1
|
Wu Y, Zou Y, Song C, Cao K, Cai K, Chen S, Zhang Z, Geng D, Zhang N, Feng H, Tang M, Li Z, Sun G, Zhang Y, Sun Y, Zhang Y. The role of serine/threonine protein kinases in cardiovascular disease and potential therapeutic methods. Biomed Pharmacother 2024; 177:117093. [PMID: 38971012 DOI: 10.1016/j.biopha.2024.117093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024] Open
Abstract
Protein phosphorylation is an important link in a variety of signaling pathways, and most of the important life processes in cells involve protein phosphorylation. Based on the amino acid residues of phosphorylated proteins, protein kinases can be categorized into the following families: serine/threonine protein kinases, tyrosine-specific protein kinases, histidine-specific protein kinases, tryptophan kinases, and aspartate/glutamyl protein kinases. Of all the protein kinases, most are serine/threonine kinases, where serine/threonine protein kinases are protein kinases that catalyze the phosphorylation of serine or threonine residues on target proteins using ATP as a phosphate donor. The current socially accepted classification of serine/threonine kinases is to divide them into seven major groups: protein kinase A, G, C (AGC), CMGC, Calmodulin-dependent protein kinase (CAMK), Casein kinase (CK1), STE, Tyrosine kinase (TKL) and others. After decades of research, a preliminary understanding of the specific classification and respective functions of serine/threonine kinases has entered a new period of exploration. In this paper, we review the literature of the previous years and introduce the specific signaling pathways and related therapeutic modalities played by each of the small protein kinases in the serine/threonine protein kinase family, respectively, in some common cardiovascular system diseases such as heart failure, myocardial infarction, ischemia-reperfusion injury, and diabetic cardiomyopathy. To a certain extent, the current research results, including molecular mechanisms and therapeutic methods, are fully summarized and a systematic report is made for the prevention and treatment of cardiovascular diseases in the future.
Collapse
Affiliation(s)
- Yanjiao Wu
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Yuanming Zou
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Chunyu Song
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Kexin Cao
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Kexin Cai
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Shuxian Chen
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Zhaobo Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Danxi Geng
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Naijin Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China; Institute of health sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning Province 110001, People's Republic of China; Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang 110004, China.
| | - Hao Feng
- Department of Ophthalmology, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China.
| | - Man Tang
- Department of clinical pharmacology, College of Pharmacy, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning Province 110001, People's Republic of China.
| | - Zhao Li
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China.
| | - Guozhe Sun
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China.
| | - Yixiao Zhang
- Department of Urology Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning Province 110004, People's Republic of China.
| | - Yingxian Sun
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China; Institute of health sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning Province 110001, People's Republic of China; Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning Province 110001, People's Republic of China.
| | - Ying Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China; Institute of health sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning Province 110001, People's Republic of China.
| |
Collapse
|
2
|
Zhang H, Hu H, Zhai C, Jing L, Tian H. Cardioprotective Strategies After Ischemia-Reperfusion Injury. Am J Cardiovasc Drugs 2024; 24:5-18. [PMID: 37815758 PMCID: PMC10806044 DOI: 10.1007/s40256-023-00614-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/28/2023] [Indexed: 10/11/2023]
Abstract
Acute myocardial infarction (AMI) is associated with high morbidity and mortality worldwide. Although early reperfusion is the most effective strategy to salvage ischemic myocardium, reperfusion injury can develop with the restoration of blood flow. Therefore, it is important to identify protection mechanisms and strategies for the heart after myocardial infarction. Recent studies have shown that multiple intracellular molecules and signaling pathways are involved in cardioprotection. Meanwhile, device-based cardioprotective modalities such as cardiac left ventricular unloading, hypothermia, coronary sinus intervention, supersaturated oxygen (SSO2), and remote ischemic conditioning (RIC) have become important areas of research. Herein, we review the molecular mechanisms of cardioprotection and cardioprotective modalities after ischemia-reperfusion injury (IRI) to identify potential approaches to reduce mortality and improve prognosis in patients with AMI.
Collapse
Affiliation(s)
- Honghong Zhang
- Department of Cardiology, Affiliated Hospital of Jiaxing University: First Hospital of Jiaxing, No. 1882 Zhonghuan South Road, Jiaxing, 314000, Zhejiang, People's Republic of China
| | - Huilin Hu
- Department of Cardiology, Affiliated Hospital of Jiaxing University: First Hospital of Jiaxing, No. 1882 Zhonghuan South Road, Jiaxing, 314000, Zhejiang, People's Republic of China.
| | - Changlin Zhai
- Department of Cardiology, Affiliated Hospital of Jiaxing University: First Hospital of Jiaxing, No. 1882 Zhonghuan South Road, Jiaxing, 314000, Zhejiang, People's Republic of China
| | - Lele Jing
- Department of Cardiology, Affiliated Hospital of Jiaxing University: First Hospital of Jiaxing, No. 1882 Zhonghuan South Road, Jiaxing, 314000, Zhejiang, People's Republic of China
| | - Hongen Tian
- Department of Cardiology, Affiliated Hospital of Jiaxing University: First Hospital of Jiaxing, No. 1882 Zhonghuan South Road, Jiaxing, 314000, Zhejiang, People's Republic of China
| |
Collapse
|
3
|
Silnitsky S, Rubin SJS, Zerihun M, Qvit N. An Update on Protein Kinases as Therapeutic Targets-Part I: Protein Kinase C Activation and Its Role in Cancer and Cardiovascular Diseases. Int J Mol Sci 2023; 24:17600. [PMID: 38139428 PMCID: PMC10743896 DOI: 10.3390/ijms242417600] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Protein kinases are one of the most significant drug targets in the human proteome, historically harnessed for the treatment of cancer, cardiovascular disease, and a growing number of other conditions, including autoimmune and inflammatory processes. Since the approval of the first kinase inhibitors in the late 1990s and early 2000s, the field has grown exponentially, comprising 98 approved therapeutics to date, 37 of which were approved between 2016 and 2021. While many of these small-molecule protein kinase inhibitors that interact orthosterically with the protein kinase ATP binding pocket have been massively successful for oncological indications, their poor selectively for protein kinase isozymes have limited them due to toxicities in their application to other disease spaces. Thus, recent attention has turned to the use of alternative allosteric binding mechanisms and improved drug platforms such as modified peptides to design protein kinase modulators with enhanced selectivity and other pharmacological properties. Herein we review the role of different protein kinase C (PKC) isoforms in cancer and cardiovascular disease, with particular attention to PKC-family inhibitors. We discuss translational examples and carefully consider the advantages and limitations of each compound (Part I). We also discuss the recent advances in the field of protein kinase modulators, leverage molecular docking to model inhibitor-kinase interactions, and propose mechanisms of action that will aid in the design of next-generation protein kinase modulators (Part II).
Collapse
Affiliation(s)
- Shmuel Silnitsky
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, Safed 1311502, Israel; (S.S.); (M.Z.)
| | - Samuel J. S. Rubin
- Department of Medicine, School of Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA;
| | - Mulate Zerihun
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, Safed 1311502, Israel; (S.S.); (M.Z.)
| | - Nir Qvit
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, Safed 1311502, Israel; (S.S.); (M.Z.)
| |
Collapse
|
4
|
Singh RK, Kumar S, Kumar S, Shukla A, Kumar N, Patel AK, Yadav LK, Kaushalendra, Antiwal M, Acharya A. Potential implications of protein kinase Cα in pathophysiological conditions and therapeutic interventions. Life Sci 2023; 330:121999. [PMID: 37536614 DOI: 10.1016/j.lfs.2023.121999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
PKCα is a molecule with many functions that play an important role in cell survival and death to maintain cellular homeostasis. Alteration in the normal functioning of PKCα is responsible for the complicated etiology of many pathologies, including cancer, cardiovascular diseases, kidney complications, neurodegenerative diseases, diabetics, and many others. Several studies have been carried out over the years on this kinase's function, and regulation in normal physiology and pathological conditions. A lot of data with antithetical results have therefore accumulated over time to create a complex framework of physiological implications connected to the PKCα function that needs comprehensive elucidation. In light of this information, we critically analyze the multiple roles played by PKCα in basic cellular processes and their molecular mechanism during various pathological conditions. This review further discusses the current approaches to manipulating PKCα signaling amplitude in the patient's favour and proposed PKCα as a therapeutic target to reverse pathological states.
Collapse
Affiliation(s)
- Rishi Kant Singh
- Lab of Hematopoiesis and Leukemia, KSBS, Indian Institute of Technology, Delhi, New Delhi 110016, India; Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Sanjay Kumar
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Sandeep Kumar
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Alok Shukla
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Naveen Kumar
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Anand Kumar Patel
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Lokesh Kumar Yadav
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Kaushalendra
- Department of Zoology, Pachhunga University College Campus, Mizoram University, Aizawl 796001, India
| | - Meera Antiwal
- Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Arbind Acharya
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
5
|
Abrams ST, Alhamdi Y, Zi M, Guo F, Du M, Wang G, Cartwright EJ, Toh CH. Extracellular Histone-Induced Protein Kinase C Alpha Activation and Troponin Phosphorylation Is a Potential Mechanism of Cardiac Contractility Depression in Sepsis. Int J Mol Sci 2023; 24:ijms24043225. [PMID: 36834636 PMCID: PMC9967552 DOI: 10.3390/ijms24043225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Reduction in cardiac contractility is common in severe sepsis. However, the pathological mechanism is still not fully understood. Recently it has been found that circulating histones released after extensive immune cell death play important roles in multiple organ injury and disfunction, particularly in cardiomyocyte injury and contractility reduction. How extracellular histones cause cardiac contractility depression is still not fully clear. In this work, using cultured cardiomyocytes and a histone infusion mouse model, we demonstrate that clinically relevant histone concentrations cause significant increases in intracellular calcium concentrations with subsequent activation and enriched localization of calcium-dependent protein kinase C (PKC) α and βII into the myofilament fraction of cardiomyocytes in vitro and in vivo. Furthermore, histones induced dose-dependent phosphorylation of cardiac troponin I (cTnI) at the PKC-regulated phosphorylation residues (S43 and T144) in cultured cardiomyocytes, which was also confirmed in murine cardiomyocytes following intravenous histone injection. Specific inhibitors against PKCα and PKCβII revealed that histone-induced cTnI phosphorylation was mainly mediated by PKCα activation, but not PKCβII. Blocking PKCα also significantly abrogated histone-induced deterioration in peak shortening, duration and the velocity of shortening, and re-lengthening of cardiomyocyte contractility. These in vitro and in vivo findings collectively indicate a potential mechanism of histone-induced cardiomyocyte dysfunction driven by PKCα activation with subsequent enhanced phosphorylation of cTnI. These findings also indicate a potential mechanism of clinical cardiac dysfunction in sepsis and other critical illnesses with high levels of circulating histones, which holds the potential translational benefit to these patients by targeting circulating histones and downstream pathways.
Collapse
Affiliation(s)
- Simon T. Abrams
- Department of Clinical Infection Microbiology and Immunology, University of Liverpool, Liverpool L69 7BE, UK
- Coagulation Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool L7 8XP, UK
| | - Yasir Alhamdi
- Department of Clinical Infection Microbiology and Immunology, University of Liverpool, Liverpool L69 7BE, UK
- Sheffield Teaching Hospital NHS Foundation Trust, Sheffield S5 7AU, UK
| | - Min Zi
- Institute of Cardiovascular Sciences, Centre for Cardiac Research, University of Manchester, Manchester M13 9PT, UK
| | - Fengmei Guo
- Department of Clinical Infection Microbiology and Immunology, University of Liverpool, Liverpool L69 7BE, UK
- The Medical School, Southeast University, Nanjing 210009, China
| | - Min Du
- Department of Clinical Infection Microbiology and Immunology, University of Liverpool, Liverpool L69 7BE, UK
| | - Guozheng Wang
- Department of Clinical Infection Microbiology and Immunology, University of Liverpool, Liverpool L69 7BE, UK
- Coagulation Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool L7 8XP, UK
- Correspondence: (G.W.); (C.-H.T.)
| | - Elizabeth J. Cartwright
- Institute of Cardiovascular Sciences, Centre for Cardiac Research, University of Manchester, Manchester M13 9PT, UK
| | - Cheng-Hock Toh
- Department of Clinical Infection Microbiology and Immunology, University of Liverpool, Liverpool L69 7BE, UK
- Roald Dahl Haemostasis & Thrombosis Centre, Royal Liverpool University Hospital, Liverpool L7 8XP, UK
- Correspondence: (G.W.); (C.-H.T.)
| |
Collapse
|
6
|
Irnaten M, O’Brien CJ. Calcium-Signalling in Human Glaucoma Lamina Cribrosa Myofibroblasts. Int J Mol Sci 2023; 24:ijms24021287. [PMID: 36674805 PMCID: PMC9862249 DOI: 10.3390/ijms24021287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/20/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023] Open
Abstract
Glaucoma is one of the most common causes of treatable visual impairment in the developed world, affecting approximately 64 million people worldwide, some of whom will be bilaterally blind from irreversible optic nerve damage. The optic nerve head is a key site of damage in glaucoma where there is fibrosis of the connective tissue in the lamina cribrosa (LC) extracellular matrix. As a ubiquitous second messenger, calcium (Ca2+) can interact with various cellular proteins to regulate multiple physiological processes and contribute to a wide range of diseases, including cancer, fibrosis, and glaucoma. Our research has shown evidence of oxidative stress, mitochondrial dysfunction, an elevated expression of Ca2+ entry channels, Ca2+-dependent pumps and exchangers, and an abnormal rise in cytosolic Ca2+ in human glaucomatous LC fibroblast cells. We have evidence that this increase is dependent on Ca2+ entry channels located in the plasma membrane, and its release is from internal stores in the endoplasmic reticulum (ER), as well as from the mitochondria. Here, we summarize some of the molecular Ca2+-dependent mechanisms related to this abnormal Ca2+-signalling in human glaucoma LC cells, with a view toward identifying potential therapeutic targets for ongoing optic neuropathy.
Collapse
|
7
|
Pluteanu F, Boknik P, Heinick A, König C, Müller FU, Weidlich A, Kirchhefer U. Activation of PKC results in improved contractile effects and Ca cycling by inhibition of PP2A-B56α. Am J Physiol Heart Circ Physiol 2022; 322:H427-H441. [PMID: 35119335 DOI: 10.1152/ajpheart.00539.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein phosphatase 2A (PP2A) represents a heterotrimer that is responsible for the dephosphorylation of important regulatory myocardial proteins. The present study was aimed to test whether the phosphorylation of PP2A-B56α at Ser41 by PKC is involved in the regulation of myocyte Ca2+ cycling and contraction. For this purpose, heart preparations of wild-type (WT) and transgenic mice overexpressing the non-phosphorylatable S41A mutant form (TG) were stimulated by administration of the direct PKC activator phorbol 12-myristate 13-acetate (PMA), and functional effects were studied. PKC activation was accompanied by the inhibition of PP2A activity in WT cardiomyocytes, whereas this effect was absent in TG. Consistently, the increase in the sarcomere length shortening and the peak amplitude of Ca2+ transients after PMA administration in WT cardiomyocytes was attenuated in TG. However, the co-stimulation with 1 µM isoprenaline was able to offset these functional deficits. Moreover, TG hearts did not show an increase in the phosphorylation of the myosin-binding protein C after administration of PMA but was detected in corresponding WT. PMA modulated voltage-dependent activation of the L-type Ca2+ channel (LTCC) differently in the two genotypes, shifting V1/2a by +1.5 mV in TG and by 2.4 mV in WT. In the presence of PMA, ICaL inactivation remained unchanged in TG, whereas it was slower in corresponding WT. Our data suggest that PKC-activated enhancement of myocyte contraction and intracellular Ca2+ signaling is mediated by phosphorylation of B56α at Ser41, leading to a decrease in PP2A activity.
Collapse
Affiliation(s)
- Florentina Pluteanu
- Department of Anatomy, Animal Physiology and Biophysics, University of Bucharest, Bucharest, Romania
| | - Peter Boknik
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Alexander Heinick
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Christiane König
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Frank U Müller
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Adam Weidlich
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Uwe Kirchhefer
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| |
Collapse
|
8
|
Singh RK, Kumar S, Tomar MS, Verma PK, Kumar A, Kumar S, Kumar N, Singh JP, Acharya A. Putative role of natural products as Protein Kinase C modulator in different disease conditions. ACTA ACUST UNITED AC 2021; 29:397-414. [PMID: 34216003 DOI: 10.1007/s40199-021-00401-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 05/25/2021] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Protein kinase C (PKC) is a promising drug target for various therapeutic areas. Natural products derived from plants, animals, microorganisms, and marine organisms have been used by humans as medicine from prehistoric times. Recently, several compounds derived from plants have been found to modulate PKC activities through competitive binding with ATP binding site, and other allosteric regions of PKC. As a result fresh race has been started in academia and pharmaceutical companies to develop an effective naturally derived small-molecule inhibitor to target PKC activities. Herein, in this review, we have discussed several natural products and their derivatives, which are reported to have an impact on PKC signaling cascade. METHODS All information presented in this review article regarding the regulation of PKC by natural products has been acquired by a systematic search of various electronic databases, including ScienceDirect, Scopus, Google Scholar, Web of science, ResearchGate, and PubMed. The keywords PKC, natural products, curcumin, rottlerin, quercetin, ellagic acid, epigallocatechin-3 gallate, ingenol 3 angelate, resveratrol, protocatechuic acid, tannic acid, PKC modulators from marine organism, bryostatin, staurosporine, midostaurin, sangivamycin, and other relevant key words were explored. RESULTS The natural products and their derivatives including curcumin, rottlerin, quercetin, ellagic acid, epigallocatechin-3 gallate, ingenol 3 angelate, resveratrol, bryostatin, staurosporine, and midostaurin play a major role in the management of PKC activity during various disease progression. CONCLUSION Based on the comprehensive literature survey, it could be concluded that various natural products can regulate PKC activity during disease progression. However, extensive research is needed to circumvent the challenge of isoform specific regulation of PKC by natural products.
Collapse
Affiliation(s)
- Rishi Kant Singh
- Department of Zoology, Institute of Science, BHU, Varanasi, 221005, India
| | | | - Munendra Singh Tomar
- Department of Pharmaceutical Science, School of Pharmacy, University of Colorado, Denver, USA
| | | | - Amit Kumar
- Department of Zoology, Institute of Science, BHU, Varanasi, 221005, India
| | - Sandeep Kumar
- Department of Zoology, Institute of Science, BHU, Varanasi, 221005, India
| | - Naveen Kumar
- Department of Zoology, Institute of Science, BHU, Varanasi, 221005, India
| | - Jai Prakash Singh
- Department of Panchkarma, Institute of Medical Science, BHU, Varanasi, India, 221005
| | - Arbind Acharya
- Department of Zoology, Institute of Science, BHU, Varanasi, 221005, India.
| |
Collapse
|
9
|
Yang CM, Yang CC, Hsiao LD, Yu CY, Tseng HC, Hsu CK, Situmorang JH. Upregulation of COX-2 and PGE 2 Induced by TNF-α Mediated Through TNFR1/MitoROS/PKCα/P38 MAPK, JNK1/2/FoxO1 Cascade in Human Cardiac Fibroblasts. J Inflamm Res 2021; 14:2807-2824. [PMID: 34234507 PMCID: PMC8254141 DOI: 10.2147/jir.s313665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/28/2021] [Indexed: 12/25/2022] Open
Abstract
Purpose Tumor necrosis factor-α (TNF-α) has been shown to exert as a pathogenic factor in cardiac fibrosis and heart failure which were associated with the up-regulation of cyclooxygenase (COX)-2/prostaglandin E2 (PGE2) axis. However, whether TNF-α-induced COX-2/PGE2 upregulation mediated through ROS-dependent cascade remains elusive in human cardiac fibroblasts (HCFs). This study aims to address the underlying mechanisms of TNF-α-induced COX-2/PGE2 expression. Methods Here, we used TNF receptor neutralizing antibody (TNFR nAb), pharmacologic inhibitors, and siRNAs to dissect the involvement of signaling components examined by Western blot and ELISA in TNF-α-mediated responses in HCFs. MitoSOX Red was used to measure mitoROS generation. Isolation of subcellular fractions was performed to determine membrane translocation of PKCα. Promoter luciferase assay and chromatin immunoprecipitation (ChIP) assay were used to determine the role of transcription factor. Results We found that TNF-α time- and concentration-dependently upregulated COX-2 protein and mRNA expression as well as PGE2 synthesis which was attenuated by TNFR1 nAb, the inhibitor of mitochondrial ROS scavenger (MitoTEMPO), protein kinase C [(PKC)α, Gö6976], p38 MAPK [p38 inhibitor VIII, (p38i VIII)], JNK1/2 (SP600125), or forkhead box protein O1 [(FoxO1), AS1842856], and transfection with their respective siRNAs in HCFs. TNF-α-stimulated PKCα phosphorylation was inhibited by TNFR1 nAb, MitoTEMPO, or Gö6976. TNF-α stimulated phosphorylation of p38 MAPK and JNK1/2 was attenuated by TNFR1 nAb, MitoTEMPO, Gö6976, and their inhibitors p38i VIII and SP600125. Moreover, TNF-α-triggered FoxO1 phosphorylation was abolished by AS1842856, TNFR1 nAb, and its upstream inhibitors MitoTEMPO, Gö6976, p38i VIII, and SP600125. Phosphorylation of FoxO1 could enhance its interaction with the COX-2 promoter element revealed by ChIP assay, which was attenuated by AS1842856. Conclusion Our results suggested that TNF-α-induced COX-2/PGE2 upregulation is mediated through TNFR1-dependent MitoROS/PKCα/p38 MAPK and JNK1/2 cascade to activate FoxO1 binding with the COX-2 promoter in HCFs.
Collapse
Affiliation(s)
- Chuen-Mao Yang
- Department of Pharmacology, College of Medicine, China Medical University, Taichung, 40402, Taiwan.,Ph.D. Program for Biotech Pharmaceutical Industry, China Medical University, Taichung, 40402, Taiwan.,Department of Post-Baccalaureate Veterinary Medicine, College of Medical and Health Science, Asia University, Wufeng, Taichung, 41354, Taiwan
| | - Chien-Chung Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Tao-Yuan, Kwei-San, Tao-Yuan, 33302, Taiwan.,School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, 33302, Taiwan
| | - Li-Der Hsiao
- Department of Pharmacology, College of Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Chia-Ying Yu
- Department of Pharmacology, College of Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Hui-Ching Tseng
- Department of Pharmacology, College of Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Chih-Kai Hsu
- Department of Pharmacology, College of Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Jiro Hasegawa Situmorang
- Department of Pharmacology, College of Medicine, China Medical University, Taichung, 40402, Taiwan
| |
Collapse
|
10
|
Lippert LG, Ma N, Ritt M, Jain A, Vaidehi N, Sivaramakrishnan S. Kinase inhibitors allosterically disrupt a regulatory interaction to enhance PKCα membrane translocation. J Biol Chem 2021; 296:100339. [PMID: 33508318 PMCID: PMC7949123 DOI: 10.1016/j.jbc.2021.100339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/14/2021] [Accepted: 01/22/2021] [Indexed: 10/28/2022] Open
Abstract
The eukaryotic kinase domain has multiple intrinsically disordered regions whose conformation dictates kinase activity. Small molecule kinase inhibitors (SMKIs) rely on disrupting the active conformations of these disordered regions to inactivate the kinase. While SMKIs are selected for their ability to cause this disruption, the allosteric effects of conformational changes in disordered regions is limited by a lack of dynamic information provided by traditional structural techniques. In this study, we integrated multiscale molecular dynamics simulations with FRET sensors to characterize a novel allosteric mechanism that is selectively triggered by SMKI binding to the protein kinase Cα domain. The indole maleimide inhibitors BimI and sotrastaurin were found to displace the Gly-rich loop (G-loop) that normally shields the ATP-binding site. Displacement of the G-loop interferes with a newly identified, structurally conserved binding pocket for the C1a domain on the N lobe of the kinase domain. This binding pocket, in conjunction with the N-terminal regulatory sequence, masks a diacylglycerol (DAG) binding site on the C1a domain. SMKI-mediated displacement of the G-loop released C1a and exposed the DAG binding site, enhancing protein kinase Cα translocation both to synthetic lipid bilayers and to live cell membranes in the presence of DAG. Inhibitor chemotype determined the extent of the observed allosteric effects on the kinase domain and correlated with the extent of membrane recruitment. Our findings demonstrate the allosteric effects of SMKIs beyond the confines of kinase catalytic conformation and provide an integrated computational-experimental paradigm to investigate parallel mechanisms in other kinases.
Collapse
Affiliation(s)
- Lisa G Lippert
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ning Ma
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, California, USA
| | - Michael Ritt
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Abhinandan Jain
- The Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, California, USA.
| | - Sivaraj Sivaramakrishnan
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
11
|
Xu Y, Liang C, Luo Y, Zhang T. MBNL1 regulates isoproterenol-induced myocardial remodelling in vitro and in vivo. J Cell Mol Med 2021; 25:1100-1115. [PMID: 33295096 PMCID: PMC7812249 DOI: 10.1111/jcmm.16177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/15/2020] [Accepted: 11/25/2020] [Indexed: 12/21/2022] Open
Abstract
Myocardial remodelling is a common phenomenon in cardiovascular diseases, which threaten human health and the quality of life. Due to the lack of effective early diagnosis and treatment methods, the molecular mechanism of myocardial remodelling should be explored in depth. In this study, we observed the high expression of MBNL1 in cardiac tissue and peripheral blood of an isoproterenol (ISO)-induced cardiac hypertrophy mouse model. MBNL1 promoted ISO-induced cardiac hypertrophy and fibrosis by stabilizing Myocardin mRNA in vivo and in vitro. Meanwhile, an increase in MBNL1 may induce the apoptosis of cardiomyocytes treated with ISO via TNF-α signalling. Interestingly, MBNL1 can be activated by p300 in cardiomyocytes treated with ISO. At last, Myocardin can reverse activate the expression of MBNL1. These results suggest that MBNL1 may be a potential target for the early diagnosis and clinical treatment of myocardial remodelling.
Collapse
Affiliation(s)
- Yao Xu
- College of Life Sciences and HealthWuhan University of Science and TechnologyWuhanChina
| | - Chen Liang
- College of Life Sciences and HealthWuhan University of Science and TechnologyWuhanChina
| | - Ying Luo
- College of Biological Science and TechnologyHubei Minzu UniversityEnshiChina
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic diseasesHubei Minzu UniversityEnshiChina
| | - Tongcun Zhang
- College of Life Sciences and HealthWuhan University of Science and TechnologyWuhanChina
| |
Collapse
|
12
|
Irnaten M, Duff A, Clark A, O’Brien C. Intra-Cellular Calcium Signaling Pathways (PKC, RAS/RAF/MAPK, PI3K) in Lamina Cribrosa Cells in Glaucoma. J Clin Med 2020; 10:jcm10010062. [PMID: 33375386 PMCID: PMC7795259 DOI: 10.3390/jcm10010062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
The lamina cribrosa (LC) is a key site of fibrotic damage in glaucomatous optic neuropathy and the precise mechanisms of LC change remain unclear. Elevated Ca2+ is a major driver of fibrosis, and therefore intracellular Ca2+ signaling pathways are relevant glaucoma-related mechanisms that need to be studied. Protein kinase C (PKC), mitogen-activated MAPK kinases (p38 and p42/44-MAPK), and the PI3K/mTOR axis are key Ca2+ signal transducers in fibrosis and we therefore investigated their expression and activity in normal and glaucoma cultured LC cells. We show, using Western immune-blotting, that hyposmotic-induced cellular swelling activates PKCα, p42/p44, and p38 MAPKs, the activity is transient and biphasic as it peaks between 2 min and 10 min. The expression and activity of PKCα, p38 and p42/p44-MAPKs are significantly (p < 0.05) increased in glaucoma LC cells at basal level, and at different time-points after hyposmotic stretch. We also found elevated mRNA expression of mRNA expression of PI3K, IP3R, mTOR, and CaMKII in glaucoma LC cells. This study has identified abnormalities in multiple calcium signaling pathways (PKCα, MAPK, PI3K) in glaucoma LC cells, which might have significant functional and therapeutic implications in optic nerve head (ONH) fibrosis and cupping in glaucoma.
Collapse
Affiliation(s)
- Mustapha Irnaten
- Department Ophthalmology, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland;
- Correspondence: ; Tel.: +353-851-334-932
| | - Aisling Duff
- Milton Medical Centre New South Wales, Milton, NSW 2538, Australia;
| | - Abbot Clark
- Department Pharmacology & Neuroscience and the North Texas Eye Research Institute, Health Science Center, Fort Worth, TX 76107, USA;
| | - Colm O’Brien
- Department Ophthalmology, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland;
- School of Medicine and Medical Science, University College Dublin, D04 V1W8 Dublin, Ireland
| |
Collapse
|
13
|
Sweeny EA, Schlanger S, Stuehr DJ. Dynamic regulation of NADPH oxidase 5 by intracellular heme levels and cellular chaperones. Redox Biol 2020; 36:101656. [PMID: 32738790 PMCID: PMC7394750 DOI: 10.1016/j.redox.2020.101656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/13/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022] Open
Abstract
NADPH oxidase 5 (NOX5) is a transmembrane signaling enzyme that produces superoxide in response to elevated cytosolic calcium. In addition to its association with numerous human diseases, NOX5 has recently been discovered to play crucial roles in the immune response and cardiovascular system. Details of NOX5 maturation, and specifically its response to changes in intracellular heme levels have remained unclear. Here we establish an experimental system in mammalian cells that allows us to probe the influence of heme availability on ROS production by NOX5. We identified a mode of dynamic regulatory control over NOX5 activity through modulation of its heme saturation and oligomeric state by intracellular heme levels and Hsp90 binding. This regulatory mechanism allows for fine-tuning and reversible modulation of NOX5 activity in response to stimuli.
Collapse
Affiliation(s)
- Elizabeth A Sweeny
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA.
| | - Simon Schlanger
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Dennis J Stuehr
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA.
| |
Collapse
|
14
|
Luzum JA, Ting C, Peterson EL, Gui H, Shugg T, Williams LK, Li L, Sadee W, Wang D, Lanfear DE. Association of Regulatory Genetic Variants for Protein Kinase Cα with Mortality and Drug Efficacy in Patients with Heart Failure. Cardiovasc Drugs Ther 2019; 33:693-700. [PMID: 31728800 DOI: 10.1007/s10557-019-06909-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE Protein kinase C alpha (gene: PRKCA) is a key regulator of cardiac contractility. Two genetic variants have recently been discovered to regulate PRKCA expression in failing human heart tissue (rs9909004 [T → C] and rs9303504 [C → G]). The association of those variants with clinical outcomes in patients with heart failure (HF), and their interaction with HF drug efficacy, is unknown. METHODS Patients with HF in a prospective registry starting in 2007 were genotyped by whole genome array (n = 951). The primary outcome was all-cause mortality. Cox proportional hazards models adjusted for established clinical risk factors and genomic ancestry tested the independent association of rs9909004 or rs9303504 and the variant interactions with cornerstone HF pharmacotherapies (beta-blockers or angiotensin-converting enzyme inhibitors/angiotensin receptor blockers) in additive genetic models. RESULTS The minor allele of rs9909004, but not of rs9303504, was independently associated with a decreased risk for all-cause mortality: adjusted HR = 0.81 (95% CI = 0.67-0.98), p = 0.032. The variants did not significantly interact with mortality benefit associated with cornerstone HF pharmacotherapies (p > 0.1 for all). CONCLUSIONS A recently discovered cardiac-specific regulatory variant for PRKCA (rs9909004) was independently associated with a decreased risk for all-cause mortality in patients with HF. The variant did not interact with mortality benefit associated with cornerstone HF pharmacotherapies.
Collapse
Affiliation(s)
- Jasmine A Luzum
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA. .,Center for Individualized and Genomic Medicine Research (CIGMA), Henry Ford Health System, Detroit, MI, USA.
| | - Christopher Ting
- Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Edward L Peterson
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, USA
| | - Hongsheng Gui
- Center for Individualized and Genomic Medicine Research (CIGMA), Henry Ford Health System, Detroit, MI, USA
| | - Tyler Shugg
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - L Keoki Williams
- Center for Individualized and Genomic Medicine Research (CIGMA), Henry Ford Health System, Detroit, MI, USA
| | - Liang Li
- Department of Medical Genetics, Southern Medical University, Guangzhou, China
| | - Wolfgang Sadee
- Center for Pharmacogenomics and Department of Cancer Biology and Genetics, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Danxin Wang
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - David E Lanfear
- Center for Individualized and Genomic Medicine Research (CIGMA), Henry Ford Health System, Detroit, MI, USA.,Heart and Vascular Institute, Henry Ford Health System, Detroit, MI, USA
| |
Collapse
|
15
|
Abstract
AIM Protein kinase Cα (PKCα) is a critical regulator of multiple cell signaling pathways including gene transcription, posttranslation modifications and activation/inhibition of many signaling kinases. In regards to the control of blood pressure, PKCα causes increased vascular smooth muscle contractility, while reducing cardiac contractility. In addition, PKCα has been shown to modulate nephron ion transport. However, the role of PKCα in modulating mean arterial pressure (MAP) has not been investigated. In this study, we used a whole animal PKCα knock out (PKC KO) to test the hypothesis that global PKCα deficiency would reduce MAP, by a reduction in vascular contractility. METHODS Radiotelemetry measurements of ambulatory blood pressure (day/night) were obtained for 18 h/day during both normal chow and high-salt (4%) diet feedings. PKCα mice had a reduced MAP, as compared with control, which was not normalized with high-salt diet (14 days). Metabolic cage studies were performed to determine urinary sodium excretion. RESULTS PKC KO mice had a significantly lower diastolic, systolic and MAP as compared with control. No significant differences in urinary sodium excretion were observed between the PKC KO and control mice, whether fed normal chow or high-salt diet. Western blot analysis showed a compensatory increase in renal sodium chloride cotransporter expression. Both aorta and mesenteric vessels were removed for vascular reactivity studies. Aorta and mesenteric arteries from PKC KO mice had a reduced receptor-independent relaxation response, as compared with vessels from control. Vessels from PKC KO mice exhibited a decrease in maximal contraction, compared with controls. CONCLUSION Together, these data suggest that global deletion of PKCα results in reduced MAP due to decreased vascular contractility.
Collapse
|
16
|
Geribaldi-Doldán N, Gómez-Oliva R, Domínguez-García S, Nunez-Abades P, Castro C. Protein Kinase C: Targets to Regenerate Brain Injuries? Front Cell Dev Biol 2019; 7:39. [PMID: 30949480 PMCID: PMC6435489 DOI: 10.3389/fcell.2019.00039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/04/2019] [Indexed: 12/28/2022] Open
Abstract
Acute or chronic injury to the central nervous system (CNS), causes neuronal death and irreversible cognitive deficits or sensory-motor alteration. Despite the capacity of the adult CNS to generate new neurons from neural stem cells (NSC), neuronal replacement following an injury is a restricted process, which does not naturally result in functional regeneration. Therefore, potentiating endogenous neurogenesis is one of the strategies that are currently being under study to regenerate damaged brain tissue. The insignificant neurogenesis that occurs in CNS injuries is a consequence of the gliogenic/non-neurogenic environment that inflammatory signaling molecules create within the injured area. The modification of the extracellular signals to generate a neurogenic environment would facilitate neuronal replacement. However, in order to generate this environment, it is necessary to unearth which molecules promote or impair neurogenesis to introduce the first and/or eliminate the latter. Specific isozymes of the protein kinase C (PKC) family differentially contribute to generate a gliogenic or neurogenic environment in injuries by regulating the ADAM17 mediated release of growth factor receptor ligands. Recent reports describe several non-tumorigenic diterpenes isolated from plants of the Euphorbia genus, which specifically modulate the activity of PKC isozymes promoting neurogenesis. Diterpenes with 12-deoxyphorbol or lathyrane skeleton, increase NPC proliferation in neurogenic niches in the adult mouse brain in a PKCβ dependent manner exerting their effects on transit amplifying cells, whereas PKC inhibition in injuries promotes neurogenesis. Thus, compounds that balance PKC activity in injuries might be of use in the development of new drugs and therapeutic strategies to regenerate brain injuries.
Collapse
Affiliation(s)
- Noelia Geribaldi-Doldán
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomedica de Cádiz (INIBICA), Cádiz, Spain
| | - Ricardo Gómez-Oliva
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomedica de Cádiz (INIBICA), Cádiz, Spain
| | - Samuel Domínguez-García
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomedica de Cádiz (INIBICA), Cádiz, Spain
| | - Pedro Nunez-Abades
- Instituto de Investigación e Innovación Biomedica de Cádiz (INIBICA), Cádiz, Spain.,Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Carmen Castro
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomedica de Cádiz (INIBICA), Cádiz, Spain
| |
Collapse
|
17
|
Hu R, Morley MP, Brandimarto J, Tucker NR, Parsons VA, Zhao SD, Meder B, Katus HA, Rühle F, Stoll M, Villard E, Cambien F, Lin H, Smith NL, Felix JF, Vasan RS, van der Harst P, Newton-Cheh C, Li J, Kim CE, Hakonarson H, Hannenhalli S, Ashley EA, Moravec CS, Tang WHW, Maillet M, Molkentin JD, Ellinor PT, Margulies KB, Cappola TP. Genetic Reduction in Left Ventricular Protein Kinase C-α and Adverse Ventricular Remodeling in Human Subjects. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019. [PMID: 29540468 DOI: 10.1161/circgen.117.001901] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Inhibition of PKC-α (protein kinase C-α) enhances contractility and cardioprotection in animal models, but effects in humans are unknown. Genotypes at rs9912468 strongly associate with PRKCA expression in the left ventricle, enabling genetic approaches to measure effects of reduced PKC-α in human populations. METHODS AND RESULTS We analyzed the cis expression quantitative trait locus for PRKCA marked by rs9912468 using 313 left ventricular specimens from European Ancestry patients. The forward strand minor allele (G) at rs9912468 is associated with reduced PKC-α transcript abundance (1.7-fold reduction in minor allele homozygotes, P=1×10-41). This association was cardiac specific in expression quantitative trait locus data sets that span 16 human tissues. Cardiac epigenomic data revealed a predicted enhancer in complete (R2=1.0) linkage disequilibrium with rs9912468 within intron 2 of PRKCA. We cloned this region and used reporter constructs to verify cardiac-specific enhancer activity in vitro in cardiac and noncardiac cells and in vivo in zebrafish. The PRKCA enhancer contains 2 common genetic variants and 4 haplotypes; the haplotype correlated with the rs9912468 PKC-α-lowering allele (G) showed lowest activity. In contrast to previous reports in animal models, the PKC-α-lowering allele is associated with adverse left ventricular remodeling (higher mass, larger diastolic dimension), reduced fractional shortening, and higher risk of dilated cardiomyopathy in human populations. CONCLUSIONS These findings support PKC-α as a regulator of the human heart but suggest that PKC-α inhibition may adversely affect the left ventricle depending on timing and duration. Pharmacological studies in human subjects are required to discern potential benefits and harms of PKC-α inhibitors as an approach to treat heart disease.
Collapse
Affiliation(s)
- Ray Hu
- From the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (R.H., M.P.M., J.B., K.B.M., T.P.C.); Cardiovascular Research Center (N.R.T., V.A.P., P.T.E.) and Center for Human Genetic Research and Cardiovascular Research Center (C.N.-C.), Massachusetts General Hospital, Boston; Department of Statistics, University of Illinois at Urbana-Champaign (S.D.Z.); Heidelberg University Hospital, Germany (B.M., H.A.K.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (F.R., M.S.); INSERM UMRS1166-IACN, Hôpital Pitié-Salpêtrière, Paris, France (E.V., F.C.); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands (J.F.F.); Boston University School of Medicine, MA (R.S.V.); Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (P.v.d.H.); Medical and Population Genetics Program, Broad Institute, Cambridge, MA (C.N.-C.); Center for Applied Genomics, Children's Hospital of Philadelphia, PA (J.L., C.E.K., H.H.); Center for Bioinformatics and Computational Biology, University of Maryland, College Park (S.H.); Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, CA (E.A.A.); Department of Cardiovascular Medicine, Cleveland Clinic, OH (C.S.M., W.H.W.T.); and Howard Hughes Medical Institute and Cincinnati Children's Hospital Medical Center, OH (M.M., J.D.M.)
| | - Michael P Morley
- From the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (R.H., M.P.M., J.B., K.B.M., T.P.C.); Cardiovascular Research Center (N.R.T., V.A.P., P.T.E.) and Center for Human Genetic Research and Cardiovascular Research Center (C.N.-C.), Massachusetts General Hospital, Boston; Department of Statistics, University of Illinois at Urbana-Champaign (S.D.Z.); Heidelberg University Hospital, Germany (B.M., H.A.K.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (F.R., M.S.); INSERM UMRS1166-IACN, Hôpital Pitié-Salpêtrière, Paris, France (E.V., F.C.); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands (J.F.F.); Boston University School of Medicine, MA (R.S.V.); Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (P.v.d.H.); Medical and Population Genetics Program, Broad Institute, Cambridge, MA (C.N.-C.); Center for Applied Genomics, Children's Hospital of Philadelphia, PA (J.L., C.E.K., H.H.); Center for Bioinformatics and Computational Biology, University of Maryland, College Park (S.H.); Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, CA (E.A.A.); Department of Cardiovascular Medicine, Cleveland Clinic, OH (C.S.M., W.H.W.T.); and Howard Hughes Medical Institute and Cincinnati Children's Hospital Medical Center, OH (M.M., J.D.M.)
| | - Jeffrey Brandimarto
- From the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (R.H., M.P.M., J.B., K.B.M., T.P.C.); Cardiovascular Research Center (N.R.T., V.A.P., P.T.E.) and Center for Human Genetic Research and Cardiovascular Research Center (C.N.-C.), Massachusetts General Hospital, Boston; Department of Statistics, University of Illinois at Urbana-Champaign (S.D.Z.); Heidelberg University Hospital, Germany (B.M., H.A.K.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (F.R., M.S.); INSERM UMRS1166-IACN, Hôpital Pitié-Salpêtrière, Paris, France (E.V., F.C.); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands (J.F.F.); Boston University School of Medicine, MA (R.S.V.); Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (P.v.d.H.); Medical and Population Genetics Program, Broad Institute, Cambridge, MA (C.N.-C.); Center for Applied Genomics, Children's Hospital of Philadelphia, PA (J.L., C.E.K., H.H.); Center for Bioinformatics and Computational Biology, University of Maryland, College Park (S.H.); Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, CA (E.A.A.); Department of Cardiovascular Medicine, Cleveland Clinic, OH (C.S.M., W.H.W.T.); and Howard Hughes Medical Institute and Cincinnati Children's Hospital Medical Center, OH (M.M., J.D.M.)
| | - Nathan R Tucker
- From the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (R.H., M.P.M., J.B., K.B.M., T.P.C.); Cardiovascular Research Center (N.R.T., V.A.P., P.T.E.) and Center for Human Genetic Research and Cardiovascular Research Center (C.N.-C.), Massachusetts General Hospital, Boston; Department of Statistics, University of Illinois at Urbana-Champaign (S.D.Z.); Heidelberg University Hospital, Germany (B.M., H.A.K.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (F.R., M.S.); INSERM UMRS1166-IACN, Hôpital Pitié-Salpêtrière, Paris, France (E.V., F.C.); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands (J.F.F.); Boston University School of Medicine, MA (R.S.V.); Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (P.v.d.H.); Medical and Population Genetics Program, Broad Institute, Cambridge, MA (C.N.-C.); Center for Applied Genomics, Children's Hospital of Philadelphia, PA (J.L., C.E.K., H.H.); Center for Bioinformatics and Computational Biology, University of Maryland, College Park (S.H.); Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, CA (E.A.A.); Department of Cardiovascular Medicine, Cleveland Clinic, OH (C.S.M., W.H.W.T.); and Howard Hughes Medical Institute and Cincinnati Children's Hospital Medical Center, OH (M.M., J.D.M.)
| | - Victoria A Parsons
- From the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (R.H., M.P.M., J.B., K.B.M., T.P.C.); Cardiovascular Research Center (N.R.T., V.A.P., P.T.E.) and Center for Human Genetic Research and Cardiovascular Research Center (C.N.-C.), Massachusetts General Hospital, Boston; Department of Statistics, University of Illinois at Urbana-Champaign (S.D.Z.); Heidelberg University Hospital, Germany (B.M., H.A.K.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (F.R., M.S.); INSERM UMRS1166-IACN, Hôpital Pitié-Salpêtrière, Paris, France (E.V., F.C.); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands (J.F.F.); Boston University School of Medicine, MA (R.S.V.); Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (P.v.d.H.); Medical and Population Genetics Program, Broad Institute, Cambridge, MA (C.N.-C.); Center for Applied Genomics, Children's Hospital of Philadelphia, PA (J.L., C.E.K., H.H.); Center for Bioinformatics and Computational Biology, University of Maryland, College Park (S.H.); Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, CA (E.A.A.); Department of Cardiovascular Medicine, Cleveland Clinic, OH (C.S.M., W.H.W.T.); and Howard Hughes Medical Institute and Cincinnati Children's Hospital Medical Center, OH (M.M., J.D.M.)
| | - Sihai D Zhao
- From the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (R.H., M.P.M., J.B., K.B.M., T.P.C.); Cardiovascular Research Center (N.R.T., V.A.P., P.T.E.) and Center for Human Genetic Research and Cardiovascular Research Center (C.N.-C.), Massachusetts General Hospital, Boston; Department of Statistics, University of Illinois at Urbana-Champaign (S.D.Z.); Heidelberg University Hospital, Germany (B.M., H.A.K.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (F.R., M.S.); INSERM UMRS1166-IACN, Hôpital Pitié-Salpêtrière, Paris, France (E.V., F.C.); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands (J.F.F.); Boston University School of Medicine, MA (R.S.V.); Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (P.v.d.H.); Medical and Population Genetics Program, Broad Institute, Cambridge, MA (C.N.-C.); Center for Applied Genomics, Children's Hospital of Philadelphia, PA (J.L., C.E.K., H.H.); Center for Bioinformatics and Computational Biology, University of Maryland, College Park (S.H.); Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, CA (E.A.A.); Department of Cardiovascular Medicine, Cleveland Clinic, OH (C.S.M., W.H.W.T.); and Howard Hughes Medical Institute and Cincinnati Children's Hospital Medical Center, OH (M.M., J.D.M.)
| | - Benjamin Meder
- From the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (R.H., M.P.M., J.B., K.B.M., T.P.C.); Cardiovascular Research Center (N.R.T., V.A.P., P.T.E.) and Center for Human Genetic Research and Cardiovascular Research Center (C.N.-C.), Massachusetts General Hospital, Boston; Department of Statistics, University of Illinois at Urbana-Champaign (S.D.Z.); Heidelberg University Hospital, Germany (B.M., H.A.K.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (F.R., M.S.); INSERM UMRS1166-IACN, Hôpital Pitié-Salpêtrière, Paris, France (E.V., F.C.); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands (J.F.F.); Boston University School of Medicine, MA (R.S.V.); Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (P.v.d.H.); Medical and Population Genetics Program, Broad Institute, Cambridge, MA (C.N.-C.); Center for Applied Genomics, Children's Hospital of Philadelphia, PA (J.L., C.E.K., H.H.); Center for Bioinformatics and Computational Biology, University of Maryland, College Park (S.H.); Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, CA (E.A.A.); Department of Cardiovascular Medicine, Cleveland Clinic, OH (C.S.M., W.H.W.T.); and Howard Hughes Medical Institute and Cincinnati Children's Hospital Medical Center, OH (M.M., J.D.M.)
| | - Hugo A Katus
- From the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (R.H., M.P.M., J.B., K.B.M., T.P.C.); Cardiovascular Research Center (N.R.T., V.A.P., P.T.E.) and Center for Human Genetic Research and Cardiovascular Research Center (C.N.-C.), Massachusetts General Hospital, Boston; Department of Statistics, University of Illinois at Urbana-Champaign (S.D.Z.); Heidelberg University Hospital, Germany (B.M., H.A.K.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (F.R., M.S.); INSERM UMRS1166-IACN, Hôpital Pitié-Salpêtrière, Paris, France (E.V., F.C.); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands (J.F.F.); Boston University School of Medicine, MA (R.S.V.); Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (P.v.d.H.); Medical and Population Genetics Program, Broad Institute, Cambridge, MA (C.N.-C.); Center for Applied Genomics, Children's Hospital of Philadelphia, PA (J.L., C.E.K., H.H.); Center for Bioinformatics and Computational Biology, University of Maryland, College Park (S.H.); Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, CA (E.A.A.); Department of Cardiovascular Medicine, Cleveland Clinic, OH (C.S.M., W.H.W.T.); and Howard Hughes Medical Institute and Cincinnati Children's Hospital Medical Center, OH (M.M., J.D.M.)
| | - Frank Rühle
- From the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (R.H., M.P.M., J.B., K.B.M., T.P.C.); Cardiovascular Research Center (N.R.T., V.A.P., P.T.E.) and Center for Human Genetic Research and Cardiovascular Research Center (C.N.-C.), Massachusetts General Hospital, Boston; Department of Statistics, University of Illinois at Urbana-Champaign (S.D.Z.); Heidelberg University Hospital, Germany (B.M., H.A.K.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (F.R., M.S.); INSERM UMRS1166-IACN, Hôpital Pitié-Salpêtrière, Paris, France (E.V., F.C.); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands (J.F.F.); Boston University School of Medicine, MA (R.S.V.); Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (P.v.d.H.); Medical and Population Genetics Program, Broad Institute, Cambridge, MA (C.N.-C.); Center for Applied Genomics, Children's Hospital of Philadelphia, PA (J.L., C.E.K., H.H.); Center for Bioinformatics and Computational Biology, University of Maryland, College Park (S.H.); Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, CA (E.A.A.); Department of Cardiovascular Medicine, Cleveland Clinic, OH (C.S.M., W.H.W.T.); and Howard Hughes Medical Institute and Cincinnati Children's Hospital Medical Center, OH (M.M., J.D.M.)
| | - Monika Stoll
- From the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (R.H., M.P.M., J.B., K.B.M., T.P.C.); Cardiovascular Research Center (N.R.T., V.A.P., P.T.E.) and Center for Human Genetic Research and Cardiovascular Research Center (C.N.-C.), Massachusetts General Hospital, Boston; Department of Statistics, University of Illinois at Urbana-Champaign (S.D.Z.); Heidelberg University Hospital, Germany (B.M., H.A.K.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (F.R., M.S.); INSERM UMRS1166-IACN, Hôpital Pitié-Salpêtrière, Paris, France (E.V., F.C.); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands (J.F.F.); Boston University School of Medicine, MA (R.S.V.); Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (P.v.d.H.); Medical and Population Genetics Program, Broad Institute, Cambridge, MA (C.N.-C.); Center for Applied Genomics, Children's Hospital of Philadelphia, PA (J.L., C.E.K., H.H.); Center for Bioinformatics and Computational Biology, University of Maryland, College Park (S.H.); Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, CA (E.A.A.); Department of Cardiovascular Medicine, Cleveland Clinic, OH (C.S.M., W.H.W.T.); and Howard Hughes Medical Institute and Cincinnati Children's Hospital Medical Center, OH (M.M., J.D.M.)
| | - Eric Villard
- From the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (R.H., M.P.M., J.B., K.B.M., T.P.C.); Cardiovascular Research Center (N.R.T., V.A.P., P.T.E.) and Center for Human Genetic Research and Cardiovascular Research Center (C.N.-C.), Massachusetts General Hospital, Boston; Department of Statistics, University of Illinois at Urbana-Champaign (S.D.Z.); Heidelberg University Hospital, Germany (B.M., H.A.K.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (F.R., M.S.); INSERM UMRS1166-IACN, Hôpital Pitié-Salpêtrière, Paris, France (E.V., F.C.); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands (J.F.F.); Boston University School of Medicine, MA (R.S.V.); Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (P.v.d.H.); Medical and Population Genetics Program, Broad Institute, Cambridge, MA (C.N.-C.); Center for Applied Genomics, Children's Hospital of Philadelphia, PA (J.L., C.E.K., H.H.); Center for Bioinformatics and Computational Biology, University of Maryland, College Park (S.H.); Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, CA (E.A.A.); Department of Cardiovascular Medicine, Cleveland Clinic, OH (C.S.M., W.H.W.T.); and Howard Hughes Medical Institute and Cincinnati Children's Hospital Medical Center, OH (M.M., J.D.M.)
| | - François Cambien
- From the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (R.H., M.P.M., J.B., K.B.M., T.P.C.); Cardiovascular Research Center (N.R.T., V.A.P., P.T.E.) and Center for Human Genetic Research and Cardiovascular Research Center (C.N.-C.), Massachusetts General Hospital, Boston; Department of Statistics, University of Illinois at Urbana-Champaign (S.D.Z.); Heidelberg University Hospital, Germany (B.M., H.A.K.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (F.R., M.S.); INSERM UMRS1166-IACN, Hôpital Pitié-Salpêtrière, Paris, France (E.V., F.C.); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands (J.F.F.); Boston University School of Medicine, MA (R.S.V.); Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (P.v.d.H.); Medical and Population Genetics Program, Broad Institute, Cambridge, MA (C.N.-C.); Center for Applied Genomics, Children's Hospital of Philadelphia, PA (J.L., C.E.K., H.H.); Center for Bioinformatics and Computational Biology, University of Maryland, College Park (S.H.); Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, CA (E.A.A.); Department of Cardiovascular Medicine, Cleveland Clinic, OH (C.S.M., W.H.W.T.); and Howard Hughes Medical Institute and Cincinnati Children's Hospital Medical Center, OH (M.M., J.D.M.)
| | - Honghuang Lin
- From the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (R.H., M.P.M., J.B., K.B.M., T.P.C.); Cardiovascular Research Center (N.R.T., V.A.P., P.T.E.) and Center for Human Genetic Research and Cardiovascular Research Center (C.N.-C.), Massachusetts General Hospital, Boston; Department of Statistics, University of Illinois at Urbana-Champaign (S.D.Z.); Heidelberg University Hospital, Germany (B.M., H.A.K.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (F.R., M.S.); INSERM UMRS1166-IACN, Hôpital Pitié-Salpêtrière, Paris, France (E.V., F.C.); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands (J.F.F.); Boston University School of Medicine, MA (R.S.V.); Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (P.v.d.H.); Medical and Population Genetics Program, Broad Institute, Cambridge, MA (C.N.-C.); Center for Applied Genomics, Children's Hospital of Philadelphia, PA (J.L., C.E.K., H.H.); Center for Bioinformatics and Computational Biology, University of Maryland, College Park (S.H.); Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, CA (E.A.A.); Department of Cardiovascular Medicine, Cleveland Clinic, OH (C.S.M., W.H.W.T.); and Howard Hughes Medical Institute and Cincinnati Children's Hospital Medical Center, OH (M.M., J.D.M.)
| | - Nicholas L Smith
- From the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (R.H., M.P.M., J.B., K.B.M., T.P.C.); Cardiovascular Research Center (N.R.T., V.A.P., P.T.E.) and Center for Human Genetic Research and Cardiovascular Research Center (C.N.-C.), Massachusetts General Hospital, Boston; Department of Statistics, University of Illinois at Urbana-Champaign (S.D.Z.); Heidelberg University Hospital, Germany (B.M., H.A.K.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (F.R., M.S.); INSERM UMRS1166-IACN, Hôpital Pitié-Salpêtrière, Paris, France (E.V., F.C.); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands (J.F.F.); Boston University School of Medicine, MA (R.S.V.); Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (P.v.d.H.); Medical and Population Genetics Program, Broad Institute, Cambridge, MA (C.N.-C.); Center for Applied Genomics, Children's Hospital of Philadelphia, PA (J.L., C.E.K., H.H.); Center for Bioinformatics and Computational Biology, University of Maryland, College Park (S.H.); Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, CA (E.A.A.); Department of Cardiovascular Medicine, Cleveland Clinic, OH (C.S.M., W.H.W.T.); and Howard Hughes Medical Institute and Cincinnati Children's Hospital Medical Center, OH (M.M., J.D.M.)
| | - Janine F Felix
- From the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (R.H., M.P.M., J.B., K.B.M., T.P.C.); Cardiovascular Research Center (N.R.T., V.A.P., P.T.E.) and Center for Human Genetic Research and Cardiovascular Research Center (C.N.-C.), Massachusetts General Hospital, Boston; Department of Statistics, University of Illinois at Urbana-Champaign (S.D.Z.); Heidelberg University Hospital, Germany (B.M., H.A.K.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (F.R., M.S.); INSERM UMRS1166-IACN, Hôpital Pitié-Salpêtrière, Paris, France (E.V., F.C.); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands (J.F.F.); Boston University School of Medicine, MA (R.S.V.); Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (P.v.d.H.); Medical and Population Genetics Program, Broad Institute, Cambridge, MA (C.N.-C.); Center for Applied Genomics, Children's Hospital of Philadelphia, PA (J.L., C.E.K., H.H.); Center for Bioinformatics and Computational Biology, University of Maryland, College Park (S.H.); Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, CA (E.A.A.); Department of Cardiovascular Medicine, Cleveland Clinic, OH (C.S.M., W.H.W.T.); and Howard Hughes Medical Institute and Cincinnati Children's Hospital Medical Center, OH (M.M., J.D.M.)
| | - Ramachandran S Vasan
- From the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (R.H., M.P.M., J.B., K.B.M., T.P.C.); Cardiovascular Research Center (N.R.T., V.A.P., P.T.E.) and Center for Human Genetic Research and Cardiovascular Research Center (C.N.-C.), Massachusetts General Hospital, Boston; Department of Statistics, University of Illinois at Urbana-Champaign (S.D.Z.); Heidelberg University Hospital, Germany (B.M., H.A.K.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (F.R., M.S.); INSERM UMRS1166-IACN, Hôpital Pitié-Salpêtrière, Paris, France (E.V., F.C.); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands (J.F.F.); Boston University School of Medicine, MA (R.S.V.); Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (P.v.d.H.); Medical and Population Genetics Program, Broad Institute, Cambridge, MA (C.N.-C.); Center for Applied Genomics, Children's Hospital of Philadelphia, PA (J.L., C.E.K., H.H.); Center for Bioinformatics and Computational Biology, University of Maryland, College Park (S.H.); Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, CA (E.A.A.); Department of Cardiovascular Medicine, Cleveland Clinic, OH (C.S.M., W.H.W.T.); and Howard Hughes Medical Institute and Cincinnati Children's Hospital Medical Center, OH (M.M., J.D.M.)
| | - Pim van der Harst
- From the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (R.H., M.P.M., J.B., K.B.M., T.P.C.); Cardiovascular Research Center (N.R.T., V.A.P., P.T.E.) and Center for Human Genetic Research and Cardiovascular Research Center (C.N.-C.), Massachusetts General Hospital, Boston; Department of Statistics, University of Illinois at Urbana-Champaign (S.D.Z.); Heidelberg University Hospital, Germany (B.M., H.A.K.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (F.R., M.S.); INSERM UMRS1166-IACN, Hôpital Pitié-Salpêtrière, Paris, France (E.V., F.C.); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands (J.F.F.); Boston University School of Medicine, MA (R.S.V.); Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (P.v.d.H.); Medical and Population Genetics Program, Broad Institute, Cambridge, MA (C.N.-C.); Center for Applied Genomics, Children's Hospital of Philadelphia, PA (J.L., C.E.K., H.H.); Center for Bioinformatics and Computational Biology, University of Maryland, College Park (S.H.); Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, CA (E.A.A.); Department of Cardiovascular Medicine, Cleveland Clinic, OH (C.S.M., W.H.W.T.); and Howard Hughes Medical Institute and Cincinnati Children's Hospital Medical Center, OH (M.M., J.D.M.)
| | - Christopher Newton-Cheh
- From the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (R.H., M.P.M., J.B., K.B.M., T.P.C.); Cardiovascular Research Center (N.R.T., V.A.P., P.T.E.) and Center for Human Genetic Research and Cardiovascular Research Center (C.N.-C.), Massachusetts General Hospital, Boston; Department of Statistics, University of Illinois at Urbana-Champaign (S.D.Z.); Heidelberg University Hospital, Germany (B.M., H.A.K.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (F.R., M.S.); INSERM UMRS1166-IACN, Hôpital Pitié-Salpêtrière, Paris, France (E.V., F.C.); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands (J.F.F.); Boston University School of Medicine, MA (R.S.V.); Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (P.v.d.H.); Medical and Population Genetics Program, Broad Institute, Cambridge, MA (C.N.-C.); Center for Applied Genomics, Children's Hospital of Philadelphia, PA (J.L., C.E.K., H.H.); Center for Bioinformatics and Computational Biology, University of Maryland, College Park (S.H.); Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, CA (E.A.A.); Department of Cardiovascular Medicine, Cleveland Clinic, OH (C.S.M., W.H.W.T.); and Howard Hughes Medical Institute and Cincinnati Children's Hospital Medical Center, OH (M.M., J.D.M.)
| | - Jin Li
- From the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (R.H., M.P.M., J.B., K.B.M., T.P.C.); Cardiovascular Research Center (N.R.T., V.A.P., P.T.E.) and Center for Human Genetic Research and Cardiovascular Research Center (C.N.-C.), Massachusetts General Hospital, Boston; Department of Statistics, University of Illinois at Urbana-Champaign (S.D.Z.); Heidelberg University Hospital, Germany (B.M., H.A.K.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (F.R., M.S.); INSERM UMRS1166-IACN, Hôpital Pitié-Salpêtrière, Paris, France (E.V., F.C.); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands (J.F.F.); Boston University School of Medicine, MA (R.S.V.); Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (P.v.d.H.); Medical and Population Genetics Program, Broad Institute, Cambridge, MA (C.N.-C.); Center for Applied Genomics, Children's Hospital of Philadelphia, PA (J.L., C.E.K., H.H.); Center for Bioinformatics and Computational Biology, University of Maryland, College Park (S.H.); Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, CA (E.A.A.); Department of Cardiovascular Medicine, Cleveland Clinic, OH (C.S.M., W.H.W.T.); and Howard Hughes Medical Institute and Cincinnati Children's Hospital Medical Center, OH (M.M., J.D.M.)
| | - Cecilia E Kim
- From the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (R.H., M.P.M., J.B., K.B.M., T.P.C.); Cardiovascular Research Center (N.R.T., V.A.P., P.T.E.) and Center for Human Genetic Research and Cardiovascular Research Center (C.N.-C.), Massachusetts General Hospital, Boston; Department of Statistics, University of Illinois at Urbana-Champaign (S.D.Z.); Heidelberg University Hospital, Germany (B.M., H.A.K.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (F.R., M.S.); INSERM UMRS1166-IACN, Hôpital Pitié-Salpêtrière, Paris, France (E.V., F.C.); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands (J.F.F.); Boston University School of Medicine, MA (R.S.V.); Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (P.v.d.H.); Medical and Population Genetics Program, Broad Institute, Cambridge, MA (C.N.-C.); Center for Applied Genomics, Children's Hospital of Philadelphia, PA (J.L., C.E.K., H.H.); Center for Bioinformatics and Computational Biology, University of Maryland, College Park (S.H.); Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, CA (E.A.A.); Department of Cardiovascular Medicine, Cleveland Clinic, OH (C.S.M., W.H.W.T.); and Howard Hughes Medical Institute and Cincinnati Children's Hospital Medical Center, OH (M.M., J.D.M.)
| | - Hakon Hakonarson
- From the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (R.H., M.P.M., J.B., K.B.M., T.P.C.); Cardiovascular Research Center (N.R.T., V.A.P., P.T.E.) and Center for Human Genetic Research and Cardiovascular Research Center (C.N.-C.), Massachusetts General Hospital, Boston; Department of Statistics, University of Illinois at Urbana-Champaign (S.D.Z.); Heidelberg University Hospital, Germany (B.M., H.A.K.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (F.R., M.S.); INSERM UMRS1166-IACN, Hôpital Pitié-Salpêtrière, Paris, France (E.V., F.C.); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands (J.F.F.); Boston University School of Medicine, MA (R.S.V.); Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (P.v.d.H.); Medical and Population Genetics Program, Broad Institute, Cambridge, MA (C.N.-C.); Center for Applied Genomics, Children's Hospital of Philadelphia, PA (J.L., C.E.K., H.H.); Center for Bioinformatics and Computational Biology, University of Maryland, College Park (S.H.); Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, CA (E.A.A.); Department of Cardiovascular Medicine, Cleveland Clinic, OH (C.S.M., W.H.W.T.); and Howard Hughes Medical Institute and Cincinnati Children's Hospital Medical Center, OH (M.M., J.D.M.)
| | - Sridhar Hannenhalli
- From the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (R.H., M.P.M., J.B., K.B.M., T.P.C.); Cardiovascular Research Center (N.R.T., V.A.P., P.T.E.) and Center for Human Genetic Research and Cardiovascular Research Center (C.N.-C.), Massachusetts General Hospital, Boston; Department of Statistics, University of Illinois at Urbana-Champaign (S.D.Z.); Heidelberg University Hospital, Germany (B.M., H.A.K.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (F.R., M.S.); INSERM UMRS1166-IACN, Hôpital Pitié-Salpêtrière, Paris, France (E.V., F.C.); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands (J.F.F.); Boston University School of Medicine, MA (R.S.V.); Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (P.v.d.H.); Medical and Population Genetics Program, Broad Institute, Cambridge, MA (C.N.-C.); Center for Applied Genomics, Children's Hospital of Philadelphia, PA (J.L., C.E.K., H.H.); Center for Bioinformatics and Computational Biology, University of Maryland, College Park (S.H.); Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, CA (E.A.A.); Department of Cardiovascular Medicine, Cleveland Clinic, OH (C.S.M., W.H.W.T.); and Howard Hughes Medical Institute and Cincinnati Children's Hospital Medical Center, OH (M.M., J.D.M.)
| | - Euan A Ashley
- From the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (R.H., M.P.M., J.B., K.B.M., T.P.C.); Cardiovascular Research Center (N.R.T., V.A.P., P.T.E.) and Center for Human Genetic Research and Cardiovascular Research Center (C.N.-C.), Massachusetts General Hospital, Boston; Department of Statistics, University of Illinois at Urbana-Champaign (S.D.Z.); Heidelberg University Hospital, Germany (B.M., H.A.K.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (F.R., M.S.); INSERM UMRS1166-IACN, Hôpital Pitié-Salpêtrière, Paris, France (E.V., F.C.); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands (J.F.F.); Boston University School of Medicine, MA (R.S.V.); Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (P.v.d.H.); Medical and Population Genetics Program, Broad Institute, Cambridge, MA (C.N.-C.); Center for Applied Genomics, Children's Hospital of Philadelphia, PA (J.L., C.E.K., H.H.); Center for Bioinformatics and Computational Biology, University of Maryland, College Park (S.H.); Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, CA (E.A.A.); Department of Cardiovascular Medicine, Cleveland Clinic, OH (C.S.M., W.H.W.T.); and Howard Hughes Medical Institute and Cincinnati Children's Hospital Medical Center, OH (M.M., J.D.M.)
| | - Christine S Moravec
- From the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (R.H., M.P.M., J.B., K.B.M., T.P.C.); Cardiovascular Research Center (N.R.T., V.A.P., P.T.E.) and Center for Human Genetic Research and Cardiovascular Research Center (C.N.-C.), Massachusetts General Hospital, Boston; Department of Statistics, University of Illinois at Urbana-Champaign (S.D.Z.); Heidelberg University Hospital, Germany (B.M., H.A.K.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (F.R., M.S.); INSERM UMRS1166-IACN, Hôpital Pitié-Salpêtrière, Paris, France (E.V., F.C.); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands (J.F.F.); Boston University School of Medicine, MA (R.S.V.); Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (P.v.d.H.); Medical and Population Genetics Program, Broad Institute, Cambridge, MA (C.N.-C.); Center for Applied Genomics, Children's Hospital of Philadelphia, PA (J.L., C.E.K., H.H.); Center for Bioinformatics and Computational Biology, University of Maryland, College Park (S.H.); Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, CA (E.A.A.); Department of Cardiovascular Medicine, Cleveland Clinic, OH (C.S.M., W.H.W.T.); and Howard Hughes Medical Institute and Cincinnati Children's Hospital Medical Center, OH (M.M., J.D.M.)
| | - W H Wilson Tang
- From the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (R.H., M.P.M., J.B., K.B.M., T.P.C.); Cardiovascular Research Center (N.R.T., V.A.P., P.T.E.) and Center for Human Genetic Research and Cardiovascular Research Center (C.N.-C.), Massachusetts General Hospital, Boston; Department of Statistics, University of Illinois at Urbana-Champaign (S.D.Z.); Heidelberg University Hospital, Germany (B.M., H.A.K.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (F.R., M.S.); INSERM UMRS1166-IACN, Hôpital Pitié-Salpêtrière, Paris, France (E.V., F.C.); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands (J.F.F.); Boston University School of Medicine, MA (R.S.V.); Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (P.v.d.H.); Medical and Population Genetics Program, Broad Institute, Cambridge, MA (C.N.-C.); Center for Applied Genomics, Children's Hospital of Philadelphia, PA (J.L., C.E.K., H.H.); Center for Bioinformatics and Computational Biology, University of Maryland, College Park (S.H.); Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, CA (E.A.A.); Department of Cardiovascular Medicine, Cleveland Clinic, OH (C.S.M., W.H.W.T.); and Howard Hughes Medical Institute and Cincinnati Children's Hospital Medical Center, OH (M.M., J.D.M.)
| | - Marjorie Maillet
- From the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (R.H., M.P.M., J.B., K.B.M., T.P.C.); Cardiovascular Research Center (N.R.T., V.A.P., P.T.E.) and Center for Human Genetic Research and Cardiovascular Research Center (C.N.-C.), Massachusetts General Hospital, Boston; Department of Statistics, University of Illinois at Urbana-Champaign (S.D.Z.); Heidelberg University Hospital, Germany (B.M., H.A.K.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (F.R., M.S.); INSERM UMRS1166-IACN, Hôpital Pitié-Salpêtrière, Paris, France (E.V., F.C.); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands (J.F.F.); Boston University School of Medicine, MA (R.S.V.); Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (P.v.d.H.); Medical and Population Genetics Program, Broad Institute, Cambridge, MA (C.N.-C.); Center for Applied Genomics, Children's Hospital of Philadelphia, PA (J.L., C.E.K., H.H.); Center for Bioinformatics and Computational Biology, University of Maryland, College Park (S.H.); Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, CA (E.A.A.); Department of Cardiovascular Medicine, Cleveland Clinic, OH (C.S.M., W.H.W.T.); and Howard Hughes Medical Institute and Cincinnati Children's Hospital Medical Center, OH (M.M., J.D.M.)
| | - Jeffery D Molkentin
- From the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (R.H., M.P.M., J.B., K.B.M., T.P.C.); Cardiovascular Research Center (N.R.T., V.A.P., P.T.E.) and Center for Human Genetic Research and Cardiovascular Research Center (C.N.-C.), Massachusetts General Hospital, Boston; Department of Statistics, University of Illinois at Urbana-Champaign (S.D.Z.); Heidelberg University Hospital, Germany (B.M., H.A.K.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (F.R., M.S.); INSERM UMRS1166-IACN, Hôpital Pitié-Salpêtrière, Paris, France (E.V., F.C.); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands (J.F.F.); Boston University School of Medicine, MA (R.S.V.); Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (P.v.d.H.); Medical and Population Genetics Program, Broad Institute, Cambridge, MA (C.N.-C.); Center for Applied Genomics, Children's Hospital of Philadelphia, PA (J.L., C.E.K., H.H.); Center for Bioinformatics and Computational Biology, University of Maryland, College Park (S.H.); Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, CA (E.A.A.); Department of Cardiovascular Medicine, Cleveland Clinic, OH (C.S.M., W.H.W.T.); and Howard Hughes Medical Institute and Cincinnati Children's Hospital Medical Center, OH (M.M., J.D.M.)
| | - Patrick T Ellinor
- From the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (R.H., M.P.M., J.B., K.B.M., T.P.C.); Cardiovascular Research Center (N.R.T., V.A.P., P.T.E.) and Center for Human Genetic Research and Cardiovascular Research Center (C.N.-C.), Massachusetts General Hospital, Boston; Department of Statistics, University of Illinois at Urbana-Champaign (S.D.Z.); Heidelberg University Hospital, Germany (B.M., H.A.K.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (F.R., M.S.); INSERM UMRS1166-IACN, Hôpital Pitié-Salpêtrière, Paris, France (E.V., F.C.); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands (J.F.F.); Boston University School of Medicine, MA (R.S.V.); Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (P.v.d.H.); Medical and Population Genetics Program, Broad Institute, Cambridge, MA (C.N.-C.); Center for Applied Genomics, Children's Hospital of Philadelphia, PA (J.L., C.E.K., H.H.); Center for Bioinformatics and Computational Biology, University of Maryland, College Park (S.H.); Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, CA (E.A.A.); Department of Cardiovascular Medicine, Cleveland Clinic, OH (C.S.M., W.H.W.T.); and Howard Hughes Medical Institute and Cincinnati Children's Hospital Medical Center, OH (M.M., J.D.M.)
| | - Kenneth B Margulies
- From the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (R.H., M.P.M., J.B., K.B.M., T.P.C.); Cardiovascular Research Center (N.R.T., V.A.P., P.T.E.) and Center for Human Genetic Research and Cardiovascular Research Center (C.N.-C.), Massachusetts General Hospital, Boston; Department of Statistics, University of Illinois at Urbana-Champaign (S.D.Z.); Heidelberg University Hospital, Germany (B.M., H.A.K.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (F.R., M.S.); INSERM UMRS1166-IACN, Hôpital Pitié-Salpêtrière, Paris, France (E.V., F.C.); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands (J.F.F.); Boston University School of Medicine, MA (R.S.V.); Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (P.v.d.H.); Medical and Population Genetics Program, Broad Institute, Cambridge, MA (C.N.-C.); Center for Applied Genomics, Children's Hospital of Philadelphia, PA (J.L., C.E.K., H.H.); Center for Bioinformatics and Computational Biology, University of Maryland, College Park (S.H.); Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, CA (E.A.A.); Department of Cardiovascular Medicine, Cleveland Clinic, OH (C.S.M., W.H.W.T.); and Howard Hughes Medical Institute and Cincinnati Children's Hospital Medical Center, OH (M.M., J.D.M.)
| | - Thomas P Cappola
- From the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (R.H., M.P.M., J.B., K.B.M., T.P.C.); Cardiovascular Research Center (N.R.T., V.A.P., P.T.E.) and Center for Human Genetic Research and Cardiovascular Research Center (C.N.-C.), Massachusetts General Hospital, Boston; Department of Statistics, University of Illinois at Urbana-Champaign (S.D.Z.); Heidelberg University Hospital, Germany (B.M., H.A.K.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (F.R., M.S.); INSERM UMRS1166-IACN, Hôpital Pitié-Salpêtrière, Paris, France (E.V., F.C.); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands (J.F.F.); Boston University School of Medicine, MA (R.S.V.); Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (P.v.d.H.); Medical and Population Genetics Program, Broad Institute, Cambridge, MA (C.N.-C.); Center for Applied Genomics, Children's Hospital of Philadelphia, PA (J.L., C.E.K., H.H.); Center for Bioinformatics and Computational Biology, University of Maryland, College Park (S.H.); Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, CA (E.A.A.); Department of Cardiovascular Medicine, Cleveland Clinic, OH (C.S.M., W.H.W.T.); and Howard Hughes Medical Institute and Cincinnati Children's Hospital Medical Center, OH (M.M., J.D.M.).
| |
Collapse
|
18
|
Wolf S, Abd Alla J, Quitterer U. Sensitization of the Angiotensin II AT1 Receptor Contributes to RKIP-Induced Symptoms of Heart Failure. Front Med (Lausanne) 2019; 5:359. [PMID: 30687708 PMCID: PMC6333672 DOI: 10.3389/fmed.2018.00359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/13/2018] [Indexed: 01/30/2023] Open
Abstract
Inhibition of the G-protein-coupled receptor kinase 2 (GRK2) is an emerging treatment approach for heart failure. Therefore, cardio-protective mechanisms induced by GRK2 inhibition are under investigation. We compared two different GRK2 inhibitors, i.e., (i) the dual-specific GRK2 and raf kinase inhibitor protein, RKIP, and (ii) the dominant-negative GRK2-K220R mutant. We found that RKIP induced a strong sensitization of Gq/11-dependent, heart failure-promoting angiotensin II AT1 receptor signaling. The AT1-sensitizing function of RKIP was mediated by the RKIP-GRK2 interaction because the RKIP-S153V mutant, which does not interact with GRK2, had no effect on AT1-stimulated signaling. In contrast, GRK2-K220R significantly inhibited the AT1-stimulated signal. The in vivo relevance of these major differences between two different approaches of GRK2 inhibition was analyzed by generation of transgenic mice with myocardium-specific expression of RKIP and GRK2-K220R. Our results showed that a moderately increased cardiac protein level of RKIP was sufficient to induce major symptoms of heart failure in aged, 8-months-old RKIP-transgenic mice in two different genetic backgrounds. In contrast, GRK2-K220R protected against chronic pressure overload-induced cardiac dysfunction. The AT1 receptor contributed to RKIP-induced heart failure because treatment with the AT1 receptor antagonist, losartan, retarded symptoms of heart failure in RKIP-transgenic mice. Thus, sensitization of the heart failure-promoting AT1 receptor by the RKIP-GRK2 interaction contributes to heart failure whereas dominant-negative GRK2-K220R is cardioprotective. Because RKIP is up-regulated on cardiac biopsy specimens of heart failure patients, the deduced heart failure-promoting mechanism of RKIP could also be relevant for the human disease.
Collapse
Affiliation(s)
- Stefan Wolf
- Molecular Pharmacology, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Joshua Abd Alla
- Molecular Pharmacology, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Ursula Quitterer
- Molecular Pharmacology, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.,Institute of Pharmacology and Toxicology, Department of Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Ehsan M, Kelly M, Hooper C, Yavari A, Beglov J, Bellahcene M, Ghataorhe K, Poloni G, Goel A, Kyriakou T, Fleischanderl K, Ehler E, Makeyev E, Lange S, Ashrafian H, Redwood C, Davies B, Watkins H, Gehmlich K. Mutant Muscle LIM Protein C58G causes cardiomyopathy through protein depletion. J Mol Cell Cardiol 2018; 121:287-296. [PMID: 30048712 PMCID: PMC6117453 DOI: 10.1016/j.yjmcc.2018.07.248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/09/2018] [Accepted: 07/21/2018] [Indexed: 12/16/2022]
Abstract
Cysteine and glycine rich protein 3 (CSRP3) encodes Muscle LIM Protein (MLP), a well-established disease gene for Hypertrophic Cardiomyopathy (HCM). MLP, in contrast to the proteins encoded by the other recognised HCM disease genes, is non-sarcomeric, and has important signalling functions in cardiomyocytes. To gain insight into the disease mechanisms involved, we generated a knock-in mouse (KI) model, carrying the well documented HCM-causing CSRP3 mutation C58G. In vivo phenotyping of homozygous KI/KI mice revealed a robust cardiomyopathy phenotype with diastolic and systolic left ventricular dysfunction, which was supported by increased heart weight measurements. Transcriptome analysis by RNA-seq identified activation of pro-fibrotic signalling, induction of the fetal gene programme and activation of markers of hypertrophic signalling in these hearts. Further ex vivo analyses validated the activation of these pathways at transcript and protein level. Intriguingly, the abundance of MLP decreased in KI/KI mice by 80% and in KI/+ mice by 50%. Protein depletion was also observed in cellular studies for two further HCM-causing CSRP3 mutations (L44P and S54R/E55G). We show that MLP depletion is caused by proteasome action. Moreover, MLP C58G interacts with Bag3 and results in a proteotoxic response in the homozygous knock-in mice, as shown by induction of Bag3 and associated heat shock proteins. In conclusion, the newly generated mouse model provides insights into the underlying disease mechanisms of cardiomyopathy caused by mutations in the non-sarcomeric protein MLP. Furthermore, our cellular experiments suggest that protein depletion and proteasomal overload also play a role in other HCM-causing CSPR3 mutations that we investigated, indicating that reduced levels of functional MLP may be a common mechanism for HCM-causing CSPR3 mutations. We present a mouse model for non-sarcomeric hypertrophic cardiomyopathy (HCM). Homozygous Muscle LIM Protein (MLP) C58G mice have systolic and diastolic dysfunction. MLP C58G is depleted via proteasomal pathways. Protein depletion is also a hallmark of further HCM causing MLP mutations. MLP C58G interacts with Bag3 and causes a proteotoxic response.
Collapse
Affiliation(s)
- Mehroz Ehsan
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Matthew Kelly
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK; Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Charlotte Hooper
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Arash Yavari
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK; Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK; Experimental Therapeutics, Radcliffe Department of Medicine, University of Oxford, UK
| | - Julia Beglov
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK; Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Mohamed Bellahcene
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK; Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Kirandeep Ghataorhe
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Giulia Poloni
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Anuj Goel
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK; Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Theodosios Kyriakou
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK; Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Karin Fleischanderl
- Randall Centre for Cell and Molecular Biophysics, School of Cardiovascular Medicine and Sciences, King's College London BHF Centre of Research Excellence, London, UK
| | - Elisabeth Ehler
- Randall Centre for Cell and Molecular Biophysics, School of Cardiovascular Medicine and Sciences, King's College London BHF Centre of Research Excellence, London, UK
| | - Eugene Makeyev
- Centre for Developmental Neurobiology, King's College London, London, UK
| | - Stephan Lange
- School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Houman Ashrafian
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK; Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK; Experimental Therapeutics, Radcliffe Department of Medicine, University of Oxford, UK
| | - Charles Redwood
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Benjamin Davies
- Transgenic Core, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Hugh Watkins
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK; Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Katja Gehmlich
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK; Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
20
|
Ji Y, Wang T, Zhang X, Li L, Li L, Guo Y, Yang B, Wang Y, Zhu T. Astragalosides increase the cardiac diastolic function and regulate the "Calcium sensing receptor-protein kinase C-protein phosphatase 1" pathway in rats with heart failure. Biomed Pharmacother 2018; 103:838-843. [PMID: 29710499 DOI: 10.1016/j.biopha.2018.04.111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 02/06/2023] Open
Abstract
This study was designed to investigate the effects of astragalosides on cardiac diastolic function, and an emphasis was placed on the variation of the upstream molecular regulators of phospholamban. Chronic heart failure (CHF) rats were induced by ligaturing the left anterior coronary artery, and rats in the therapeutic groups were treated with either a 50 mg/kg dose of captopril, 10 mg/kg dose of astragalosides or 20 mg/kg dose of astragalosides. Four weeks after treatment, the ratio of the early and atrial peak filling velocities (E/A) and maximal slope diastolic pressure decrement (-dp/dt) both decreased in CHF rats (by 30.3% and 25.5%, respectively) and significantly increased in 20 mg/kg astragalosides and captopril-treated rats. The protein phosphatase-1 activity was lower in the 20 mg/kg astragalosides group than in the CHF group (0.22 vs 0.44, P < 0.01), and the inhibitor-1 levels in the astragalosides and captopril-treated groups were increased. Chronic heart failure increased expression of protein kinase C-α and calcium-sensing receptor, and these changes were attenuated by astragalosides therapy. Astragalosides restored the diastolic dysfunction of chronic heart failure rats, possibly by downregulation of calcium-sensing receptor and protein kinase C-α, which in turn augmented inhibitor-1 expression, reduced protein phosphatase-1 activity and increased phospholamban phosphorylation.
Collapse
Affiliation(s)
- Yansu Ji
- Affiliated Hospital of Logistics University of Chinese People's Armed Police Force, Tianjin 300162, China
| | - Tianqi Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Xiting Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Lailai Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Liang Li
- Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yisha Guo
- Affiliated Hospital of Logistics University of Chinese People's Armed Police Force, Tianjin 300162, China
| | - Bo Yang
- Affiliated Hospital of Logistics University of Chinese People's Armed Police Force, Tianjin 300162, China
| | - Yi Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Tieliang Zhu
- Affiliated Hospital of Logistics University of Chinese People's Armed Police Force, Tianjin 300162, China.
| |
Collapse
|
21
|
Altara R, Zouein FA, Brandão RD, Bajestani SN, Cataliotti A, Booz GW. In Silico Analysis of Differential Gene Expression in Three Common Rat Models of Diastolic Dysfunction. Front Cardiovasc Med 2018; 5:11. [PMID: 29556499 PMCID: PMC5850854 DOI: 10.3389/fcvm.2018.00011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 02/05/2018] [Indexed: 12/13/2022] Open
Abstract
Standard therapies for heart failure with preserved ejection fraction (HFpEF) have been unsuccessful, demonstrating that the contribution of the underlying diastolic dysfunction pathophysiology differs from that of systolic dysfunction in heart failure and currently is far from being understood. Complicating the investigation of HFpEF is the contribution of several comorbidities. Here, we selected three established rat models of diastolic dysfunction defined by three major risk factors associated with HFpEF and researched their commonalities and differences. The top differentially expressed genes in the left ventricle of Dahl salt sensitive (Dahl/SS), spontaneous hypertensive heart failure (SHHF), and diabetes 1 induced HFpEF models were derived from published data in Gene Expression Omnibus and used for a comprehensive interpretation of the underlying pathophysiological context of each model. The diversity of the underlying transcriptomic of the heart of each model is clearly observed by the different panel of top regulated genes: the diabetic model has 20 genes in common with the Dahl/SS and 15 with the SHHF models. Advanced analytics performed in Ingenuity Pathway Analysis (IPA®) revealed that Dahl/SS heart tissue transcripts triggered by upstream regulators lead to dilated cardiomyopathy, hypertrophy of heart, arrhythmia, and failure of heart. In the heart of SHHF, a total of 26 genes were closely linked to cardiovascular disease including cardiotoxicity, pericarditis, ST-elevated myocardial infarction, and dilated cardiomyopathy. IPA Upstream Regulator analyses revealed that protection of cardiomyocytes is hampered by inhibition of the ERBB2 plasma membrane-bound receptor tyrosine kinases. Cardioprotective markers such as natriuretic peptide A (NPPA), heat shock 27 kDa protein 1 (HSPB1), and angiogenin (ANG) were upregulated in the diabetes 1 induced model; however, the model showed a different underlying mechanism with a majority of the regulated genes involved in metabolic disorders. In conclusion, our findings suggest that multiple mechanisms may contribute to diastolic dysfunction and HFpEF, and thus drug therapies may need to be guided more by phenotypic characteristics of the cardiac remodeling events than by the underlying molecular processes.
Collapse
Affiliation(s)
- Raffaele Altara
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Center for Cardiac Research, Oslo, Norway.,Department of Pathology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - Fouad A Zouein
- Faculty of Medicine, Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
| | - Rita Dias Brandão
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Saeed N Bajestani
- Department of Pathology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States.,Department of Ophthalmology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - Alessandro Cataliotti
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Center for Cardiac Research, Oslo, Norway
| | - George W Booz
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
22
|
Protein Kinase C Inhibition With Ruboxistaurin Increases Contractility and Reduces Heart Size in a Swine Model of Heart Failure With Reduced Ejection Fraction. JACC Basic Transl Sci 2017; 2:669-683. [PMID: 30062182 PMCID: PMC6058945 DOI: 10.1016/j.jacbts.2017.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/10/2017] [Accepted: 06/20/2017] [Indexed: 01/15/2023]
Abstract
Inotropic support is often required to stabilize the hemodynamics of patients with acute decompensated heart failure; while efficacious, it has a history of leading to lethal arrhythmias and/or exacerbating contractile and energetic insufficiencies. Novel therapeutics that can improve contractility independent of beta-adrenergic and protein kinase A-regulated signaling, should be therapeutically beneficial. This study demonstrates that acute protein kinase C-α/β inhibition, with ruboxistaurin at 3 months' post-myocardial infarction, significantly increases contractility and reduces the end-diastolic/end-systolic volumes, documenting beneficial remodeling. These data suggest that ruboxistaurin represents a potential novel therapeutic for heart failure patients, as a moderate inotrope or therapeutic, which leads to beneficial ventricular remodeling.
Collapse
Key Words
- ADHF, acute decompensated heart failure
- DIG, digitalis
- DOB, dobutamine
- ECG, electrocardiogram
- EDPVR, end-diastolic pressure-volume relationship
- EDV, end-diastolic volume
- ESPVR, end-systolic pressure-volume relationship
- ESV, end-systolic volume
- Ees, elastance end-systole
- HF, heart failure
- HFrEF, heart failure with reduced ejection fraction
- IR, ischemia–reperfusion
- LAD, left anterior descending coronary artery
- LV, left ventricle/ventricular
- LVEDV, left ventricular end-diastolic volume
- LVEF, left ventricular ejection fraction
- LVVPed10, left ventricular end-diastolic volume at a pressure of 10 mm Hg
- LVVPes80, left ventricular end- systolic volume at a pressure of 80 mm Hg
- MI, myocardial infarction
- PKA, protein kinase A
- PKC, protein kinase C
- PKCα/β inhibitor
- PLN, phospholamban
- PRSW, pre-load recruitable stroke work
- RBX, ruboxistaurin
- acute myocardial infarction
- heart failure with reduced ejection fraction
- invasive hemodynamics
- positive inotropy
Collapse
|
23
|
Zhang Q, Hu L, Chen L, Li H, Wu J, Liu W, Zhang M, Yan G. (−)-Epigallocatechin-3-gallate, the major green tea catechin, regulates the desensitization of β1 adrenoceptor via GRK2 in experimental heart failure. Inflammopharmacology 2017; 26:1081-1091. [DOI: 10.1007/s10787-017-0429-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 11/27/2017] [Indexed: 12/21/2022]
|
24
|
Research advances in kinase enzymes and inhibitors for cardiovascular disease treatment. Future Sci OA 2017; 3:FSO204. [PMID: 29134113 PMCID: PMC5674217 DOI: 10.4155/fsoa-2017-0010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/29/2017] [Indexed: 12/13/2022] Open
Abstract
The targeting of protein kinases has great future potential for the design of new drugs against cardiovascular diseases (CVDs). Enormous efforts have been made toward achieving this aim. Unfortunately, kinase inhibitors designed to treat CVDs have suffered from numerous limitations such as poor selectivity, bad permeability and toxicity. So, where are we now in terms of discovering effective kinase targeting drugs to treat CVDs? Various drug design techniques have been approached for this purpose since the discovery of the inhibitory activity of Staurosporine against protein kinase C in 1986. This review aims to provide context for the status of several emerging classes of direct kinase modulators to treat CVDs and discuss challenges that are preventing scientists from finding new kinase drugs to treat heart disease.
Collapse
|
25
|
Zeng C, Liang B, Jiang R, Shi Y, Du Y. Protein kinase C isozyme expression in right ventricular hypertrophy induced by pulmonary hypertension in chronically hypoxic rats. Mol Med Rep 2017; 16:3833-3840. [PMID: 28765942 PMCID: PMC5647097 DOI: 10.3892/mmr.2017.7098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 06/06/2017] [Indexed: 11/24/2022] Open
Abstract
In chronic hypoxia, pulmonary hypertension (PH) induces right ventricular hypertrophy (RVH). Evidence indicates that protein kinase C (PKC) serves a crucial role in hypoxia-induced RVH. The present study investigated PKC isoform-specific expression and its involvement in RVH. Rats were exposed to normobaric hypoxia for a number of days to induce PH. PKC isoform-specific membrane translocation and protein expression in the myocardium were evaluated by western blotting and immunostaining. A total of six isoforms of conventional PKC (cPKC; α, βI and βII) and of novel PKC (nPKC; δ, ε and η), were detected in the rat myocardium. Hypoxic exposure (1–21 days) induced PH with RVH and vascular remodeling. nPKCδ membrane translocation at 3–7 days and cPKCβI expression at 1–21 days in the RV following hypoxic exposure were significantly decreased as compared with the normoxia control group. Membrane translocation of cPKCβII at 14–21 days and of nPKCη at 7–21 days in the left ventricle following hypoxic exposure was significantly increased when compared with the control. The results of the present study suggested that the alterations in membrane translocation, and nPKCδ and cPKCβI expression, are associated with RVH following PH, and the upregulation of cPKCβII membrane translocation is involved in left-sided heart failure.
Collapse
Affiliation(s)
- Chao Zeng
- Department of Pediatrics, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Bin Liang
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Rui Jiang
- Department of Respiratory Medicine, The Affiliated People's Hospital of Shanxi Medical University, Taiyuan, Shanxi 030012, P.R. China
| | - Yiwei Shi
- Department of Respiratory Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yongcheng Du
- Department of Respiratory Medicine, The Affiliated People's Hospital of Shanxi Medical University, Taiyuan, Shanxi 030012, P.R. China
| |
Collapse
|
26
|
Protein kinase C mechanisms that contribute to cardiac remodelling. Clin Sci (Lond) 2017; 130:1499-510. [PMID: 27433023 DOI: 10.1042/cs20160036] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/18/2016] [Indexed: 12/12/2022]
Abstract
Protein phosphorylation is a highly-regulated and reversible process that is precisely controlled by the actions of protein kinases and protein phosphatases. Factors that tip the balance of protein phosphorylation lead to changes in a wide range of cellular responses, including cell proliferation, differentiation and survival. The protein kinase C (PKC) family of serine/threonine kinases sits at nodal points in many signal transduction pathways; PKC enzymes have been the focus of considerable attention since they contribute to both normal physiological responses as well as maladaptive pathological responses that drive a wide range of clinical disorders. This review provides a background on the mechanisms that regulate individual PKC isoenzymes followed by a discussion of recent insights into their role in the pathogenesis of diseases such as cancer. We then provide an overview on the role of individual PKC isoenzymes in the regulation of cardiac contractility and pathophysiological growth responses, with a focus on the PKC-dependent mechanisms that regulate pump function and/or contribute to the pathogenesis of heart failure.
Collapse
|
27
|
Vang A, Clements RT, Chichger H, Kue N, Allawzi A, O'Connell K, Jeong EM, Dudley SC, Sakhatskyy P, Lu Q, Zhang P, Rounds S, Choudhary G. Effect of α7 nicotinic acetylcholine receptor activation on cardiac fibroblasts: a mechanism underlying RV fibrosis associated with cigarette smoke exposure. Am J Physiol Lung Cell Mol Physiol 2017; 312:L748-L759. [PMID: 28258105 PMCID: PMC5451597 DOI: 10.1152/ajplung.00393.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 02/17/2017] [Accepted: 02/23/2017] [Indexed: 01/03/2023] Open
Abstract
Right ventricular (RV) dysfunction is associated with numerous smoking-related illnesses, including chronic obstructive pulmonary disease (COPD), in which it is present even in the absence of pulmonary hypertension. It is unknown whether exposure to cigarette smoke (CS) has direct effects on RV function and cardiac fibroblast (CF) proliferation or collagen synthesis. In this study, we evaluated cardiac function and fibrosis in mice exposed to CS and determined mechanisms of smoke-induced changes in CF signaling and fibrosis. AKR mice were exposed to CS for 6 wk followed by echocardiography and evaluation of cardiac hypertrophy, collagen content, and pulmonary muscularization. Proliferation and collagen content were evaluated in primary isolated rat CFs exposed to CS extract (CSE) or nicotine. Markers of cell proliferation, fibrosis, and proliferative signaling were determined by immunoblot or Sircol collagen assay. Mice exposed to CS had significantly decreased RV function, as determined by tricuspid annular plane systolic excursion. There were no changes in left ventricular parameters. RV collagen content was significantly elevated, but there was no change in RV hypertrophy or pulmonary vascular muscularization. CSE directly increased CF proliferation and collagen content in CF. Nicotine alone reproduced these effects. CSE and nicotine-induced fibroblast proliferation and collagen content were mediated through α7 nicotinic acetylcholine receptors and were dependent on PKC-α, PKC-δ, and reduced p38-MAPK phosphorylation. CS and nicotine have direct effects on CFs to induce proliferation and fibrosis, which may negatively affect right heart function.
Collapse
MESH Headings
- Animals
- Cell Proliferation/drug effects
- Enzyme Activation/drug effects
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Heart Ventricles/drug effects
- Heart Ventricles/pathology
- Heart Ventricles/physiopathology
- Hemodynamics/drug effects
- Hypertrophy, Right Ventricular/complications
- Hypertrophy, Right Ventricular/diagnostic imaging
- Hypertrophy, Right Ventricular/pathology
- Hypertrophy, Right Ventricular/physiopathology
- MAP Kinase Signaling System/drug effects
- Male
- Mice, Inbred AKR
- Myocardium/pathology
- Nicotine/pharmacology
- Phosphorylation/drug effects
- Protein Kinase C-alpha/metabolism
- Protein Kinase C-delta/metabolism
- Rats, Sprague-Dawley
- Smoking/adverse effects
- Vascular Remodeling/drug effects
- Ventricular Dysfunction, Right/complications
- Ventricular Dysfunction, Right/diagnostic imaging
- Ventricular Dysfunction, Right/pathology
- Ventricular Dysfunction, Right/physiopathology
- alpha7 Nicotinic Acetylcholine Receptor/metabolism
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Alexander Vang
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island
| | - Richard T Clements
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island
- Department of Surgery, Rhode Island Hospital, Providence, Rhode Island; and
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
| | - Havovi Chichger
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Nouaying Kue
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island
| | - Ayed Allawzi
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island
| | - Kelly O'Connell
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Euy-Myoung Jeong
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
| | - Samuel C Dudley
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
| | - Pavlo Sakhatskyy
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Qing Lu
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Peng Zhang
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
| | - Sharon Rounds
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Gaurav Choudhary
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island;
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| |
Collapse
|
28
|
Zhong C, Wu Y, Chang H, Liu C, Zhou L, Zou J, Qi Z. Effect of PKC inhibitor on experimental autoimmune myocarditis in Lewis rats. Oncotarget 2017; 8:54187-54198. [PMID: 28903333 PMCID: PMC5589572 DOI: 10.18632/oncotarget.17018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 03/31/2017] [Indexed: 12/19/2022] Open
Abstract
Myocarditis is a major cause of sudden, unexpected death in young people. However, it is still one of the most challenging diseases to treat in cardiology. In the present study, we showed that both expression level and activity of PKC-α were up-regulated in the rat heart of experimental autoimmune myocarditis (EAM). Intraperitoneal administration of PKC inhibitor (Ro-32-0432) at the end of the most severe inflammation period of EAM still significantly reduced the EAM induced expression of failure biomarkers. Furthermore, Ro-32-0432 reduced the ratio of Bax/Bcl-2 and suppressed the expression of cleaved caspase-3, both of which were increased in the heart of the EAM rats, suggesting an anti-apoptotic role of Ro-32-0432. Besides, Ro-32-0432 suppressed EAM-induced cardiac fibrosis and release of pro-inflammatory cytokines IL-1β and IL-17. These results suggest that inhibition of PKC may serve as a potential therapeutic strategy for the treatment of myocarditis.
Collapse
Affiliation(s)
- Chunlian Zhong
- Department of Basic Medical Sciences, Medical College of Xiamen University, Xiang'an Nan Lu, Xiamen, China
| | - Yang Wu
- Department of Basic Medical Sciences, Medical College of Xiamen University, Xiang'an Nan Lu, Xiamen, China.,Xiamen Cardiovascular Hospital, Medical College of Xiamen University, Xiamen, China
| | - He Chang
- Department of Basic Medical Sciences, Medical College of Xiamen University, Xiang'an Nan Lu, Xiamen, China.,Xiamen Cardiovascular Hospital, Medical College of Xiamen University, Xiamen, China
| | - Chunxiao Liu
- Department of Basic Medical Sciences, Medical College of Xiamen University, Xiang'an Nan Lu, Xiamen, China.,Xiamen Cardiovascular Hospital, Medical College of Xiamen University, Xiamen, China
| | - Li Zhou
- Department of Basic Medical Sciences, Medical College of Xiamen University, Xiang'an Nan Lu, Xiamen, China
| | - Jun Zou
- Department of Basic Medical Sciences, Medical College of Xiamen University, Xiang'an Nan Lu, Xiamen, China
| | - Zhi Qi
- Department of Basic Medical Sciences, Medical College of Xiamen University, Xiang'an Nan Lu, Xiamen, China
| |
Collapse
|
29
|
Zheng X, Wang S, Zou X, Jing Y, Yang R, Li S, Wang F. Ginsenoside Rb1 improves cardiac function and remodeling in heart failure. Exp Anim 2017; 66:217-228. [PMID: 28367863 PMCID: PMC5543242 DOI: 10.1538/expanim.16-0121] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We investigated the effect of ginsenoside Rb1 on cardiac function and remodeling in heart
failure (HF). Four weeks after HF induction, the rats were administrated with ginsenoside
Rb1 (35 and 70 mg/kg) and losartan (4.5 mg/kg) for 8 weeks. Losartan was used as a
positive control. Cardiac function was assessed by measuring hemodynamic parameters.
Histological changes were analyzed by HE and Masson’s trichrome staining. Cardiac
hypertrophy, fibrosis, mitochondrial membrane potential and glucose transporter type 4
(GLUT4) levels were evaluated. In the present study, high dose of (H−) ginsenoside Rb1
decreased heart rate, improved cardiac function and alleviated histological changes
induced by HF. H-ginsenoside Rb1 attenuated cardiac hypertrophy and myocardial fibrosis by
decreasing left ventricular (LV) weight/heart weight ratio and cardiomyocyte
cross-sectional area and reducing the levels of atrial natriuretic factor (ANF), β-myosin
heavy chain (β-MHC), periostin, collagen I, Angiotensin II (Ang II), Angiotensin
converting enzyme (ACE) and Ang II type 1 (AT1) receptor. Moreover, H-ginsenoside Rb1
decreased mitochondrial membrane potential and enhanced the translocation of GLUT4 to
plasma membrane. The TGF-β1/Smad and ERK signaling pathways were inhibited and the Akt
pathway was activated. These findings suggest that ginsenoside Rb1 might restore
cardiac/mitochondrial function, increase glucose uptake and protect against cardiac
remodeling via the TGF-β1/Smad, ERK and Akt signaling pathways.
Collapse
Affiliation(s)
- Xian Zheng
- Graduate School, Liaoning University of Traditional Chinese Medicine, 79 Chongshan East Road, Shenyang 110847, P.R. China
| | - Shuai Wang
- First Department of Cardiology, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, 33 Beiling Avenue, Shenyang 110032, P.R. China
| | - Xiaoming Zou
- Graduate School, Liaoning University of Traditional Chinese Medicine, 79 Chongshan East Road, Shenyang 110847, P.R. China
| | - Yating Jing
- First Department of Cardiology, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, 33 Beiling Avenue, Shenyang 110032, P.R. China
| | - Ronglai Yang
- First Department of Cardiology, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, 33 Beiling Avenue, Shenyang 110032, P.R. China
| | - Siqi Li
- Standardization Office, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, 33 Beiling Avenue, Shenyang 110032, P.R. China
| | - Fengrong Wang
- First Department of Cardiology, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, 33 Beiling Avenue, Shenyang 110032, P.R. China
| |
Collapse
|
30
|
Le NT, Martin JF, Fujiwara K, Abe JI. Sub-cellular localization specific SUMOylation in the heart. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2041-2055. [PMID: 28130202 DOI: 10.1016/j.bbadis.2017.01.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/21/2016] [Accepted: 01/09/2017] [Indexed: 12/27/2022]
Abstract
Although the majority of SUMO substrates are localized in the nucleus, SUMOylation is not limited to nuclear proteins and can be also detected in extra-nuclear proteins. In this review, we will highlight and discuss how SUMOylation in different cellular compartments regulate biological processes. First, we will discuss the key role of SUMOylation of proteins in the extra-nuclear compartment in cardiomyocytes, which is overwhelmingly cardio-protective. On the other hand, SUMOylation of nuclear proteins is generally detrimental to the cardiac function mainly because of the trans-repressive nature of SUMOylation on many transcription factors. We will also discuss the potential role of SUMOylation in epigenetic regulation. In this review, we will propose a new concept that shuttling of SUMO proteases between the nuclear and extra-nuclear compartments without changing their enzymatic activity regulates the extent of SUMOylation in these compartments and determines the response and fate of cardiomyocytes after cardiac insults. Approaches focused specifically to inhibit this shuttling in cardiomyocytes will be necessary to understand the whole picture of SUMOylation and its pathophysiological consequences in the heart, especially after cardiac insults. This article is part of a Special Issue entitled: Genetic and epigenetic control of heart failure - edited by Jun Ren & Megan Yingmei Zhang.
Collapse
Affiliation(s)
- Nhat-Tu Le
- Department of Cardiology - Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James F Martin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Keigi Fujiwara
- Department of Cardiology - Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jun-Ichi Abe
- Department of Cardiology - Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
31
|
Qian X, Li M, Wagner MB, Chen G, Song X. Doxazosin Stimulates Galectin-3 Expression and Collagen Synthesis in HL-1 Cardiomyocytes Independent of Protein Kinase C Pathway. Front Pharmacol 2016; 7:495. [PMID: 28066244 PMCID: PMC5168465 DOI: 10.3389/fphar.2016.00495] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 12/02/2016] [Indexed: 01/13/2023] Open
Abstract
Doxazosin, a drug commonly prescribed for hypertension and prostate disease, increases heart failure risk. However, the underlying mechanism remains unclear. Galectin-3 is an important mediator that plays a pathogenic role in cardiac hypertrophy and heart failure. In the present study, we investigated whether doxazosin could stimulate galectin-3 expression and collagen synthesis in cultured HL-1 cardiomyocytes. We found that doxazosin dose-dependently induced galectin-3 protein expression, with a statistically significant increase in expression with a dose as low as 0.01 μM. Doxazosin upregulated collagen I and α-smooth muscle actin (α-SMA) protein levels and also induced apoptotic protein caspase-3 in HL-1 cardiomyocytes. Although we previously reported that activation of protein kinase C (PKC) stimulates galectin-3 expression, blocking the PKC pathway with the PKC inhibitor chelerythrine did not prevent doxazosin-induced galectin-3 and collagen expression. Consistently, doxazosin treatment did not alter total and phosphorylated PKC. These results suggest that doxazosin-stimulated galectin-3 is independent of PKC pathway. To determine if the α1-adrenergic pathway is involved, we pretreated the cells with the irreversible α-adrenergic receptor blocker phenoxybenzamine and found that doxazosin-stimulated galectin-3 and collagen expression was similar to controls, suggesting that doxazosin acts independently of α1-adrenergic receptor blockade. Collectively, we show a novel effect of doxazosin on cardiomycytes by stimulating heart fibrosis factor galectin-3 expression. The mechanism of action of doxazosin is not mediated through either activation of the PKC pathway or antagonism of α1-adrenergic receptors.
Collapse
Affiliation(s)
- Xiaoqian Qian
- Cardiovascular Center, The Fourth Affiliated Hospital, Harbin Medical UniversityHarbin, China; Department of Physiology, Emory University, AtlantaGA, USA
| | - Mingyang Li
- Cardiovascular Center, The Fourth Affiliated Hospital, Harbin Medical University Harbin, China
| | - Mary B Wagner
- Heart Research and Outcomes Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University School of Medicine, Atlanta GA, USA
| | - Guangping Chen
- Department of Physiology, Emory University, Atlanta GA, USA
| | - Xiang Song
- Cardiovascular Center, The Fourth Affiliated Hospital, Harbin Medical University Harbin, China
| |
Collapse
|
32
|
Pany S, You Y, Das J. Curcumin Inhibits Protein Kinase Cα Activity by Binding to Its C1 Domain. Biochemistry 2016; 55:6327-6336. [PMID: 27776404 DOI: 10.1021/acs.biochem.6b00932] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Curcumin is a polyphenolic nutraceutical that acts on multiple biological targets, including protein kinase C (PKC). PKC is a family of serine/threonine kinases central to intracellular signal transduction. We have recently shown that curcumin selectively inhibits PKCα, but not PKCε, in CHO-K1 cells [Pany, S. (2016) Biochemistry 55, 2135-2143]. To understand which domain(s) of PKCα is responsible for curcumin binding and inhibitory activity, we made several domain-swapped mutants in which the C1 (combination of C1A and C1B) and C2 domains are swapped between PKCα and PKCε. Phorbol ester-induced membrane translocation studies using confocal microscopy and immunoblotting revealed that curcumin inhibited phorbol ester-induced membrane translocation of PKCε mutants, in which the εC1 domain was replaced with αC1, but not the PKCα mutant in which αC1 was replaced with the εC1 domain, suggesting that αC1 is a determinant for curcumin's inhibitory effect. In addition, curcumin inhibited membrane translocation of PKCε mutants, in which the εC1A and εC1B domains were replaced with the αC1A and αC1B domains, respectively, indicating the role of both αC1A and αC1B domains in curcumin's inhibitory effects. Phorbol 13-acetate inhibited the binding of curcumin to αC1A and αC1B with IC50 values of 6.27 and 4.47 μM, respectively. Molecular docking and molecular dynamics studies also supported the higher affinity of curcumin for αC1B than for αC1A. The C2 domain-swapped mutants were inactive in phorbol ester-induced membrane translocation. These results indicate that curcumin binds to the C1 domain of PKCα and highlight the importance of this domain in achieving PKC isoform selectivity.
Collapse
Affiliation(s)
- Satyabrata Pany
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston , Houston, Texas 77204, United States
| | - Youngki You
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston , Houston, Texas 77204, United States
| | - Joydip Das
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston , Houston, Texas 77204, United States
| |
Collapse
|
33
|
Haque ZK, Wang DZ. How cardiomyocytes sense pathophysiological stresses for cardiac remodeling. Cell Mol Life Sci 2016; 74:983-1000. [PMID: 27714411 DOI: 10.1007/s00018-016-2373-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 09/01/2016] [Accepted: 09/19/2016] [Indexed: 12/14/2022]
Abstract
In the past decades, the cardiovascular community has laid out the fundamental signaling cascades that become awry in the cardiomyocyte during the process of pathologic cardiac remodeling. These pathways are initiated at the cell membrane and work their way to the nucleus to mediate gene expression. Complexity is multiplied as the cardiomyocyte is subjected to cross talk with other cells as well as a barrage of extracellular stimuli and mechanical stresses. In this review, we summarize the signaling cascades that play key roles in cardiac function and then we proceed to describe emerging concepts of how the cardiomyocyte senses the mechanical and environmental stimuli to transition to the deleterious genetic program that defines pathologic cardiac remodeling. As a highlighting example of these processes, we illustrate the transition from a compensated hypertrophied myocardium to a decompensated failing myocardium, which is clinically manifested as decompensated heart failure.
Collapse
Affiliation(s)
- Zaffar K Haque
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 1260 John F. Enders Research Bldg, 320 Longwood Ave, Boston, MA, 02115, USA.
| | - Da-Zhi Wang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 1260 John F. Enders Research Bldg, 320 Longwood Ave, Boston, MA, 02115, USA
| |
Collapse
|
34
|
Pany S, Majhi A, Das J. Selective Modulation of Protein Kinase C α over Protein Kinase C ε by Curcumin and Its Derivatives in CHO-K1 Cells. Biochemistry 2016; 55:2135-43. [PMID: 26983836 DOI: 10.1021/acs.biochem.6b00057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Members of the protein kinase C (PKC) family of serine/threonine kinases regulate various cellular functions, including cell growth, differentiation, metabolism, and apoptosis. Modulation of isoform-selective activity of PKC by curcumin (1), the active constituent of Curcuma L., is poorly understood, and the literature data are inconsistent and obscure. The effect of curcumin (1) and its analogues, 4-[(2Z,6E)-3-hydroxy-7-(4-hydroxy-3-methoxyphenyl)-5-oxohepta-2,6-dien-1-yl]-2-methoxyphenyl oleate (2), (9Z,12Z)-4-[(2Z,6E)-3-hydroxy-7-(4-hydroxy-3-methoxyphenyl)-5-oxohepta-2,6-dien-1-yl]-2-methoxyphenyl octadeca-9,12-dienoate (3), (9Z,12Z,15Z)-4-[(2Z,6E)-3-hydroxy-7-(4-hydroxy-3-methoxyphenyl)-5-oxohepta-2,6-dien-1-yl]-2-methoxyphenyl octadeca-9,12,15-trienoate (4), and (1E,6E)-1-[4-(hexadecyloxy)-3-methoxyphenyl]-7-(4-hydroxy-3-methoxyphenyl)hepta-1,6-diene-3,5-dione (5), and didemethylcurcumin (6) on the membrane translocation of PKCα, a conventional PKC, and PKCε, a novel PKC, has been studied in CHO-K1 cells, in which these PKC isoforms are endogenously expressed. Translocation of PKC from the cytosol to the membrane was measured using immunoblotting and confocal microscopy. 1 and 6 inhibited the TPA-induced membrane translocation of PKCα but not of PKCε. Modification of the hydroxyl group of curcumin with a long aliphatic chain containing unsaturated double bonds in 2-4 completely abolished this inhibition property. Instead, 2-4 showed significant translocation of PKCα but not of PKCε to the membrane. No membrane translocation was observed with 1, 6, or the analogue 5 having a saturated long chain for either PKCα or PKCε. 1 and 6 inhibited TPA-induced activation of ERK1/2, and 2-4 activated it. ERK1/2 is the downstream readout of PKC. These results show that the hydroxyl group of curcumin is important for PKC activity and the curcumin template can be useful in developing isoform specific PKC modulators for regulating a particular disease state.
Collapse
Affiliation(s)
- Satyabrata Pany
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston , Houston, Texas 77204, United States
| | - Anjoy Majhi
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston , Houston, Texas 77204, United States
| | - Joydip Das
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston , Houston, Texas 77204, United States
| |
Collapse
|
35
|
Expressing an inhibitor of PLCβ1b sustains contractile function following pressure overload. J Mol Cell Cardiol 2016; 93:12-7. [PMID: 26906633 DOI: 10.1016/j.yjmcc.2016.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/29/2016] [Accepted: 02/17/2016] [Indexed: 01/19/2023]
Abstract
The activity of phospholipase Cβ1b (PLCβ1b) is selectively elevated in failing myocardium and cardiac expression of PLCβ1b causes contractile dysfunction. PLCβ1b can be selectively inhibited by expressing a peptide inhibitor that prevents sarcolemmal localization. The inhibitory peptide, PLCβ1b-CT was expressed in heart from a mini-gene using adeno-associated virus (rAAV6-PLCβ1b-CT). rAAV6-PLCβ1b-CT, or blank virus, was delivered IV (4×10(9)vg/g body weight) and trans-aortic-constriction (TAC) or sham-operation was performed 8weeks later. Expression of PLCβ1b-CT prevented the loss of contractile function, eliminated lung congestion and improved survival following TAC with either a 'moderate' or 'severe' pressure gradient. Hypertrophy was attenuated but not eliminated. Expression of the PLCβ1b-CT peptide 2-3weeks after TAC reduced contractile dysfunction and lung congestion, without limiting hypertrophy. PLCβ1b inhibition ameliorates pathological responses following acute pressure overload. The targeting of PLCβ1b to the sarcolemma provides the basis for the development of a new class of inotropic agent.
Collapse
|
36
|
Abd Alla J, Graemer M, Fu X, Quitterer U. Inhibition of G-protein-coupled Receptor Kinase 2 Prevents the Dysfunctional Cardiac Substrate Metabolism in Fatty Acid Synthase Transgenic Mice. J Biol Chem 2015; 291:2583-600. [PMID: 26670611 DOI: 10.1074/jbc.m115.702688] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Indexed: 12/12/2022] Open
Abstract
Impairment of myocardial fatty acid substrate metabolism is characteristic of late-stage heart failure and has limited treatment options. Here, we investigated whether inhibition of G-protein-coupled receptor kinase 2 (GRK2) could counteract the disturbed substrate metabolism of late-stage heart failure. The heart failure-like substrate metabolism was reproduced in a novel transgenic model of myocardium-specific expression of fatty acid synthase (FASN), the major palmitate-synthesizing enzyme. The increased fatty acid utilization of FASN transgenic neonatal cardiomyocytes rapidly switched to a heart failure phenotype in an adult-like lipogenic milieu. Similarly, adult FASN transgenic mice developed signs of heart failure. The development of disturbed substrate utilization of FASN transgenic cardiomyocytes and signs of heart failure were retarded by the transgenic expression of GRKInh, a peptide inhibitor of GRK2. Cardioprotective GRK2 inhibition required an intact ERK axis, which blunted the induction of cardiotoxic transcripts, in part by enhanced serine 273 phosphorylation of Pparg (peroxisome proliferator-activated receptor γ). Conversely, the dual-specific GRK2 and ERK cascade inhibitor, RKIP (Raf kinase inhibitor protein), triggered dysfunctional cardiomyocyte energetics and the expression of heart failure-promoting Pparg-regulated genes. Thus, GRK2 inhibition is a novel approach that targets the dysfunctional substrate metabolism of the failing heart.
Collapse
Affiliation(s)
- Joshua Abd Alla
- From the Department of Chemistry and Applied Biosciences, Molecular Pharmacology Unit, Swiss Federal Institute of Technology (ETH) Zurich, 8057 Zurich
| | - Muriel Graemer
- From the Department of Chemistry and Applied Biosciences, Molecular Pharmacology Unit, Swiss Federal Institute of Technology (ETH) Zurich, 8057 Zurich
| | - Xuebin Fu
- From the Department of Chemistry and Applied Biosciences, Molecular Pharmacology Unit, Swiss Federal Institute of Technology (ETH) Zurich, 8057 Zurich, the Department of Clinical Research, University of Bern, 3010 Bern, and
| | - Ursula Quitterer
- From the Department of Chemistry and Applied Biosciences, Molecular Pharmacology Unit, Swiss Federal Institute of Technology (ETH) Zurich, 8057 Zurich, the Department of Medicine, Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
37
|
Shende P, Xu L, Morandi C, Pentassuglia L, Heim P, Lebboukh S, Berthonneche C, Pedrazzini T, Kaufmann BA, Hall MN, Rüegg MA, Brink M. Cardiac mTOR complex 2 preserves ventricular function in pressure-overload hypertrophy. Cardiovasc Res 2015; 109:103-14. [DOI: 10.1093/cvr/cvv252] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 11/06/2015] [Indexed: 11/12/2022] Open
|
38
|
Mollova MY, Katus HA, Backs J. Regulation of CaMKII signaling in cardiovascular disease. Front Pharmacol 2015; 6:178. [PMID: 26379551 PMCID: PMC4548452 DOI: 10.3389/fphar.2015.00178] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/10/2015] [Indexed: 01/08/2023] Open
Abstract
Heart failure (HF) is a major cause of death in the developed countries (Murray and Lopez, 1996; Koitabashi and Kass, 2012). Adverse cardiac remodeling that precedes heart muscle dysfunction is characterized by a myriad of molecular changes affecting the cardiomyocyte. Among these, alterations in protein kinase pathways play often an important mediator role since they link upstream pathologic stress signaling with downstream regulatory programs and thus affect both the structural and functional integrity of the heart muscle. In the context of cardiac disease, a profound understanding for the overriding mechanisms that regulate protein kinase activity (protein-protein interactions, post-translational modifications, or targeting via anchoring proteins) is crucial for the development of specific and effective pharmacological treatment strategies targeting the failing myocardium. In this review, we focus on several mechanisms of upstream regulation of Ca2+-calmodulin-dependent protein kinase II that play a relevant pathophysiological role in the development and progression of cardiovascular disease; precise targeting of these mechanisms might therefore represent novel and promising tools for prevention and treatment of HF.
Collapse
Affiliation(s)
- Mariya Y Mollova
- Research Unit Cardiac Epigenetics, Department of Cardiology, Angiology and Pneumology, University of Heidelberg , Heidelberg, Germany ; Department of Cardiology, Angiology and Pneumology, University of Heidelberg , Heidelberg, Germany ; Partner Site Heidelberg/Mannheim, German Center for Cardiovascular Research , Heidelberg, Germany
| | - Hugo A Katus
- Department of Cardiology, Angiology and Pneumology, University of Heidelberg , Heidelberg, Germany ; Partner Site Heidelberg/Mannheim, German Center for Cardiovascular Research , Heidelberg, Germany
| | - Johannes Backs
- Research Unit Cardiac Epigenetics, Department of Cardiology, Angiology and Pneumology, University of Heidelberg , Heidelberg, Germany ; Partner Site Heidelberg/Mannheim, German Center for Cardiovascular Research , Heidelberg, Germany
| |
Collapse
|
39
|
Grubb DR, Crook B, Ma Y, Luo J, Qian HW, Gao XM, Kiriazis H, Du XJ, Gregorevic P, Woodcock EA. The atypical 'b' splice variant of phospholipase Cβ1 promotes cardiac contractile dysfunction. J Mol Cell Cardiol 2015; 84:95-103. [PMID: 25918049 DOI: 10.1016/j.yjmcc.2015.04.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/16/2015] [Accepted: 04/20/2015] [Indexed: 10/23/2022]
Abstract
The activity of the early signaling enzyme, phospholipase Cβ1b (PLCβ1b), is selectively elevated in diseased myocardium and activity increases with disease progression. We aimed to establish the contribution of heightened PLCβ1b activity to cardiac pathology. PLCβ1b, the alternative splice variant, PLCβ1a, and a blank virus were expressed in mouse hearts using adeno-associated viral vectors (rAAV6-FLAG-PLCβ1b, rAAV6-FLAG-PLCβ1a, or rAAV6-blank) delivered intravenously (IV). Following viral delivery, FLAG-PLCβ1b was expressed in all of the chambers of the mouse heart and was localized to the sarcolemma. Heightened PLCβ1b expression caused a rapid loss of contractility, 4-6 weeks, that was fully reversed, within 5 days, by inhibition of protein kinase Cα (PKCα). PLCβ1a did not localize to the sarcolemma and did not affect contractile function. Expression of PLCβ1b, but not PLCβ1a, caused downstream dephosphorylation of phospholamban and depletion of the Ca(2+) stores of the sarcoplasmic reticulum. We conclude that heightened PLCβ1b activity observed in diseased myocardium contributes to pathology by PKCα-mediated contractile dysfunction. PLCβ1b is a cardiac-specific signaling system, and thus provides a potential therapeutic target for the development of well-tolerated inotropic agents for use in failing myocardium.
Collapse
Affiliation(s)
- David R Grubb
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, 3004 Victoria, Australia
| | - Bryony Crook
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, 3004 Victoria, Australia
| | - Yi Ma
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, 3004 Victoria, Australia
| | - Jieting Luo
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, 3004 Victoria, Australia
| | - Hong Wei Qian
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, 3004 Victoria, Australia
| | - Xiao-Ming Gao
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, 3004 Victoria, Australia
| | - Helen Kiriazis
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, 3004 Victoria, Australia
| | - Xiao-Jun Du
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, 3004 Victoria, Australia
| | - Paul Gregorevic
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, 3004 Victoria, Australia
| | - Elizabeth A Woodcock
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, 3004 Victoria, Australia.
| |
Collapse
|
40
|
Song M, Matkovich SJ, Zhang Y, Hammer DJ, Dorn GW. Combined cardiomyocyte PKCδ and PKCε gene deletion uncovers their central role in restraining developmental and reactive heart growth. Sci Signal 2015; 8:ra39. [PMID: 25900833 DOI: 10.1126/scisignal.aaa1855] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cell growth is orchestrated by changes in gene expression that respond to developmental and environmental cues. Among the signaling pathways that direct growth are enzymes of the protein kinase C (PKC) family, which are ubiquitous proteins belonging to three distinct subclasses: conventional PKCs, novel PKCs, and atypical PKCs. Functional overlap makes determining the physiological actions of different PKC isoforms difficult. We showed that two novel PKC isoforms, PKCδ and PKCε, redundantly govern stress-reactive and developmental heart growth by modulating the expression of cardiac genes central to stress-activated protein kinase and periostin signaling. Mice with combined postnatal cardiomyocyte-specific genetic ablation of PKCδ and germline deletion of PKCε (DCKO) had normally sized hearts, but their hearts had transcriptional changes typical of pathological hypertrophy. Cardiac hypertrophy and dysfunction induced by hemodynamic overloading were greater in DCKO mice than in mice with a single deletion of either PKCδ or PKCε. Furthermore, gene expression analysis of the hearts of DCKO mice revealed transcriptional derepression of the genes encoding the kinase ERK (extracellular signal-regulated kinase) and periostin. Mice with combined embryonic ablation of PKCδ and PKCε showed enhanced growth and cardiomyocyte hyperplasia that induced pathological ventricular stiffening and early lethality, phenotypes absent in mice with a single deletion of PKCδ or PKCε. Our results indicate that novel PKCs provide retrograde feedback inhibition of growth signaling pathways central to cardiac development and stress adaptation. These growth-suppressing effects of novel PKCs have implications for therapeutic inhibition of PKCs in cancer, heart, and other diseases.
Collapse
Affiliation(s)
- Moshi Song
- Center for Pharmacogenomics and Division of Cardiology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Scot J Matkovich
- Center for Pharmacogenomics and Division of Cardiology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yan Zhang
- Center for Pharmacogenomics and Division of Cardiology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniel J Hammer
- Center for Pharmacogenomics and Division of Cardiology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gerald W Dorn
- Center for Pharmacogenomics and Division of Cardiology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
41
|
Bhalla N, Formisano N, Miodek A, Jain A, Di Lorenzo M, Pula G, Estrela P. Plasmonic ruler on field-effect devices for kinase drug discovery applications. Biosens Bioelectron 2015; 71:121-128. [PMID: 25897881 DOI: 10.1016/j.bios.2015.04.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 04/02/2015] [Accepted: 04/07/2015] [Indexed: 10/23/2022]
Abstract
Protein kinases are cellular switches that mediate phosphorylation of proteins. Abnormal phosphorylation of proteins is associated with lethal diseases such as cancer. In the pharmaceutical industry, protein kinases have become an important class of drug targets. This study reports a versatile approach for the detection of protein phosphorylation. The change in charge of the myelin basic protein upon phosphorylation by the protein kinase C-alpha (PKC-α) in the presence of adenosine 5'-[γ-thio] triphosphate (ATP-S) was detected on gold metal-insulator-semiconductor (Au-MIS) capacitor structures. Gold nanoparticles (AuNPs) can then be attached to the thio-phosphorylated proteins, forming a Au-film/AuNP plasmonic couple. This was detected by a localized surface plasmon resonance (LSPR) technique alongside MIS capacitance. All reactions were validated using surface plasmon resonance technique and the interaction of AuNPs with the thio-phosphorylated proteins quantified by quartz crystal microbalance. The plasmonic coupling was also visualized by simulations using finite element analysis. The use of this approach in drug discovery applications was demonstrated by evaluating the response in the presence of a known inhibitor of PKC-α kinase. LSPR and MIS on a single platform act as a cross check mechanism for validating kinase activity and make the system robust to test novel inhibitors.
Collapse
Affiliation(s)
- Nikhil Bhalla
- Department of Electronic & Electrical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom.
| | - Nello Formisano
- Department of Electronic & Electrical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom.
| | - Anna Miodek
- Department of Electronic & Electrical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom.
| | - Aditya Jain
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011, USA.
| | - Mirella Di Lorenzo
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, United Kingdom.
| | - Giordano Pula
- Department of Pharmacy & Pharmacology, University of Bath, Bath BA2 7AY, United Kingdom.
| | - Pedro Estrela
- Department of Electronic & Electrical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom.
| |
Collapse
|
42
|
Protein phosphorylation detection using dual-mode field-effect devices and nanoplasmonic sensors. Sci Rep 2015; 5:8687. [PMID: 25732235 PMCID: PMC4346972 DOI: 10.1038/srep08687] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/27/2015] [Indexed: 01/25/2023] Open
Abstract
Phosphorylation by kinases is an important post-translational modification of proteins. It is a critical control for the regulation of vital cellular activities, and its dysregulation is implicated in several diseases. A common drug discovery approach involves, therefore, time-consuming screenings of large libraries of candidate compounds to identify novel inhibitors of protein kinases. In this work, we propose a novel method that combines localized surface plasmon resonance (LSPR) and electrolyte insulator semiconductor (EIS)-based proton detection for the rapid identification of novel protein kinase inhibitors. In particular, the selective detection of thiophosphorylated proteins by LSPR is achieved by changing their resonance properties via a pre-binding with gold nanoparticles. In parallel, the EIS field-effect structure allows the real-time electrochemical monitoring of the protein phosphorylation by detecting the release of protons associated with the kinases activity. This innovative combination of both field-effect and nanoplasmonic sensing makes the detection of protein phosphorylation more reliable and effective. As a result, the screening of protein kinase inhibitors becomes more rapid, sensitive, robust and cost-effective.
Collapse
|
43
|
Tham YK, Bernardo BC, Ooi JYY, Weeks KL, McMullen JR. Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets. Arch Toxicol 2015; 89:1401-38. [DOI: 10.1007/s00204-015-1477-x] [Citation(s) in RCA: 371] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/09/2015] [Indexed: 12/18/2022]
|
44
|
Song X, Qian X, Shen M, Jiang R, Wagner MB, Ding G, Chen G, Shen B. Protein kinase C promotes cardiac fibrosis and heart failure by modulating galectin-3 expression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:513-21. [DOI: 10.1016/j.bbamcr.2014.12.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/22/2014] [Accepted: 12/01/2014] [Indexed: 12/14/2022]
|
45
|
Gutiérrez T, Parra V, Troncoso R, Pennanen C, Contreras-Ferrat A, Vasquez-Trincado C, Morales PE, Lopez-Crisosto C, Sotomayor-Flores C, Chiong M, Rothermel BA, Lavandero S. Alteration in mitochondrial Ca(2+) uptake disrupts insulin signaling in hypertrophic cardiomyocytes. Cell Commun Signal 2014; 12:68. [PMID: 25376904 PMCID: PMC4234850 DOI: 10.1186/s12964-014-0068-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 10/14/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cardiac hypertrophy is characterized by alterations in both cardiac bioenergetics and insulin sensitivity. Insulin promotes glucose uptake by cardiomyocytes and its use as a substrate for glycolysis and mitochondrial oxidation in order to maintain the high cardiac energy demands. Insulin stimulates Ca(2+) release from the endoplasmic reticulum, however, how this translates to changes in mitochondrial metabolism in either healthy or hypertrophic cardiomyocytes is not fully understood. RESULTS In the present study we investigated insulin-dependent mitochondrial Ca(2+) signaling in normal and norepinephrine or insulin like growth factor-1-induced hypertrophic cardiomyocytes. Using mitochondrion-selective Ca(2+)-fluorescent probes we showed that insulin increases mitochondrial Ca(2+) levels. This signal was inhibited by the pharmacological blockade of either the inositol 1,4,5-triphosphate receptor or the mitochondrial Ca(2+) uniporter, as well as by siRNA-dependent mitochondrial Ca(2+) uniporter knockdown. Norepinephrine-stimulated cardiomyocytes showed a significant decrease in endoplasmic reticulum-mitochondrial contacts compared to either control or insulin like growth factor-1-stimulated cells. This resulted in a reduction in mitochondrial Ca(2+) uptake, Akt activation, glucose uptake and oxygen consumption in response to insulin. Blocking mitochondrial Ca(2+) uptake was sufficient to mimic the effect of norepinephrine-induced cardiomyocyte hypertrophy on insulin signaling. CONCLUSIONS Mitochondrial Ca(2+) uptake is a key event in insulin signaling and metabolism in cardiomyocytes.
Collapse
Affiliation(s)
- Tomás Gutiérrez
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, 838049, Chile.
| | - Valentina Parra
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, 838049, Chile.
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA.
| | - Rodrigo Troncoso
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, 838049, Chile.
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, 7830490, Chile.
| | - Christian Pennanen
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, 838049, Chile.
| | - Ariel Contreras-Ferrat
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, 838049, Chile.
- Institute for Research in Dental Science, Faculty of Dentistry, Universidad de Chile, Santiago, 838049, Chile.
| | - César Vasquez-Trincado
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, 838049, Chile.
| | - Pablo E Morales
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, 838049, Chile.
| | - Camila Lopez-Crisosto
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, 838049, Chile.
| | - Cristian Sotomayor-Flores
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, 838049, Chile.
| | - Mario Chiong
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, 838049, Chile.
- Centro de Estudios Moleculares de la Célula, Facultad de Medicina, Universidad de Chile, Santiago, 838049, Chile.
| | - Beverly A Rothermel
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA.
| | - Sergio Lavandero
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, 838049, Chile.
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA.
- Centro de Estudios Moleculares de la Célula, Facultad de Medicina, Universidad de Chile, Santiago, 838049, Chile.
| |
Collapse
|
46
|
Sobol CV, Korotkov SM, Nesterov VP. Inotropic effect of a new probiotic product on myocardial contractility. Comparison with diazoxide. Biophysics (Nagoya-shi) 2014. [DOI: 10.1134/s000635091405025x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
47
|
Wang P, Mao B, Luo W, Wei B, Jiang W, Liu D, Song L, Ji G, Yang Z, Lai YQ, Yuan Z. The alteration of Hippo/YAP signaling in the development of hypertrophic cardiomyopathy. Basic Res Cardiol 2014; 109:435. [DOI: 10.1007/s00395-014-0435-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 08/05/2014] [Accepted: 08/20/2014] [Indexed: 10/24/2022]
|
48
|
Liu L, Trent CM, Fang X, Son NH, Jiang H, Blaner WS, Hu Y, Yin YX, Farese RV, Homma S, Turnbull AV, Eriksson JW, Hu SL, Ginsberg HN, Huang LS, Goldberg IJ. Cardiomyocyte-specific loss of diacylglycerol acyltransferase 1 (DGAT1) reproduces the abnormalities in lipids found in severe heart failure. J Biol Chem 2014; 289:29881-91. [PMID: 25157099 DOI: 10.1074/jbc.m114.601864] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Diacylglycerol acyltransferase 1 (DGAT1) catalyzes the final step in triglyceride synthesis, the conversion of diacylglycerol (DAG) to triglyceride. Dgat1(-/-) mice exhibit a number of beneficial metabolic effects including reduced obesity and improved insulin sensitivity and no known cardiac dysfunction. In contrast, failing human hearts have severely reduced DGAT1 expression associated with accumulation of DAGs and ceramides. To test whether DGAT1 loss alone affects heart function, we created cardiomyocyte-specific DGAT1 knock-out (hDgat1(-/-)) mice. hDgat1(-/-) mouse hearts had 95% increased DAG and 85% increased ceramides compared with floxed controls. 50% of these mice died by 9 months of age. The heart failure marker brain natriuretic peptide increased 5-fold in hDgat1(-/-) hearts, and fractional shortening (FS) was reduced. This was associated with increased expression of peroxisome proliferator-activated receptor α and cluster of differentiation 36. We crossed hDgat1(-/-) mice with previously described enterocyte-specific Dgat1 knock-out mice (hiDgat1(-/-)). This corrected the early mortality, improved FS, and reduced cardiac ceramide and DAG content. Treatment of hDgat1(-/-) mice with the glucagon-like peptide 1 receptor agonist exenatide also improved FS and reduced heart DAG and ceramide content. Increased fatty acid uptake into hDgat1(-/-) hearts was normalized by exenatide. Reduced activation of protein kinase Cα (PKCα), which is increased by DAG and ceramides, paralleled the reductions in these lipids. Our mouse studies show that loss of DGAT1 reproduces the lipid abnormalities seen in severe human heart failure.
Collapse
Affiliation(s)
- Li Liu
- From the Divisions of Preventive Medicine and Nutrition and Institute of Systems Biomedicine, Peking University Health Science Center, 100083 Beijing, China
| | - Chad M Trent
- From the Divisions of Preventive Medicine and Nutrition and
| | - Xiang Fang
- From the Divisions of Preventive Medicine and Nutrition and Department of Geriatrics, Affiliated Provincial Hospital, Anhui Medical University, 230001 Hefei, China
| | - Ni-Huiping Son
- From the Divisions of Preventive Medicine and Nutrition and
| | - HongFeng Jiang
- From the Divisions of Preventive Medicine and Nutrition and
| | | | - Yunying Hu
- From the Divisions of Preventive Medicine and Nutrition and
| | - Yu-Xin Yin
- Institute of Systems Biomedicine, Peking University Health Science Center, 100083 Beijing, China
| | - Robert V Farese
- Gladstone Institute of Cardiovascular Disease and Departments of Medicine and Biochemistry and Biophysics, University of California, San Francisco, California 94158
| | - Shunichi Homma
- Cardiology, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | | | - Jan W Eriksson
- Astra-Zeneca Company, 431 50 Mölndal, Sweden, Department of Medical Sciences, Uppsala University, 751 05 Uppsala, Sweden, and
| | - Shi-Lian Hu
- Department of Geriatrics, Affiliated Provincial Hospital, Anhui Medical University, 230001 Hefei, China
| | | | - Li-Shin Huang
- From the Divisions of Preventive Medicine and Nutrition and
| | - Ira J Goldberg
- From the Divisions of Preventive Medicine and Nutrition and Cardiology, Columbia University College of Physicians and Surgeons, New York, New York 10032, Division of Endocrinology, Diabetes, and Metabolism, New York University Langone School of Medicine, New York, New York 10016
| |
Collapse
|
49
|
Li J, Ziemba BP, Falke J, Voth GA. Interactions of protein kinase C-α C1A and C1B domains with membranes: a combined computational and experimental study. J Am Chem Soc 2014; 136:11757-66. [PMID: 25075641 PMCID: PMC4140453 DOI: 10.1021/ja505369r] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Indexed: 02/01/2023]
Abstract
Protein kinase C-α (PKCα) has been studied widely as a paradigm for conventional PKCs, with two C1 domains (C1A and C1B) being important for the regulation and function of the kinase. However, it is challenging to explore these domains in membrane-bound environments with either simulations or experiments alone. In this work, we have combined modeling, simulations, and experiments to understand the molecular basis of the PKCα C1A and C1B domain interactions with membranes. Our atomistic simulations of the PKCα C1 domains reveal the dynamic interactions of the proteins with anionic lipids, as well as the conserved hydrogen bonds and the distinct nonpolar contacts formed with lipid activators. Corroborating evidence is obtained from additional simulations and experiments in terms of lipid binding and protein diffusion. Overall, our study, for the first time, explains with atomistic detail how the PKCα C1A and C1B domains interact differently with various lipids. On the molecular level, the information provided by our study helps to shed light on PKCα regulation and activation mechanism. The combined computational/experimental approach demonstrated in this work is anticipated to enable further studies to explore the roles of C1 domains in many signaling proteins and to better understand their molecular mechanisms in normal cellular function and disease development.
Collapse
Affiliation(s)
- Jianing Li
- Department
of Chemistry, Institute for Biophysical Dynamics, James Franck Institute
and Computation Institute, The University
of Chicago, 5735 South
Ellis Avenue, Chicago, Illinois 60637, United States
| | - Brian P. Ziemba
- Department
of Chemistry and Biochemistry and the Molecular Biophysics Program, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| | - Joseph
J. Falke
- Department
of Chemistry and Biochemistry and the Molecular Biophysics Program, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| | - Gregory A. Voth
- Department
of Chemistry, Institute for Biophysical Dynamics, James Franck Institute
and Computation Institute, The University
of Chicago, 5735 South
Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
50
|
Differential and conditional activation of PKC-isoforms dictates cardiac adaptation during physiological to pathological hypertrophy. PLoS One 2014; 9:e104711. [PMID: 25116170 PMCID: PMC4130596 DOI: 10.1371/journal.pone.0104711] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 07/11/2014] [Indexed: 02/02/2023] Open
Abstract
A cardiac hypertrophy is defined as an increase in heart mass which may either be beneficial (physiological hypertrophy) or detrimental (pathological hypertrophy). This study was undertaken to establish the role of different protein kinase-C (PKC) isoforms in the regulation of cardiac adaptation during two types of cardiac hypertrophy. Phosphorylation of specific PKC-isoforms and expression of their downstream proteins were studied during physiological and pathological hypertrophy in 24 week male Balb/c mice (Mus musculus) models, by reverse transcriptase-PCR, western blot analysis and M-mode echocardiography for cardiac function analysis. PKC-δ was significantly induced during pathological hypertrophy while PKC-α was exclusively activated during physiological hypertrophy in our study. PKC-δ activation during pathological hypertrophy resulted in cardiomyocyte apoptosis leading to compromised cardiac function and on the other hand, activation of PKC-α during physiological hypertrophy promoted cardiomyocyte growth but down regulated cellular apoptotic load resulting in improved cardiac function. Reversal in PKC-isoform with induced activation of PKC-δ and simultaneous inhibition of phospho-PKC-α resulted in an efficient myocardium to deteriorate considerably resulting in compromised cardiac function during physiological hypertrophy via augmentation of apoptotic and fibrotic load. This is the first report where PKC-α and -δ have been shown to play crucial role in cardiac adaptation during physiological and pathological hypertrophy respectively thereby rendering compromised cardiac function to an otherwise efficient heart by conditional reversal of their activation.
Collapse
|