1
|
Li K, Geng Y, Lin B, Xi Z. Molecular mechanisms underlying mitochondrial damage, endoplasmic reticulum stress, and oxidative stress induced by environmental pollutants. Toxicol Res (Camb) 2023; 12:1014-1023. [PMID: 38145103 PMCID: PMC10734609 DOI: 10.1093/toxres/tfad094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/09/2023] [Accepted: 09/15/2023] [Indexed: 12/26/2023] Open
Abstract
Mitochondria and endoplasmic reticulum (ER) are essential organelles playing pivotal roles in the regulation of cellular metabolism, energy production, and protein synthesis. In addition, these organelles are important targets susceptible to external stimuli, such as environmental pollutants. Exposure to environmental pollutants can cause the mitochondrial damage, endoplasmic reticulum stress (ERS), and oxidative stress, leading to cellular dysfunction and death. Therefore, understanding the toxic effects and molecular mechanisms of environmental pollution underlying these processes is crucial for developing effective strategies to mitigate the adverse effects of environmental pollutants on human health. In the present study, we summarized and reviewed the toxic effects and molecular mechanisms of mitochondrial damage, ERS, and oxidative stress caused by exposure to environmental pollutants as well as interactions inducing the cell apoptosis and the roles in exposure to environmental pollutants.
Collapse
Affiliation(s)
- Kang Li
- Department of Health Toxicology, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yanpei Geng
- Department of Health Toxicology, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Bencheng Lin
- Department of Health Toxicology, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Zhuge Xi
- Department of Health Toxicology, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| |
Collapse
|
2
|
ANT1 overexpression models: Some similarities with facioscapulohumeral muscular dystrophy. Redox Biol 2022; 56:102450. [PMID: 36030628 PMCID: PMC9434167 DOI: 10.1016/j.redox.2022.102450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/04/2022] [Accepted: 08/17/2022] [Indexed: 11/20/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant disorder characterized by progressive muscle weakness. Adenine nucleotide translocator 1 (ANT1), the only 4q35 gene involved in mitochondrial function, is strongly expressed in FSHD skeletal muscle biopsies. However, its role in FSHD is unclear. In this study, we evaluated ANT1 overexpression effects in primary myoblasts from healthy controls and during Xenopus laevis organogenesis. We also compared ANT1 overexpression effects with the phenotype of FSHD muscle cells and biopsies. Here, we report that the ANT1 overexpression-induced phenotype presents some similarities with FSHD muscle cells and biopsies. ANT1-overexpressing muscle cells showed disorganized morphology, altered cytoskeletal arrangement, enhanced mitochondrial respiration/glycolysis, ROS production, oxidative stress, mitochondrial fragmentation and ultrastructure alteration, as observed in FSHD muscle cells. ANT1 overexpression in Xenopus laevis embryos affected skeletal muscle development, impaired skeletal muscle, altered mitochondrial ultrastructure and led to oxidative stress as observed in FSHD muscle biopsies. Moreover, ANT1 overexpression in X. laevis embryos affected heart structure and mitochondrial ultrastructure leading to cardiac arrhythmia, as described in some patients with FSHD. Overall our data suggest that ANT1 could contribute to mitochondria dysfunction and oxidative stress in FSHD muscle cells by modifying their bioenergetic profile associated with ROS production. Such interplay between energy metabolism and ROS production in FSHD will be of significant interest for future prospects.
Collapse
|
3
|
Kerr M, Dennis KMJH, Carr CA, Fuller W, Berridge G, Rohling S, Aitken CL, Lopez C, Fischer R, Miller JJ, Clarke K, Tyler DJ, Heather LC. Diabetic mitochondria are resistant to palmitoyl CoA inhibition of respiration, which is detrimental during ischemia. FASEB J 2021; 35:e21765. [PMID: 34318967 PMCID: PMC8662312 DOI: 10.1096/fj.202100394r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/24/2021] [Accepted: 06/14/2021] [Indexed: 01/07/2023]
Abstract
The bioactive lipid intermediate palmitoyl CoA (PCoA) can inhibit mitochondrial ADP/ATP transport, though the physiological relevance of this regulation remains unclear. We questioned whether myocardial ischemia provides a pathological setting in which PCoA regulation of ADP/ATP transport would be beneficial, and secondly, whether the chronically elevated lipid content within the diabetic heart could make mitochondria less sensitive to the effects of PCoA. PCoA acutely decreased ADP‐stimulated state 3 respiration and increased the apparent Km for ADP twofold. The half maximal inhibitory concentration (IC50) of PCoA in control mitochondria was 22 µM. This inhibitory effect of PCoA on respiration was blunted in diabetic mitochondria, with no significant difference in the Km for ADP in the presence of PCoA, and an increase in the IC50 to 32 µM PCoA. The competitive inhibition by PCoA was localised to the phosphorylation apparatus, particularly the ADP/ATP carrier (AAC). During ischemia, the AAC imports ATP into the mitochondria, where it is hydrolysed by reversal of the ATP synthase, regenerating the membrane potential. Addition of PCoA dose‐dependently prevented this wasteful ATP hydrolysis for membrane repolarisation during ischemia, however, this beneficial effect was blunted in diabetic mitochondria. Finally, using 31P‐magnetic resonance spectroscopy we demonstrated that diabetic hearts lose ATP more rapidly during ischemia, with a threefold higher ATP decay rate compared with control hearts. In conclusion, PCoA plays a role in protecting mitochondrial energetics during ischemia, by preventing wasteful ATP hydrolysis. However, this beneficial effect is blunted in diabetes, contributing to the impaired energy metabolism seen during myocardial ischemia in the diabetic heart.
Collapse
Affiliation(s)
- M Kerr
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - K M J H Dennis
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - C A Carr
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - W Fuller
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - G Berridge
- Target Discovery Institute, University of Oxford, Oxford, UK
| | - S Rohling
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - C L Aitken
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - C Lopez
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - R Fischer
- Target Discovery Institute, University of Oxford, Oxford, UK
| | - J J Miller
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.,Department of Physics, University of Oxford, Oxford, UK.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - K Clarke
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - D J Tyler
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.,Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - L C Heather
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Zhou H, Ren J, Toan S, Mui D. Role of mitochondrial quality surveillance in myocardial infarction: From bench to bedside. Ageing Res Rev 2021; 66:101250. [PMID: 33388396 DOI: 10.1016/j.arr.2020.101250] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/10/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022]
Abstract
Myocardial infarction (MI) is the irreversible death of cardiomyocyte secondary to prolonged lack of oxygen or fresh blood supply. Historically considered as merely cardiomyocyte powerhouse that manufactures ATP and other metabolites, mitochondrion is recently being identified as a signal regulator that is implicated in the crosstalk and signal integration of cardiomyocyte contraction, metabolism, inflammation, and death. Mitochondria quality surveillance is an integrated network system modifying mitochondrial structure and function through the coordination of various processes including mitochondrial fission, fusion, biogenesis, bioenergetics, proteostasis, and degradation via mitophagy. Mitochondrial fission favors the elimination of depolarized mitochondria through mitophagy, whereas mitochondrial fusion preserves the mitochondrial network upon stress through integration of two or more small mitochondria into an interconnected phenotype. Mitochondrial biogenesis represents a regenerative program to replace old and damaged mitochondria with new and healthy ones. Mitochondrial bioenergetics is regulated by a metabolic switch between glucose and fatty acid usage, depending on oxygen availability. To maintain the diversity and function of mitochondrial proteins, a specialized protein quality control machinery regulates protein dynamics and function through the activity of chaperones and proteases, and induction of the mitochondrial unfolded protein response. In this review, we provide an overview of the molecular mechanisms governing mitochondrial quality surveillance and highlight the most recent preclinical and clinical therapeutic approaches to restore mitochondrial fitness during both MI and post-MI heart failure.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Cardiology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China.
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Sam Toan
- Department of Chemical Engineering, University of Minnesota-Duluth, Duluth, MN 55812, USA
| | - David Mui
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Kliment CR, Nguyen JMK, Kaltreider MJ, Lu Y, Claypool SM, Radder JE, Sciurba FC, Zhang Y, Gregory AD, Iglesias PA, Sidhaye VK, Robinson DN. Adenine nucleotide translocase regulates airway epithelial metabolism, surface hydration and ciliary function. J Cell Sci 2021; 134:jcs.257162. [PMID: 33526710 DOI: 10.1242/jcs.257162] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/13/2021] [Indexed: 01/10/2023] Open
Abstract
Airway hydration and ciliary function are critical to airway homeostasis and dysregulated in chronic obstructive pulmonary disease (COPD), which is impacted by cigarette smoking and has no therapeutic options. We utilized a high-copy cDNA library genetic selection approach in the amoeba Dictyostelium discoideum to identify genetic protectors to cigarette smoke. Members of the mitochondrial ADP/ATP transporter family adenine nucleotide translocase (ANT) are protective against cigarette smoke in Dictyostelium and human bronchial epithelial cells. Gene expression of ANT2 is reduced in lung tissue from COPD patients and in a mouse smoking model, and overexpression of ANT1 and ANT2 resulted in enhanced oxidative respiration and ATP flux. In addition to the presence of ANT proteins in the mitochondria, they reside at the plasma membrane in airway epithelial cells and regulate airway homeostasis. ANT2 overexpression stimulates airway surface hydration by ATP and maintains ciliary beating after exposure to cigarette smoke, both of which are key functions of the airway. Our study highlights a potential for upregulation of ANT proteins and/or of their agonists in the protection from dysfunctional mitochondrial metabolism, airway hydration and ciliary motility in COPD.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Corrine R Kliment
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA .,Department of Medicine, Division of Pulmonary and Critical Care, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Medicine, Division of Pulmonary and Critical Care, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Jennifer M K Nguyen
- Department of Medicine, Division of Pulmonary and Critical Care, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mary Jane Kaltreider
- Department of Medicine, Division of Pulmonary and Critical Care, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - YaWen Lu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Steven M Claypool
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Josiah E Radder
- Department of Medicine, Division of Pulmonary and Critical Care, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Frank C Sciurba
- Department of Medicine, Division of Pulmonary and Critical Care, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Yingze Zhang
- Department of Medicine, Division of Pulmonary and Critical Care, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Alyssa D Gregory
- Department of Medicine, Division of Pulmonary and Critical Care, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Pablo A Iglesias
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Venkataramana K Sidhaye
- Department of Medicine, Division of Pulmonary and Critical Care, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Environmental Health Sciences and Engineering, Johns Hopkins University School of Public Health, Baltimore, MD 21205, USA
| | - Douglas N Robinson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA .,Department of Medicine, Division of Pulmonary and Critical Care, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
6
|
Clark AJ, Parikh SM. Targeting energy pathways in kidney disease: the roles of sirtuins, AMPK, and PGC1α. Kidney Int 2020; 99:828-840. [PMID: 33307105 DOI: 10.1016/j.kint.2020.09.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 12/16/2022]
Abstract
The kidney has extraordinary metabolic demands to sustain the active transport of solutes that is critical to renal filtration and clearance. Mitochondrial health is vital to meet those demands and maintain renal fitness. Decades of studies have linked poor mitochondrial health to kidney disease. Key regulators of mitochondrial health-adenosine monophosphate kinase, sirtuins, and peroxisome proliferator-activated receptor γ coactivator-1α-have all been shown to play significant roles in renal resilience against disease. This review will summarize the latest research into the activities of those regulators and evaluate the roles and therapeutic potential of targeting those regulators in acute kidney injury, glomerular kidney disease, and renal fibrosis.
Collapse
Affiliation(s)
- Amanda J Clark
- Division of Nephrology, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Samir M Parikh
- Harvard Medical School, Boston, Massachusetts, USA; Division of Nephrology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.
| |
Collapse
|
7
|
Tao L, Huang X, Xu M, Yang L, Hua F. MiR-144 protects the heart from hyperglycemia-induced injury by regulating mitochondrial biogenesis and cardiomyocyte apoptosis. FASEB J 2019; 34:2173-2197. [PMID: 31907983 DOI: 10.1096/fj.201901838r] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 10/25/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022]
Abstract
Several lines of evidence have revealed the potential of microRNAs (miRNAs, miRs) as biomarkers for detecting diabetic cardiomyopathy, although their functions in hyperglycemic cardiac dysfunction are still lacking. In this study, mitochondrial biogenesis was markedly impaired induced by high glucose (HG), as evidenced by dysregulated mitochondrial structure, reduced mitochondrial DNA contents, and biogenesis-related mRNA levels, accompanied by increased cell apoptosis. MiR-144 was identified to be decreased in HG-induced cardiomyocytes and in streptozotocin (STZ)-challenged heart samples. Forced miR-144 expression enhanced mitochondrial biogenesis and suppressed cell apoptosis, while miR-144 inhibition exhibited the opposite results. Rac-1 was identified as a target gene of miR-144. Decreased Rac-1 levels activated AMPK phosphorylation and PGC-1α deacetylation, leading to increased mitochondrial biogenesis and reduced cell apoptosis. Importantly, the systemic neutralization of miR-144 attenuated mitochondrial disorder and ventricular dysfunction following STZ treatment. Additionally, plasma miR-144 decreased markedly in diabetic patients with cardiac dysfunction. The receiver-operator characteristic curve showed that plasma miR-144 could specifically predict diabetic patients developing cardiac dysfunction. In conclusion, this study provides strong evidence suggesting that miR-144 protects heart from hyperglycemia-induced injury by improving mitochondrial biogenesis and decreasing cell apoptosis via targeting Rac-1. Forced miR-144 expression might, thus, be a protective strategy for treating hyperglycemia-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Lichan Tao
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou City, China
| | - Xiaoli Huang
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou City, China
| | - Min Xu
- Department of Echocardiography, The Third Affiliated Hospital of Soochow University, Changzhou City, China
| | - Ling Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou City, China
| | - Fei Hua
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou City, China
| |
Collapse
|
8
|
Augmenter of liver regeneration promotes mitochondrial biogenesis in renal ischemia-reperfusion injury. Apoptosis 2019; 23:695-706. [PMID: 30259216 DOI: 10.1007/s10495-018-1487-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mitochondria are the center of energy metabolism in the cell and the preferential target of various toxicants and ischemic injury. Renal ischemia-reperfusion (I/R) injury triggers proximal tubule injury and the mitochondria are believed to be the primary subcellular target of I/R injury. The promotion of mitochondrial biogenesis (MB) is critical for the prevention I/R injury. The results of our previous study showed that augmenter of liver regeneration (ALR) has anti-apoptotic and anti-oxidant functions. However, the modulatory mechanism of ALR remains unclear and warrants further investigation. To gain further insight into the role of ALR in MB, human kidney (HK)-2 cells were treated with lentiviruses carrying ALR short interfering RNA (siRNA) and a model of hypoxia reoxygenation (H/R) injury in vitro was created. We observed that knockdown of ALR promoted apoptosis of renal tubular cells and aggravated mitochondrial injury, as evidenced by the decrease in the mitochondrial respiratory proteins adenosine triphosphate (ATP) synthase subunit β, cytochrome c oxidase subunit 1, and nicotinamide adenine dinucleotide dehydrogenase (ubiquinone) beta subcomplex 8. Meanwhile, the production of reactive oxygen species was increased and ATP levels were decreased significantly in HK-2 cells, as compared with the siRNA/control group (p < 0.05). In addition, the mitochondrial DNA copy number and membrane potential were markedly decreased. Furthermore, critical transcriptional regulators of MB (i.e., peroxisome proliferator-activated receptor-gamma coactivator 1 alpha, mitochondrial transcription factor A, sirtuin-1, and nuclear respiratory factor-1) were depleted in the siRNA/ALR group. Taken together, these findings unveil essential roles of ALR in the inhibition of renal tubular cell apoptosis and attenuation of mitochondrial dysfunction by promoting MB in AKI.
Collapse
|
9
|
Inhibition of mitochondrial fission as a novel therapeutic strategy to reduce mortality upon myocardial infarction. Clin Sci (Lond) 2018; 132:2163-2167. [PMID: 30341226 DOI: 10.1042/cs20180671] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/13/2018] [Accepted: 09/24/2018] [Indexed: 01/27/2023]
Abstract
Ischemia reperfusion (I/R) injury is a common event following myocardial infarction (MI) resulting in excessive oxidative stress, calcium overload, inflammation, and cardiomyocyte death. Mitochondrial homeostasis including their dynamics are imbalanced in cardiac I/R injury in favor of increased mitochondrial fission. Inhibition of mitochondrial fission prior to I/R injury is protective and improves cardiac function following MI. Clinically, patients with MI often receive treatment following initiation of the ischemic event. Thus, treatments with more realistic timing would have better translational value and are important to research. In a recent study published in Clinical Science, Maneechote et al. [Clin. Sci. (2018) 132, 1669-1683] examined the effect of inhibiting mitochondrial fission using the mitochondrial division inhibitor (Mdivi-1) at different time points, pre-ischemia, during-ischemia, and upon onset of reperfusion, in a rat cardiac I/R model. The findings showed the greatest cardiac function improvement with pre-ischemia treatment along with decreased mitochondrial fragmentation and increased mitochondrial function. Mdivi-1 given during ischemia and at onset of reperfusion also improved cardiac function, but to a lesser extent than pre-ischemia intervention. Maneechote et al. postulated that the LV protection by Mdivi-1 in cardiac I/R could be due to an improvement in mitochondrial dysfunction through attenuating excessive mitochondrial fission which then reduces apoptotic myocytes. Their findings provide new insights into future treatment of patients suffering acute MI which could consider targetting the excessive mitochondrial fission during cardiac ischemia or at onset of reperfusion. Here, we will further discuss the background of the study, potential molecular mechanisms of mitochondrial fission, consequences of the fission, and future research directions.
Collapse
|
10
|
Luft FC. ATP-ADP translocase and effects on ischemic heart. J Mol Med (Berl) 2018; 94:609-11. [PMID: 27080393 DOI: 10.1007/s00109-016-1419-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Friedrich C Luft
- Experimental and Clinical Research Center, Max-Delbrück Center for Molecular Medicine and Charité Medical Faculty, Lindenberger Weg 80, 13125, Berlin, Germany.
| |
Collapse
|
11
|
Abstract
Acute kidney injury (AKI) arising from diverse etiologies is characterized by mitochondrial dysfunction. The peroxisome proliferator-activated receptor γ coactivator-1alpha (PGC1α), a master regulator of mitochondrial biogenesis, has been shown to be protective in AKI. Interestingly, reduction of PGC1α has also been implicated in the development of diabetic kidney disease and renal fibrosis. The beneficial renal effects of PGC1α make it a prime target for therapeutics aimed at ameliorating AKI, forms of chronic kidney disease (CKD), and their intersection. This review summarizes the current literature on the relationship between renal health and PGC1α and proposes areas of future interest.
Collapse
Affiliation(s)
- Matthew R Lynch
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, Massachusetts
| | - Mei T Tran
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, Massachusetts
| | - Samir M Parikh
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
12
|
Li SY, Park J, Qiu C, Han SH, Palmer MB, Arany Z, Susztak K. Increasing the level of peroxisome proliferator-activated receptor γ coactivator-1α in podocytes results in collapsing glomerulopathy. JCI Insight 2017; 2:92930. [PMID: 28724797 DOI: 10.1172/jci.insight.92930] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/06/2017] [Indexed: 01/07/2023] Open
Abstract
Inherited and acquired mitochondrial defects have been associated with podocyte dysfunction and chronic kidney disease (CKD). Peroxisome proliferator-activated receptor γ coactivator-1α (PGC1α) is one of the main transcriptional regulators of mitochondrial biogenesis and function. We hypothesized that increasing PGC1α expression in podocytes could protect from CKD. We found that PGC1α and mitochondrial transcript levels are lower in podocytes of patients and mouse models with diabetic kidney disease (DKD). To increase PGC1α expression, podocyte-specific inducible PGC1α-transgenic mice were generated by crossing nephrin-rtTA mice with tetO-Ppargc1a animals. Transgene induction resulted in albuminuria and glomerulosclerosis in a dose-dependent manner. Expression of PGC1α in podocytes increased mitochondrial biogenesis and maximal respiratory capacity. PGC1α also shifted podocytes towards fatty acid usage from their baseline glucose preference. RNA sequencing analysis indicated that PGC1α induced podocyte proliferation. Histological lesions of mice with podocyte-specific PGC1α expression resembled collapsing focal segmental glomerular sclerosis. In conclusion, decreased podocyte PGC1α expression and mitochondrial content is a consistent feature of DKD, but excessive PGC1α alters mitochondrial properties and induces podocyte proliferation and dedifferentiation, indicating that there is likely a narrow therapeutic window for PGC1α levels in podocytes.
Collapse
Affiliation(s)
- Szu-Yuan Li
- Renal-Electrolyte and Hypertension Division of Department of Medicine, and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.,Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital and School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jihwan Park
- Renal-Electrolyte and Hypertension Division of Department of Medicine, and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Chengxiang Qiu
- Renal-Electrolyte and Hypertension Division of Department of Medicine, and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Seung Hyeok Han
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | | | - Zoltan Arany
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Katalin Susztak
- Renal-Electrolyte and Hypertension Division of Department of Medicine, and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
13
|
PGC-1α attenuates hydrogen peroxide-induced apoptotic cell death by upregulating Nrf-2 via GSK3β inactivation mediated by activated p38 in HK-2 Cells. Sci Rep 2017; 7:4319. [PMID: 28659586 PMCID: PMC5489530 DOI: 10.1038/s41598-017-04593-w] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/17/2017] [Indexed: 12/14/2022] Open
Abstract
Ischemia/reperfusion injury triggers acute kidney injury (AKI) by aggravating oxidative stress mediated mitochondria dysfunction. The peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α) is a master player that regulates mitochondrial biogenesis and the antioxidant response. We postulated that PGC-1α functions as cytoprotective effector in renal cells and that its regulation mechanism is coordinated by nuclear factor erythroid 2-related factor 2 (Nrf-2). In this study, to understand the effect and molecular mechanisms of PGC-1α, we developed an empty vector or PGC-1α-overexpressing stable cell lines in HK-2 cells (Mock or PGC-1α stable cells). PGC-1α overexpression increased the viability of cells affected by H2O2 mediated injury, protected against H2O2-mediated apoptotic events and inhibited reactive oxygen species accumulation in the cytosol and mitochondria as compared to that in Mock cells. The cytoprotective effect of PGC-1α was related to Nrf-2 upregulation, which was counteracted by Nrf-2-specific knockdown. Using inhibitor of p38, we found that regulation of the p38/glycogen synthase kinase 3β (GSK3β)/Nrf-2 axis was involved in the protective effects of PGC-1α. Taken together, we suggest that PGC-1α protects human renal tubule cells from H2O2-mediated apoptotic injury by upregulating Nrf-2 via GSK3β inactivation mediated by activated p38.
Collapse
|
14
|
KLF5 overexpression attenuates cardiomyocyte inflammation induced by oxygen-glucose deprivation/reperfusion through the PPARγ/PGC-1α/TNF-α signaling pathway. Biomed Pharmacother 2016; 84:940-946. [PMID: 27764756 DOI: 10.1016/j.biopha.2016.09.100] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 09/26/2016] [Accepted: 09/26/2016] [Indexed: 12/29/2022] Open
Abstract
The primary physiological function of Krüppel-like zinc-finger transcription factor (KLF5) is the regulation of cardiovascular remodeling. Vascular remodeling is closely related to the amelioration of various ischemic diseases. However, the underlying correlation of KLF5 and ischemia is not clear. In this study, we aim to investigate the role of KLF5 in myocardial ischemia reperfusion (IR) injury and the potential mechanisms involved. Cultured H9C2 cells were subjected to oxygen-glucose deprivation/reperfusion (OGD/Rep) to mimic myocardial IR injury in vivo. Expressions of KLF5 and PPARγ were distinctly inhibited, and PGC-1α expression was activated at 24h after myocardial OGD/Rep injury. After myocardial OGD/Rep injury, we found that KLF5 overexpression down-regulated levels of TNF-α, IL-1β, IL-6 and IL-8. Through the analysis of lactate dehydrogenase (LDH) release, we demonstrate that KLF5 overexpression reduced the release of OGD/Rep-induced LDH. KLF5 overexpression significantly enhanced cell activity and decreased cell apoptosis during OGD/Rep injury. Compared with the OGD/Rep group, cells overexpressing KLF5 showed anti-apoptotic effects, such as decreased expression of Bax and cleaved caspase-3 as well as increased Bcl-2 expression. KLF5 overexpression activated PPARγ, a protein involved in OGD/Rep injury, and increased levels of PGC-1α, while TNF-α expression was remarkably inhibited. In addition, GW9662, a PPARγ receptor antagonist, reversed the expression of PPARγ/PGC-1α/TNF-α and cell activity induced by KLF5 overexpression. The effects of KLF5 overexpression on PPARγ/PGC-1α/TNF-α and cell activity were abolished by co-treatment with GW9662. Taken together, these results suggest that KLF5 can efficiently alleviate OGD/Rep-induced myocardial injury, perhaps through regulation of the PPARγ/PGC-1α/TNF-α pathway.
Collapse
|
15
|
Hu L, Wang J, Zhu H, Wu X, Zhou L, Song Y, Zhu S, Hao M, Liu C, Fan Y, Wang Y, Li Q. Ischemic postconditioning protects the heart against ischemia-reperfusion injury via neuronal nitric oxide synthase in the sarcoplasmic reticulum and mitochondria. Cell Death Dis 2016; 7:e2222. [PMID: 27171264 PMCID: PMC4917647 DOI: 10.1038/cddis.2016.108] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 03/18/2016] [Accepted: 03/22/2016] [Indexed: 12/17/2022]
Abstract
As a result of its spatial confinement in cardiomyocytes, neuronal nitric oxide synthase (nNOS) is thought to regulate mitochondrial and sarcoplasmic reticulum (SR) function by maintaining nitroso-redox balance and Ca2+ cycling. Thus, we hypothesize that ischemic postconditioning (IPostC) protects hearts against ischemic/reperfusion (I/R) injury through an nNOS-mediated pathway. Isolated mouse hearts were subjected to I/R injury in a Langendorff apparatus, H9C2 cells and primary neonatal rat cardiomyocytes were subjected to hypoxia/reoxygenation (H/R) in vitro. IPostC, compared with I/R, decreased infarct size and improved cardiac function, and the selective nNOS inhibitors abolished these effects. IPostC recovered nNOS activity and arginase expression. IPostC also increased AMP kinase (AMPK) phosphorylation and alleviated oxidative stress, and nNOS and AMPK inhibition abolished these effects. IPostC increased nitrotyrosine production in the cytosol but decreased it in mitochondria. Enhanced phospholamban (PLB) phosphorylation, normalized SR function and decreased Ca2+ overload were observed following the recovery of nNOS activity, and nNOS inhibition abolished these effects. Similar effects of IPostC were demonstrated in cardiomyocytes in vitro. IPostC decreased oxidative stress partially by regulating uncoupled nNOS and the nNOS/AMPK/peroxisome proliferator-activated receptor gamma coactivator 1 alpha/superoxide dismutase axis, and improved SR function through increasing SR Ca2+ load. These results suggest that IPostC protected hearts against I/R injury via an nNOS-mediated pathway.
Collapse
Affiliation(s)
- L Hu
- Department of Pharmacology, Jiangsu Provincial Key Lab of Cardiovascular Diseases and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - J Wang
- Department of Pharmacology, Jiangsu Provincial Key Lab of Cardiovascular Diseases and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - H Zhu
- Department of Pharmacology, Jiangsu Provincial Key Lab of Cardiovascular Diseases and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - X Wu
- Department of Pharmacology, Jiangsu Provincial Key Lab of Cardiovascular Diseases and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - L Zhou
- Department of Pharmacology, Jiangsu Provincial Key Lab of Cardiovascular Diseases and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Y Song
- Department of Pharmacology, Jiangsu Provincial Key Lab of Cardiovascular Diseases and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - S Zhu
- Department of Pharmacology, Jiangsu Provincial Key Lab of Cardiovascular Diseases and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - M Hao
- Department of Pharmacology, Jiangsu Provincial Key Lab of Cardiovascular Diseases and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - C Liu
- Department of Pharmacology, Jiangsu Provincial Key Lab of Cardiovascular Diseases and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Y Fan
- Department of Pharmacology, Jiangsu Provincial Key Lab of Cardiovascular Diseases and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Y Wang
- Department of Pharmacology, Jiangsu Provincial Key Lab of Cardiovascular Diseases and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Q Li
- Department of Pharmacology, Jiangsu Provincial Key Lab of Cardiovascular Diseases and Molecular Intervention, Nanjing Medical University, Nanjing, China
| |
Collapse
|
16
|
PGC-1α limits angiotensin II-induced rat vascular smooth muscle cells proliferation via attenuating NOX1-mediated generation of reactive oxygen species. Biosci Rep 2015; 35:BSR20150112. [PMID: 26310573 PMCID: PMC4613698 DOI: 10.1042/bsr20150112] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 08/14/2015] [Indexed: 01/11/2023] Open
Abstract
The protein content of PGC-1α was negatively correlated with an increase in cell proliferation and migration induced by AngII. PGC-1α could decrease ROS generation derived from NADPH oxidase induced by AngII, thus attenuating VSMC hyperplasia. AngII (angiotensin II)-induced excessive ROS (reactive oxygen species) generation and proliferation of VSMCs (vascular smooth muscle cells) is a critical contributor to the pathogenesis of atherosclerosis. PGC-1α [PPARγ (peroxisome-proliferator-activated receptor γ) co-activator-1α] is involved in the regulation of ROS generation, VSMC proliferation and energy metabolism. The aim of the present study was to investigate whether PGC-1α mediates AngII-induced ROS generation and VSMC hyperplasia. Our results showed that the protein content of PGC-1α was negatively correlated with an increase in cell proliferation and migration induced by AngII. Overexpression of PGC-1α inhibited AngII-induced proliferation and migration, ROS generation and NADPH oxidase activity in VSMCs. Conversely, Ad-shPGC-1α (adenovirus-mediated PGC-1α-specific shRNA) led to the opposite effects. Furthermore, the stimulatory effect of Ad-shPGC-1α on VSMC proliferation was significantly attenuated by antioxidant and NADPH oxidase inhibitors. Analysis of several key subunits of NADPH oxidase (Rac1, p22phox, p40phox, p47phox and p67phox) and mitochondrial ROS revealed that these mechanisms were not responsible for the observed effects of PGC-1α. However, we found that overexpression of PGC-1α promoted NOX1 degradation through the proteasome degradation pathway under AngII stimulation and consequently attenuated NOX1 (NADPH oxidase 1) expression. These alterations underlie the inhibitory effect of PGC-1α on NADPH oxidase activity. Our data support a critical role for PGC-1α in the regulation of proliferation and migration of VSMCs, and provide a useful strategy to protect vessels against atherosclerosis.
Collapse
|
17
|
Fabregat-Andrés Ó, Ridocci-Soriano F, Estornell-Erill J, Corbí-Pascual M, Valle-Muñoz A, Berenguer-Jofresa A, Barrabés JA, Mata M, Monsalve M. Los niveles en sangre de PGC-1α predice miocardio salvado y remodelado ventricular tras infarto agudo de miocardio con elevación del segmento ST. Rev Esp Cardiol 2015. [DOI: 10.1016/j.recesp.2014.05.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
18
|
Fernandes RO, Bonetto JHP, Baregzay B, de Castro AL, Puukila S, Forsyth H, Schenkel PC, Llesuy SF, Brum IS, Araujo ASR, Khaper N, Belló-Klein A. Modulation of apoptosis by sulforaphane is associated with PGC-1α stimulation and decreased oxidative stress in cardiac myoblasts. Mol Cell Biochem 2014; 401:61-70. [PMID: 25481685 DOI: 10.1007/s11010-014-2292-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 11/26/2014] [Indexed: 12/15/2022]
Abstract
Sulforaphane is a naturally occurring isothiocyanate capable of stimulating cellular antioxidant defenses and inducing phase 2 detoxifying enzymes, which can protect cells against oxidative damage. Oxidative stress and apoptosis are intimately involved in the pathophysiology of cardiac diseases. Although sulforaphane is known for its anticancer benefits, its role in cardiac cells is just emerging. The aim of the present study was to investigate whether sulforaphane can modulate oxidative stress, apoptosis, and correlate with PGC-1α, a transcriptional cofactor involved in energy metabolism. H9c2 cardiac myoblasts were incubated with R-sulforaphane 5 µmol/L for 24 h. Cell viability, ANP gene expression, oxidative stress and apoptosis markers, and protein expression of PGC-1α were studied. In cells treated with sulforaphane, cellular viability increased (12 %) and ANP gene expression decreased (46 %) compared to control cells. Moreover, sulforaphane induced a significant increase in superoxide dismutase (103 %), catalase (101 %), and glutathione S-transferase (72 %) activity, reduced reactive oxygen species levels (15 %) and lipid peroxidation (65 %), as well as stimulated the expression of the cytoprotective enzyme heme oxygenase-1 (4-fold). Sulforaphane also promoted an increase in the expression of the anti-apoptotic protein Bcl-2 (60 %), decreasing the Bax/Bcl-2 ratio. Active Caspase 3\7 and p-JNK/JNK were also reduced by sulforaphane, suggesting a reduction in apoptotic signaling. This was associated with an increased protein expression of PGC-1α (42 %). These results suggest that sulforaphane offers cytoprotection to cardiac cells by activating PGC1-α, reducing oxidative stress, and decreasing apoptosis signaling.
Collapse
Affiliation(s)
- Rafael O Fernandes
- Laboratory of Cardiovascular Physiology, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Gavaldà-Navarro A, Villena JA, Planavila A, Viñas O, Mampel T. Expression of adenine nucleotide translocase (ANT) isoform genes is controlled by PGC-1α through different transcription factors. J Cell Physiol 2014; 229:2126-36. [PMID: 24819348 DOI: 10.1002/jcp.24671] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 03/26/2014] [Accepted: 05/09/2014] [Indexed: 12/16/2023]
Abstract
Adenine nucleotide translocase (ANT) isoforms are mitochondrial proteins encoded by nuclear DNA that catalyze the exchange of ATP generated in the mitochondria for ADP produced in the cytosol. The aim of this study was to determine the role of the transcriptional coactivator PGC-1α (peroxisome proliferator-activated receptor-γ [PPAR-γ] coactivator 1α), a master regulator of mitochondrial oxidative metabolism, in the regulation of the expression of ANT isoform genes and to identify the transcription factors involved. We found that PGC-1α overexpression induced the expression of all ANT human and mouse isoforms but to different degrees. The transcription factor ERRα was involved in PGC-1α-induced expression of all human ANT isoforms (hANT1-3) in HeLa cells as well as in the regulation of mouse isoforms (mANT1-2) in C2C12 myotubes and 3T3-L1 adipocytes, even though ANT isoforms have important physiological differences and are regulated in a tissue-specific manner. In addition to ERRα, PPARδ and mTOR pathways were involved in the induction of mANT1-2 by PGC-1α in C2C12 myotubes, while PPARγ was involved in PGC-1α-regulation of mANT1-2 in 3T3-L1 adipocytes. Furthermore, the regulation of mANT genes by PGC-1α was also observed in vivo in knockout mouse models lacking PGC-1α. In summary, our results show that the regulation of genes encoding ANT isoforms is controlled by PGC-1α through different transcription factors depending on cell type.
Collapse
Affiliation(s)
- Aleix Gavaldà-Navarro
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Institut de Biomedicina de la Universitat de Barcelona, Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, E-08028, Barcelona, Spain
| | | | | | | | | |
Collapse
|
20
|
Fabregat-Andrés Ó, Ridocci-Soriano F, Estornell-Erill J, Corbí-Pascual M, Valle-Muñoz A, Berenguer-Jofresa A, Barrabés JA, Mata M, Monsalve M. Blood PGC-1α Concentration Predicts Myocardial Salvage and Ventricular Remodeling After ST-segment Elevation Acute Myocardial Infarction. ACTA ACUST UNITED AC 2014; 68:408-16. [PMID: 25440044 DOI: 10.1016/j.rec.2014.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/07/2014] [Indexed: 01/14/2023]
Abstract
INTRODUCTION AND OBJECTIVES Peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α) is a metabolic regulator induced during ischemia that prevents cardiac remodeling in animal models. The activity of PGC-1α can be estimated in patients with ST-segment elevation acute myocardial infarction. The aim of the present study was to evaluate the value of blood PGC-1α levels in predicting the extent of necrosis and ventricular remodeling after infarction. METHODS In this prospective study of 31 patients with a first myocardial infarction in an anterior location and successful reperfusion, PGC-1α expression in peripheral blood on admission and at 72 hours was correlated with myocardial injury, ventricular volume, and systolic function at 6 months. Edema and myocardial necrosis were estimated using cardiac magnetic resonance imaging during the first week. At 6 months, infarct size and ventricular remodeling, defined as an increase > 10% of the left ventricular end-diastolic volume, was evaluated by follow-up magnetic resonance imaging. Myocardial salvage was defined as the difference between the edema and necrosis areas. RESULTS Greater myocardial salvage was seen in patients with detectable PGC-1α levels at admission (mean [standard deviation (SD)], 18.3% [5.3%] vs 4.5% [3.9%]; P = .04). Induction of PGC-1α at 72 hours correlated with greater ventricular remodeling (change in left ventricular end-diastolic volume at 6 months, 29.7% [11.2%] vs 1.2% [5.8%]; P = .04). CONCLUSIONS Baseline PGC-1α expression and an attenuated systemic response after acute myocardial infarction are associated with greater myocardial salvage and predict less ventricular remodeling.
Collapse
Affiliation(s)
- Óscar Fabregat-Andrés
- Servicio de Cardiología, Consorcio Hospital General Universitario de Valencia, Valencia, Spain; Fundación de Investigación, Hospital General de Valencia, Valencia, Spain.
| | - Francisco Ridocci-Soriano
- Servicio de Cardiología, Consorcio Hospital General Universitario de Valencia, Valencia, Spain; Departamento de Medicina, Universitat de València, Valencia, Spain
| | - Jordi Estornell-Erill
- Unidad de Imagen Cardiaca, ERESA, Hospital General Universitario de Valencia, Valencia, Spain
| | | | | | | | - José A Barrabés
- Departamento de Cardiología, Hospital Universitario Vall d'Hebron, Barcelona, Spain; Departamento de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Manuel Mata
- Departamento de Patología, Facultad de Medicina, Universitat de València, Valencia, Spain
| | - María Monsalve
- Departamento de Metabolismo y Señalización Celular, Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
| |
Collapse
|
21
|
Karamanlidis G, Garcia-Menendez L, Kolwicz SC, Lee CF, Tian R. Promoting PGC-1α-driven mitochondrial biogenesis is detrimental in pressure-overloaded mouse hearts. Am J Physiol Heart Circ Physiol 2014; 307:H1307-16. [PMID: 25172896 DOI: 10.1152/ajpheart.00280.2014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mitochondrial dysfunction in animal models of heart failure is associated with downregulation of the peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α pathway. To test whether PGC-1α is an appropriate therapeutic target for increasing mitochondrial biogenesis and improving function in heart failure, we used a transgenic (TG) mouse model of moderate overexpression of PGC-1α (∼3-fold) in the heart. TG mice had small increases in citrate synthase activity and mitochondria size in the heart without alterations in myocardial energetics or cardiac function at baseline. In vivo dobutamine stress increased fractional shortening in wild-type mice, but this increase was attenuated in TG mice, whereas ex vivo isolated perfused TG hearts demonstrated normal functional and energetic response to high workload challenge. When subjected to pressure overload by transverse aortic constriction (TAC), TG mice displayed a significantly greater acute mortality for both male and female mice; however, long-term survival up to 8 wk was similar between the two groups. TG mice also showed a greater decrease in fractional shortening and a greater increase in left ventricular chamber dimension in response to TAC. Mitochondrial gene expression and citrate synthase activity were mildly increased in TG mice compared with wild-type mice, and this difference was also maintained after TAC. Our data suggest that a moderate level of PGC-1α overexpression in the heart compromises acute survival and does not improve cardiac function during chronic pressure overload in mice.
Collapse
Affiliation(s)
- Georgios Karamanlidis
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington
| | - Lorena Garcia-Menendez
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington
| | - Stephen C Kolwicz
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington
| | - Chi Fung Lee
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington
| | - Rong Tian
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
22
|
Yan W, Zhang H, Liu P, Wang H, Liu J, Gao C, Liu Y, Lian K, Yang L, Sun L, Guo Y, Zhang L, Dong L, Lau WB, Gao E, Gao F, Xiong L, Wang H, Qu Y, Tao L. Impaired mitochondrial biogenesis due to dysfunctional adiponectin-AMPK-PGC-1α signaling contributing to increased vulnerability in diabetic heart. Basic Res Cardiol 2013; 108:329. [PMID: 23460046 DOI: 10.1007/s00395-013-0329-1] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 01/03/2013] [Accepted: 01/09/2013] [Indexed: 12/19/2022]
Abstract
Impaired mitochondrial biogenesis causes skeletal muscle damage in diabetes. However, whether and how mitochondrial biogenesis is impaired in the diabetic heart remains largely unknown. Whether adiponectin (APN), a potent cardioprotective molecule, regulates cardiac mitochondrial function has also not been previously investigated. In this study, electron microscopy revealed significant mitochondrial disorders in ob/ob cardiomyocytes, including mitochondrial swelling and cristae disorientation and breakage. Moreover, mitochondrial biogenesis of ob/ob cardiomyocytes is significantly impaired, as evidenced by reduced Ppargc-1a/Nrf-1/Tfam mRNA levels, mitochondrial DNA content, ATP content, citrate synthase activity, complexes I/III/V activity, AMPK phosphorylation, and increased PGC-1α acetylation. Since APN is an upstream activator of AMPK and APN plasma levels are significantly reduced in ob/ob mice, we further tested the hypothesis that reduced APN in ob/ob mice is causatively related to mitochondrial biogenesis impairment. One week of APN treatment of ob/ob mice activated AMPK, reduced PGC-1α acetylation, increased mitochondrial biogenesis, and attenuated mitochondrial disorders. In contrast, knocking out APN inhibited AMPK-PGC-1α signaling and impaired both mitochondrial biogenesis and function. The ob/ob mice exhibited lower survival rates and exacerbated myocardial injury after MI, when compared to controls. APN supplementation improved mitochondrial biogenesis and attenuated MI injury, an effect that was almost completely abrogated by the AMPK inhibitor compound C. In high glucose/high fat treated neonatal rat ventricular myocytes, siRNA-mediated knockdown of PGC-1α blocked gAd-enhanced mitochondrial biogenesis and function and attenuated protection against hypoxia/reoxygenation injury. In conclusion, hypoadiponectinemia impaired AMPK-PGC-1α signaling, resulting in dysfunctional mitochondrial biogenesis that constitutes a novel mechanism for rendering diabetic hearts more vulnerable to enhanced MI injury.
Collapse
Affiliation(s)
- Wenjun Yan
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, 147 West Changle Rd, Xian, 710032, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Maiese K, Chong ZZ, Shang YC, Wang S. Erythropoietin: new directions for the nervous system. Int J Mol Sci 2012; 13:11102-11129. [PMID: 23109841 PMCID: PMC3472733 DOI: 10.3390/ijms130911102] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 08/16/2012] [Accepted: 08/30/2012] [Indexed: 12/14/2022] Open
Abstract
New treatment strategies with erythropoietin (EPO) offer exciting opportunities to prevent the onset and progression of neurodegenerative disorders that currently lack effective therapy and can progress to devastating disability in patients. EPO and its receptor are present in multiple systems of the body and can impact disease progression in the nervous, vascular, and immune systems that ultimately affect disorders such as Alzheimer's disease, Parkinson's disease, retinal injury, stroke, and demyelinating disease. EPO relies upon wingless signaling with Wnt1 and an intimate relationship with the pathways of phosphoinositide 3-kinase (PI 3-K), protein kinase B (Akt), and mammalian target of rapamycin (mTOR). Modulation of these pathways by EPO can govern the apoptotic cascade to control β-catenin, glycogen synthase kinase-3β, mitochondrial permeability, cytochrome c release, and caspase activation. Yet, EPO and each of these downstream pathways require precise biological modulation to avert complications associated with the vascular system, tumorigenesis, and progression of nervous system disorders. Further understanding of the intimate and complex relationship of EPO and the signaling pathways of Wnt, PI 3-K, Akt, and mTOR are critical for the effective clinical translation of these cell pathways into robust treatments for neurodegenerative disorders.
Collapse
Affiliation(s)
- Kenneth Maiese
- Laboratory of Cellular and Molecular Signaling, Cancer Center, F 1220, New Jersey Health Sciences University, 205 South Orange Avenue, Newark, NJ 07101, USA; E-Mails: (Z.Z.C.); (Y.C.S.); (S.W.)
- Cancer Institute of New Jersey, New Brunswick, New Jersey 08901, USA
- New Jersey Health Sciences University, Newark, New Jersey 07101, USA
| | - Zhao Zhong Chong
- Laboratory of Cellular and Molecular Signaling, Cancer Center, F 1220, New Jersey Health Sciences University, 205 South Orange Avenue, Newark, NJ 07101, USA; E-Mails: (Z.Z.C.); (Y.C.S.); (S.W.)
- New Jersey Health Sciences University, Newark, New Jersey 07101, USA
| | - Yan Chen Shang
- Laboratory of Cellular and Molecular Signaling, Cancer Center, F 1220, New Jersey Health Sciences University, 205 South Orange Avenue, Newark, NJ 07101, USA; E-Mails: (Z.Z.C.); (Y.C.S.); (S.W.)
- New Jersey Health Sciences University, Newark, New Jersey 07101, USA
| | - Shaohui Wang
- Laboratory of Cellular and Molecular Signaling, Cancer Center, F 1220, New Jersey Health Sciences University, 205 South Orange Avenue, Newark, NJ 07101, USA; E-Mails: (Z.Z.C.); (Y.C.S.); (S.W.)
- New Jersey Health Sciences University, Newark, New Jersey 07101, USA
| |
Collapse
|
24
|
Chong ZZ, Wang S, Shang YC, Maiese K. Targeting cardiovascular disease with novel SIRT1 pathways. Future Cardiol 2012; 8:89-100. [PMID: 22185448 DOI: 10.2217/fca.11.76] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Sirtuin (the mammalian homolog of silent information regulation 2 of yeast Saccharomyces cerevisiae) 1 (SIRT1), a NAD-dependent histone deacetylase, has emerged as a critical regulator in response to oxidative stress. Through antagonism of oxidative stress-induced cell injury and through the maintenance of metabolic homeostasis in the body, SIRT1 can block vascular system injury. SIRT1 targets multiple cellular proteins, such as peroxisome proliferator-activated receptor-γ and its coactivator-1α, forkhead transcriptional factors, AMP-activated protein kinase, NF-κB and protein tyrosine phosphatase to modulate intricate cellular pathways of multiple diseases. In the cardiovascular system, activation of SIRT1 can not only protect against oxidative stress at the cellular level, but can also offer increased survival at the systemic level to limit coronary heart disease and cerebrovascular disease. Future knowledge regarding SIRT1 and its novel pathways will open new directions for the treatment of cardiovascular disease as well as offer the potential to limit disability from several related disorders.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Laboratory of Cellular & Molecular Signaling, Department of Neurology & Neurosciences, Cancer Center, University of Medicine & Dentistry, New Jersey Medical School, Newark, NJ 07101, USA
| | | | | | | |
Collapse
|
25
|
Zhang ZX, Min WP, Jevnikar AM. Use of RNA interference to minimize ischemia reperfusion injury. Transplant Rev (Orlando) 2012; 26:140-55. [DOI: 10.1016/j.trre.2011.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 03/22/2011] [Indexed: 12/21/2022]
|
26
|
Patten IS, Arany Z. PGC-1 coactivators in the cardiovascular system. Trends Endocrinol Metab 2012; 23:90-7. [PMID: 22047951 DOI: 10.1016/j.tem.2011.09.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 09/25/2011] [Accepted: 09/29/2011] [Indexed: 01/16/2023]
Abstract
The beating heart consumes more ATP per weight than any other organ. The machineries required for this are many and complex. Fuel and oxygen must be transported via the vasculature, absorbed by cardiomyocytes, broken down, and regulated to match cellular demands. Much of this occurs in mitochondria, which comprise fully one third of cardiac mass. The PGC-1 proteins are transcriptional coactivators that have emerged as powerful orchestrators of these numerous processes, ensuring their proper coregulation in response to intracellular and extracellular cues. An important role for PGC-1s in cardiac function has been revealed over the past few years, and more recently interest in their role in the vasculature has been burgeoning. We review this literature, focusing on recent developments.
Collapse
Affiliation(s)
- Ian S Patten
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | |
Collapse
|
27
|
Ye Y, Qian J, Castillo AC, Perez-Polo JR, Birnbaum Y. Aliskiren and Valsartan Reduce Myocardial AT1 Receptor Expression and Limit Myocardial Infarct Size in Diabetic Mice. Cardiovasc Drugs Ther 2011; 25:505-15. [DOI: 10.1007/s10557-011-6339-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
28
|
Jones AWE, Yao Z, Vicencio JM, Karkucinska-Wieckowska A, Szabadkai G. PGC-1 family coactivators and cell fate: roles in cancer, neurodegeneration, cardiovascular disease and retrograde mitochondria-nucleus signalling. Mitochondrion 2011; 12:86-99. [PMID: 21983689 DOI: 10.1016/j.mito.2011.09.009] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 09/08/2011] [Accepted: 09/16/2011] [Indexed: 12/29/2022]
Abstract
Over the past two decades, a complex nuclear transcriptional machinery controlling mitochondrial biogenesis and function has been described. Central to this network are the PGC-1 family coactivators, characterised as master regulators of mitochondrial biogenesis. Recent literature has identified a broader role for PGC-1 coactivators in both cell death and cellular adaptation under conditions of stress, here reviewed in the context of the pathology associated with cancer, neurodegeneration and cardiovascular disease. Moreover, we propose that these studies also imply a novel conceptual framework on the general role of mitochondrial dysfunction in disease. It is now well established that the complex nuclear transcriptional control of mitochondrial biogenesis allows for adaptation of mitochondrial mass and function to environmental conditions. On the other hand, it has also been suggested that mitochondria alter their function according to prevailing cellular energetic requirements and thus function as sensors that generate signals to adjust fundamental cellular processes through a retrograde mitochondria-nucleus signalling pathway. Therefore, altered mitochondrial function can affect cell fate not only directly by modifying cellular energy levels or redox state, but also indirectly, by altering nuclear transcriptional patterns. The current literature on such retrograde signalling in both yeast and mammalian cells is thus reviewed, with an outlook on its potential contribution to disease through the regulation of PGC-1 family coactivators. We propose that further investigation of these pathways will lead to the identification of novel pharmacological targets and treatment strategies to combat disease.
Collapse
Affiliation(s)
- Aleck W E Jones
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, UK
| | | | | | | | | |
Collapse
|
29
|
Mitra MS, Schilling JD, Wang X, Jay PY, Huss JM, Su X, Finck BN. Cardiac lipin 1 expression is regulated by the peroxisome proliferator activated receptor γ coactivator 1α/estrogen related receptor axis. J Mol Cell Cardiol 2011; 51:120-8. [PMID: 21549711 PMCID: PMC3104300 DOI: 10.1016/j.yjmcc.2011.04.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 04/15/2011] [Accepted: 04/19/2011] [Indexed: 12/26/2022]
Abstract
Lipin family proteins (lipin 1, 2, and 3) are bifunctional intracellular proteins that regulate metabolism by acting as coregulators of DNA-bound transcription factors and also dephosphorylate phosphatidate to form diacylglycerol [phosphatidate phosphohydrolase activity] in the triglyceride synthesis pathway. Herein, we report that lipin 1 is enriched in heart and that hearts of mice lacking lipin 1 (fld mice) exhibit accumulation of phosphatidate. We also demonstrate that the expression of the gene encoding lipin 1 (Lpin1) is under the control of the estrogen-related receptors (ERRs) and their coactivator the peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α). PGC-1α, ERRα, or ERRγ overexpression increased Lpin1 transcription in cultured ventricular myocytes and the ERRs were associated with response elements in the first intron of the Lpin1 gene. Concomitant RNAi-mediated knockdown of ERRα and ERRγ abrogated the induction of lipin 1 expression by PGC-1α overexpression. Consistent with these data, 3-fold overexpression of PGC-1α in intact myocardium of transgenic mice increased cardiac lipin 1 and ERRα/γ expression. Similarly, injection of the β2-adrenergic agonist clenbuterol induced PGC-1α and lipin 1 expression, and the induction in lipin 1 after clenbuterol occurred in a PGC-1α-dependent manner. In contrast, expression of PGC-1α, ERRα, ERRγ, and lipin 1 was down-regulated in failing heart. Cardiac phosphatidic acid phosphohydrolase activity was also diminished, while cardiac phosphatidate content was increased, in failing heart. Collectively, these data suggest that lipin 1 is the principal lipin protein in the myocardium and is regulated in response to physiologic and pathologic stimuli that impact cardiac metabolism.
Collapse
MESH Headings
- Adrenergic beta-2 Receptor Agonists/pharmacology
- Animals
- Animals, Newborn
- Cells, Cultured
- Chromatin Immunoprecipitation
- Clenbuterol/pharmacology
- Diglycerides/biosynthesis
- Heart Failure/metabolism
- Introns
- Mass Spectrometry
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Myocardium/metabolism
- Myocytes, Cardiac/metabolism
- Nuclear Proteins/biosynthesis
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
- Phosphatidate Phosphatase/metabolism
- Phosphatidic Acids/metabolism
- RNA Interference
- RNA, Small Interfering
- Rats
- Rats, Sprague-Dawley
- Receptors, Estrogen/biosynthesis
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Response Elements
- Trans-Activators/metabolism
- Transcription Factors
- Triglycerides/biosynthesis
- ERRalpha Estrogen-Related Receptor
Collapse
Affiliation(s)
| | | | - Xiaowei Wang
- Department of Medicine, Washington University School of Medicine
| | - Patrick Y. Jay
- Department of Pediatrics, Washington University School of Medicine
| | | | - Xiong Su
- Department of Medicine, Washington University School of Medicine
| | - Brian N. Finck
- Department of Medicine, Washington University School of Medicine
| |
Collapse
|
30
|
Wenz T. Mitochondria and PGC-1α in Aging and Age-Associated Diseases. J Aging Res 2011; 2011:810619. [PMID: 21629705 PMCID: PMC3100651 DOI: 10.4061/2011/810619] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 02/23/2011] [Accepted: 02/24/2011] [Indexed: 12/31/2022] Open
Abstract
Aging is the most significant risk factor for a range of degenerative disease such as cardiovascular, neurodegenerative and metabolic disorders. While the cause of aging and its associated diseases is multifactorial, mitochondrial dysfunction has been implicated in the aging process and the onset and progression of age-associated disorders. Recent studies indicate that maintenance of mitochondrial function is beneficial in the prevention or delay of age-associated diseases. A central molecule seems to be the peroxisome proliferator-activated receptor γ coactivator α (PGC-1α), which is the key regulator of mitochondrial biogenesis. Besides regulating mitochondrial function, PGC-1α targets several other cellular processes and thereby influences cell fate on multiple levels. This paper discusses how mitochondrial function and PGC-1α are affected in age-associated diseases and how modulation of PGC-1α might offer a therapeutic potential for age-related pathology.
Collapse
Affiliation(s)
- Tina Wenz
- Institute for Genetics, Cluster of Excellence, Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Zülpicher Straße 47A, 50674 Cologne, Germany
| |
Collapse
|
31
|
Sack MN. Mitochondrial Fe-S cluster biogenesis, frataxin and the modulation of susceptibility to drug-induced cardiomyopathy. Aging (Albany NY) 2010; 2:754-5. [PMID: 21113085 PMCID: PMC3006016 DOI: 10.18632/aging.100238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 11/19/2010] [Indexed: 11/25/2022]
Affiliation(s)
- Michael N Sack
- NHLBI Center for Molecular Medicine, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|