJ, Hinken AC, Warren CM, Utter MS, Davis RT, Sakthivel S, Robbins J, Wieczorek DF, Solaro RJ, Wolska BM. Desensitization of myofilaments to Ca2+ as a therapeutic target for hypertrophic cardiomyopathy with mutations in thin filament proteins. ACTA ACUST UNITED AC 2014; 7:132-143. [PMID: 24585742 DOI: 10.1161/circgenetics.113.000324] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is a common genetic disorder caused mainly by mutations in sarcomeric proteins and is characterized by maladaptive myocardial hypertrophy, diastolic heart failure, increased myofilament Ca(2+) sensitivity, and high susceptibility to sudden death. We tested the following hypothesis: correction of the increased myofilament sensitivity can delay or prevent the development of the HCM phenotype. METHODS AND RESULTS We used an HCM mouse model with an E180G mutation in α-tropomyosin (Tm180) that demonstrates increased myofilament Ca(2+) sensitivity, severe hypertrophy, and diastolic dysfunction. To test our hypothesis, we reduced myofilament Ca(2+) sensitivity in Tm180 mice by generating a double transgenic mouse line. We crossed Tm180 mice with mice expressing a pseudophosphorylated cardiac troponin I (S23D and S24D; TnI-PP). TnI-PP mice demonstrated a reduced myofilament Ca(2+) sensitivity compared with wild-type mice. The development of pathological hypertrophy did not occur in mice expressing both Tm180 and TnI-PP. Left ventricle performance was improved in double transgenic compared with their Tm180 littermates, which express wild-type cardiac troponin I. Hearts of double transgenic mice demonstrated no changes in expression of phospholamban and sarcoplasmic reticulum Ca(2+) ATPase, increased levels of phospholamban and troponin T phosphorylation, and reduced phosphorylation of TnI compared with Tm180 mice. Moreover, expression of TnI-PP in Tm180 hearts inhibited modifications in the activity of extracellular signal-regulated kinase and zinc finger-containing transcription factor GATA in Tm180 hearts. CONCLUSIONS Our data strongly indicate that reduction of myofilament sensitivity to Ca(2+) and associated correction of abnormal relaxation can delay or prevent development of HCM and should be considered as a therapeutic target for HCM.
Collapse
Affiliation(s)
- Marco L Alves
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois, Chicago, IL.,Department of Physiology and Department of Cell Biology, Federal University of Parana, Curitiba, Brazil
| | - Fernando A L Dias
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois, Chicago, IL.,Department of Physiology and Department of Cell Biology, Federal University of Parana, Curitiba, Brazil
| | - Robert D Gaffin
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois, Chicago, IL
| | - Jillian N Simon
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois, Chicago, IL
| | - Eric M Montminy
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois, Chicago, IL
| | - Brandon J Biesiadecki
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois, Chicago, IL.,Department of Physiology and Cell Biology, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH
| | - Aaron C Hinken
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois, Chicago, IL
| | - Chad M Warren
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois, Chicago, IL
| | - Megan S Utter
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois, Chicago, IL
| | - Robert T Davis
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois, Chicago, IL
| | - Sadayappan Sakthivel
- Division of Molecular Cardiovascular Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati
| | - Jeffrey Robbins
- Division of Molecular Cardiovascular Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati
| | - David F Wieczorek
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, College of Medicine
| | - R John Solaro
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois, Chicago, IL
| | - Beata M Wolska
- Department of Medicine, Section of Cardiology, University of Illinois, Chicago, IL.,Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois, Chicago, IL
| |
Collapse
|
44
|
Poggesi C, Ho CY. Muscle dysfunction in hypertrophic cardiomyopathy: what is needed to move to translation? J Muscle Res Cell Motil 2014; 35:37-45. [PMID: 24493262 DOI: 10.1007/s10974-014-9374-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 01/02/2014] [Indexed: 02/04/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is caused by mutations in sarcomere genes. As such, HCM provides remarkable opportunities to study how changes to the heart's molecular motor apparatus may influence cardiac structure and function. Although the genetic basis of HCM is well-described, there is much more limited understanding of the precise consequences of sarcomere mutations--how they remodel the heart, and how these changes lead to the dramatic clinical consequences associated with HCM. More precise characterization of the mechanisms leading from sarcomere mutation to altered cardiac muscle function is critical to gain insight into fundamental disease biology and phenotypic evolution. Such knowledge will help foster development of novel treatment strategies aimed at correcting and preventing disease development in HCM.
Collapse
Affiliation(s)
- Corrado Poggesi
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 63, 50134, Florence, Italy,
| | | |
Collapse
|
45
|
Xu Y, Tian J, Huang X. Troponin Mutation Caused Diastolic Dysfunction and Experimental Treatment in Transgenic Mice with Cardiomyopathy. GSTF JOURNAL OF ADVANCES IN MEDICAL RESEARCH 2014; 1:17. [PMID: 28239629 PMCID: PMC5302009 DOI: 10.7603/s40782-014-0017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 02/23/2015] [Indexed: 11/23/2022]
Abstract
Troponin, a contractile protein of the thin filament of striated muscle, consists of three subunits: troponin C (TnC), troponin T (TnT), and troponin I (TnI). Cardiac troponin I (cTnI) plays a critical role in regulation of cardiac function. The physiological effect of cTnI, as an inhibitory subunit of troponin complex, is to prevent the interaction between myosin heavy chain heads and actins, i.e. the cross-bridge formation, and to ensure a proper relaxation of cardiac myofilaments. In pathological conditions, the deficiency of cTnI or mutations in cTnI especially in the C-terminus of cTnI is associated with diastolic dysfunction caused by myofibril hypersensitivity to Ca2+. Our laboratory has generated cTnI knockout mouse model to investigate the cellular and molecular function of cTnI and created cTnI mutant disease mouse models to explore the pathophysiology caused by cTnI mutations in the heart. Here, we present our recent studies on physiological function of cTnI in the heart and the pathological consequences caused by the cTnI mutations in the diseased heart using the transgenic mouse models. The mechanisms underlying diastolic dysfunction and heart failure caused by cTnI mutations are explored in cell-based assays and in transgenic animal models. These studies provide us with useful information in searching for therapeutic strategies and target-oriented medication for the treatment of diastolic dysfunction and heart failure.
Collapse
Affiliation(s)
- Yang Xu
- pediatrics research institute in Children's hospital, Chongqing Medical University, Chongqing, China
| | - Jie Tian
- Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Xupei Huang
- Children's Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
46
|
Schulz EM, Wilder T, Chowdhury SAK, Sheikh HN, Wolska BM, Solaro RJ, Wieczorek DF. Decreasing tropomyosin phosphorylation rescues tropomyosin-induced familial hypertrophic cardiomyopathy. J Biol Chem 2013; 288:28925-35. [PMID: 23960072 DOI: 10.1074/jbc.m113.466466] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Studies indicate that tropomyosin (Tm) phosphorylation status varies in different mouse models of cardiac disease. Investigation of basal and acute cardiac function utilizing a mouse model expressing an α-Tm protein that cannot be phosphorylated (S283A) shows a compensated hypertrophic phenotype with significant increases in SERCA2a expression and phosphorylation of phospholamban Ser-16 (Schulz, E. M., Correll, R. N., Sheikh, H. N., Lofrano-Alves, M. S., Engel, P. L., Newman, G., Schultz Jel, J., Molkentin, J. D., Wolska, B. M., Solaro, R. J., and Wieczorek, D. F. (2012) J. Biol. Chem. 287, 44478-44489). With these results, we hypothesized that decreasing α-Tm phosphorylation may be beneficial in the context of a chronic, intrinsic stressor. To test this hypothesis, we utilized the familial hypertrophic cardiomyopathy (FHC) α-Tm E180G model (Prabhakar, R., Boivin, G. P., Grupp, I. L., Hoit, B., Arteaga, G., Solaro, R. J., and Wieczorek, D. F. (2001) J. Mol. Cell. Cardiol. 33, 1815-1828). These FHC hearts are characterized by increased heart:body weight ratios, fibrosis, increased myofilament Ca(2+) sensitivity, and contractile defects. The FHC mice die by 6-8 months of age. We generated mice expressing both the E180G and S283A mutations and found that the hypertrophic phenotype was rescued in the α-Tm E180G/S283A double mutant transgenic animals; these mice exhibited no signs of cardiac hypertrophy and displayed improved cardiac function. These double mutant transgenic hearts showed increased phosphorylation of phospholamban Ser-16 and Thr-17 compared with the α-Tm E180G mice. This is the first study to demonstrate that decreasing phosphorylation of tropomyosin can rescue a hypertrophic cardiomyopathic phenotype.
Collapse
Affiliation(s)
- Emily M Schulz
- From the Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | | | | | | | | | | | | |
Collapse
|
47
|
Li Y, Zhang L, Jean-Charles PY, Nan C, Chen G, Tian J, Jin JP, Gelb IJ, Huang X. Dose-dependent diastolic dysfunction and early death in a mouse model with cardiac troponin mutations. J Mol Cell Cardiol 2013; 62:227-36. [PMID: 23810866 DOI: 10.1016/j.yjmcc.2013.06.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 05/24/2013] [Accepted: 06/13/2013] [Indexed: 11/28/2022]
Abstract
Our aim was to explore the dose-dependent diastolic dysfunction and the mechanisms of heart failure and early death in transgenic (TG) mice modeling human restrictive cardiomyopathy (RCM). The first RCM mouse model (cTnI(193His) mice) carrying cardiac troponin I (cTnI) R193H mutation (mouse cTnI R193H equals to human cTnI R192H) was generated several years ago in our laboratory. The RCM mice manifested a phenotype similar to that observed in RCM patients carrying the same cTnI mutation, i.e. enlarged atria and restricted ventricles. However, the causes of heart failure and early death observed in RCM mice remain unclear. In this study, we have produced RCM TG mice (cTnI(193His)-L, cTnI(193His)-M and cTnI(193His)-H) that express various levels of mutant cTnI in the heart. Histological examination and echocardiography were performed on these mice to monitor the time course of the disease development and heart failure. Our data demonstrate that cTnI mutation-caused diastolic dysfunction is dose-dependent. The key mechanism is myofibril hypersensitivity to Ca(2+) resulting in an impaired relaxation in the mutant cardiac myocytes. Prolonged relaxation time and delay of Ca(2+) decay observed in the mutant cardiac myocytes are correlated with the level of the mutant protein in the heart. Markedly enlarged atria due to the elevated end-diastolic pressure and myocardial ischemia are observed in the heart of the transgenic mice. In the mice with the highest level of the mutant protein, restricted ventricles and systolic dysfunction occur followed immediately by heart failure and early death. Diastolic dysfunction caused by R193H troponin I mutation is specific, showing a dose-dependent pattern. These mouse models are useful tools for the study of diastolic dysfunction. Impaired diastole can cause myocardial ischemia and fibrosis formation, resulting in the development of systolic dysfunction and heart failure with early death in the RCM mice with a high level of the mutant protein in the heart.
Collapse
Affiliation(s)
- Yuejin Li
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Chen G, Nan C, Tian J, Jean-Charles P, Li Y, Weissbach H, Huang XP. Protective effects of taurine against oxidative stress in the heart of MsrA knockout mice. J Cell Biochem 2013; 113:3559-66. [PMID: 22740506 DOI: 10.1002/jcb.24233] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Taurine has been shown to have potent anti-oxidant properties under various pathophysiological conditions. We reported previously a cellular dysfunction and mitochondrial damage in cardiac myocytes of methionine sulfoxide reductase A (MsrA) gene knockout mice (MsrA(-/-)). In the present study, we have explored the protective effects of taurine against oxidative stress in the heart of MsrA(-/-) mice with or without taurine treatment. Cardiac cell contractility and Ca(2+) dynamics were measured using cell-based assays and in vivo cardiac function was monitored using high-resolution echocardiography in the tested animals. Our data have shown that MsrA(-/-) mice exhibited a progressive cardiac dysfunction with a significant decrease of ejection fraction (EF) and fraction shortening (FS) at age of 8 months compared to the wild type controls at the same age. However, the dysfunction was corrected in MsrA(-/-) mice treated with taurine supplement in the diet for 5 months. We further investigated the cellular mechanism underlying the protective effect of taurine in the heart. Our data indicated that cardiac myocytes from MsrA(-/-) mice treated with taurine exhibited an improved cell contraction and could tolerate oxidative stress better. Furthermore, taurine treatment reduced significantly the protein oxidation levels in mitochondria of MsrA(-/-) hearts, suggesting an anti-oxidant effect of taurine in cardiac mitochondria. Our study demonstrates that long-term treatment of taurine as a diet supplement is beneficial to a heart that is vulnerable to environmental oxidative stresses.
Collapse
Affiliation(s)
- G Chen
- Division of Cardiology, Children's Hospital, Chongqing Medical University, Chongqing 400014, China
| | | | | | | | | | | | | |
Collapse
|
49
|
Insights into restrictive cardiomyopathy from clinical and animal studies. J Geriatr Cardiol 2012; 8:168-83. [PMID: 22783303 PMCID: PMC3390071 DOI: 10.3724/sp.j.1263.2011.00168] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 08/24/2011] [Accepted: 08/31/2011] [Indexed: 01/13/2023] Open
Abstract
Cardiomyopathies are diseases that primarily affect the myocardium, leading to serious cardiac dysfunction and heart failure. Out of the three major categories of cardiomyopathies (hypertrophic, dilated and restrictive), restrictive cardiomyopathy (RCM) is less common and also the least studied. However, the prognosis for RCM is poor as some patients dying in their childhood. The molecular mechanisms behind the disease development and progression are not very clear and the treatment of RCM is very difficult and often ineffective. In this article, we reviewed the recent progress in RCM research from the clinical studies and the translational studies done on diseased transgenic animal models. This will help for a better understanding of the mechanisms underlying the etiology and development of RCM and for the design of better treatments for the disease.
Collapse
|
50
|
Cardiac arrhythmia and heart failure: From bench to bedside. J Geriatr Cardiol 2012; 8:131-2. [PMID: 22783298 PMCID: PMC3390068 DOI: 10.3724/sp.j.1263.2011.00131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 09/20/2011] [Accepted: 09/27/2011] [Indexed: 11/25/2022] Open
|