1
|
Al Ali HS, Rodrigo GC, Lambert DG. Signalling pathways involved in urotensin II induced ventricular myocyte hypertrophy. PLoS One 2025; 20:e0313119. [PMID: 39820183 PMCID: PMC11737703 DOI: 10.1371/journal.pone.0313119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/20/2024] [Indexed: 01/19/2025] Open
Abstract
Sustained pathologic myocardial hypertrophy can result in heart failure(HF); a significant health issue affecting a large section of the population worldwide. In HF there is a marked elevation in circulating levels of the peptide urotensin II(UII) but it is unclear whether this is a result of hypertrophy or whether the high levels contribute to the development of hypertrophy. The aim of this study is to investigate a role of UII and its receptor UT in the development of cardiac hypertrophy and the signalling molecules involved. Ventricular myocytes isolated from adult rat hearts were treated with 200nM UII for 48hours and hypertrophy was quantified from measurements of length/width (L/W) ratio. UII resulted in a change in L/W ratio from 4.53±0.10 to 3.99±0.06; (p<0.0001) after 48hours. The response is reversed by the UT-antagonist SB657510 (1μM). UT receptor activation by UII resulted in the activation of ERK1/2, p38 and CaMKII signalling pathways measured by Western blotting; these are involved in the induction of hypertrophy. JNK was not involved. Moreover, ERK1/2, P38 and CaMKII inhibitors completely blocked UII-induced hypertrophy. Sarcoplasmic reticulum (SR) Ca2+-leak was investigated in isolated myocytes. There was no significant increase in SR Ca2+-leak. Our results suggest that activation of MAPK and CaMKII signalling pathways are involved in the hypertrophic response to UII. Collectively our data suggest that increased circulating UII may contribute to the development of left ventricular hypertrophy and pharmacological inhibition of the UII/UT receptor system may prove beneficial in reducing adverse remodeling and alleviating contractile dysfunction in heart disease.
Collapse
Affiliation(s)
- Hadeel S. Al Ali
- Department of Cardiovascular Sciences, Clinical Sciences Wing, Glenfield Hospital, University of Leicester, Leicester, United Kingdom
- Department of Physiology, Al-Zahraa College of Medicine, University of Basrah, Basrah, Iraq
| | - Glenn C. Rodrigo
- Department of Cardiovascular Sciences, Clinical Sciences Wing, Glenfield Hospital, University of Leicester, Leicester, United Kingdom
| | - David G. Lambert
- Department of Cardiovascular Sciences, Anaesthesia, Critical Care and Pain Management, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
2
|
Zhao Y, Du B, Chakraborty P, Denham N, Massé S, Lai PF, Azam MA, Billia F, Thavendiranathan P, Abdel‐Qadir H, Lopaschuk GD, Nanthakumar K. Impaired Cardiac AMPK (5'-Adenosine Monophosphate-Activated Protein Kinase) and Ca 2+-Handling, and Action Potential Duration Heterogeneity in Ibrutinib-Induced Ventricular Arrhythmia Vulnerability. J Am Heart Assoc 2024; 13:e032357. [PMID: 38842296 PMCID: PMC11255774 DOI: 10.1161/jaha.123.032357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/03/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND We recently demonstrated that acute administration of ibrutinib, a Bruton's tyrosine kinase inhibitor used in chemotherapy for blood malignancies, increases ventricular arrhythmia (VA) vulnerability. A pathway of ibrutinib-induced vulnerability to VA that can be modulated for cardioprotection remains unclear. METHODS AND RESULTS The effects of ibrutinib on cardiac electrical activity and Ca2+ dynamics were investigated in Langendorff-perfused hearts using optical mapping. We also conducted Western blotting analysis to evaluate the impact of ibrutinib on various regulatory and Ca2+-handling proteins in rat cardiac tissues. Treatment with ibrutinib (10 mg/kg per day) for 4 weeks was associated with an increased VA inducibility (72.2%±6.3% versus 38.9±7.0% in controls, P<0.002) and shorter action potential durations during pacing at various frequencies (P<0.05). Ibrutinib also decreased heart rate thresholds for beat-to-beat duration alternans of the cardiac action potential (P<0.05). Significant changes in myocardial Ca2+ transients included lower amplitude alternans ratios (P<0.05), longer times-to-peak (P<0.05), and greater spontaneous intracellular Ca2+ elevations (P<0.01). We also found lower abundance and phosphorylation of myocardial AMPK (5'-adenosine monophosphate-activated protein kinase), indicating reduced AMPK activity in hearts after ibrutinib treatment. An acute treatment with the AMPK activator 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside ameliorated abnormalities in action potential and Ca2+ dynamics, and significantly reduced VA inducibility (37.1%±13.4% versus 72.2%±6.3% in the absence of 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside, P<0.05) in hearts from ibrutinib-treated rats. CONCLUSIONS VA vulnerability inflicted by ibrutinib may be mediated in part by an impairment of myocardial AMPK activity. Pharmacological activation of AMPK may be a protective strategy against ibrutinib-induced cardiotoxicity.
Collapse
MESH Headings
- Animals
- Adenine/analogs & derivatives
- Adenine/pharmacology
- Piperidines/pharmacology
- Action Potentials/drug effects
- Pyrimidines/pharmacology
- AMP-Activated Protein Kinases/metabolism
- Pyrazoles/pharmacology
- Male
- Arrhythmias, Cardiac/chemically induced
- Arrhythmias, Cardiac/metabolism
- Arrhythmias, Cardiac/physiopathology
- Arrhythmias, Cardiac/prevention & control
- Protein Kinase Inhibitors/pharmacology
- Heart Rate/drug effects
- Isolated Heart Preparation
- Calcium/metabolism
- Rats
- Disease Models, Animal
- Rats, Sprague-Dawley
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/pathology
- Calcium Signaling/drug effects
- Time Factors
Collapse
Affiliation(s)
- Yanan Zhao
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General HospitalTorontoCanada
- Toronto General Hospital Research InstituteTorontoCanada
- China‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Beibei Du
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General HospitalTorontoCanada
- Toronto General Hospital Research InstituteTorontoCanada
- China‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Praloy Chakraborty
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General HospitalTorontoCanada
- Toronto General Hospital Research InstituteTorontoCanada
| | - Nathan Denham
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General HospitalTorontoCanada
- Toronto General Hospital Research InstituteTorontoCanada
| | - Stéphane Massé
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General HospitalTorontoCanada
- Toronto General Hospital Research InstituteTorontoCanada
| | - Patrick F.H. Lai
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General HospitalTorontoCanada
- Toronto General Hospital Research InstituteTorontoCanada
| | - Mohammed Ali Azam
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General HospitalTorontoCanada
- Toronto General Hospital Research InstituteTorontoCanada
| | - Filio Billia
- Toronto General Hospital Research InstituteTorontoCanada
- Ted Rogers Centre for Heart ResearchTorontoCanada
| | | | - Husam Abdel‐Qadir
- Toronto General Hospital Research InstituteTorontoCanada
- Ted Rogers Centre for Heart ResearchTorontoCanada
| | | | - Kumaraswamy Nanthakumar
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General HospitalTorontoCanada
- Toronto General Hospital Research InstituteTorontoCanada
| |
Collapse
|
3
|
Chakraborty P, Aggarwal AK, Nair MKK, Massé S, Riazi S, Nanthakumar K. Restoration of calcium release synchrony: A novel target for heart failure and ventricular arrhythmia. Heart Rhythm 2023; 20:1773-1781. [PMID: 37678492 DOI: 10.1016/j.hrthm.2023.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/13/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023]
Abstract
Myocardial calcium (Ca2+) signaling plays a crucial role in contractile function and membrane electrophysiology. An abnormal myocardial Ca2+ transient is linked to heart failure and ventricular arrhythmias. At the subcellular level, the synchronous release of Ca2+ sparks from sarcoplasmic Ca2+ release units determines the configuration and amplitude of the global Ca2+ transient. This narrative review evaluates the role of aberrant Ca2+ release synchrony in the pathophysiology of cardiomyopathies and ventricular arrhythmias. The potential therapeutic benefits of restoration of Ca2+ release synchrony in heart failure and ventricular arrhythmias are also discussed.
Collapse
Affiliation(s)
- Praloy Chakraborty
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada; Heart Rhythm Institute, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| | - Arjun K Aggarwal
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Madhav Krishna Kumar Nair
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Stéphane Massé
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Sheila Riazi
- Malignant Hyperthermia Investigation Unit, Department of Anesthesia and Pain Management, University Health Network, Toronto, Ontario, Canada
| | - Kumaraswamy Nanthakumar
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Jin X, Meletiou A, Chung J, Tilunaite A, Demydenko K, Dries E, Puertas RD, Amoni M, Tomar A, Claus P, Soeller C, Rajagopal V, Sipido K, Roderick HL. InsP 3R-RyR channel crosstalk augments sarcoplasmic reticulum Ca 2+ release and arrhythmogenic activity in post-MI pig cardiomyocytes. J Mol Cell Cardiol 2023; 179:47-59. [PMID: 37003353 DOI: 10.1016/j.yjmcc.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/08/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Ca2+ transients (CaT) underlying cardiomyocyte (CM) contraction require efficient Ca2+ coupling between sarcolemmal Ca2+ channels and sarcoplasmic reticulum (SR) ryanodine receptor Ca2+ channels (RyR) for their generation; reduced coupling in disease contributes to diminished CaT and arrhythmogenic Ca2+ events. SR Ca2+ release also occurs via inositol 1,4,5-trisphosphate receptors (InsP3R) in CM. While this pathway contributes negligeably to Ca2+ handling in healthy CM, rodent studies support a role in altered Ca2+ dynamics and arrhythmogenic Ca2+ release involving InsP3R crosstalk with RyRs in disease. Whether this mechanism persists in larger mammals with lower T-tubular density and coupling of RyRs is not fully resolved. We have recently shown an arrhythmogenic action of InsP3-induced Ca2+ release (IICR) in end stage human heart failure, often associated with underlying ischemic heart disease (IHD). How IICR contributes to early stages of disease is however not determined but highly relevant. To access this stage, we chose a porcine model of IHD, which shows substantial remodelling of the area adjacent to the infarct. In cells from this region, IICR preferentially augmented Ca2+ release from non-coupled RyR clusters that otherwise showed delayed activation during the CaT. IICR in turn synchronised Ca2+ release during the CaT but also induced arrhythmogenic delayed afterdepolarizations and action potentials. Nanoscale imaging identified co-clustering of InsP3Rs and RyRs, thereby allowing Ca2+-mediated channel crosstalk. Mathematical modelling supported and further delineated this mechanism of enhanced InsP3R-RyRs coupling in MI. Our findings highlight the role of InsP3R-RyR channel crosstalk in Ca2+ release and arrhythmia during post-MI remodelling.
Collapse
Affiliation(s)
- Xin Jin
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium
| | - Anna Meletiou
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Joshua Chung
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium; Cell Structure and Mechanobiology Group, Department of Biomedical Engineering, Melbourne School of Engineering, University of Melbourne, Australia
| | - Agne Tilunaite
- Cell Structure and Mechanobiology Group, Department of Biomedical Engineering, Melbourne School of Engineering, University of Melbourne, Australia; Systems Biology Laboratory, School of Mathematics and Statistics, and Department of Biomedical Engineering, University of Melbourne, Australia
| | - Kateryna Demydenko
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium
| | - Eef Dries
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium
| | - Rosa Doñate Puertas
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium
| | - Matthew Amoni
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium
| | - Ashutosh Tomar
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium
| | - Piet Claus
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium
| | | | - Vijay Rajagopal
- Cell Structure and Mechanobiology Group, Department of Biomedical Engineering, Melbourne School of Engineering, University of Melbourne, Australia
| | - Karin Sipido
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium
| | - H Llewelyn Roderick
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium.
| |
Collapse
|
5
|
Sanganalmath SK, Dubey S, Veeranki S, Narisetty K, Krishnamurthy P. The interplay of inflammation, exosomes and Ca 2+ dynamics in diabetic cardiomyopathy. Cardiovasc Diabetol 2023; 22:37. [PMID: 36804872 PMCID: PMC9942322 DOI: 10.1186/s12933-023-01755-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/25/2023] [Indexed: 02/22/2023] Open
Abstract
Diabetes mellitus is one of the prime risk factors for cardiovascular complications and is linked with high morbidity and mortality. Diabetic cardiomyopathy (DCM) often manifests as reduced cardiac contractility, myocardial fibrosis, diastolic dysfunction, and chronic heart failure. Inflammation, changes in calcium (Ca2+) handling and cardiomyocyte loss are often implicated in the development and progression of DCM. Although the existence of DCM was established nearly four decades ago, the exact mechanisms underlying this disease pathophysiology is constantly evolving. Furthermore, the complex pathophysiology of DCM is linked with exosomes, which has recently shown to facilitate intercellular (cell-to-cell) communication through biomolecules such as micro RNA (miRNA), proteins, enzymes, cell surface receptors, growth factors, cytokines, and lipids. Inflammatory response and Ca2+ signaling are interrelated and DCM has been known to adversely affect many of these signaling molecules either qualitatively and/or quantitatively. In this literature review, we have demonstrated that Ca2+ regulators are tightly controlled at different molecular and cellular levels during various biological processes in the heart. Inflammatory mediators, miRNA and exosomes are shown to interact with these regulators, however how these mediators are linked to Ca2+ handling during DCM pathogenesis remains elusive. Thus, further investigations are needed to understand the mechanisms to restore cardiac Ca2+ homeostasis and function, and to serve as potential therapeutic targets in the treatment of DCM.
Collapse
Affiliation(s)
- Santosh K Sanganalmath
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Nevada Las Vegas School of Medicine, Las Vegas, NV, 89102, USA.
| | - Shubham Dubey
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, University Blvd., Birmingham, AL, 35294, USA
| | - Sudhakar Veeranki
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40506, USA
| | | | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, University Blvd., Birmingham, AL, 35294, USA
| |
Collapse
|
6
|
Dvinskikh L, Sparks H, MacLeod KT, Dunsby C. High-speed 2D light-sheet fluorescence microscopy enables quantification of spatially varying calcium dynamics in ventricular cardiomyocytes. Front Physiol 2023; 14:1079727. [PMID: 36866170 PMCID: PMC9971815 DOI: 10.3389/fphys.2023.1079727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/27/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction: Reduced synchrony of calcium release and t-tubule structure organization in individual cardiomyocytes has been linked to loss of contractile strength and arrhythmia. Compared to confocal scanning techniques widely used for imaging calcium dynamics in cardiac muscle cells, light-sheet fluorescence microscopy enables fast acquisition of a 2D plane in the sample with low phototoxicity. Methods: A custom light-sheet fluorescence microscope was used to achieve dual-channel 2D timelapse imaging of calcium and the sarcolemma, enabling calcium sparks and transients in left and right ventricle cardiomyocytes to be correlated with the cell microstructure. Imaging electrically stimulated dual-labelled cardiomyocytes immobilized with para-nitroblebbistatin, a non-phototoxic, low fluorescence contraction uncoupler, with sub-micron resolution at 395 fps over a 38 μm × 170 µm FOV allowed characterization of calcium spark morphology and 2D mapping of the calcium transient time-to-half-maximum across the cell. Results: Blinded analysis of the data revealed sparks with greater amplitude in left ventricle myocytes. The time for the calcium transient to reach half-maximum amplitude in the central part of the cell was found to be, on average, 2 ms shorter than at the cell ends. Sparks co-localized with t-tubules were found to have significantly longer duration, larger area and spark mass than those further away from t-tubules. Conclusion: The high spatiotemporal resolution of the microscope and automated image-analysis enabled detailed 2D mapping and quantification of calcium dynamics of n = 60 myocytes, with the findings demonstrating multi-level spatial variation of calcium dynamics across the cell, supporting the dependence of synchrony and characteristics of calcium release on the underlying t-tubule structure.
Collapse
Affiliation(s)
- Liuba Dvinskikh
- Department of Physics, Imperial College London, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Chemistry, Imperial College London, London, United Kingdom
| | - Hugh Sparks
- Department of Physics, Imperial College London, London, United Kingdom
| | - Kenneth T. MacLeod
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Chris Dunsby
- Department of Physics, Imperial College London, London, United Kingdom
| |
Collapse
|
7
|
Birkedal R, Laasmaa M, Branovets J, Vendelin M. Ontogeny of cardiomyocytes: ultrastructure optimization to meet the demand for tight communication in excitation-contraction coupling and energy transfer. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210321. [PMID: 36189816 PMCID: PMC9527910 DOI: 10.1098/rstb.2021.0321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The ontogeny of the heart describes its development from the fetal to the adult stage. In newborn mammals, blood pressure and thus cardiac performance are relatively low. The cardiomyocytes are thin, and with a central core of mitochondria surrounded by a ring of myofilaments, while the sarcoplasmic reticulum (SR) is sparse. During development, as blood pressure and performance increase, the cardiomyocytes become more packed with structures involved in excitation–contraction (e-c) coupling (SR and myofilaments) and the generation of ATP (mitochondria) to fuel the contraction. In parallel, the e-c coupling relies increasingly on calcium fluxes through the SR, while metabolism relies increasingly on fatty acid oxidation. The development of transverse tubules and SR brings channels and transporters interacting via calcium closer to each other and is crucial for e-c coupling. However, for energy transfer, it may seem counterintuitive that the increased structural density restricts the overall ATP/ADP diffusion. In this review, we discuss how this is because of the organization of all these structures forming modules. Although the overall diffusion across modules is more restricted, the energy transfer within modules is fast. A few studies suggest that in failing hearts this modular design is disrupted, and this may compromise intracellular energy transfer. This article is part of the theme issue ‘The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease’.
Collapse
Affiliation(s)
- Rikke Birkedal
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Akadeemia 15, room SCI-218, 12618 Tallinn, Estonia
| | - Martin Laasmaa
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Akadeemia 15, room SCI-218, 12618 Tallinn, Estonia
| | - Jelena Branovets
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Akadeemia 15, room SCI-218, 12618 Tallinn, Estonia
| | - Marko Vendelin
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Akadeemia 15, room SCI-218, 12618 Tallinn, Estonia
| |
Collapse
|
8
|
Fowler ED, Wang N, Hezzell MJ, Chanoit G, Hancox JC, Cannell MB. Improved Ca 2+ release synchrony following selective modification of I tof and phase 1 repolarization in normal and failing ventricular myocytes. J Mol Cell Cardiol 2022; 172:52-62. [PMID: 35908686 PMCID: PMC11773631 DOI: 10.1016/j.yjmcc.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/14/2022]
Abstract
Loss of ventricular action potential (AP) early phase 1 repolarization may contribute to the impaired Ca2+ release and increased risk of sudden cardiac death in heart failure. Therefore, restoring AP phase 1 by augmenting the fast transient outward K+ current (Itof) might be beneficial, but direct experimental evidence to support this proposition in failing cardiomyocytes is limited. Dynamic clamp was used to selectively modulate the contribution of Itof to the AP and Ca2+ transient in both normal (guinea pig and rabbit) and in failing rabbit cardiac myocytes. Opposing native Itof in non-failing rabbit myocytes increased Ca2+ release heterogeneity, late Ca2+ sparks (LCS) frequency and AP duration. (APD). In contrast, increasing Itof in failing myocytes and guinea pig myocytes (the latter normally lacking Itof) increased Ca2+ transient amplitude, Ca2+ release synchrony, and shortened APD. Computer simulations also showed faster Ca2+ transient decay (mainly due to fewer LCS), decreased inward Na+/Ca2+ exchange current and APD. When the Itof conductance was increased to ~0.2 nS/pF in failing cells (a value slightly greater than seen in typical human epicardial myocytes), Ca2+ release synchrony improved and AP duration decreased slightly. Further increases in Itof can cause Ca2+ release to decrease as the peak of the bell-shaped ICa-voltage relationship is passed and premature AP repolarization develops. These results suggest that there is an optimal range for Itof enhancement that may support Ca2+ release synchrony and improve electrical stability in heart failure with the caveat that uncontrolled Itof enhancement should be avoided.
Collapse
Affiliation(s)
- Ewan D Fowler
- School of Physiology, Pharmacology & Neuroscience, Faculty of Biomedical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Nan Wang
- School of Physiology, Pharmacology & Neuroscience, Faculty of Biomedical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Melanie J Hezzell
- University of Bristol Veterinary School, Langford, Bristol BS40 5DU, UK
| | - Guillaume Chanoit
- University of Bristol Veterinary School, Langford, Bristol BS40 5DU, UK
| | - Jules C Hancox
- School of Physiology, Pharmacology & Neuroscience, Faculty of Biomedical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Mark B Cannell
- School of Physiology, Pharmacology & Neuroscience, Faculty of Biomedical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK.
| |
Collapse
|
9
|
Si D, Chakraborty P, Azam MA, Nair MKK, Massé S, Lai PF, Labos C, Riazi S, Nanthakumar K. Synchronizing systolic calcium release with azumolene in an experimental model. Heart Rhythm O2 2022; 3:568-576. [PMID: 36340488 PMCID: PMC9626747 DOI: 10.1016/j.hroo.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background Post-defibrillation myocardial contractile dysfunction adversely affects the survival of patients after cardiac arrest. Attenuation of diastolic calcium (Ca2+) overload by stabilization of the cardiac ryanodine receptor (RyR2) is found to reduce refibrillation after long-duration ventricular fibrillation (LDVF). Objective In the present study, we explored the effects of RyR2 stabilization by azumolene on systolic Ca2+ release synchrony and myocardial contractility. Methods After completion of baseline optical mapping, Langendorff-perfused rabbit hearts were subjected to global ischemia followed by reperfusion with azumolene or deionized distilled water (vehicle). Following reperfusion, LDVF was induced with burst pacing. In the first series of experiments (n = 16), epicardial Ca2+ transient was analyzed for Ca2+ transient amplitude alternans and dispersion of Ca2+ transient amplitude alternans index (CAAI). In the second series of experiments following the same protocol (n = 12), ventricular contractility was assessed by measuring the left ventricular pressure. Results Ischemic LDVF led to greater CAAI (0.06 ± 0.02 at baseline vs 0.12 ± 0.02 post-LDVF, P < .01) and magnitude of dispersion of CAAI (0.04 ± 0.01 vs 0.09 ± 0.01, P < .01) in control hearts. In azumolene-treated hearts, no significant changes in CAAI (0.05 ± 0.01 vs 0.05 ± 0.01, P = .84) and dispersion of CAAI (0.04 ± 0.01 vs 0.04 ± 0.01, P = .99) were noted following ischemic LDVF. Ischemic LDVF was associated with reduction in left ventricular developed pressure (100% vs 36.8% ± 6.1%, P = .002) and dP/dtmax (100% vs 45.3% ± 6.5%, P = .003) in control hearts, but these reductions were mitigated (left ventricular developed pressure: 100% vs 74.0% ± 8.1%, P = .052, dP/dtmax: 100% vs 80.8% ± 7.9%, P = .09) in azumolene-treated hearts. Conclusion Treatment with azumolene is associated with improvement of systolic Ca2+ release synchrony and myocardial contractility following ischemic LDVF.
Collapse
Affiliation(s)
- Daoyuan Si
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Canada
- Department of Cardiology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Praloy Chakraborty
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Mohammed Ali Azam
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Madhav Krishna Kumar Nair
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Stéphane Massé
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Patrick F.H. Lai
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Canada
| | | | - Sheila Riazi
- Malignant Hyperthermia Investigation Unit, Department of Anesthesia and Pain Management, University Health Network, Toronto, Canada
| | - Kumaraswamy Nanthakumar
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Canada
| |
Collapse
|
10
|
Crocini C, Gotthardt M. Cardiac sarcomere mechanics in health and disease. Biophys Rev 2021; 13:637-652. [PMID: 34745372 PMCID: PMC8553709 DOI: 10.1007/s12551-021-00840-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/27/2021] [Indexed: 12/23/2022] Open
Abstract
The sarcomere is the fundamental structural and functional unit of striated muscle and is directly responsible for most of its mechanical properties. The sarcomere generates active or contractile forces and determines the passive or elastic properties of striated muscle. In the heart, mutations in sarcomeric proteins are responsible for the majority of genetically inherited cardiomyopathies. Here, we review the major determinants of cardiac sarcomere mechanics including the key structural components that contribute to active and passive tension. We dissect the molecular and structural basis of active force generation, including sarcomere composition, structure, activation, and relaxation. We then explore the giant sarcomere-resident protein titin, the major contributor to cardiac passive tension. We discuss sarcomere dynamics exemplified by the regulation of titin-based stiffness and the titin life cycle. Finally, we provide an overview of therapeutic strategies that target the sarcomere to improve cardiac contraction and filling.
Collapse
Affiliation(s)
- Claudia Crocini
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Neuromuscular and Cardiovascular Cell Biology, Berlin, Germany
- German Center for Cardiovascular Research (DZHK) Partner Site Berlin, Berlin, Germany
- BioFrontiers Institute & Department of Molecular and Cellular Development, University of Colorado Boulder, Boulder, USA
| | - Michael Gotthardt
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Neuromuscular and Cardiovascular Cell Biology, Berlin, Germany
- German Center for Cardiovascular Research (DZHK) Partner Site Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
11
|
Coppini R, Santini L, Olivotto I, Ackerman MJ, Cerbai E. Abnormalities in sodium current and calcium homoeostasis as drivers of arrhythmogenesis in hypertrophic cardiomyopathy. Cardiovasc Res 2021; 116:1585-1599. [PMID: 32365196 DOI: 10.1093/cvr/cvaa124] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/06/2020] [Accepted: 04/24/2020] [Indexed: 12/28/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a common inherited monogenic disease with a prevalence of 1/500 in the general population, representing an important cause of arrhythmic sudden cardiac death (SCD), heart failure, and atrial fibrillation in the young. HCM is a global condition, diagnosed in >50 countries and in all continents. HCM affects people of both sexes and various ethnic and racial origins, with similar clinical course and phenotypic expression. The most unpredictable and devastating consequence of HCM is represented by arrhythmic SCD, most commonly caused by sustained ventricular tachycardia or ventricular fibrillation. Indeed, HCM represents one of the main causes of arrhythmic SCD in the young, with a marked preference for children and adults <30 years. SCD is most prevalent in patients with paediatric onset of HCM but may occur at any age. However, risk is substantially lower after 60 years, suggesting that the potential for ventricular tachyarrhythmias is mitigated by ageing. SCD had been linked originally to sports and vigorous activity in HCM patients. However, it is increasingly clear that the majority of events occurs at rest or during routine daily occupations, suggesting that triggers are far from consistent. In general, the pathophysiology of SCD in HCM remains unresolved. While the pathologic and physiologic substrates abound and have been described in detail, specific factors precipitating ventricular tachyarrhythmias are still unknown. SCD is a rare phenomenon in HCM cohorts (<1%/year) and attempts to identify patients at risk, while generating clinically useful algorithms for primary prevention, remain very inaccurate on an individual basis. One of the reasons for our limited understanding of these phenomena is that limited translational research exists in the field, while most efforts have focused on clinical markers of risk derived from pathology, instrumental patient evaluation, and imaging. Specifically, few studies conducted in animal models and human samples have focused on targeting the cellular mechanisms of arrhythmogenesis in HCM, despite potential implications for therapeutic innovation and SCD prevention. These studies found that altered intracellular Ca2+ homoeostasis and increased late Na+ current, leading to an increased likelihood of early and delayed after-depolarizations, contribute to generate arrhythmic events in diseased cardiomyocytes. As an array of novel experimental opportunities have emerged to investigate these mechanisms, including novel 'disease-in-the-dish' cellular models with patient-specific induced pluripotent stem cell-derived cardiomyocytes, important gaps in knowledge remain. Accordingly, the aim of the present review is to provide a contemporary reappraisal of the cellular basis of SCD-predisposing arrhythmias in patients with HCM and discuss the implications for risk stratification and management.
Collapse
Affiliation(s)
- Raffaele Coppini
- Department of Neurosciences, Psychiatry, Drug Research and Child Health (NeuroFarBa), University of Florence, Florence, Italy
| | - Lorenzo Santini
- Department of Neurosciences, Psychiatry, Drug Research and Child Health (NeuroFarBa), University of Florence, Florence, Italy
| | - Iacopo Olivotto
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla, 3 - 50134 Florence, Italy.,Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy
| | - Michael J Ackerman
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN, USA.,Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN, USA.,Windland Smith Rice Sudden Death Genomics Laboratory, Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, 200 First St. SW, Rochester, MN, USA
| | - Elisabetta Cerbai
- Department of Neurosciences, Psychiatry, Drug Research and Child Health (NeuroFarBa), University of Florence, Florence, Italy.,Laboratory of Non-Linear Spectroscopy (LENS), Via Nello Carrara 1, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
12
|
Bode D, Rolim NPL, Guthof T, Hegemann N, Wakula P, Primessnig U, Berre AMO, Adams V, Wisløff U, Pieske BM, Heinzel FR, Hohendanner F. Effects of different exercise modalities on cardiac dysfunction in heart failure with preserved ejection fraction. ESC Heart Fail 2021; 8:1806-1818. [PMID: 33768692 PMCID: PMC8120378 DOI: 10.1002/ehf2.13308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 01/13/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
AIMS Heart failure with preserved ejection fraction (HFpEF) is an increasingly prevalent disease. Physical exercise has been shown to alter disease progression in HFpEF. We examined cardiomyocyte Ca2+ homeostasis and left ventricular function in a metabolic HFpEF model in sedentary and trained rats following 8 weeks of moderate-intensity continuous training (MICT) or high-intensity interval training (HIIT). METHODS AND RESULTS Left ventricular in vivo function (echocardiography) and cardiomyocyte Ca2+ transients (CaTs) (Fluo-4, confocal) were compared in ZSF-1 obese (metabolic syndrome, HFpEF) and ZSF-1 lean (control) 21- and 28-week-old rats. At 21 weeks, cardiomyocytes from HFpEF rats showed prolonged Ca2+ reuptake in cytosolic and nuclear CaTs and impaired Ca2+ release kinetics in nuclear CaTs. At 28 weeks, HFpEF cardiomyocytes had depressed CaT amplitudes, decreased sarcoplasmic reticulum (SR) Ca2+ content, increased SR Ca2+ leak, and elevated diastolic [Ca2+ ] following increased pacing rate (5 Hz). In trained HFpEF rats (HIIT or MICT), cardiomyocyte SR Ca2+ leak was significantly reduced. While HIIT had no effects on the CaTs (1-5 Hz), MICT accelerated early Ca2+ release, reduced the amplitude, and prolonged the CaT without increasing diastolic [Ca2+ ] or cytosolic Ca2+ load at basal or increased pacing rate (1-5 Hz). MICT lowered pro-arrhythmogenic Ca2+ sparks and attenuated Ca2+ -wave propagation in cardiomyocytes. MICT was associated with increased stroke volume in HFpEF. CONCLUSIONS In this metabolic rat model of HFpEF at an advanced stage, Ca2+ release was impaired under baseline conditions. HIIT and MICT differentially affected Ca2+ homeostasis with positive effects of MICT on stroke volume, end-diastolic volume, and cellular arrhythmogenicity.
Collapse
Affiliation(s)
- David Bode
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, Berlin, 13353, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Natale P L Rolim
- The Cardiac Exercise Research Group at Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Tim Guthof
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, Berlin, 13353, Germany
| | - Niklas Hegemann
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, Berlin, 13353, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Paulina Wakula
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, Berlin, 13353, Germany
| | - Uwe Primessnig
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, Berlin, 13353, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Anne Marie Ormbostad Berre
- The Cardiac Exercise Research Group at Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Volker Adams
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, Dresden, Germany
| | - Ulrik Wisløff
- The Cardiac Exercise Research Group at Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,School of Human Movement and Nutrition Science, University of Queensland, Brisbane, Australia
| | - Burkert M Pieske
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, Berlin, 13353, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Department of Internal Medicine and Cardiology, German Heart Center Berlin, Berlin, Germany
| | - Frank R Heinzel
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, Berlin, 13353, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Felix Hohendanner
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, Berlin, 13353, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | | |
Collapse
|
13
|
Liu T, Yang N, Sidor A, O'Rourke B. MCU Overexpression Rescues Inotropy and Reverses Heart Failure by Reducing SR Ca 2+ Leak. Circ Res 2021; 128:1191-1204. [PMID: 33522833 DOI: 10.1161/circresaha.120.318562] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Ting Liu
- Division of Cardiology, Department of Medicine, The Johns Hopkins University, Baltimore, MD
| | - Ni Yang
- Division of Cardiology, Department of Medicine, The Johns Hopkins University, Baltimore, MD
| | - Agnieszka Sidor
- Division of Cardiology, Department of Medicine, The Johns Hopkins University, Baltimore, MD
| | - Brian O'Rourke
- Division of Cardiology, Department of Medicine, The Johns Hopkins University, Baltimore, MD
| |
Collapse
|
14
|
Celestino-Montes A, Pérez-Treviño P, Sandoval-Herrera MD, Gómez-Víquez NL, Altamirano J. Relative role of T-tubules disruption and decreased SERCA2 on contractile dynamics of isolated rat ventricular myocytes. Life Sci 2021; 264:118700. [PMID: 33130073 DOI: 10.1016/j.lfs.2020.118700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022]
Abstract
AIMS Ventricular myocytes (VM) depolarization activates L-type Ca2+ channels (LCC) allowing Ca2+ influx (ICa) to synchronize sarcoplasmic reticulum (SR) Ca2+ release, via Ca2+-release channels (RyR2). The resulting whole-cell Ca2+ transient triggers contraction, while cytosolic Ca2+ removal by SR Ca2+ pump (SERCA2) and sarcolemmal Na+/Ca2+ exchanger (NCX) allows relaxation. In diseased hearts, extensive VM remodeling causes heterogeneous, blunted and slow Ca2+ transients. Among remodeling changes are: A) T-tubules disorganization. B) Diminished SERCA2 and low SR Ca2+. However, those often overlap, hindering their relative contribution to contractile dysfunction (CD). Furthermore, few studies have assessed their specific impact on the spatiotemporal Ca2+ transient properties and contractile dynamics simultaneously. Therefore, we sought to perform a quantitative comparison of how heterogeneous and slow Ca2+ transients, with different underlying determinants, affect contractile performance. METHODS We used two experimental models: A) formamide-induced acute "detubulation", where VM retain functional RyR2 and SERCA2, but lack T-tubules-associated LCC and NCX. B) Intact VM from hypothyroid rats, presenting decreased SERCA2 and SR Ca2+, but maintained T-tubules. By confocal imaging of Fluo-4-loaded VM, under field-stimulation, simultaneously acquired Ca2+ transients and shortening, allowing direct correlations. KEY FINDINGS We found near-linear correlations among key parameters of altered Ca2+ transients, caused independently by T-tubules disruption or decreased SR Ca2+, and shortening and relaxation, SIGNIFICANCE: Unrelated structural and molecular alterations converge in similarly abnormal Ca2+ transients and CD, highlighting the importance of independently reproduce disease-specific alterations, to quantitatively assess their impact on Ca2+ signaling and contractility, which would be valuable to determine potential disease-specific therapeutic targets.
Collapse
Affiliation(s)
- Antonio Celestino-Montes
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Av. Morones Prieto No. 3000 Pte., Monterrey, N.L. 64710, Mexico
| | - Perla Pérez-Treviño
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Av. Morones Prieto No. 3000 Pte., Monterrey, N.L. 64710, Mexico
| | - Maya D Sandoval-Herrera
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Av. Morones Prieto No. 3000 Pte., Monterrey, N.L. 64710, Mexico
| | - Norma L Gómez-Víquez
- Departamento de Farmacobiologia, CINVESTAV-IPN sede Sur, Mexico, D.F. 14330, Mexico
| | - Julio Altamirano
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Av. Morones Prieto No. 3000 Pte., Monterrey, N.L. 64710, Mexico.
| |
Collapse
|
15
|
Marchena M, Echebarria B. Influence of the tubular network on the characteristics of calcium transients in cardiac myocytes. PLoS One 2020; 15:e0231056. [PMID: 32302318 PMCID: PMC7164608 DOI: 10.1371/journal.pone.0231056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/14/2020] [Indexed: 01/09/2023] Open
Abstract
Transverse and axial tubules (TATS) are an essential ingredient of the excitation-contraction machinery that allow the effective coupling of L-type Calcium Channels (LCC) and ryanodine receptors (RyR2). They form a regular network in ventricular cells, while their presence in atrial myocytes is variable regionally and among animal species We have studied the effect of variations in the TAT network using a bidomain computational model of an atrial myocyte with variable density of tubules. At each z-line the t-tubule length is obtained from an exponential distribution, with a given mean penetration length. This gives rise to a distribution of t-tubules in the cell that is characterized by the fractional area (F.A.) occupied by the t-tubules. To obtain consistent results, we average over different realizations of the same mean penetration length. To this, in some simulations we add the effect of a network of axial tubules. Then we study global properties of calcium signaling, as well as regional heterogeneities and local properties of sparks and RyR2 openings. In agreement with recent experiments in detubulated ventricular and atrial cells, we find that detubulation reduces the calcium transient and synchronization in release. However, it does not affect sarcoplasmic reticulum (SR) load, so the decrease in SR calcium release is due to regional differences in Ca2+ release, that is restricted to the cell periphery in detubulated cells. Despite the decrease in release, the release gain is larger in detubulated cells, due to recruitment of orphaned RyR2s, i.e, those that are not confronting a cluster of LCCs. This probably provides a safeguard mechanism, allowing physiological values to be maintained upon small changes in the t-tubule density. Finally, we do not find any relevant change in spark properties between tubulated and detubulated cells, suggesting that the differences found in experiments could be due to differential properties of the RyR2s in the membrane and in the t-tubules, not incorporated in the present model. This work will help understand the effect of detubulation, that has been shown to occur in disease conditions such as heart failure (HF) in ventricular cells, or atrial fibrillation (AF) in atrial cells.
Collapse
Affiliation(s)
- Miquel Marchena
- Departament de Física, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Blas Echebarria
- Departament de Física, Universitat Politècnica de Catalunya, Barcelona, Spain
- * E-mail:
| |
Collapse
|
16
|
Power A, Kaur S, Dyer C, Ward ML. Disruption of Transverse-Tubules Eliminates the Slow Force Response to Stretch in Isolated Rat Trabeculae. Front Physiol 2020; 11:193. [PMID: 32210837 PMCID: PMC7069251 DOI: 10.3389/fphys.2020.00193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/19/2020] [Indexed: 12/15/2022] Open
Abstract
Ventricular muscle has a biphasic response to stretch. There is an immediate increase in force that coincides with the stretch which is followed by a second phase that takes several minutes for force to develop to a new steady state. The initial increase in force is due to changes in myofilament properties, whereas the second, slower component of the stretch response (known as the “slow force response” or SFR) is accompanied by a steady increase in Ca2+ transient amplitude. Evidence shows stretch-dependent Ca2+ influx during the SFR occurs through some mechanism that is continuously active for several minutes following stretch. Many of the candidate ion channels are located primarily in the t-tubules, which are consequently lost in heart disease. Our aim, therefore, was to investigate the impact of t-tubule loss on the SFR in non-failing cardiac trabeculae in which expression of the different Ca2+ handling proteins was not altered by any disease process. For comparison, we also investigated the effect of formamide detubulation of trabeculae on β-adrenergic activation (1 μM isoproterenol), since this is another key regulator of cardiac force. Measurement of intracellular calcium ([Ca2+]i) and isometric stress were made in RV trabeculae from rat hearts before, during and after formamide treatment (1.5 M for 5 min), which on washout seals the surface sarcolemmal t-tubule openings. Results showed detubulation slowed the time course of Ca2+ transients and twitch force, with time-to-peak, maximum rate-of-rise, and relaxation prolonged in trabeculae at optimal length (Lo). Formamide treatment also prevented development of the SFR following a step change in length from 90 to 100% Lo, and blunted the response to β-adrenergic activation (1 μM isoproterenol).
Collapse
Affiliation(s)
- Amelia Power
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Sarbjot Kaur
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Cameron Dyer
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Marie-Louise Ward
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| |
Collapse
|
17
|
Gilbert G, Demydenko K, Dries E, Puertas RD, Jin X, Sipido K, Roderick HL. Calcium Signaling in Cardiomyocyte Function. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035428. [PMID: 31308143 DOI: 10.1101/cshperspect.a035428] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Rhythmic increases in intracellular Ca2+ concentration underlie the contractile function of the heart. These heart muscle-wide changes in intracellular Ca2+ are induced and coordinated by electrical depolarization of the cardiomyocyte sarcolemma by the action potential. Originating at the sinoatrial node, conduction of this electrical signal throughout the heart ensures synchronization of individual myocytes into an effective cardiac pump. Ca2+ signaling pathways also regulate gene expression and cardiomyocyte growth during development and in pathology. These fundamental roles of Ca2+ in the heart are illustrated by the prevalence of altered Ca2+ homeostasis in cardiovascular diseases. Indeed, heart failure (an inability of the heart to support hemodynamic needs), rhythmic disturbances, and inappropriate cardiac growth all share an involvement of altered Ca2+ handling. The prevalence of these pathologies, contributing to a third of all deaths in the developed world as well as to substantial morbidity makes understanding the mechanisms of Ca2+ handling and dysregulation in cardiomyocytes of great importance.
Collapse
Affiliation(s)
- Guillaume Gilbert
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - Kateryna Demydenko
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - Eef Dries
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - Rosa Doñate Puertas
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - Xin Jin
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - Karin Sipido
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - H Llewelyn Roderick
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| |
Collapse
|
18
|
Abstract
Ionized calcium (Ca2+) is the most versatile cellular messenger. All cells use Ca2+ signals to regulate their activities in response to extrinsic and intrinsic stimuli. Alterations in cellular Ca2+ signaling and/or Ca2+ homeostasis can subvert physiological processes into driving pathological outcomes. Imaging of living cells over the past decades has demonstrated that Ca2+ signals encode information in their frequency, kinetics, amplitude, and spatial extent. These parameters alter depending on the type and intensity of stimulation, and cellular context. Moreover, it is evident that different cell types produce widely varying Ca2+ signals, with properties that suit their physiological functions. This primer discusses basic principles and mechanisms underlying cellular Ca2+ signaling and Ca2+ homeostasis. Consequently, we have cited some historical articles in addition to more recent findings. A brief summary of the core features of cellular Ca2+ signaling is provided, with particular focus on Ca2+ stores and Ca2+ transport across cellular membranes, as well as mechanisms by which Ca2+ signals activate downstream effector systems.
Collapse
|
19
|
Coppini R, Ferrantini C, Mugelli A, Poggesi C, Cerbai E. Altered Ca 2+ and Na + Homeostasis in Human Hypertrophic Cardiomyopathy: Implications for Arrhythmogenesis. Front Physiol 2018; 9:1391. [PMID: 30420810 PMCID: PMC6215954 DOI: 10.3389/fphys.2018.01391] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/13/2018] [Indexed: 12/12/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common mendelian heart disease, with a prevalence of 1/500. HCM is a primary cause of sudden death, due to an heightened risk of ventricular tachyarrhythmias that often occur in young asymptomatic patients. HCM can slowly progress toward heart failure, either with preserved or reduced ejection fraction, due to worsening of diastolic function. Accumulation of intra-myocardial fibrosis and replacement scars underlies heart failure progression and represents a substrate for sustained arrhythmias in end-stage patients. However, arrhythmias and mechanical abnormalities may occur in hearts with little or no fibrosis, prompting toward functional pathomechanisms. By studying viable cardiomyocytes and trabeculae isolated from inter-ventricular septum samples of non-failing HCM patients with symptomatic obstruction who underwent myectomy operations, we identified that specific abnormalities of intracellular Ca2+ handling are associated with increased cellular arrhytmogenesis and diastolic dysfunction. In HCM cardiomyocytes, diastolic Ca2+ concentration is increased both in the cytosol and in the sarcoplasmic reticulum and the rate of Ca2+ transient decay is slower, while the amplitude of Ca2+-release is preserved. Ca2+ overload is the consequence of an increased Ca2+ entry via L-type Ca2+-current [due to prolongation the action potential (AP) plateau], combined with a reduced rate of Ca2+-extrusion through the Na+/Ca2+ exchanger [due to increased cytosolic (Na+)] and a lower expression of SERCA. Increased late Na+ current (INaL) plays a major role, as it causes both AP prolongation and Na+ overload. Intracellular Ca2+ overload determines an higher frequency of Ca2+ waves leading to delayed-afterdepolarizations (DADs) and premature contractions, but is also linked with the increased diastolic tension and slower relaxation of HCM myocardium. Sustained increase of intracellular [Ca2+] goes hand-in-hand with the increased activation of Ca2+/calmodulin-dependent protein-kinase-II (CaMKII) and augmented phosphorylation of its targets, including Ca2+ handling proteins. In transgenic HCM mouse models, we found that Ca2+ overload, CaMKII and increased INaL drive myocardial remodeling since the earliest stages of disease and underlie the development of hypertrophy, diastolic dysfunction and the arrhythmogenic substrate. In conclusion, diastolic dysfunction and arrhythmogenesis in human HCM myocardium are driven by functional alterations at cellular and molecular level that may be targets of innovative therapies.
Collapse
Affiliation(s)
- Raffaele Coppini
- Department of Neuroscience, Psychology, Drug Sciences and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Cecilia Ferrantini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alessandro Mugelli
- Department of Neuroscience, Psychology, Drug Sciences and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Corrado Poggesi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Elisabetta Cerbai
- Department of Neuroscience, Psychology, Drug Sciences and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| |
Collapse
|
20
|
Johnson DM, Antoons G. Arrhythmogenic Mechanisms in Heart Failure: Linking β-Adrenergic Stimulation, Stretch, and Calcium. Front Physiol 2018; 9:1453. [PMID: 30374311 PMCID: PMC6196916 DOI: 10.3389/fphys.2018.01453] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/25/2018] [Indexed: 12/22/2022] Open
Abstract
Heart failure (HF) is associated with elevated sympathetic tone and mechanical load. Both systems activate signaling transduction pathways that increase cardiac output, but eventually become part of the disease process itself leading to further worsening of cardiac function. These alterations can adversely contribute to electrical instability, at least in part due to the modulation of Ca2+ handling at the level of the single cardiac myocyte. The major aim of this review is to provide a definitive overview of the links and cross talk between β-adrenergic stimulation, mechanical load, and arrhythmogenesis in the setting of HF. We will initially review the role of Ca2+ in the induction of both early and delayed afterdepolarizations, the role that β-adrenergic stimulation plays in the initiation of these and how the propensity for these may be altered in HF. We will then go onto reviewing the current data with regards to the link between mechanical load and afterdepolarizations, the associated mechano-sensitivity of the ryanodine receptor and other stretch activated channels that may be associated with HF-associated arrhythmias. Furthermore, we will discuss how alterations in local Ca2+ microdomains during the remodeling process associated the HF may contribute to the increased disposition for β-adrenergic or stretch induced arrhythmogenic triggers. Finally, the potential mechanisms linking β-adrenergic stimulation and mechanical stretch will be clarified, with the aim of finding common modalities of arrhythmogenesis that could be targeted by novel therapeutic agents in the setting of HF.
Collapse
Affiliation(s)
- Daniel M Johnson
- Department of Cardiothoracic Surgery, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Gudrun Antoons
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
21
|
Ednie AR, Deng W, Yip KP, Bennett ES. Reduced myocyte complex N-glycosylation causes dilated cardiomyopathy. FASEB J 2018; 33:1248-1261. [PMID: 30138037 DOI: 10.1096/fj.201801057r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Protein glycosylation is an essential posttranslational modification that affects a myriad of physiologic processes. Humans with genetic defects in glycosylation, which result in truncated glycans, often present with significant cardiac deficits. Acquired heart diseases and their associated risk factors were also linked to aberrant glycosylation, highlighting its importance in human cardiac disease. In both cases, the link between causation and corollary remains enigmatic. The glycosyltransferase gene, mannosyl (α-1,3-)-glycoprotein β-1,2- N-acetylglucosaminyltransferase (Mgat1), whose product, N-acetylglucosaminyltransferase 1 (GlcNAcT1) is necessary for the formation of hybrid and complex N-glycan structures in the medial Golgi, was shown to be at reduced levels in human end-stage cardiomyopathy, thus making Mgat1 an attractive target for investigating the role of hybrid/complex N-glycosylation in cardiac pathogenesis. Here, we created a cardiomyocyte-specific Mgat1 knockout (KO) mouse to establish a model useful in exploring the relationship between hybrid/complex N-glycosylation and cardiac function and disease. Biochemical and glycomic analyses showed that Mgat1KO cardiomyocytes produce predominately truncated N-glycan structures. All Mgat1KO mice died significantly younger than control mice and demonstrated chamber dilation and systolic dysfunction resembling human dilated cardiomyopathy (DCM). Data also indicate that a cardiomyocyte L-type voltage-gated Ca2+ channel (Cav) subunit (α2δ1) is a GlcNAcT1 target, and Mgat1KO Cav activity is shifted to more-depolarized membrane potentials. Consistently, Mgat1KO cardiomyocyte Ca2+ handling is altered and contraction is dyssynchronous compared with controls. The data demonstrate that reduced hybrid/complex N-glycosylation contributes to aberrant cardiac function at whole-heart and myocyte levels drawing a direct link between altered glycosylation and heart disease. Thus, the Mgat1KO provides a model for investigating the relationship between systemic reductions in glycosylation and cardiac disease, showing that clinically relevant changes in cardiomyocyte hybrid/complex N-glycosylation are sufficient to cause DCM and early death.-Ednie, A. R., Deng, W., Yip, K.-P., Bennett, E. S. Reduced myocyte complex N-glycosylation causes dilated cardiomyopathy.
Collapse
Affiliation(s)
- Andrew R Ednie
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA.,College of Science and Mathematics, Wright State University, Dayton, Ohio, USA; and
| | - Wei Deng
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Kay-Pong Yip
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Eric S Bennett
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA.,College of Science and Mathematics, Wright State University, Dayton, Ohio, USA; and
| |
Collapse
|
22
|
Caillard A, Sadoune M, Cescau A, Meddour M, Gandon M, Polidano E, Delcayre C, Da Silva K, Manivet P, Gomez AM, Cohen-Solal A, Vodovar N, Li Z, Mebazaa A, Samuel JL. QSOX1, a novel actor of cardiac protection upon acute stress in mice. J Mol Cell Cardiol 2018; 119:75-86. [DOI: 10.1016/j.yjmcc.2018.04.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/07/2018] [Accepted: 04/27/2018] [Indexed: 12/31/2022]
|
23
|
Val-Blasco A, Navarro-García JA, Tamayo M, Piedras MJ, Prieto P, Delgado C, Ruiz-Hurtado G, Rozas-Romero L, Gil-Fernández M, Zaragoza C, Boscá L, Fernández-Velasco M. Deficiency of NOD1 Improves the β-Adrenergic Modulation of Ca 2+ Handling in a Mouse Model of Heart Failure. Front Physiol 2018; 9:702. [PMID: 29962957 PMCID: PMC6010671 DOI: 10.3389/fphys.2018.00702] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/22/2018] [Indexed: 02/05/2023] Open
Abstract
Heart failure (HF) is a complex syndrome characterized by cardiac dysfunction, Ca2+ mishandling, and chronic activation of the innate immune system. Reduced cardiac output in HF leads to compensatory mechanisms via activation of the adrenergic nervous system. In turn, chronic adrenergic overstimulation induces pro-arrhythmic events, increasing the rate of sudden death in failing patients. Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) is an innate immune modulator that plays a key role in HF progression. NOD1 deficiency in mice prevents Ca2+ mishandling in HF under basal conditions, but its role during β-adrenergic stimulation remains unknown. Here, we evaluated whether NOD1 regulates the β-adrenergic modulation of Ca2+ signaling in HF. Ca2+ dynamics were examined before and after isoproterenol perfusion in cardiomyocytes isolated from healthy and from post-myocardial infarction (PMI) wild-type (WT) and Nod1-/- mice. Isoproterenol administration induced similar effects on intracellular [Ca2+]i transients, cell contraction, and sarcoplasmic reticulum (SR)-Ca2+ load in healthy WT and Nod1-/- cells. However, compared with WT-PMI cells, isoproterenol exposure induced a significant increase in the [Ca2+]i transients and cell contraction parameters in Nod1-/--PMI cells, which mainly due to an increase in SR-Ca2+ load. NOD1 deficiency also prevented the increase in diastolic Ca2+ leak (Ca2+ waves) induced by isoproterenol in PMI cells. mRNA levels of β1 and β2 adrenergic receptors were significantly higher in Nod1-/--PMI hearts vs WT-PMI hearts. Healthy cardiomyocytes pre-treated with the selective agonist of NOD1, iE-DAP, and perfused with isoproterenol showed diminished [Ca2+]i transients amplitude, cell contraction, and SR-Ca2+ load compared with vehicle-treated cells. iE-DAP-treated cells also presented increased diastolic Ca2+ leak under β-adrenergic stimulation. The selectivity of iE-DAP on Ca2+ handling was validated by pre-treatment with the inactive analog of NOD1, iE-Lys. Overall, our data establish that NOD1 deficiency improves the β-adrenergic modulation of Ca2+ handling in failing hearts.
Collapse
Affiliation(s)
- Almudena Val-Blasco
- Innate Immune Response Group, Instituto de Investigación Hospital Universitario La Paz, La Paz University Hospital, Madrid, Spain
| | - Jose A. Navarro-García
- Cardiorenal Translational Laboratory and Hypertension Unit, Institute of Research i+12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Maria Tamayo
- Departamento de Bioquímica, Facultad de Medicina, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Maria J. Piedras
- Department of Anatomy, Faculty of Health Sciences, Francisco de Vitoria University (UFV), Pozuelo de Alarcón, Spain
| | - Patricia Prieto
- Departamento de Bioquímica, Facultad de Medicina, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Carmen Delgado
- Departamento de Bioquímica, Facultad de Medicina, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Gema Ruiz-Hurtado
- Cardiorenal Translational Laboratory and Hypertension Unit, Institute of Research i+12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Laura Rozas-Romero
- Innate Immune Response Group, Instituto de Investigación Hospital Universitario La Paz, La Paz University Hospital, Madrid, Spain
| | - Marta Gil-Fernández
- Innate Immune Response Group, Instituto de Investigación Hospital Universitario La Paz, La Paz University Hospital, Madrid, Spain
| | - Carlos Zaragoza
- Unidad de Investigación Cardiovascular, Universidad Francisco de Vitoria, Hospital Universitario Ramón y Cajal (IRYCIS), CIBERCV, Madrid, Spain
| | - Lisardo Boscá
- Departamento de Bioquímica, Facultad de Medicina, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - María Fernández-Velasco
- Innate Immune Response Group, Instituto de Investigación Hospital Universitario La Paz, La Paz University Hospital, Madrid, Spain
- *Correspondence: María Fernández-Velasco, ;
| |
Collapse
|
24
|
Cellular mechanisms of metabolic syndrome-related atrial decompensation in a rat model of HFpEF. J Mol Cell Cardiol 2017; 115:10-19. [PMID: 29289652 DOI: 10.1016/j.yjmcc.2017.12.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/30/2017] [Accepted: 12/27/2017] [Indexed: 11/23/2022]
Abstract
Heart failure (HF) with preserved ejection fraction (HFpEF) is present in about 50% of HF patients. Atrial remodeling is common in HFpEF and associated with increased mortality. We postulate that atrial remodeling is associated with atrial dysfunction in vivo related to alterations in cardiomyocyte Calcium (Ca) signaling and remodeling. We examined atrial function in vivo and Ca transients (CaT) (Fluo4-AM, field stim) in atrial cardiomyocytes of ZSF-1 rats without (Ln; lean hypertensive) and with metabolic syndrome (Ob; obese, hypertensive, diabetic) and HFpEF. RESULTS At 21weeks Ln showed an increased left ventricular (LV) mass and left ventricular end-diastolic pressure (LVEDP), but unchanged left atrial (LA) size and preserved atrial ejection fraction vs. wild-type (WT). CaT amplitude in atrial cardiomyocytes was increased in Ln (2.9±0.2 vs. 2.3±0.2F/F0 in WT; n=22 cells/group; p<0.05). Studying subcellular Ca release in more detail, we found that local central cytosolic CaT amplitude was increased, while subsarcolemmal CaT amplitudes remained unchanged. Moreover, Sarcoplasmic reticulum (SR) Ca content (caffeine) was preserved while Ca spark frequency and tetracaine-dependent SR Ca leak were significantly increased in Ln. Ob mice developed a HFpEF phenotype in vivo, LA area was significantly increased and atrial in vivo function was impaired, despite increased atrial CaT amplitudes in vitro (2.8±0.2; p<0.05 vs. WT). Ob cells showed alterations of the tubular network possibly contributing to the observed phenotype. CaT kinetics as well as SR Ca in Ob were not significantly different from WT, but SR Ca leak remained increased. Angiotensin II (Ang II) reduced in vitro cytosolic CaT amplitudes and let to active nuclear Ca release in Ob but not in Ln or WT. SUMMARY In hypertensive ZSF-1 rats, a possibly compensatory increase of cytosolic CaT amplitude and increased SR Ca leak precede atrial remodeling and HFpEF. Atrial remodeling in ZSF-1 HFpEF is associated with an altered tubular network in-vitro and atrial contractile dysfunction in vivo, indicating insufficient compensation. Atrial cardiomyocyte dysfunction in vitro is induced by the addition of angiotensin II.
Collapse
|
25
|
Abstract
Supplemental Digital Content is available in the text. Rationale: The development of a refractory period for Ca2+ spark initiation after Ca2+ release in cardiac myocytes should inhibit further Ca2+ release during the action potential plateau. However, Ca2+ release sites that did not initially activate or which have prematurely recovered from refractoriness might release Ca2+ later during the action potential and alter the cell-wide Ca2+ transient. Objective: To investigate the possibility of late Ca2+ spark (LCS) activity in intact isolated cardiac myocytes using fast confocal line scanning with improved confocality and signal to noise. Methods and Results: We recorded Ca2+ transients from cardiac ventricular myocytes isolated from rabbit hearts. Action potentials were produced by electric stimulation, and rapid solution changes were used to modify the L-type Ca2+ current. After the upstroke of the Ca2+ transient, LCSs were detected which had increased amplitude compared with diastolic Ca2+ sparks. LCS are triggered by both L-type Ca2+ channel activity during the action potential plateau, as well as by the increase of cytosolic Ca2+ associated with the Ca2+ transient itself. Importantly, a mismatch between sarcoplasmic reticulum load and L-type Ca2+ trigger can increase the number of LCS. The likelihood of triggering an LCS also depends on recovery from refractoriness that appears after prior activation. Consequences of LCS include a reduced rate of decline of the Ca2+ transient and, if frequent, formation of microscopic propagating Ca2+ release events (Ca2+ ripples). Ca2+ ripples resemble Ca2+ waves in terms of local propagation velocity but spread for only a short distance because of limited regeneration. Conclusions: These new types of Ca2+ signaling behavior extend our understanding of Ca2+-mediated signaling. LCS may provide an arrhythmogenic substrate by slowing the Ca2+ transient decline, as well as by amplifying maintained Ca2+ current effects on intracellular Ca2+ and consequently Na+/Ca2+ exchange current.
Collapse
Affiliation(s)
- Ewan D Fowler
- From the School of Physiology, Pharmacology & Neuroscience, Faculty of Biomedical Sciences, University of Bristol, University Walk, United Kingdom
| | - Cherrie H T Kong
- From the School of Physiology, Pharmacology & Neuroscience, Faculty of Biomedical Sciences, University of Bristol, University Walk, United Kingdom
| | - Jules C Hancox
- From the School of Physiology, Pharmacology & Neuroscience, Faculty of Biomedical Sciences, University of Bristol, University Walk, United Kingdom
| | - Mark B Cannell
- From the School of Physiology, Pharmacology & Neuroscience, Faculty of Biomedical Sciences, University of Bristol, University Walk, United Kingdom.
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Membrane invaginations called t-tubules play an integral role in triggering cardiomyocyte contraction, and their disruption during diseases such as heart failure critically impairs cardiac performance. In this review, we outline the growing understanding of the malleability of t-tubule structure and function, and highlight emerging t-tubule regulators which may be exploited for novel therapies. RECENT FINDINGS New technologies are revealing the nanometer scale organization of t-tubules, and their functional junctions with the sarcoplasmic reticulum called dyads, which generate Ca2+ sparks. Recent data have indicated that the dyadic anchoring protein junctophilin-2, and the membrane-bending protein BIN1 are key regulators of dyadic formation and maintenance. While the underlying signals which control expression and localization of these proteins remain unclear, accumulating data support an important role of myocardial workload. Although t-tubule alterations are believed to be a key cause of heart failure, the plasticity of these structures also creates an opportunity for therapy. Promising recent data suggest that such therapies may specifically target junctophilin-2, BIN1, and/or mechanotransduction.
Collapse
|
27
|
Singh JK, Barsegyan V, Bassi N, Marszalec W, Tai S, Mothkur S, Mulla M, Nico E, Shiferaw Y, Aistrup GL, Wasserstrom JA. T-tubule remodeling and increased heterogeneity of calcium release during the progression to heart failure in intact rat ventricle. Physiol Rep 2017; 5:5/24/e13540. [PMID: 29279414 PMCID: PMC5742703 DOI: 10.14814/phy2.13540] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 11/07/2017] [Accepted: 11/10/2017] [Indexed: 01/29/2023] Open
Abstract
A highly organized transverse‐tubule (TT) system is essential to normal Ca2+ cycling and cardiac function. We explored the relationship between the progressive disruption of TTs and resulting Ca2+ cycling during the development of heart failure (HF). Confocal imaging was used to measure Ca2+ transients and 2‐D z‐stack images in left ventricular epicardial myocytes of intact hearts from spontaneously hypertensive rats (SHR) and Wistar‐Kyoto control rats. TT organization was measured as the organizational index (OI) derived from a fast Fourier transform of TT organization. We found little decrease in the synchrony of Ca2+ release with TT loss until TT remodeling was severe, suggesting a TT “reserve” characterized by a wide range of TT remodeling with little effect on synchrony of release but beyond which variability in release shows an accelerating sensitivity to TT loss. To explain this observation, we applied a computational model of spatially distributed Ca2+ signaling units to investigate the relationship between OI and excitation‐contraction coupling. Our model showed that release heterogeneity exhibits a nonlinear relationship on both the spatial distribution of release units and the separation between L‐type Ca2+ channels and ryanodine receptors. Our results demonstrate a unique relationship between the synchrony of Ca2+ release and TT organization in myocytes of intact rat ventricle that may contribute to both the compensated and decompensated phases of heart failure.
Collapse
Affiliation(s)
- Jasleen K Singh
- Department of Medicine (Cardiology), The Feinberg Cardiovascular Research Institute Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Varderes Barsegyan
- Department of Physics and Astronomy, California State University, Northridge, California
| | - Nikhil Bassi
- Department of Medicine (Cardiology), The Feinberg Cardiovascular Research Institute Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - William Marszalec
- Department of Medicine (Cardiology), The Feinberg Cardiovascular Research Institute Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Shannon Tai
- Department of Medicine (Cardiology), The Feinberg Cardiovascular Research Institute Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Shruthi Mothkur
- Department of Medicine (Cardiology), The Feinberg Cardiovascular Research Institute Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Maaz Mulla
- Department of Medicine (Cardiology), The Feinberg Cardiovascular Research Institute Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Elsa Nico
- Department of Medicine (Cardiology), The Feinberg Cardiovascular Research Institute Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Yohannes Shiferaw
- Department of Physics and Astronomy, California State University, Northridge, California
| | - Gary L Aistrup
- Department of Medicine (Cardiology), The Feinberg Cardiovascular Research Institute Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - John Andrew Wasserstrom
- Department of Medicine (Cardiology), The Feinberg Cardiovascular Research Institute Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
28
|
Lubelwana Hafver T, Wanichawan P, Manfra O, de Souza GA, Lunde M, Martinsen M, Louch WE, Sejersted OM, Carlson CR. Mapping the in vitro interactome of cardiac sodium (Na + )-calcium (Ca 2+ ) exchanger 1 (NCX1). Proteomics 2017; 17. [PMID: 28755400 DOI: 10.1002/pmic.201600417] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 07/03/2017] [Accepted: 07/26/2017] [Indexed: 11/07/2022]
Abstract
The sodium (Na+ )-calcium (Ca2+ ) exchanger 1 (NCX1) is an antiporter membrane protein encoded by the SLC8A1 gene. In the heart, it maintains cytosolic Ca2+ homeostasis, serving as the primary mechanism for Ca2+ extrusion during relaxation. Dysregulation of NCX1 is observed in end-stage human heart failure. In this study, we used affinity purification coupled with MS in rat left ventricle lysates to identify novel NCX1 interacting proteins in the heart. Two screens were conducted using: (1) anti-NCX1 against endogenous NCX1 and (2) anti-His (where His is histidine) with His-trigger factor-NCX1cyt recombinant protein as bait. The respective methods identified 112 and 350 protein partners, of which several were known NCX1 partners from the literature, and 29 occurred in both screens. Ten novel protein partners (DYRK1A, PPP2R2A, SNTB1, DMD, RABGGTA, DNAJB4, BAG3, PDE3A, POPDC2, STK39) were validated for binding to NCX1, and two partners (DYRK1A, SNTB1) increased NCX1 activity when expressed in HEK293 cells. A cardiac NCX1 protein-protein interaction map was constructed. The map was highly connected, containing distinct clusters of proteins with different biological functions, where "cell communication" and "signal transduction" formed the largest clusters. The NCX1 interactome was also significantly enriched with proteins/genes involved in "cardiovascular disease" which can be explored as novel drug targets in future research.
Collapse
Affiliation(s)
- Tandekile Lubelwana Hafver
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Pimthanya Wanichawan
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Ornella Manfra
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Gustavo Antonio de Souza
- Department of Immunology and Centre for Immune Regulation, Oslo University Hospital HF Rikshospitalet, University of Oslo, Oslo, Norway.,The Brain Institute, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil.,Bioinformatics Multidisciplinary Environment, Instituto Metrópole Digital, UFRN, Natal, RN, Brazil
| | - Marianne Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Marita Martinsen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - William Edward Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Ole Mathias Sejersted
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Cathrine Rein Carlson
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| |
Collapse
|
29
|
Abstract
The aim of this review is to provide the reader with a synopsis of some of the emerging ideas and experimental findings in cardiac physiology and pathophysiology that were published in 2015. To provide context for the non-specialist, a brief summary of cardiac contraction and calcium (Ca) regulation in the heart in health and disease is provided. Thereafter, some recently published articles are introduced that indicate the current thinking on (1) the Ca regulatory pathways modulated by Ca/calmodulin-dependent protein kinase II, (2) the potential influences of nitrosylation by nitric oxide or S-nitrosated proteins, (3) newly observed effects of reactive oxygen species (ROS) on contraction and Ca regulation following myocardial infarction and a possible link with changes in mitochondrial Ca, and (4) the effects of some of these signaling pathways on late Na current and pro-arrhythmic afterdepolarizations as well as the effects of transverse tubule disturbances.
Collapse
Affiliation(s)
- Ken T MacLeod
- Faculty of Medicine, National Heart & Lung Institute, Imperial College London, London, UK
| |
Collapse
|
30
|
Hohendanner F, Maxwell JT, Blatter LA. Cytosolic and nuclear calcium signaling in atrial myocytes: IP3-mediated calcium release and the role of mitochondria. Channels (Austin) 2016; 9:129-38. [PMID: 25891132 DOI: 10.1080/19336950.2015.1040966] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In rabbit atrial myocytes Ca signaling has unique features due to the lack of transverse (t) tubules, the spatial arrangement of mitochondria and the contribution of inositol-1,4,5-trisphosphate (IP3) receptor-induced Ca release (IICR). During excitation-contraction coupling action potential-induced elevation of cytosolic [Ca] originates in the cell periphery from Ca released from the junctional sarcoplasmic reticulum (j-SR) and then propagates by Ca-induced Ca release from non-junctional (nj-) SR toward the cell center. The subsarcolemmal region between j-SR and the first array of nj-SR Ca release sites is devoid of mitochondria which results in a rapid propagation of activation through this domain, whereas the subsequent propagation through the nj-SR network occurs at a velocity typical for a propagating Ca wave. Inhibition of mitochondrial Ca uptake with the Ca uniporter blocker Ru360 accelerates propagation and increases the amplitude of Ca transients (CaTs) originating from nj-SR. Elevation of cytosolic IP3 levels by rapid photolysis of caged IP3 has profound effects on the magnitude of subcellular CaTs with increased Ca release from nj-SR and enhanced CaTs in the nuclear compartment. IP3 uncaging restricted to the nucleus elicites 'mini'-Ca waves that remain confined to this compartment. Elementary IICR events (Ca puffs) preferentially originate in the nucleus in close physical association with membrane structures of the nuclear envelope and the nucleoplasmic reticulum. The data suggest that in atrial myocytes the nucleus is an autonomous Ca signaling domain where Ca dynamics are primarily governed by IICR.
Collapse
Key Words
- 2-APB, 2-aminoethoxydiphenyl borate
- AP, action potential
- CICR, Ca-induced Ca release
- CRU, Ca release units
- CT, central
- CaT, Ca transient
- ECC, excitation-contraction coupling
- IICR
- IICR, IP3R-induced Ca release
- IP3
- IP3R, Inositol-1,4,5-trisphosphate receptor
- LCC, L-type Ca channels
- MCU, mitochondrial Ca uniporter
- NE, nuclear envelope
- NFAT, nuclear factor of activated T cells
- NPR, nucleoplasmic reticulum
- RyR, ryanodine receptor
- SR, sarcoplasmic reticulum
- SS, subsarcolemmal
- TF50, time to half-maximal amplitude
- TZ, transition zone.
- [Ca]i, cytosolic Ca concentration
- [Ca]mito, mitochondrial Ca concentration
- atria
- excitation-contraction coupling
- j-SR, junctional SR
- mitochondria
- nj-SR, non-junctional SR
- nuclear calcium
- t-tubule, transverse tubule
Collapse
Affiliation(s)
- Felix Hohendanner
- a Department of Molecular Biophysics and Physiology ; Rush University Medical Center ; Chicago , IL USA
| | | | | |
Collapse
|
31
|
Mezzano V, Morley GE. New insights into the complex effects of KChIP2 on calcium transients. Am J Physiol Heart Circ Physiol 2015; 309:H553-4. [PMID: 26163446 DOI: 10.1152/ajpheart.00511.2015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Valeria Mezzano
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, New York
| | - Gregory E Morley
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, New York
| |
Collapse
|
32
|
Crossman DJ, Young AA, Ruygrok PN, Nason GP, Baddelely D, Soeller C, Cannell MB. T-tubule disease: Relationship between t-tubule organization and regional contractile performance in human dilated cardiomyopathy. J Mol Cell Cardiol 2015; 84:170-8. [PMID: 25953258 DOI: 10.1016/j.yjmcc.2015.04.022] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/27/2015] [Accepted: 04/28/2015] [Indexed: 11/30/2022]
Abstract
Evidence from animal models suggest that t-tubule changes may play an important role in the contractile deficit associated with heart failure. However samples are usually taken at random with no regard as to regional variability present in failing hearts which leads to uncertainty in the relationship between contractile performance and possible t-tubule derangement. Regional contraction in human hearts was measured by tagged cine MRI and model fitting. At transplant, failing hearts were biopsy sampled in identified regions and immunocytochemistry was used to label t-tubules and sarcomeric z-lines. Computer image analysis was used to assess 5 different unbiased measures of t-tubule structure/organization. In regions of failing hearts that showed good contractile performance, t-tubule organization was similar to that seen in normal hearts, with worsening structure correlating with the loss of regional contractile performance. Statistical analysis showed that t-tubule direction was most highly correlated with local contractile performance, followed by the amplitude of the sarcomeric peak in the Fourier transform of the t-tubule image. Other area based measures were less well correlated. We conclude that regional contractile performance in failing human hearts is strongly correlated with the local t-tubule organization. Cluster tree analysis with a functional definition of failing contraction strength allowed a pathological definition of 't-tubule disease'. The regional variability in contractile performance and cellular structure is a confounding issue for analysis of samples taken from failing human hearts, although this may be overcome with regional analysis by using tagged cMRI and biopsy mapping.
Collapse
Affiliation(s)
| | - Alistair A Young
- Department of Anatomy with Radiology, University of Auckland, New Zealand
| | - Peter N Ruygrok
- Department of Cardiology, Auckland City Hospital, New Zealand
| | - Guy P Nason
- School of Mathematics, University of Bristol, UK
| | - David Baddelely
- Department of Physiology, University of Auckland, New Zealand
| | | | - Mark B Cannell
- Department of Physiology, University of Auckland, New Zealand; School of Physiology and Pharmacology, University of Bristol, UK.
| |
Collapse
|
33
|
Bito V, Macquaide N, Sipido KR. Characterizing the trigger for sarcoplasmic reticulum Ca2+ release in cardiac myocytes. Cold Spring Harb Protoc 2015; 2015:398-402. [PMID: 25834258 DOI: 10.1101/pdb.prot076968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Here, we describe a method for characterizing the L-type Ca(2+) current, ICaL, which is a major trigger for Ca(2+) release from the sarcoplasmic reticulum (SR). The protocol includes measuring ICaL amplitude and voltage dependence and the elicited SR Ca(2+) release. The procedure for measuring ICaL activity is performed using solutions (internal and external) and voltage control such that other ionic currents are eliminated. The resultant relationship between the Ca(2+) current and the associated internal [Ca(2+)]i transient is a first approach for evaluating coupling gain. We discuss which parameters are most appropriate for this analysis and how an evaluation of gain needs to be further explored by measuring the SR Ca(2+) content.
Collapse
Affiliation(s)
- Virginie Bito
- Division of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Belgium
| | - Niall Macquaide
- Division of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Belgium
| | - Karin R Sipido
- Division of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Belgium
| |
Collapse
|
34
|
Abdurrachim D, Luiken JJFP, Nicolay K, Glatz JFC, Prompers JJ, Nabben M. Good and bad consequences of altered fatty acid metabolism in heart failure: evidence from mouse models. Cardiovasc Res 2015; 106:194-205. [PMID: 25765936 DOI: 10.1093/cvr/cvv105] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 02/18/2015] [Indexed: 12/25/2022] Open
Abstract
The shift in substrate preference away from fatty acid oxidation (FAO) towards increased glucose utilization in heart failure has long been interpreted as an oxygen-sparing mechanism. Inhibition of FAO has therefore evolved as an accepted approach to treat heart failure. However, recent data indicate that increased reliance on glucose might be detrimental rather than beneficial for the failing heart. This review discusses new insights into metabolic adaptations in heart failure. A particular focus lies on data obtained from mouse models with modulations of cardiac FA metabolism at different levels of the FA metabolic pathway and how these differently affect cardiac function. Based on studies in which these mouse models were exposed to ischaemic and non-ischaemic heart failure, we discuss whether and when modulations in FA metabolism are protective against heart failure.
Collapse
Affiliation(s)
- Desiree Abdurrachim
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, High Tech Campus 11, 5656 AE, PO BOX 513, Eindhoven 5600 MB, The Netherlands
| | - Joost J F P Luiken
- Department of Genetics and Cell Biology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Klaas Nicolay
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, High Tech Campus 11, 5656 AE, PO BOX 513, Eindhoven 5600 MB, The Netherlands
| | - Jan F C Glatz
- Department of Genetics and Cell Biology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Jeanine J Prompers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, High Tech Campus 11, 5656 AE, PO BOX 513, Eindhoven 5600 MB, The Netherlands
| | - Miranda Nabben
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, High Tech Campus 11, 5656 AE, PO BOX 513, Eindhoven 5600 MB, The Netherlands Department of Genetics and Cell Biology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
35
|
Hammer KP, Hohendanner F, Blatter LA, Pieske BM, Heinzel FR. Variations in local calcium signaling in adjacent cardiac myocytes of the intact mouse heart detected with two-dimensional confocal microscopy. Front Physiol 2015; 5:517. [PMID: 25628569 PMCID: PMC4290493 DOI: 10.3389/fphys.2014.00517] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 12/18/2014] [Indexed: 11/13/2022] Open
Abstract
Dyssynchronous local Ca release within individual cardiac myocytes has been linked to cellular contractile dysfunction. Differences in Ca kinetics in adjacent cells may also provide a substrate for inefficient contraction and arrhythmias. In a new approach we quantify variation in local Ca transients between adjacent myocytes in the whole heart. Langendorff-perfused mouse hearts were loaded with Fluo-8 AM to detect Ca and Di-4-ANEPPS to visualize cell membranes. A spinning disc confocal microscope with a fast camera allowed us to record Ca signals within an area of 465 μm by 315 μm with an acquisition speed of 55 fps. Images from multiple transients recorded at steady state were registered to their time point in the cardiac cycle to restore averaged local Ca transients with a higher temporal resolution. Local Ca transients within and between adjacent myocytes were compared with regard to amplitude, time to peak and decay at steady state stimulation (250 ms cycle length). Image registration from multiple sequential Ca transients allowed reconstruction of high temporal resolution (2.4 ± 1.3 ms) local CaT in 2D image sets (N = 4 hearts, n = 8 regions). During steady state stimulation, spatial Ca gradients were homogeneous within cells in both directions and independent of distance between measured points. Variation in CaT amplitudes was similar across the short and the long side of neighboring cells. Variations in TAU and TTP were similar in both directions. Isoproterenol enhanced the CaT but not the overall pattern of spatial heterogeneities. Here we detected and analyzed local Ca signals in intact mouse hearts with high temporal and spatial resolution, taking into account 2D arrangement of the cells. We observed significant differences in the variation of CaT amplitude along the long and short axis of cardiac myocytes. Variations of Ca signals between neighboring cells may contribute to the substrate of cardiac remodeling.
Collapse
Affiliation(s)
- Karin P Hammer
- Department of Cardiology, Medical University of Graz Graz, Austria ; Department of Internal Medicine II, University Hospital Regensburg Regensburg, Germany
| | - Felix Hohendanner
- Molecular Biophysics and Physiology, Rush Medical College, Rush University Chicago, IL, USA
| | - Lothar A Blatter
- Molecular Biophysics and Physiology, Rush Medical College, Rush University Chicago, IL, USA
| | - Burkert M Pieske
- Department of Cardiology, Medical University of Graz Graz, Austria ; Department of Cardiology, Charité-Universitaetsmedizin Berlin Berlin, Germany
| | - Frank R Heinzel
- Department of Cardiology, Medical University of Graz Graz, Austria ; Department of Cardiology, Charité-Universitaetsmedizin Berlin Berlin, Germany
| |
Collapse
|
36
|
Defects in T-tubular electrical activity underlie local alterations of calcium release in heart failure. Proc Natl Acad Sci U S A 2014; 111:15196-201. [PMID: 25288764 DOI: 10.1073/pnas.1411557111] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Action potentials (APs), via the transverse axial tubular system (TATS), synchronously trigger uniform Ca(2+) release throughout the cardiomyocyte. In heart failure (HF), TATS structural remodeling occurs, leading to asynchronous Ca(2+) release across the myocyte and contributing to contractile dysfunction. In cardiomyocytes from failing rat hearts, we previously documented the presence of TATS elements which failed to propagate AP and displayed spontaneous electrical activity; the consequence for Ca(2+) release remained, however, unsolved. Here, we develop an imaging method to simultaneously assess TATS electrical activity and local Ca(2+) release. In HF cardiomyocytes, sites where T-tubules fail to conduct AP show a slower and reduced local Ca(2+) transient compared with regions with electrically coupled elements. It is concluded that TATS electrical remodeling is a major determinant of altered kinetics, amplitude, and homogeneity of Ca(2+) release in HF. Moreover, spontaneous depolarization events occurring in failing T-tubules can trigger local Ca(2+) release, resulting in Ca(2+) sparks. The occurrence of tubule-driven depolarizations and Ca(2+) sparks may contribute to the arrhythmic burden in heart failure.
Collapse
|
37
|
Ljubojevic S, Radulovic S, Leitinger G, Sedej S, Sacherer M, Holzer M, Winkler C, Pritz E, Mittler T, Schmidt A, Sereinigg M, Wakula P, Zissimopoulos S, Bisping E, Post H, Marsche G, Bossuyt J, Bers DM, Kockskämper J, Pieske B. Early remodeling of perinuclear Ca2+ stores and nucleoplasmic Ca2+ signaling during the development of hypertrophy and heart failure. Circulation 2014; 130:244-55. [PMID: 24928680 PMCID: PMC4101040 DOI: 10.1161/circulationaha.114.008927] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND A hallmark of heart failure is impaired cytoplasmic Ca(2+) handling of cardiomyocytes. It remains unknown whether specific alterations in nuclear Ca(2+) handling via altered excitation-transcription coupling contribute to the development and progression of heart failure. METHODS AND RESULTS Using tissue and isolated cardiomyocytes from nonfailing and failing human hearts, as well as mouse and rabbit models of hypertrophy and heart failure, we provide compelling evidence for structural and functional changes of the nuclear envelope and nuclear Ca(2+) handling in cardiomyocytes as remodeling progresses. Increased nuclear size and less frequent intrusions of the nuclear envelope into the nuclear lumen indicated altered nuclear structure that could have functional consequences. In the (peri)nuclear compartment, there was also reduced expression of Ca(2+) pumps and ryanodine receptors, increased expression of inositol-1,4,5-trisphosphate receptors, and differential orientation among these Ca(2+) transporters. These changes were associated with altered nucleoplasmic Ca(2+) handling in cardiomyocytes from hypertrophied and failing hearts, reflected as increased diastolic Ca(2+) levels with diminished and prolonged nuclear Ca(2+) transients and slowed intranuclear Ca(2+) diffusion. Altered nucleoplasmic Ca(2+) levels were translated to higher activation of nuclear Ca(2+)/calmodulin-dependent protein kinase II and nuclear export of histone deacetylases. Importantly, the nuclear Ca(2+) alterations occurred early during hypertrophy and preceded the cytoplasmic Ca(2+) changes that are typical of heart failure. CONCLUSIONS During cardiac remodeling, early changes of cardiomyocyte nuclei cause altered nuclear Ca(2+) signaling implicated in hypertrophic gene program activation. Normalization of nuclear Ca(2+) regulation may therefore be a novel therapeutic approach to prevent adverse cardiac remodeling.
Collapse
Affiliation(s)
- Senka Ljubojevic
- Department of Cardiology, Medical University of Graz, Graz,
Austria
- Ludwig Boltzmann Institute for Translational Heart Failure
Research, Graz, Austria
- Department of Pharmacology, University of California,
Davis, CA
| | | | - Gerd Leitinger
- Institute of Cell Biology, Histology and Embryology,
Medical University of Graz, Graz, Austria
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, Graz,
Austria
- Ludwig Boltzmann Institute for Translational Heart Failure
Research, Graz, Austria
| | - Michael Sacherer
- Department of Cardiology, Medical University of Graz, Graz,
Austria
| | - Michael Holzer
- Institute of Experimental and Clinical Pharmacology,
Medical University of Graz, Graz, Austria
| | - Claudia Winkler
- Department of Cardiology, Medical University of Graz, Graz,
Austria
| | - Elisabeth Pritz
- Institute of Cell Biology, Histology and Embryology,
Medical University of Graz, Graz, Austria
| | - Tobias Mittler
- Department of Cardiology, Medical University of Graz, Graz,
Austria
| | - Albrecht Schmidt
- Department of Cardiology, Medical University of Graz, Graz,
Austria
| | - Michael Sereinigg
- Division of Transplantation Surgery, Medical University of
Graz, Graz, Austria
| | - Paulina Wakula
- Department of Cardiology, Medical University of Graz, Graz,
Austria
- Ludwig Boltzmann Institute for Translational Heart Failure
Research, Graz, Austria
| | - Spyros Zissimopoulos
- Wales Heart Research Institute, Cardiff University School
of Medicine, Cardiff, United Kindgom
| | - Egbert Bisping
- Department of Cardiology, Medical University of Graz, Graz,
Austria
- Ludwig Boltzmann Institute for Translational Heart Failure
Research, Graz, Austria
| | - Heiner Post
- Department of Cardiology, Medical University of Graz, Graz,
Austria
| | - Gunther Marsche
- Institute of Experimental and Clinical Pharmacology,
Medical University of Graz, Graz, Austria
| | - Julie Bossuyt
- Department of Pharmacology, University of California,
Davis, CA
| | - Donald M. Bers
- Department of Pharmacology, University of California,
Davis, CA
| | - Jens Kockskämper
- Institute of Pharmacology and Clinical Pharmacy,
Philipps-University of Marburg, Marburg, Germany
| | - Burkert Pieske
- Department of Cardiology, Medical University of Graz, Graz,
Austria
- Ludwig Boltzmann Institute for Translational Heart Failure
Research, Graz, Austria
| |
Collapse
|
38
|
Meredith AJ, McManus BM. Vitamin D in heart failure. J Card Fail 2014; 19:692-711. [PMID: 24125108 DOI: 10.1016/j.cardfail.2013.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/28/2013] [Accepted: 09/09/2013] [Indexed: 10/26/2022]
Abstract
Evidence linking vitamin D to cardiovascular (CV) health has accumulated in recent years: numerous epidemiologic studies report deficiency as a significant CV risk factor, and rodent models suggest that active vitamin D can modulate critical remodeling processes, including cardiac hypertrophy and extracellular matrix remodeling. The presence of vitamin D signaling machinery within the human heart implies a direct role for this hormone in cardiac physiology and may explain associations between vitamin D status and CV outcomes. Heart failure (HF) represents a growing social and economic burden worldwide. Myocardial remodeling is central to HF development, and in the context of emerging evidence supporting mechanistic involvement of vitamin D, this review provides critical appraisal of scientific literature related to the role of vitamin D in CV disease, including data from epidemiologic and supplementation studies, as well as novel findings from animal models and in vitro work. Although associative data linking vitamin D and CV outcomes and evidence supporting a role for vitamin D in relevant pathogenic processes are both substantial, there are limited mechanistic data to indicate vitamin D supplementation as a viable therapeutic adjunct for the prevention of HF development following myocardial injury.
Collapse
Affiliation(s)
- Anna J Meredith
- James Hogg Research Centre, Institute for Heart and Lung Health, University of British Columbia, Vancouver, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
39
|
Taking a peek at the border of the sarcomere in heart failure and cardiac resynchronization therapy. J Mol Cell Cardiol 2014; 74:1-3. [PMID: 24792363 DOI: 10.1016/j.yjmcc.2014.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 11/20/2022]
|
40
|
Abstract
Rationale:
In cardiac dyads, junctional Ca
2+
directly controls the gating of the ryanodine receptors (RyRs), and is itself dominated by RyR-mediated Ca
2+
release from the sarcoplasmic reticulum. Existing probes do not report such local Ca
2+
signals because of probe diffusion, so a junction-targeted Ca
2+
sensor should reveal new information on cardiac excitation–contraction coupling and its modification in disease states.
Objective:
To investigate Ca
2+
signaling in the nanoscopic space of cardiac dyads by targeting a new sensitive Ca
2+
biosensor (GCaMP6f) to the junctional space.
Methods and Results:
By fusing GCaMP6f to the N terminus of triadin 1 or junctin, GCaMP6f-triadin 1/junctin was targeted to dyadic junctions, where it colocalized with t-tubules and RyRs after adenovirus-mediated gene transfer. This membrane protein-tagged biosensor displayed ≈4× faster kinetics than native GCaMP6f. Confocal imaging revealed junctional Ca
2+
transients (Ca
2+
nanosparks) that were ≈50× smaller in volume than conventional Ca
2+
sparks (measured with diffusible indicators). The presence of the biosensor did not disrupt normal Ca
2+
signaling. Because no indicator diffusion occurred, the amplitude and timing of release measurements were improved, despite the small recording volume. We could also visualize coactivation of subclusters of RyRs within a single junctional region, as well as quarky Ca
2+
release events.
Conclusions:
This new, targeted biosensor allows selective visualization and measurement of nanodomain Ca
2+
dynamics in intact cells and can be used to give mechanistic insights into dyad RyR operation in health and in disease states such as when RyRs become orphaned.
Collapse
|
41
|
Tagashira H, Bhuiyan MS, Shioda N, Fukunaga K. Fluvoxamine rescues mitochondrial Ca2+ transport and ATP production through σ(1)-receptor in hypertrophic cardiomyocytes. Life Sci 2013; 95:89-100. [PMID: 24373833 DOI: 10.1016/j.lfs.2013.12.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 11/19/2013] [Accepted: 12/12/2013] [Indexed: 01/15/2023]
Abstract
AIMS We previously reported that fluvoxamine, a selective serotonin reuptake inhibitor with high affinity for the σ1-receptor (σ1R), ameliorates cardiac hypertrophy and dysfunction via σ1R stimulation. Although σ1R on non-cardiomyocytes interacts with the IP3 receptor (IP3R) to promote mitochondrial Ca(2+) transport, little is known about its physiological and pathological relevance in cardiomyocytes. MAIN METHODS Here we performed Ca(2+) imaging and measured ATP production to define the role of σ1Rs in regulating sarcoplasmic reticulum (SR)-mitochondrial Ca(2+) transport in neonatal rat ventricular cardiomyocytes treated with angiotensin II to promote hypertrophy. KEY FINDING These cardiomyocytes exhibited imbalances in expression levels of σ1R and IP3R and impairments in both phenylephrine-induced mitochondrial Ca(2+) mobilization from the SR and ATP production. Interestingly, σ1R stimulation with fluvoxamine rescued impaired mitochondrial Ca(2+) mobilization and ATP production, an effect abolished by treatment of cells with the σ1R antagonist, NE-100. Under physiological conditions, fluvoxamine stimulation of σ1Rs suppressed intracellular Ca(2+) mobilization through IP3Rs and ryanodine receptors (RyRs). In vivo, chronic administration of fluvoxamine to TAC mice also rescued impaired ATP production. SIGNIFICANCE These results suggest that σ1R stimulation with fluvoxamine promotes SR-mitochondrial Ca(2+) transport and mitochondrial ATP production, whereas σ1R stimulation suppresses intracellular Ca(2+) overload through IP3Rs and RyRs. These mechanisms likely underlie in part the anti-hypertrophic and cardioprotective action of the σ1R agonists including fluvoxamine.
Collapse
Affiliation(s)
- Hideaki Tagashira
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Md Shenuarin Bhuiyan
- Division of Molecular Cardiovascular Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Norifumi Shioda
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
42
|
Abstract
Patients with heart failure and decreased function frequently develop discoordinate contraction because of electric activation delay. Often termed dyssynchrony, this further decreases systolic function and chamber efficiency and worsens morbidity and mortality. In the mid- 1990s, a pacemaker-based treatment termed cardiac resynchronization therapy (CRT) was developed to restore mechanical synchrony by electrically activating both right and left sides of the heart. It is a major therapeutic advance for the new millennium. Acute chamber effects of CRT include increased cardiac output and mechanical efficiency and reduced mitral regurgitation, whereas reduction in chamber volumes ensues more chronically. Patient candidates for CRT have a prolonged QRS duration and discoordinate wall motion, although other factors may also be important because ≈30% of such selected subjects do not respond to the treatment. In contrast to existing pharmacological inotropes, CRT both acutely and chronically increases cardiac systolic function and work, yet it also reduces long-term mortality. Recent studies reveal unique molecular and cellular changes from CRT that may also contribute to this success. Heart failure with dyssynchrony displays decreased myocyte and myofilament function, calcium handling, β-adrenergic responsiveness, mitochondrial ATP synthase activity, cell survival signaling, and other changes. CRT reverses many of these abnormalities often by triggering entirely new pathways. In this review, we discuss chamber, circulatory, and basic myocardial effects of dyssynchrony and CRT in the failing heart, and we highlight new research aiming to better target and implement CRT, as well as leverage its molecular effects.
Collapse
Affiliation(s)
- Jonathan A Kirk
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
43
|
Tagashira H, Bhuiyan MS, Fukunaga K. Diverse regulation of IP3 and ryanodine receptors by pentazocine through σ1-receptor in cardiomyocytes. Am J Physiol Heart Circ Physiol 2013; 305:H1201-12. [PMID: 23934856 DOI: 10.1152/ajpheart.00300.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although pentazocine binds to σ1-receptor (σ1R) with high affinity, the physiological relevance of its binding remains unclear. We first confirmed that σ1R stimulation with pentazocine rescues contractile dysfunction following pressure overload (PO)-induced cardiac hypertrophy ovariectomized (OVX) female rats. In in vivo studies, vehicle, pentazocine (0.5-1.0 mg/kg ip), and NE-100 (1.0 mg/kg po), a σ1R antagonist, were administered for 4 wk (once daily) starting from the onset of aortic banding after OVX. We also examined antihypertrophic effects of pentazocine (0.5-1 μM) in cultured cardiomyocytes exposed to angiotensin II. Pentazocine administration significantly inhibited PO-induced cardiac hypertrophy and rescued hypertrophy-induced impairment of cardiac dysfunctions such as left ventricular end-diastolic pressure, left ventricular developed pressure, and left ventricular contraction and relaxation (±dp/dt) rates. Coadministration of NE-100 with pentazocine eliminated pentazocine-induced amelioration of heart dysfunction. Interestingly, pentazocine administration inhibited PO-induced σ1R reduction and inositol-1,4,5-trisphosphate (IP3) receptor type 2 (IP3R2) upregulation in heart. Therefore, the reduced mitochondrial ATP production following PO was restored by pentazocine administration. Furthermore, we found that σ1R binds to the ryanodine receptor (RyR) in addition to IP3 receptor (IP3R) in cardiomyocytes. The σ1R/RyR complexes were decreased following OVX-PO and restored by pentazocine administration. We noticed that pentazocine inhibits the ryanodine-induced Ca(2+) release from sarcoplasmic reticulum (SR) in cultured cardiomyocytes. Taken together, the stimulation of σ1R by pentazocine rescues cardiac dysfunction by restoring IP3R-mediated mitochondrial ATP production and by suppressing RyR-mediated Ca(2+) leak from SR in cardiomyocytes.
Collapse
MESH Headings
- Adenosine Triphosphate/biosynthesis
- Angiotensin II/pharmacology
- Animals
- Anisoles/pharmacology
- Calcium/metabolism
- Cardiomegaly/metabolism
- Cardiomegaly/physiopathology
- Cells, Cultured
- Female
- Heart/drug effects
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/physiopathology
- Inositol 1,4,5-Trisphosphate Receptors/drug effects
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Mitochondria/drug effects
- Mitochondria/metabolism
- Myocardial Contraction/drug effects
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Narcotic Antagonists/pharmacology
- Narcotics/pharmacology
- Ovariectomy
- Pentazocine/pharmacology
- Propylamines/pharmacology
- Rats
- Rats, Wistar
- Receptors, sigma/agonists
- Receptors, sigma/antagonists & inhibitors
- Ryanodine Receptor Calcium Release Channel/drug effects
- Ryanodine Receptor Calcium Release Channel/metabolism
- Sarcoplasmic Reticulum/drug effects
- Sarcoplasmic Reticulum/metabolism
- Vasoconstrictor Agents/pharmacology
- Sigma-1 Receptor
Collapse
Affiliation(s)
- Hideaki Tagashira
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | | |
Collapse
|
44
|
Khananshvili D. The SLC8 gene family of sodium-calcium exchangers (NCX) - structure, function, and regulation in health and disease. Mol Aspects Med 2013; 34:220-35. [PMID: 23506867 DOI: 10.1016/j.mam.2012.07.003] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Accepted: 03/08/2012] [Indexed: 01/12/2023]
Abstract
The SLC8 gene family encoding Na(+)/Ca(2+) exchangers (NCX) belongs to the CaCA (Ca(2+)/Cation Antiporter) superfamily. Three mammalian genes (SLC8A1, SLC8A2, and SLC8A3) and their splice variants are expressed in a tissue-specific manner to mediate Ca(2+)-fluxes across the cell-membrane and thus, significantly contribute to regulation of Ca(2+)-dependent events in many cell types. A long-wanted mitochondrial Na(+)/Ca(2+) exchanger has been recently identified as NCLX protein, representing a gene product of SLC8B1. Distinct NCX isoform/splice variants contribute to excitation-contraction coupling, long-term potentiation of the brain and learning, blood pressure regulation, immune response, neurotransmitter and insulin secretion, mitochondrial bioenergetics, etc. Altered expression and regulation of NCX proteins contribute to distorted Ca(2+)-homeostasis in heart failure, arrhythmia, cerebral ischemia, hypertension, diabetes, renal Ca(2+) reabsorption, muscle dystrophy, etc. Recently, high-resolution X-ray structures of Ca(2+)-binding regulatory domains of eukaryotic NCX and of full-size prokaryotic NCX have become available and the dynamic properties have been analyzed by advanced biophysical approaches. Molecular silencing/overexpression of NCX in cellular systems and organ-specific KO mouse models provided useful information on the contribution of distinct NCX variants to cellular and systemic functions under various pathophysiological conditions. Selective inhibition or activation of predefined NCX variants in specific diseases might have clinical relevance, although this breakthrough has not yet been realized. A better understanding of the underlying molecular mechanisms as well as the development of in vitro procedures for high-throughput screening of "drug-like" compounds may lead to selective pharmacological targeting of NCX variants.
Collapse
Affiliation(s)
- Daniel Khananshvili
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel.
| |
Collapse
|
45
|
Hohendanner F, Ljubojević S, MacQuaide N, Sacherer M, Sedej S, Biesmans L, Wakula P, Platzer D, Sokolow S, Herchuelz A, Antoons G, Sipido K, Pieske B, Heinzel FR. Intracellular dyssynchrony of diastolic cytosolic [Ca²⁺] decay in ventricular cardiomyocytes in cardiac remodeling and human heart failure. Circ Res 2013; 113:527-38. [PMID: 23825358 DOI: 10.1161/circresaha.113.300895] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
RATIONALE Synchronized release of Ca²⁺ into the cytosol during each cardiac cycle determines cardiomyocyte contraction. OBJECTIVE We investigated synchrony of cytosolic [Ca²⁺] decay during diastole and the impact of cardiac remodeling. METHODS AND RESULTS Local cytosolic [Ca²⁺] transients (1-µm intervals) were recorded in murine, porcine, and human ventricular single cardiomyocytes. We identified intracellular regions of slow (slowCaR) and fast (fastCaR) [Ca²⁺] decay based on the local time constants of decay (TAUlocal). The SD of TAUlocal as a measure of dyssynchrony was not related to the amplitude or the timing of local Ca²⁺ release. Stimulation of sarcoplasmic reticulum Ca²⁺ ATPase with forskolin or istaroxime accelerated and its inhibition with cyclopiazonic acid slowed TAUlocal significantly more in slowCaR, thus altering the relationship between SD of TAUlocal and global [Ca²⁺] decay (TAUglobal). Na⁺/Ca²⁺ exchanger inhibitor SEA0400 prolonged TAUlocal similarly in slowCaR and fastCaR. FastCaR were associated with increased mitochondrial density and were more sensitive to the mitochondrial Ca²⁺ uniporter blocker Ru360. Variation in TAUlocal was higher in pig and human cardiomyocytes and higher with increased stimulation frequency (2 Hz). TAUlocal correlated with local sarcomere relengthening. In mice with myocardial hypertrophy after transverse aortic constriction, in pigs with chronic myocardial ischemia, and in end-stage human heart failure, variation in TAUlocal was increased and related to cardiomyocyte hypertrophy and increased mitochondrial density. CONCLUSIONS In cardiomyocytes, cytosolic [Ca²⁺] decay is regulated locally and related to local sarcomere relengthening. Dyssynchronous intracellular [Ca²⁺] decay in cardiac remodeling and end-stage heart failure suggests a novel mechanism of cellular contractile dysfunction.
Collapse
Affiliation(s)
- Felix Hohendanner
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
DeSantiago J, Bare DJ, Ke Y, Sheehan KA, Solaro RJ, Banach K. Functional integrity of the T-tubular system in cardiomyocytes depends on p21-activated kinase 1. J Mol Cell Cardiol 2013; 60:121-8. [PMID: 23612118 PMCID: PMC3679655 DOI: 10.1016/j.yjmcc.2013.04.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 03/06/2013] [Accepted: 04/12/2013] [Indexed: 12/30/2022]
Abstract
p21-activated kinase (Pak1), a serine-threonine protein kinase, regulates cytoskeletal dynamics and cell motility. Recent experiments further demonstrate that loss of Pak1 results in exaggerated hypertrophic growth in response to pathophysiological stimuli. Calcium (Ca) signaling plays an important role in the regulation of transcription factors involved in hypertrophic remodeling. Here we aimed to determine the role of Pak1 in cardiac excitation-contraction coupling (ECC). Ca transients were recorded in isolated, ventricular myocytes (VMs) from WT and Pak1(-/-) mice. Pak1(-/-) Ca transients had a decreased amplitude, prolonged rise time and delayed recovery time. Di-8-ANNEPS staining revealed a decreased T-tubular density in Pak1(-/-) VMs that coincided with decreased cell capacitance and increased dis-synchrony of Ca induced Ca release (CICR) at individual release units. These changes were not observed in atrial myocytes of Pak1(-/-) mice where the T-tubular system is only sparsely developed. Experiments in cultured rabbit VMs supported a role of Pak1 in the maintenance of the T-tubular structure. T-tubular density in rabbit VMs significantly decreased within 24h of culture. This was accompanied by a decrease of the Ca transient amplitude and a prolongation of its rise time. However, overexpression of constitutively active Pak1 in VMs attenuated the structural remodeling as well as changes in ECC. The results provide significant support for a prominent role of Pak1 activity not only in the functional regulation of ECC but for the structural maintenance of the T-tubular system whose remodeling is an integral feature of hypertrophic remodeling.
Collapse
Affiliation(s)
- Jaime DeSantiago
- Center for Cardiovascular Research, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
- Dept. of Medicine, Section of Cardiology, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
| | - Dan J Bare
- Center for Cardiovascular Research, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
- Dept. of Medicine, Section of Cardiology, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
| | - Yunbo Ke
- Center for Cardiovascular Research, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
- Dept. of Physiology and Biophysics, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
| | - Katherine A. Sheehan
- Center for Cardiovascular Research, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
- Dept. of Physiology and Biophysics, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
| | - R. John Solaro
- Center for Cardiovascular Research, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
- Dept. of Physiology and Biophysics, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
| | - Kathrin Banach
- Center for Cardiovascular Research, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
- Dept. of Medicine, Section of Cardiology, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
| |
Collapse
|
47
|
Drawnel FM, Archer CR, Roderick HL. The role of the paracrine/autocrine mediator endothelin-1 in regulation of cardiac contractility and growth. Br J Pharmacol 2013; 168:296-317. [PMID: 22946456 DOI: 10.1111/j.1476-5381.2012.02195.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 08/23/2012] [Accepted: 08/28/2012] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Endothelin-1 (ET-1) is a critical autocrine and paracrine regulator of cardiac physiology and pathology. Produced locally within the myocardium in response to diverse mechanical and neurohormonal stimuli, ET-1 acutely modulates cardiac contractility. During pathological cardiovascular conditions such as ischaemia, left ventricular hypertrophy and heart failure, myocyte expression and activity of the entire ET-1 system is enhanced, allowing the peptide to both initiate and maintain maladaptive cellular responses. Both the acute and chronic effects of ET-1 are dependent on the activation of intracellular signalling pathways, regulated by the inositol-trisphosphate and diacylglycerol produced upon activation of the ET(A) receptor. Subsequent stimulation of protein kinases C and D, calmodulin-dependent kinase II, calcineurin and MAPKs modifies the systolic calcium transient, myofibril function and the activity of transcription factors that coordinate cellular remodelling. The precise nature of the cellular response to ET-1 is governed by the timing, localization and context of such signals, allowing the peptide to regulate both cardiomyocyte physiology and instigate disease. LINKED ARTICLES This article is part of a themed section on Endothelin. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.168.issue-1.
Collapse
Affiliation(s)
- Faye M Drawnel
- Babraham Research Campus, Babraham Institute, Cambridge, UK
| | | | | |
Collapse
|
48
|
Westenbrink BD, Edwards AG, Miyamoto S. Conference report from the 2012 AHA scientific sessions in Los Angeles. Expert Opin Ther Targets 2013; 17:733-7. [PMID: 23642039 DOI: 10.1517/14728222.2013.794791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The 2012 Scientific Sessions of the American Heart Association was held on November 3 - 7 in Los Angels, California. It covered up-to-date research on both basic- and clinical-cardiovascular science. We describe the highlights of the meeting focusing on basic science and clinical cardiology. More specifically we will discuss new insights on arrhythmias, cardiac cell death/survival and clinical studies involving novel and unique treatment paradigms.
Collapse
Affiliation(s)
- B Daan Westenbrink
- University Medical Center Groningen, Department of Cardiology and Pharmacology , Hanzeplein 1, P.O. Box 30001, 9700 RB Groningen , The Netherlands.
| | | | | |
Collapse
|
49
|
Ozturk N, Yaras N, Ozmen A, Ozdemir S. Long-term administration of rosuvastatin prevents contractile and electrical remodelling of diabetic rat heart. J Bioenerg Biomembr 2013; 45:343-52. [PMID: 23640692 DOI: 10.1007/s10863-013-9514-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/19/2013] [Indexed: 01/09/2023]
Abstract
In recent years, many findings have been presented about the potential benefit of statin therapy on diabetes-induced cardiovascular complications. Cardioprotective effects of statins were suggested to be mediated at least in part through inhibition of small GTPases, particularly those of the Rho family. The present study was designed to examine whether rosuvastatin can improve electrical remodeling and contractile dysfunction in type 1 diabetic rat heart via modulation of RhoA pathway. Type 1 diabetes was induced by single dose injection of STZ (50 mg/kg). One week after injection rosuvastatin (10 mg/kg/day) and sham treatment was given for 5 weeks in the diabetic rats, as well as in control groups. Shortening and Ca²⁺ transients were recorded in myocytes loaded with Fura2-AM. Membrane currents and Ca²⁺ transients were measured synchronously via whole-cell patch clamping. In untreated diabetic rats, relaxation of shortening and decay of the matched Ca²⁺ transients were prolonged. Fractional shortening and Ca²⁺ transients were also decreased. Rosuvastatin treatment reversed those changes. I(CaL) density did not change in either group but rosuvastatin recovered the loss of sarcoplasmic reticulum Ca²⁺ and Na⁺/Ca²⁺ exchange as evidenced from amplitude and decay of caffeine-induced Ca²⁺ transients, peak INCX and calculated sarcoplasmic reticulum Ca²⁺ content. Diabetes-induced attenuation of I(to) and I(sus) was also reversed, whilst I(K1) was unchanged in diabetes and unaffected by treatment. Rosuvastatin prevented the diabetes-induced increase in RhoA expression. Plasma cholesterol and triglyceride levels were higher in diabetic rats, but rosuvastatin reduced only the latter. In conclusion, HMG-CoA reductase inhibitor rosuvastatin can prevent diabetes-induced electrical and functional remodeling of heart due to inhibition of RhoA signalling rather than reduction of cholesterol level.
Collapse
Affiliation(s)
- Nihal Ozturk
- Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | | | | | | |
Collapse
|
50
|
Ca2+ channel and Na+/Ca2+ exchange localization in cardiac myocytes. J Mol Cell Cardiol 2013; 58:22-31. [DOI: 10.1016/j.yjmcc.2012.11.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 11/20/2012] [Accepted: 11/28/2012] [Indexed: 01/01/2023]
|