1
|
Vora N, Patel P, Gajjar A, Ladani P, Konat A, Bhanderi D, Gadam S, Prajjwal P, Sharma K, Arunachalam SP. Gene therapy for heart failure: A novel treatment for the age old disease. Dis Mon 2024; 70:101636. [PMID: 37734966 DOI: 10.1016/j.disamonth.2023.101636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Across the globe, cardiovascular disease (CVD) is the leading cause of mortality. According to reports, around 6.2 million people in the United states have heart failure. Current standards of care for heart failure can delay but not prevent progression of disease. Gene therapy is one of the novel treatment modalities that promises to fill this limitation in the current standard of care for Heart Failure. In this paper we performed an extensive search of the literature on various advances made in gene therapy for heart failure till date. We review the delivery methods, targets, current applications, trials, limitations and feasibility of gene therapy for heart failure. Various methods have been employed till date for administering gene therapies including but not limited to arterial and venous infusion, direct myocardial injection and pericardial injection. Various strategies such as AC6 expression, S100A1 protein upregulation, VEGF-B and SDF-1 gene therapy have shown promise in recent preclinical trials. Furthermore, few studies even show that stimulation of cardiomyocyte proliferation such as through cyclin A2 overexpression is a realistic avenue. However, a considerable number of obstacles need to be overcome for gene therapy to be part of standard treatment of care such as definitive choice of gene, gene delivery systems and a suitable method for preclinical trials and clinical trials on patients. Considering the challenges and taking into account the recent advances in gene therapy research, there are encouraging signs to indicate gene therapy for heart failure to be a promising treatment modality for the future. However, the time and feasibility of this option remains in a situation of balance.
Collapse
Affiliation(s)
- Neel Vora
- B. J. Medical College, Ahmedabad, India
| | - Parth Patel
- Pramukhswami Medical College, Karamsad, India
| | | | | | - Ashwati Konat
- University School of Sciences, Gujarat University, Ahmedabad, India
| | | | | | | | - Kamal Sharma
- U. N. Mehta Institute of Cardiology and Research Centre, Ahmedabad, India.
| | | |
Collapse
|
2
|
Luo X, Wang R, Zhang X, Wen X, Xie W. Identification of key genes associated with heart failure based on bioinformatics analysis and screening of traditional Chinese medicines for the prevention and treatment of heart failure. Medicine (Baltimore) 2023; 102:e35959. [PMID: 38065888 PMCID: PMC10713177 DOI: 10.1097/md.0000000000035959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/13/2023] [Indexed: 12/18/2023] Open
Abstract
Heart failure (HF) is the final stage of heart disease. An increasing number of experiments and clinical reports have shown that traditional Chinese medicine (TCM) has many therapeutic effects and advantages in treating HF. In this study, we used bioinformatics methods to screen key genes and predict the components of Chinese herbal medicines with preventive and therapeutic effects on HF. GSE120895 and GSE21610 HF chips were downloaded from the Gene Expression Omnibus database. We screened differentially expressed genes (DEGs). Weighted gene coexpression network analysis was performed to determine key modules. Genes in key modules were used for Gene Ontology and Kyoto Encyclopedia of Genes Genomes analysis to determine the biological functions. Finally, receiver operating characteristic curve analysis was used to screen out key genes, and single-sample GSEA was conducted to screen TCM compounds and effective ingredients of TCM compounds related to HF. We have selected a key module (MeTerquoise) and identified 489 DEGs, of which 357 are up regulated and 132 are down regulated. Gene Ontology and Kyoto Encyclopedia of Genes Genomes analyses indicated that the DEGs were associated with the extracellular matrix, fat metabolism and inflammatory response. We identified IL2, CXCR4, CCL5, THY1, CCN2, and IL7R as key genes. Single-sample GSEA showed that key genes were mainly related to energy metabolism, mitochondrial oxidative phosphorylation, extracellular matrix, and immunity. Finally, a total of 70 TCM compounds and 30 active ingredients of TCM compounds were identified. Bioinformatics methods were applied to preliminarily predict the key genes and TCM compounds involved in HF. These results provide theoretical support for the treatment of HF with TCM compounds and provide targets and research strategies for the development of related new Chinese medicines.
Collapse
Affiliation(s)
- Xu Luo
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Rui Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xin Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xin Wen
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Wen Xie
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Cardiology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine (Traditional Chinese Medicine Hospital of Sichuan), Chengdu, Sichuan, China
| |
Collapse
|
3
|
Shen Y, Kim IM, Tang Y. Uncovering the Heterogeneity of Cardiac Lin-KIT+ Cells: A scRNA-seq Study on the Identification of Subpopulations. Stem Cells 2023; 41:958-970. [PMID: 37539750 PMCID: PMC11009691 DOI: 10.1093/stmcls/sxad057] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/11/2023] [Indexed: 08/05/2023]
Abstract
The reparative potential of cardiac Lin-KIT+ (KIT) cells is influenced by their population, but identifying their markers is challenging due to changes in phenotype during in vitro culture. Resolving this issue requires uncovering cell heterogeneity and discovering new subpopulations. Single-cell RNA sequencing (scRNA-seq) can identify KIT cell subpopulations, their markers, and signaling pathways. We used 10× genomic scRNA-seq to analyze cardiac-derived cells from adult mice and found 3 primary KIT cell populations: KIT1, characterized by high-KIT expression (KITHI), represents a population of cardiac endothelial cells; KIT2, which has low-KIT expression (KITLO), expresses transcription factors such as KLF4, MYC, and GATA6, as well as genes involved in the regulation of angiogenic cytokines; KIT3, with moderate KIT expression (KITMOD), expresses the cardiac transcription factor MEF2C and mesenchymal cell markers such as ENG. Cell-cell communication network analysis predicted the presence of the 3 KIT clusters as signal senders and receivers, including VEGF, CXCL, and BMP signaling. Metabolic analysis showed that KIT1 has the low activity of glycolysis and oxidative phosphorylation (OXPHOS), KIT2 has high glycolytic activity, and KIT3 has high OXPHOS and fatty acid degradation activity, indicating distinct metabolic adaptations of the 3 KIT populations. Through the systemic infusion of KIT1 cells in a mouse model of myocardial infarction, we observed their involvement in promoting the formation of new micro-vessels. In addition, in vitro spheroid culture experiments demonstrated the cardiac differentiation capacity of KIT2 cells.
Collapse
Affiliation(s)
- Yan Shen
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Il-Man Kim
- Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Yaoliang Tang
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
4
|
Tirronen A, Downes NL, Huusko J, Laakkonen JP, Tuomainen T, Tavi P, Hedman M, Ylä-Herttuala S. The Ablation of VEGFR-1 Signaling Promotes Pressure Overload-Induced Cardiac Dysfunction and Sudden Death. Biomolecules 2021; 11:452. [PMID: 33802976 PMCID: PMC8002705 DOI: 10.3390/biom11030452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 12/28/2022] Open
Abstract
Molecular mechanisms involved in cardiac remodelling are not fully understood. To study the role of vascular endothelial growth factor receptor 1 (VEGFR-1) signaling in left ventricular hypertrophy (LVH) and heart failure, we used a mouse model lacking the intracellular VEGFR-1 tyrosine kinase domain (VEGFR-1 TK-/-) and induced pressure overload with angiotensin II infusion. Using echocardiography (ECG) and immunohistochemistry, we evaluated pathological changes in the heart during pressure overload and measured the corresponding alterations in expression level and phosphorylation of interesting targets by deep RNA sequencing and Western blot, respectively. By day 6 of pressure overload, control mice developed significant LVH whereas VEGFR-1 TK-/- mice displayed a complete absence of LVH, which correlated with significantly increased mortality. At a later time point, the cardiac dysfunction led to increased ANP and BNP levels, atrial dilatation and prolongation of the QRSp duration as well as increased cardiomyocyte area. Immunohistochemical analyses showed no alterations in fibrosis or angiogenesis in VEGFR-1 TK-/- mice. Mechanistically, the ablation of VEGFR-1 signaling led to significantly upregulated mTOR and downregulated PKCα phosphorylation in the myocardium. Our results show that VEGFR-1 signaling regulates the early cardiac remodelling during the compensatory phase of pressure overload and increases the risk of sudden death.
Collapse
Affiliation(s)
- Annakaisa Tirronen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (A.T.); (N.L.D.); (J.H.); (J.P.L.); (T.T.); (P.T.)
| | - Nicholas L. Downes
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (A.T.); (N.L.D.); (J.H.); (J.P.L.); (T.T.); (P.T.)
| | - Jenni Huusko
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (A.T.); (N.L.D.); (J.H.); (J.P.L.); (T.T.); (P.T.)
| | - Johanna P. Laakkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (A.T.); (N.L.D.); (J.H.); (J.P.L.); (T.T.); (P.T.)
| | - Tomi Tuomainen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (A.T.); (N.L.D.); (J.H.); (J.P.L.); (T.T.); (P.T.)
| | - Pasi Tavi
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (A.T.); (N.L.D.); (J.H.); (J.P.L.); (T.T.); (P.T.)
| | - Marja Hedman
- Institute of Clinical Medicine, University of Eastern Finland, 70029 Kuopio, Finland;
- Heart Center and Cardiothoracic Surgery, Kuopio University Hospital, 70029 Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (A.T.); (N.L.D.); (J.H.); (J.P.L.); (T.T.); (P.T.)
- Heart Center and Gene Therapy Unit, Kuopio University Hospital, 70029 Kuopio, Finland
| |
Collapse
|
5
|
Sun L, Hu Y, Mishra A, Sreeharsha N, Moktan JB, Kumar P, Wang L. Protective role of poly(lactic-co-glycolic) acid nanoparticle loaded with resveratrol against isoproterenol-induced myocardial infarction. Biofactors 2020; 46:421-431. [PMID: 31926035 DOI: 10.1002/biof.1611] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 11/28/2019] [Indexed: 02/06/2023]
Abstract
Our study is aimed at evaluating the effects of pretreatment with Poly(lactic-co-glycolic) acid nanoparticle loaded with resveratrol (RSV PLGA NPs) compared to conventional resveratrol (RSV) on isoproterenol (ISO) induced myocardial infarction (MI) in rats. Sixty rats were randomly divided into six groups of 10 rats each. RSV and RSV PLGA NPs were given by gavage in two different doses (50 mg/kg body weight [BW] and 100 mg/kg BW) for 3 weeks. RSV and RSV PLGA NPs were given for 2 weeks starting 1 week before ISO administration. The blood samples were taken 24 hr after the last dose of ISO. The antioxidant, anti-inflammatory, and cardioprotective effects were evaluated in all groups. Only 100 mg/kg dose of RSV and both doses of RSV PLGA NPs offered a cardioprotective effect by preventing cardiac troponin T (cTnT) levels, lactate dehydrogenase (LDH), and aspartate aminotransferase (AST) activities leakage from cardiomyocytes, with the best result for RSV PLGA NPs. All the oxidative stress parameters were significantly improved after RSV PLGA NPs compared to RSV pretreatment. RSV PLGA NPs were more efficient than RSV in limiting the increase in inflammatory cytokine expressions such as tumor necrosis factor-alpha (TNF-α), interleukin 1 beta (IL-1β), and NF-kappaB (NF-kB) expression. In addition, RSV PLGA NPs significantly upregulated eNOS expression and downregulated iNOS expression. RSV PLGA NPs better prevented myocardial necrosis and reduced interstitial edema and neutrophil infiltration than RSV, on histopathological examination. Therefore, improving the bioactivity of RSV by nanotechnology may help limit cardiac injury after myocardial infarction.
Collapse
Affiliation(s)
- Liqiang Sun
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Yucai Hu
- Department of Cardiology, The First Affiliated Hospital of Henan University of CM, Zhengzhou City, Henan Province, China
| | - Anurag Mishra
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, Rajasthan, India
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Jeet B Moktan
- Department of Pharmacy Practice, Sri Adichunchanagiri College of Pharmacy, BG Nagara, Mandya, Karnataka, India
| | - Piyush Kumar
- Shikhar Institute of Pharmacy, Shekhupur, Budaun, Uttar Pradesh, India
| | - Lei Wang
- Department of Cardiology, Jinan Central Hospital Affiliated to Shandong University, Jinan City, Shandong Province, China
| |
Collapse
|
6
|
LaRocca TJ, Seeger T, Prado M, Perea-Gil I, Neofytou E, Mecham BH, Ameen M, Chang ACY, Pandey G, Wu JC, Karakikes I. Pharmacological Silencing of MicroRNA-152 Prevents Pressure Overload-Induced Heart Failure. Circ Heart Fail 2020; 13:e006298. [PMID: 32160771 DOI: 10.1161/circheartfailure.119.006298] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND MicroRNAs are small, noncoding RNAs that play a key role in gene expression. Accumulating evidence suggests that aberrant microRNA expression contributes to the heart failure (HF) phenotype; however, the underlying molecular mechanisms are not well understood. A better understanding of the mechanisms of action of microRNAs could potentially lead to targeted therapies that could halt the progression or even reverse HF. METHODS AND RESULTS We found that microRNA-152 (miR-152) expression was upregulated in the failing human heart and experimental animal models of HF. Transgenic mice with cardiomyocyte-specific miR-152 overexpression developed systolic dysfunction (mean difference, -38.74% [95% CI, -45.73% to -31.74%]; P<0.001) and dilated cardiomyopathy. At the cellular level, miR-152 overexpression perturbed mitochondrial ultrastructure and dysregulated key genes involved in cardiomyocyte metabolism and inflammation. Mechanistically, we identified Glrx5 (glutaredoxin 5), a critical regulator of mitochondrial iron homeostasis and iron-sulfur cluster synthesis, as a direct miR-152 target. Finally, a proof-of-concept of the therapeutic efficacy of targeting miR-152 in vivo was obtained by utilizing a locked nucleic acid-based inhibitor of miR-152 (LNA 152) in a murine model of HF subjected to transverse aortic constriction. We demonstrated that animals treated with LNA-152 (n=10) showed preservation of systolic function when compared with locked nucleic acid-control treated animals (n=9; mean difference, 18.25% [95% CI, 25.10% to 11.39%]; P<0.001). CONCLUSIONS The upregulation of miR-152 expression in the failing myocardium contributes to HF pathophysiology. Preclinical evidence suggests that miR-152 inhibition preserves cardiac function in a model of pressure overload-induced HF. These findings offer new insights into the pathophysiology of HF and point to miR-152-Glrx5 axis as a potential novel therapeutic target.
Collapse
Affiliation(s)
- Thomas J LaRocca
- Division of Critical Care Medicine, Department of Pediatrics, Lucile Packard Children's Hospital (T.J.L.), Stanford University School of Medicine, CA
| | - Timon Seeger
- Stanford Cardiovascular Institute (T.S., I.P.-G., E.N., M.A., J.C.W., I.K.), Stanford University School of Medicine, CA
| | - Maricela Prado
- Department of Cardiothoracic Surgery (M.P., I.P.-G., I.K.), Stanford University School of Medicine, CA
| | - Isaac Perea-Gil
- Department of Cardiothoracic Surgery (M.P., I.P.-G., I.K.), Stanford University School of Medicine, CA.,Stanford Cardiovascular Institute (T.S., I.P.-G., E.N., M.A., J.C.W., I.K.), Stanford University School of Medicine, CA
| | - Evgenios Neofytou
- Stanford Cardiovascular Institute (T.S., I.P.-G., E.N., M.A., J.C.W., I.K.), Stanford University School of Medicine, CA
| | | | - Mohamed Ameen
- Stanford Cardiovascular Institute (T.S., I.P.-G., E.N., M.A., J.C.W., I.K.), Stanford University School of Medicine, CA
| | - Alex Chia Yu Chang
- Department of Cardiology and Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China (A.C.Y.C.)
| | - Gaurav Pandey
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY (G.P.)
| | - Joseph C Wu
- Stanford Cardiovascular Institute (T.S., I.P.-G., E.N., M.A., J.C.W., I.K.), Stanford University School of Medicine, CA.,Department of Radiology (J.C.W.), Stanford University School of Medicine, CA
| | - Ioannis Karakikes
- Department of Cardiothoracic Surgery (M.P., I.P.-G., I.K.), Stanford University School of Medicine, CA.,Stanford Cardiovascular Institute (T.S., I.P.-G., E.N., M.A., J.C.W., I.K.), Stanford University School of Medicine, CA
| |
Collapse
|
7
|
Acetaldehyde dehydrogenase 2 deficiency exacerbates cardiac fibrosis by promoting mobilization and homing of bone marrow fibroblast progenitor cells. J Mol Cell Cardiol 2019; 137:107-118. [PMID: 31668970 DOI: 10.1016/j.yjmcc.2019.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/22/2022]
Abstract
Cardiac fibrosis is a common feature of various cardiovascular diseases. Previous studies showed that acetaldehyde dehydrogenase 2 (ALDH2) deficiency exacerbated pressure overload-induced heart failure. However, the role and mechanisms of cardiac fibrosis in this process remain largely unknown. This study aimed to investigate the effect of ALDH2 deficiency on cardiac fibrosis in transverse aortic constriction (TAC) induced pressure overload model in mice. Echocardiography and histological analysis revealed cardiac dysfunction and enhanced cardiac fibrosis in TAC-operated animals; ALDH2 deficiency further aggravated these changes. ALDH2 chimeric mice were generated by bone marrow (BM) transplantation of WT mice into the lethally irradiated ALDH2KO mice. The proportion of circulating fibroblast progenitor cells (FPCs) and ROS level in BM after TAC were significantly higher in ALDH2KO mice than in ALDH2 chimeric mice. Furthermore, FPCs were isolated and cultured for in vitro mechanistic studies. The results showed that the stem cell-derived factor 1 (SDF-1)/C-X-C chemokine receptor 4 (CXCR4) axis played a major role in the recruitment of FPCs. In conclusion, our research reveals that increased bone marrow FPCs mobilization and myocardial homing contribute to the enhanced cardiac fibrosis and dysfunction induced by TAC in ALDH2 KO mice via exacerbating accumulation of ROS in BM and myocardial SDF-1 expression.
Collapse
|
8
|
Abstract
Chemokines are small secreted proteins with chemoattractant properties that play a key role in inflammation. One such chemokine, Stromal cell-derived factor-1 (SDF-1) also known as CXCL12, and its receptor, CXCR4, are expressed and functional in cardiac myocytes. SDF-1 both stimulates and enhances the cellular signal which attracts potentially beneficial stem cells for tissue repair within the ischemic heart. Paradoxically however, this chemokine is known to act in concert with the inflammatory cytokines of the innate immune response which contributes to cellular injury through the recruitment of inflammatory cells during ischemia. In the present study, we have demonstrated that SDF-1 has dose dependent effects on freshly isolated cardiomyocytes. Using Tunnel and caspase 3-activation assays, we have demonstrated that the treatment of isolated adult rat cardiac myocyte with SDF-1 at higher concentrations (pathological concentrations) induced apoptosis. Furthermore, ELISA data demonstrated that the treatment of isolated adult rat cardiac myocyte with SDF-1 at higher concentrations upregulated TNF-α protein expression which directly correlated with subsequent apoptosis. There was a significant reduction in SDF-1 mediated apoptosis when TNF-α expression was neutralized which suggests that SDF-1 mediated apoptosis is TNF-α-dependent. The fact that certain stimuli are capable of driving cardiomyocytes into apoptosis indicates that these cells are susceptible to clinically relevant apoptotic triggers. Our findings suggest that the elevated SDF-1 levels seen in a variety of clinical conditions, including ischemic myocardial infarction, may either directly or indirectly contribute to cardiac cell death via a TNF-α mediated pathway. This highlights the importance of this receptor/ligand in regulating the cardiomyocyte response to stress conditions.
Collapse
|
9
|
Ziff OJ, Bromage DI, Yellon DM, Davidson SM. Therapeutic strategies utilizing SDF-1α in ischaemic cardiomyopathy. Cardiovasc Res 2019; 114:358-367. [PMID: 29040423 PMCID: PMC6005112 DOI: 10.1093/cvr/cvx203] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 10/12/2017] [Indexed: 01/07/2023] Open
Abstract
Heart failure is rapidly increasing in prevalence and will redraw the global landscape for cardiovascular health. Alleviating and repairing cardiac injury associated with myocardial infarction (MI) is key to improving this burden. Homing signals mobilize and recruit stem cells to the ischaemic myocardium where they exert beneficial paracrine effects. The chemoattractant cytokine SDF-1α and its associated receptor CXCR4 are upregulated after MI and appear to be important in this context. Activation of CXCR4 promotes both cardiomyocyte survival and stem cell migration towards the infarcted myocardium. These effects have beneficial effects on infarct size, and left ventricular remodelling and function. However, the timing of endogenous SDF-1α release and CXCR4 upregulation may not be optimal. Furthermore, current ELISA-based assays cannot distinguish between active SDF-1α, and SDF-1α inactivated by dipeptidyl peptidase 4 (DPP4). Current therapeutic approaches aim to recruit the SDF-1α-CXCR4 pathway or prolong SDF-1α life-time by preventing its cleavage by DPP4. This review assesses the evidence supporting these approaches and proposes SDF-1α as an important confounder in recent studies of DPP4 inhibitors.
Collapse
Affiliation(s)
- Oliver J Ziff
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, 67 Chenies Mews, London WC1E 6HX, UK
| | - Daniel I Bromage
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, 67 Chenies Mews, London WC1E 6HX, UK
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, 67 Chenies Mews, London WC1E 6HX, UK
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, 67 Chenies Mews, London WC1E 6HX, UK
| |
Collapse
|
10
|
LaRocca TJ, Altman P, Jarrah AA, Gordon R, Wang E, Hadri L, Burke MW, Haddad GE, Hajjar RJ, Tarzami ST. CXCR4 Cardiac Specific Knockout Mice Develop a Progressive Cardiomyopathy. Int J Mol Sci 2019; 20:ijms20092267. [PMID: 31071921 PMCID: PMC6539363 DOI: 10.3390/ijms20092267] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 12/31/2022] Open
Abstract
Activation of multiple pathways is associated with cardiac hypertrophy and heart failure. We previously published that CXCR4 negatively regulates β-adrenergic receptor (β-AR) signaling and ultimately limits β-adrenergic diastolic (Ca2+) accumulation in cardiac myocytes. In isolated adult rat cardiac myocytes; CXCL12 treatment prevented isoproterenol-induced hypertrophy and interrupted the calcineurin/NFAT pathway. Moreover; cardiac specific CXCR4 knockout mice show significant hypertrophy and develop cardiac dysfunction in response to chronic catecholamine exposure in an isoproterenol-induced (ISO) heart failure model. We set this study to determine the structural and functional consequences of CXCR4 myocardial knockout in the absence of exogenous stress. Cardiac phenotype and function were examined using (1) gated cardiac magnetic resonance imaging (MRI); (2) terminal cardiac catheterization with in vivo hemodynamics; (3) histological analysis of left ventricular (LV) cardiomyocyte dimension; fibrosis; and; (4) transition electron microscopy at 2-; 6- and 12-months of age to determine the regulatory role of CXCR4 in cardiomyopathy. Cardiomyocyte specific-CXCR4 knockout (CXCR4 cKO) mice demonstrate a progressive cardiac dysfunction leading to cardiac failure by 12-months of age. Histological assessments of CXCR4 cKO at 6-months of age revealed significant tissue fibrosis in knockout mice versus wild-type. The expression of atrial naturietic factor (ANF); a marker of cardiac hypertrophy; was also increased with a subsequent increase in gross heart weights. Furthermore, there were derangements in both the number and the size of the mitochondria within CXCR4 cKO hearts. Moreover, CXCR4 cKO mice were more sensitive to catocholamines, their response to β-AR agonist challenge via acute isoproterenol (ISO) infusion demonstrated a greater increase in ejection fraction, dp/dtmax, and contractility index. Interestingly, prior to ISO infusion, there were significant differences in baseline hemodynamics between the CXCR4 cKO compared to littermate controls. However, upon administering ISO, the CXCR4 cKO responded in a robust manner overcoming the baseline hemodynamic deficits reaching WT values supporting our previous data that CXCR4 negatively regulates β-AR signaling. This further supports that, in the absence of the physiologic negative modulation, there is an overactivation of down-stream pathways, which contribute to the development and progression of contractile dysfunction. Our results demonstrated that CXCR4 plays a non-developmental role in regulating cardiac function and that CXCR4 cKO mice develop a progressive cardiomyopathy leading to clinical heart failure.
Collapse
Affiliation(s)
- Thomas J LaRocca
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10128, USA.
| | - Perry Altman
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10128, USA.
| | - Andrew A Jarrah
- Department of Medicine, Tufts University School of Medicine, Boston, MA 02111, USA.
| | - Ron Gordon
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10128, USA.
| | - Edward Wang
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10128, USA.
| | - Lahouaria Hadri
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10128, USA.
| | - Mark W Burke
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC 20060, USA.
| | - Georges E Haddad
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC 20060, USA.
| | - Roger J Hajjar
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10128, USA.
| | - Sima T Tarzami
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC 20060, USA.
| |
Collapse
|
11
|
Bromage DI, Taferner S, He Z, Ziff OJ, Yellon DM, Davidson SM. Stromal cell-derived factor-1α signals via the endothelium to protect the heart against ischaemia-reperfusion injury. J Mol Cell Cardiol 2019; 128:187-197. [PMID: 30738798 PMCID: PMC6408335 DOI: 10.1016/j.yjmcc.2019.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 01/18/2019] [Accepted: 02/06/2019] [Indexed: 12/31/2022]
Abstract
AIMS The chemokine stromal derived factor-1α (SDF-1α) is known to protect the heart acutely from ischaemia-reperfusion injury via its cognate receptor, CXCR4. However, the timing and cellular location of this effect, remains controversial. METHODS AND RESULTS Wild type male and female mice were subjected to 40 min LAD territory ischaemia in vivo and injected with either saline (control) or SDF-1α prior to 2 h reperfusion. Infarct size as a proportion of area at risk was assessed histologically using Evans blue and triphenyltetrazolium chloride. Our results confirm the cardioprotective effect of exogenous SDF-1α in mouse ischaemia-reperfusion injury and, for the first time, show protection when SDF-1α is delivered just prior to reperfusion, which has important therapeutic implications. The role of cell type was examined using the same in vivo ischaemia-reperfusion protocol in cardiomyocyte- and endothelial-specific CXCR4-null mice, and by Western blot analysis of endothelial cells treated in vitro. These experiments demonstrated that the acute infarct-sparing effect is mediated by endothelial cells, possibly via the signalling kinases Erk1/2 and PI3K/Akt. Unexpectedly, cardiomyocyte-specific deletion of CXCR4 was found to be cardioprotective per se. RNAseq analysis indicated altered expression of the mitochondrial protein co-enzyme Q10b in these mice. CONCLUSIONS Administration of SDF-1α is cardioprotective when administered prior to reperfusion and may, therefore, have clinical utility. SDF-1α-CXCR4-mediated cardioprotection from ischaemia-reperfusion injury is contingent on the cellular location of CXCR4 activation. Specifically, cardioprotection is mediated by endothelial signalling, while cardiomyocyte-specific deletion of CXCR4 has an infarct-sparing effect per se.
Collapse
Affiliation(s)
- Daniel I Bromage
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London WC1E 6HX, UK
| | - Stasa Taferner
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London WC1E 6HX, UK
| | - Zhenhe He
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London WC1E 6HX, UK
| | - Oliver J Ziff
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London WC1E 6HX, UK
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London WC1E 6HX, UK.
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London WC1E 6HX, UK
| |
Collapse
|
12
|
Morhenn K, Quentin T, Wichmann H, Steinmetz M, Prondzynski M, Söhren KD, Christ T, Geertz B, Schröder S, Schöndube FA, Hasenfuss G, Schlossarek S, Zimmermann WH, Carrier L, Eschenhagen T, Cardinaux JR, Lutz S, Oetjen E. Mechanistic role of the CREB-regulated transcription coactivator 1 in cardiac hypertrophy. J Mol Cell Cardiol 2018; 127:31-43. [PMID: 30521840 DOI: 10.1016/j.yjmcc.2018.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/27/2018] [Accepted: 12/02/2018] [Indexed: 10/27/2022]
Abstract
The sympathetic nervous system is the main stimulator of cardiac function. While acute activation of the β-adrenoceptors exerts positive inotropic and lusitropic effects by increasing cAMP and Ca2+, chronically enhanced sympathetic tone with changed β-adrenergic signaling leads to alterations of gene expression and remodeling. The CREB-regulated transcription coactivator 1 (CRTC1) is activated by cAMP and Ca2+. In the present study, the regulation of CRTC1 in cardiomyocytes and its effect on cardiac function and growth was investigated. In cardiomyocytes, isoprenaline induced dephosphorylation, and thus activation of CRTC1, which was prevented by propranolol. Crtc1-deficient mice exhibited left ventricular dysfunction, hypertrophy and enlarged cardiomyocytes. However, isoprenaline-induced contractility of isolated trabeculae or phosphorylation of cardiac troponin I, cardiac myosin-binding protein C, phospholamban, and ryanodine receptor were not altered, suggesting that cardiac dysfunction was due to the global lack of Crtc1. The mRNA and protein levels of the Gαq GTPase activating protein regulator of G-protein signaling 2 (RGS2) were lower in hearts of Crtc1-deficient mice. Chromatin immunoprecipitation and reporter gene assays showed stimulation of the Rgs2 promoter by CRTC1. In Crtc1-deficient cardiomyocytes, phosphorylation of the Gαq-downstream kinase ERK was enhanced. CRTC1 content was higher in cardiac tissue from patients with aortic stenosis or hypertrophic cardiomyopathy and from two murine models mimicking these diseases. These data suggest that increased CRTC1 in maladaptive hypertrophy presents a compensatory mechanism to delay disease progression in part by enhancing Rgs2 gene transcription. Furthermore, the present study demonstrates an important role of CRTC1 in the regulation of cardiac function and growth.
Collapse
Affiliation(s)
- Karoline Morhenn
- Department of Clinical Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg, Kiel, Lübeck, Germany
| | - Thomas Quentin
- Department of Clinical Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Helen Wichmann
- Department of Pediatric Cardiology and Intensive Medicine, University Medical Center Göttingen, Robert Koch Str. 40, 37075 Göttingen, Germany
| | - Michael Steinmetz
- Department of Pediatric Cardiology and Intensive Medicine, University Medical Center Göttingen, Robert Koch Str. 40, 37075 Göttingen, Germany; DZHK (German Center for Cardiovascular Research), Partner Site, Göttingen, Germany
| | - Maksymilian Prondzynski
- DZHK (German Center for Cardiovascular Research), Partner Site Hamburg, Kiel, Lübeck, Germany; Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Klaus-Dieter Söhren
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Torsten Christ
- DZHK (German Center for Cardiovascular Research), Partner Site Hamburg, Kiel, Lübeck, Germany; Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Birgit Geertz
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Sabine Schröder
- Department of Clinical Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Friedrich A Schöndube
- Department of Thoracic-Cardiac and Vascular Surgery, University Medical Center Göttingen, Robert Koch Str. 40, 37075 Göttingen, Germany
| | - Gerd Hasenfuss
- DZHK (German Center for Cardiovascular Research), Partner Site, Göttingen, Germany; Department of Cardiology and Pneumology, University Medical Center Göttingen, Robert Koch Str. 40, 37075 Göttingen, Germany
| | - Saskia Schlossarek
- DZHK (German Center for Cardiovascular Research), Partner Site Hamburg, Kiel, Lübeck, Germany; Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Wolfram H Zimmermann
- DZHK (German Center for Cardiovascular Research), Partner Site, Göttingen, Germany; Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Robert Koch Str. 40, 37075 Göttingen, Germany
| | - Lucie Carrier
- DZHK (German Center for Cardiovascular Research), Partner Site Hamburg, Kiel, Lübeck, Germany; Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Thomas Eschenhagen
- DZHK (German Center for Cardiovascular Research), Partner Site Hamburg, Kiel, Lübeck, Germany; Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Jean-René Cardinaux
- Center for Psychiatric Neuroscience and Service of Child and Adolescent Psychiatry, Department of Psychiatry, University Medical Center, University of Lausanne, 1008 Prilly-Lausanne, Switzerland
| | - Susanne Lutz
- DZHK (German Center for Cardiovascular Research), Partner Site, Göttingen, Germany; Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Robert Koch Str. 40, 37075 Göttingen, Germany
| | - Elke Oetjen
- Department of Clinical Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg, Kiel, Lübeck, Germany; Institute of Pharmacy, University of Hamburg, Bundesstr. 45, 20146 Hamburg, Germany.
| |
Collapse
|
13
|
Klimczak-Tomaniak D, Pilecki T, Żochowska D, Sieńko D, Janiszewski M, Pączek L, Kuch M. CXCL12 in Patients with Chronic Kidney Disease and Healthy Controls: Relationships to Ambulatory 24-Hour Blood Pressure and Echocardiographic Measures. Cardiorenal Med 2018; 8:249-258. [PMID: 30021207 DOI: 10.1159/000490396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 05/25/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND/AIMS Chronic kidney disease is a pro-inflammatory condition where the interplay between different regulatory pathways and immune cells mediates an unfavorable remodeling of the vascular wall and myocardial hypertrophy. These mechanisms include the action of CXCL12. The aim of this study is to evaluate the association between serum CXCL12 with left ventricular hypertrophy (LVH) and blood pressure control in chronic kidney disease (CKD) patients. METHODS This single-center observational study involved 90 stable CKD stage 1-5 patients (including 33 renal transplant recipients) and 25 healthy age- and sex-matched control subjects. CXCL12 was quantified by ELISA. 24-h ambulatory blood pressure monitoring was performed in 90 patients and 25 healthy controls. Left ventricular mass index (LVMI) was calculated based on the transthoracic echocardiography measurements in 27 patients out of the CKD population and in the whole control group. RESULTS CXCL12 correlated significantly with LVMI by multivariate regression analysis (coefficient B = 0.33, p = 0.02) together with age (B = 0.30, p = 0.03) and gender (B = 0.41, p = 0.003). A positive correlation was observed between CXCL12 and average 24-h systolic blood pressure (SBP) (rho = 0.35, p = 0.001), daytime SBP (rho = 0.35, p = 0.001), and nocturnal SBP (rho = 0.30, p = 0.002). Nocturnal hypertension was frequent (46% of CKD patients). CONCLUSIONS The results of our study point towards a link between CXCL12 and LVH as well as blood pressure control among patients with CKD, supporting the thesis that CXCL12 may be regarded as a new potential uremic toxin.
Collapse
Affiliation(s)
- Dominika Klimczak-Tomaniak
- Department of Immunology, Transplantation and Internal Medicine, Transplantation Institute, Medical University of Warsaw, Warsaw, Poland.,Department of Heart Failure and Cardiac Rehabilitation, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Pilecki
- Department of Immunology, Transplantation and Internal Medicine, Transplantation Institute, Medical University of Warsaw, Warsaw, Poland
| | - Dorota Żochowska
- Department of Immunology, Transplantation and Internal Medicine, Transplantation Institute, Medical University of Warsaw, Warsaw, Poland
| | - Damian Sieńko
- Department of Immunology, Transplantation and Internal Medicine, Transplantation Institute, Medical University of Warsaw, Warsaw, Poland
| | - Maciej Janiszewski
- Department of Heart Failure and Cardiac Rehabilitation, Medical University of Warsaw, Warsaw, Poland
| | - Leszek Pączek
- Department of Immunology, Transplantation and Internal Medicine, Transplantation Institute, Medical University of Warsaw, Warsaw, Poland
| | - Marek Kuch
- Chair and Department of Cardiology, Hypertension and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
14
|
Xu JY, Chen GH, Yang YJ. Exosomes: A Rising Star in Falling Hearts. Front Physiol 2017; 8:494. [PMID: 28751864 PMCID: PMC5508217 DOI: 10.3389/fphys.2017.00494] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/28/2017] [Indexed: 12/20/2022] Open
Abstract
Although exosomes were previously recognized as a mechanism for discharging useless cellular components, growing evidence has elucidated their roles in conveying information between cells. They contribute to cell-cell communication by carrying nucleic acids, proteins and lipids that can, in turn, regulate behavior of the target cells. Recent research suggested that exosomes extensively participate in progression of diverse cardiovascular diseases (CVDs), such as myocardial infarction, cardiomyopathy, pulmonary arterial hypertension and others. Here, we summarize effects of exosome-derived molecules (mainly microRNAs and proteins) on cardiac function, to examine their potential applications as biomarkers or therapeutics in CVDs.
Collapse
Affiliation(s)
- Jun-Yan Xu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijing, China
| | - Gui-Hao Chen
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijing, China
| | - Yue-Jin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijing, China
| |
Collapse
|
15
|
Ceholski DK, Turnbull IC, Pothula V, Lecce L, Jarrah AA, Kho C, Lee A, Hadri L, Costa KD, Hajjar RJ, Tarzami ST. CXCR4 and CXCR7 play distinct roles in cardiac lineage specification and pharmacologic β-adrenergic response. Stem Cell Res 2017; 23:77-86. [PMID: 28711757 PMCID: PMC5859259 DOI: 10.1016/j.scr.2017.06.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 06/09/2017] [Accepted: 06/30/2017] [Indexed: 12/29/2022] Open
Abstract
CXCR4 and CXCR7 are prominent G protein-coupled receptors (GPCRs) for chemokine stromal cell-derived factor-1 (SDF-1/CXCL12). This study demonstrates that CXCR4 and CXCR7 induce differential effects during cardiac lineage differentiation and β-adrenergic response in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Using lentiviral vectors to ablate CXCR4 and/or CXCR7 expression, hiPSC-CMs were tested for phenotypic and functional properties due to gene knockdown. Gene expression and flow cytometry confirmed the pluripotent and cardiomyocyte phenotype of undifferentiated and differentiated hiPSCs, respectively. Although reduction of CXCR4 and CXCR7 expression resulted in a delayed cardiac phenotype, only knockdown of CXCR4 delayed the spontaneous beating of hiPSC-CMs. Knockdown of CXCR4 and CXCR7 differentially altered calcium transients and β-adrenergic response in hiPSC-CMs. In engineered cardiac tissues, depletion of CXCR4 or CXCR7 had opposing effects on developed force and chronotropic response to β-agonists. This work demonstrates distinct roles for the SDF-1/CXCR4 or CXCR7 network in hiPSC-derived ventricular cardiomyocyte specification, maturation and function.
Collapse
Affiliation(s)
- Delaine K Ceholski
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Irene C Turnbull
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Venu Pothula
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Laura Lecce
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrew A Jarrah
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Changwon Kho
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ahyoung Lee
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lahouaria Hadri
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kevin D Costa
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Roger J Hajjar
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sima T Tarzami
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC 20060, USA.
| |
Collapse
|
16
|
Effects of Active Components of Fuzi and Gancao Compatibility on Bax, Bcl-2, and Caspase-3 in Chronic Heart Failure Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:7686045. [PMID: 28053643 PMCID: PMC5178377 DOI: 10.1155/2016/7686045] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/02/2016] [Accepted: 10/09/2016] [Indexed: 12/29/2022]
Abstract
Hypaconitine (HA) and glycyrrhetinic acid (GA) are active components of Fuzi (Aconitum carmichaelii) and Gancao (Glycyrrhiza uralensis Fisch); they have been used in compatibility for chronic heart failure (CHF) from ancient times. The purpose of the present research was to explore whether apoptosis pathways were related with the protective effects of HA + GA against CHF rats or not. The rats were progressed with transverse-aortic constriction (TAC) operation for 4 weeks to build the CHF state, and then the Digoxin (1 mg/kg), HA (2.07 mg/kg), GA (25 mg/kg), and HA (2.07 mg/kg) + GA (25 mg/kg) were orally administrated to rats for 1 week. The levels of BNP and cTnI in the plasma were decreased in the HA + GA group, and the heart/body weight ratio (H/B) and left ventricular (LV) parameters of transthoracic echocardiography were also declined; moreover, the expressions of Bax, Bcl-2, and caspase-3 were all improved in the HA + GA group than other groups in the immunohistochemistry and western blot methods. In general, the data suggested that Fuzi and Gancao compatibility could protect the CHF rats from apoptosis, which provided a strong evidence for further searching for mechanisms of them.
Collapse
|
17
|
Chemokines and Heart Disease: A Network Connecting Cardiovascular Biology to Immune and Autonomic Nervous Systems. Mediators Inflamm 2016; 2016:5902947. [PMID: 27242392 PMCID: PMC4868905 DOI: 10.1155/2016/5902947] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/25/2016] [Accepted: 04/03/2016] [Indexed: 02/07/2023] Open
Abstract
Among the chemokines discovered to date, nineteen are presently considered to be relevant in heart disease and are involved in all stages of cardiovascular response to injury. Chemokines are interesting as biomarkers to predict risk of cardiovascular events in apparently healthy people and as possible therapeutic targets. Moreover, they could have a role as mediators of crosstalk between immune and cardiovascular system, since they seem to act as a “working-network” in deep linkage with the autonomic nervous system. In this paper we will describe the single chemokines more involved in heart diseases; then we will present a comprehensive perspective of them as a complex network connecting the cardiovascular system to both the immune and the autonomic nervous systems. Finally, some recent evidences indicating chemokines as a possible new tool to predict cardiovascular risk will be described.
Collapse
|
18
|
Scofield SLC, Amin P, Singh M, Singh K. Extracellular Ubiquitin: Role in Myocyte Apoptosis and Myocardial Remodeling. Compr Physiol 2015; 6:527-60. [PMID: 26756642 DOI: 10.1002/cphy.c150025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ubiquitin (UB) is a highly conserved low molecular weight (8.5 kDa) protein. It consists of 76 amino acid residues and is found in all eukaryotic cells. The covalent linkage of UB to a variety of cellular proteins (ubiquitination) is one of the most common posttranslational modifications in eukaryotic cells. This modification generally regulates protein turnover and protects the cells from damaged or misfolded proteins. The polyubiquitination of proteins serves as a signal for degradation via the 26S proteasome pathway. UB is present in trace amounts in body fluids. Elevated levels of UB are described in the serum or plasma of patients under a variety of conditions. Extracellular UB is proposed to have pleiotropic roles including regulation of immune response, anti-inflammatory, and neuroprotective activities. CXCR4 is identified as receptor for extracellular UB in hematopoietic cells. Heart failure represents a major cause of morbidity and mortality in western society. Cardiac remodeling is a determinant of the clinical course of heart failure. The components involved in myocardial remodeling include-myocytes, fibroblasts, interstitium, and coronary vasculature. Increased sympathetic nerve activity in the form of norepinephrine is a common feature during heart failure. Acting via β-adrenergic receptor (β-AR), norepinephrine is shown to induce myocyte apoptosis and myocardial fibrosis. β-AR stimulation increases extracellular levels of UB in myocytes, and UB inhibits β-AR-stimulated increases in myocyte apoptosis and myocardial fibrosis. This review summarizes intracellular and extracellular functions of UB with particular emphasis on the role of extracellular UB in cardiac myocyte apoptosis and myocardial remodeling.
Collapse
Affiliation(s)
- Stephanie L C Scofield
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee, USA
| | - Parthiv Amin
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee, USA
| | - Mahipal Singh
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee, USA
| | - Krishna Singh
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee, USA; Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA; James H. Quillen VA Medical Center, East Tennessee State University, Johnson City, Tennessee, USA.,Department of Medicine, Albany Medical College, Albany, New York, USA.,Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York, USA
| |
Collapse
|
19
|
Baerts L, Waumans Y, Brandt I, Jungraithmayr W, Van der Veken P, Vanderheyden M, De Meester I. Circulating Stromal Cell-Derived Factor 1α Levels in Heart Failure: A Matter of Proper Sampling. PLoS One 2015; 10:e0141408. [PMID: 26544044 PMCID: PMC4636157 DOI: 10.1371/journal.pone.0141408] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/08/2015] [Indexed: 12/26/2022] Open
Abstract
Background The chemokine Stromal cell-derived factor 1α (SDF1α, CXCL12) is currently under investigation as a biomarker for various cardiac diseases. The correct interpretation of SDF1α levels is complicated by the occurrence of truncated forms that possess an altered biological activity. Methodology We studied the immunoreactivities of SDF1α forms and evaluated the effect of adding a DPP4 inhibitor in sampling tubes on measured SDF1α levels. Using optimized sampling, we measured DPP4 activity and SDF1α levels in patients with varying degrees of heart failure. Results The immunoreactivities of SDF1α and its degradation products were determined with three immunoassays. A one hour incubation of SDF1α with DPP4 at 37°C resulted in 2/3 loss of immunoreactivity in each of the assays. Incubation with serum gave a similar result. Using appropriate sampling, SDF1α levels were found to be significantly higher in those heart failure patients with a severe loss of left ventricular function. DPP4 activity in serum was not altered in the heart failure population. However, the DPP4 activity was found to be significantly decreased in patients with high SDF1α levels Conclusions We propose that all samples for SDF1α analysis should be collected in the presence of at least a DPP4 inhibitor. In doing so, we found higher SDF1α levels in subgroups of patients with heart failure. Our work supports the need for further research on the clinical relevance of SDF1α levels in cardiac disease.
Collapse
Affiliation(s)
- Lesley Baerts
- Laboratory of Medical Biochemistry, University of Antwerp, Antwerp, Belgium
| | - Yannick Waumans
- Laboratory of Medical Biochemistry, University of Antwerp, Antwerp, Belgium
| | - Inger Brandt
- Laboratory of Clinical Chemistry, OLV Hospital Aalst, Aalst, Belgium
| | | | | | | | - Ingrid De Meester
- Laboratory of Medical Biochemistry, University of Antwerp, Antwerp, Belgium
- * E-mail:
| |
Collapse
|
20
|
Mayorga M, Kiedrowski M, Shamhart P, Forudi F, Weber K, Chilian WM, Penn MS, Dong F. Early upregulation of myocardial CXCR4 expression is critical for dimethyloxalylglycine-induced cardiac improvement in acute myocardial infarction. Am J Physiol Heart Circ Physiol 2015; 310:H20-8. [PMID: 26519029 DOI: 10.1152/ajpheart.00449.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/04/2015] [Indexed: 12/23/2022]
Abstract
The stromal cell-derived factor-1 (SDF-1):CXCR4 is important in myocardial repair. In this study we tested the hypothesis that early upregulation of cardiomyocyte CXCR4 (CM-CXCR4) at a time of high myocardial SDF-1 expression could be a strategy to engage the SDF-1:CXCR4 axis and improve cardiac repair. The effects of the hypoxia inducible factor (HIF) hydroxylase inhibitor dimethyloxalylglycine (DMOG) on CXCR4 expression was tested on H9c2 cells. In mice a myocardial infarction (MI) was produced in CM-CXCR4 null and wild-type controls. Mice were randomized to receive injection of DMOG (DMOG group) or saline (Saline group) into the border zone after MI. Protein and mRNA expression of CM-CXCR4 were quantified. Echocardiography was used to assess cardiac function. During hypoxia, DMOG treatment increased CXCR4 expression of H9c2 cells by 29 and 42% at 15 and 24 h, respectively. In vivo DMOG treatment increased CM-CXCR4 expression at 15 h post-MI in control mice but not in CM-CXCR4 null mice. DMOG resulted in increased ejection fraction in control mice but not in CM-CXCR4 null mice 21 days after MI. Consistent with greater cardiomyocyte survival with DMOG treatment, we observed a significant increase in cardiac myosin-positive area within the infarct zone after DMOG treatment in control mice, but no increase in CM-CXCR4 null mice. Inhibition of cardiomyocyte death in MI through the stabilization of HIF-1α requires downstream CM-CXCR4 expression. These data suggest that engagement of the SDF-1:CXCR4 axis through the early upregulation of CM-CXCR4 is a strategy for improving cardiac repair after MI.
Collapse
Affiliation(s)
- Mari Mayorga
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, and
| | - Matthew Kiedrowski
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, and
| | - Patricia Shamhart
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, and
| | - Farhad Forudi
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, and
| | - Kristal Weber
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, and
| | - William M Chilian
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, and
| | - Marc S Penn
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, and Summa Cardiovascular Institute, Summa Health System, Akron, Ohio
| | - Feng Dong
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, and
| |
Collapse
|
21
|
Cai WF, Kang K, Huang W, Liang JL, Feng YL, Liu GS, Chang DH, Wen ZL, Paul C, Xu M, Millard RW, Wang Y. CXCR4 attenuates cardiomyocytes mitochondrial dysfunction to resist ischaemia-reperfusion injury. J Cell Mol Med 2015; 19:1825-35. [PMID: 25824297 PMCID: PMC4549033 DOI: 10.1111/jcmm.12554] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 01/08/2015] [Indexed: 12/25/2022] Open
Abstract
The chemokine (C-X-C motif) receptor 4 (CXCR4) is expressed on native cardiomyocytes and can modulate isolated cardiomyocyte contractility. This study examines the role of CXCR4 in cardiomyocyte response to ischaemia-reperfusion (I/R) injury. Isolated adult rat ventricular cardiomyocytes were subjected to hypoxia/reoxygenation (H/R) to simulate I/R injury. In response to H/R injury, the decrease in CXCR4 expression was associated with dysfunctional energy metabolism indicated by an increased adenosine diphosphate/adenosine triphosphate (ADP/ATP) ratio. CXCR4-overexpressing cardiomyocytes were used to determine whether such overexpression (OE) can prevent bio-energetic disruption-associated cell death. CXCR4 OE was performed with adenoviral infection with CXCR4 encoding-gene or non-translated nucleotide sequence (Control). The increased CXCR4 expression was observed in cardiomyocytes post CXCR4-adenovirus transduction and this OE significantly reduced the cardiomyocyte contractility under basal conditions. Although the same extent of H/R-provoked cytosolic calcium overload was measured, the hydrogen peroxide-induced decay of mitochondrial membrane potential was suppressed in CXCR4 OE group compared with control group, and the mitochondrial swelling was significantly attenuated in CXCR4 group, implicating that CXCR4 OE prevents permeability transition pore opening exposure to overload calcium. Interestingly, this CXCR4-induced mitochondrial protective effect is associated with the enhanced signal transducer and activator of transcription 3 (expression in mitochondria. Consequently, in the presence of H/R, mitochondrial dysfunction was mitigated and cardiomyocyte death was decreased to 65% in the CXCR4 OE group as compared with the control group. I/R injury leads to the reduction in CXCR4 in cardiomyocytes associated with the dysfunctional energy metabolism, and CXCR4 OE can alleviate mitochondrial dysfunction to improve cardiomyocyte survival.
Collapse
Affiliation(s)
- Wen-Feng Cai
- Department of Pathology & Lab Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Kai Kang
- Department of Pathology & Lab Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Wei Huang
- Department of Pathology & Lab Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Jia-Liang Liang
- Department of Pathology & Lab Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Yu-Liang Feng
- Department of Pathology & Lab Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Guan-Sheng Liu
- Department of Pharmacology & Cell Biophysics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - De-Hua Chang
- Department of Pathology & Lab Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Zhi-Li Wen
- Department of Pathology & Lab Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Christian Paul
- Department of Pathology & Lab Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Meifeng Xu
- Department of Pathology & Lab Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Ronald W Millard
- Department of Pharmacology & Cell Biophysics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Yigang Wang
- Department of Pathology & Lab Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
22
|
Jeckel KM, Bouma GJ, Hess AM, Petrilli EB, Frye MA. Dietary fatty acids alter left ventricular myocardial gene expression in Wistar rats. Nutr Res 2014; 34:694-706. [PMID: 25172377 DOI: 10.1016/j.nutres.2014.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/05/2014] [Accepted: 07/14/2014] [Indexed: 12/23/2022]
Abstract
Obesity increases the risk for cardiomyopathy in the absence of comorbidities. Myocardial structure is modified by dietary fatty acids. Left ventricular hypertrophy is associated with Western (WES) diet consumption, whereas intake of n-3 polyunsaturated fatty acids is associated with antihypertrophic effects. We previously observed no attenuation of left ventricular thickening after 3 months of docosahexaenoic acid (DHA) supplementation of a WES diet, compared with WES diet intake alone, in rats that had similar weight, adiposity, and insulin sensitivity to control animals. The objective of this study was to define left ventricular gene expression in these animals to determine whether diet alone was associated with a physiologic or pathologic hypertrophic response. We hypothesized that WES diet consumption would favor a pathologic or maladaptive myocardial gene expression pattern and that DHA supplementation would favor a physiologic or adaptive response. Microarray analysis identified 64 transcripts that were differentially expressed (P ≤ .001) within one or more treatment comparisons. Using quantitative real-time polymerase chain reaction, 29 genes with fold change at least 1.74 were successfully validated; all but 3 had similar directionality to that observed using microarray, and 2 genes, connective tissue growth factor and cathepsin M, were differentially expressed according to diet. WES blot analysis was performed on 4 proteins relevant to myocardial hypertrophy and metabolism. Acyl-CoA thioesterase 1, B-cell translocation gene 2, and carbonic anhydrase III showed directional change consistent with gene expression. Retinol saturase (all-trans-retinol 13,14-reductase), although not consistent with gene expression, was different according to diet, with increased concentrations in WES-fed rats compared with control and DHA-supplemented animals. Diet did not distinguish a transcriptome reflecting physiologic or pathologic myocardial hypertrophy; furthermore, the modest changes observed suggest that obesity and associated comorbidities may play a larger role than mere dietary fatty acid composition in development of cardiomyopathy.
Collapse
Affiliation(s)
- Kimberly M Jeckel
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523.
| | - Gerrit J Bouma
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523
| | - Ann M Hess
- Department of Statistics, College of Natural Sciences, Colorado State University, Fort Collins, CO 80523
| | - Erin B Petrilli
- Infectious Disease Research Center, Colorado State University, Fort Collins, CO 80523
| | - Melinda A Frye
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
23
|
Qi D, Atsina K, Qu L, Hu X, Wu X, Xu B, Piecychna M, Leng L, Fingerle-Rowson G, Zhang J, Bucala R, Young LH. The vestigial enzyme D-dopachrome tautomerase protects the heart against ischemic injury. J Clin Invest 2014; 124:3540-50. [PMID: 24983315 DOI: 10.1172/jci73061] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 05/15/2014] [Indexed: 12/20/2022] Open
Abstract
The cellular response to stress involves the recruitment and coordination of molecular signaling pathways that prevent cell death. D-dopachrome tautomerase (DDT) is an enzyme that lacks physiologic substrates in mammalian cells, but shares partial sequence and structural homology with macrophage migration inhibitory factor (MIF). Here, we observed that DDT is highly expressed in murine cardiomyocytes and secreted by the heart after ischemic stress. Antibody-dependent neutralization of secreted DDT exacerbated both ischemia-induced cardiac contractile dysfunction and necrosis. We generated cardiomyocyte-specific DDT knockout mice (Myh6-Cre Ddtfl/fl), which demonstrated normal baseline cardiac size and function, but had an impaired physiologic response to ischemia-reperfusion. Hearts from Myh6-Cre Ddtfl/fl mice exhibited more necrosis and LV contractile dysfunction than control hearts after coronary artery ligation and reperfusion. Furthermore, treatment with DDT protected isolated hearts against injury and contractile dysfunction after ischemia-reperfusion. The protective effect of DDT required activation of the metabolic stress enzyme AMP-activated protein kinase (AMPK), which was mediated by a CD74/CaMKK2-dependent mechanism. Together, our data indicate that cardiomyocyte secretion of DDT has important autocrine/paracrine effects during ischemia-reperfusion that protect the heart against injury.
Collapse
|
24
|
Deletion of CXCR4 in cardiomyocytes exacerbates cardiac dysfunction following isoproterenol administration. Gene Ther 2014; 21:496-506. [PMID: 24646609 PMCID: PMC4016112 DOI: 10.1038/gt.2014.23] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 01/30/2014] [Accepted: 02/03/2014] [Indexed: 11/08/2022]
Abstract
Altered alpha- and beta-adrenergic receptor signaling is associated with cardiac hypertrophy and failure. Stromal cell-derived factor-1α (SDF-1α) and its cognate receptor CXCR4 have been reported to mediate cardioprotection after injury through the mobilization of stem cells into injured tissue. However, little is known regarding whether SDF-1/CXCR4 induces acute protection following pathological hypertrophy and if so, by what molecular mechanism. We have previously reported that CXCR4 physically interacts with the beta-2 adrenergic receptor and modulates its down stream signaling. Here we have shown that CXCR4 expression prevents beta-adrenergic receptor induced hypertrophy. Cardiac beta-adrenergic receptors were stimulated with the implantation of a subcutaneous osmotic pump administrating isoproterenol and CXCR4 expression was selectively abrogated in cardiomyocytes using Cre-loxP-mediated gene recombination. CXCR4 knockout mice showed worsened fractional shortening and ejection fraction. CXCR4 ablation increased susceptibility to isoproterenol-induced heart failure, by upregulating apoptotic markers and reducing mitochondrial function; cardiac function decreases while fibrosis increases. Additionally, CXCR4 expression was rescued with the use of cardiotropic Adeno-associated viral-9 (AAV9) vectors. CXCR4 gene transfer reduced cardiac apoptotic signaling, improved mitochondrial function and resulted in a recovered cardiac function. Our results represent the first evidence that SDF-1/CXCR4 signaling mediates acute cardioprotection through modulating beta-adrenergic receptor signaling in vivo.
Collapse
|
25
|
Roy I, Evans DB, Dwinell MB. Chemokines and chemokine receptors: update on utility and challenges for the clinician. Surgery 2014; 155:961-73. [PMID: 24856117 DOI: 10.1016/j.surg.2014.02.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 02/05/2014] [Indexed: 11/26/2022]
Affiliation(s)
- Ishan Roy
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI
| | - Douglas B Evans
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI
| | - Michael B Dwinell
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI.
| |
Collapse
|
26
|
NFAT signaling in osteoblasts regulates the hematopoietic niche in the bone microenvironment. Clin Dev Immunol 2013; 2013:107321. [PMID: 24023563 PMCID: PMC3654658 DOI: 10.1155/2013/107321] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/06/2013] [Indexed: 02/04/2023]
Abstract
Osteoblasts support hematopoietic cell development, including B lymphopoiesis. We have previously shown that the nuclear factor of activated T cells (NFAT) negatively regulates osteoblast differentiation and bone formation. Interestingly, in smooth muscle, NFAT has been shown to regulate the expression of vascular cellular adhesion molecule-1 (VCAM-1), a mediator of cell adhesion and signaling during leukocyte development. To examine whether NFAT signaling in osteoblasts regulates hematopoietic development in vivo, we generated a mouse model expressing dominant-negative NFAT driven by the 2.3 kb fragment of the collagen-αI promoter to disrupt NFAT activity in osteoblasts (dnNFATOB). Bone histomorphometry showed that dnNFATOB mice have significant increases in bone volume (44%) and mineral apposition rate (131%) and decreased trabecular thickness (18%). In the bone microenvironment, dnNFATOB mice displayed a significant increase (87%) in Lineage−cKit+Sca-1+ (LSK) cells and significant decreases in B220+CD19−IgM− pre-pro-B cells (41%) and B220+CD19+IgM+ immature B cells (40%). Concurrent with these findings, LSK cell differentiation into B220+ cells was inhibited when cocultured on differentiated primary osteoblasts harvested from dnNFATOB mice. Gene expression and protein levels of VCAM-1 in osteoblasts decreased in dnNFATOB mice compared to controls. These data suggest that osteoblast-specific NFAT activity mediates early B lymphopoiesis, possibly by regulating VCAM-1 expression on osteoblasts.
Collapse
|
27
|
Finan A, Sopko N, Dong F, Turturice B, Kiedrowski M, Penn MS. Bone marrow SSEA1+ cells support the myocardium in cardiac pressure overload. PLoS One 2013; 8:e68528. [PMID: 23874657 PMCID: PMC3706399 DOI: 10.1371/journal.pone.0068528] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 05/30/2013] [Indexed: 11/20/2022] Open
Abstract
RATIONALE Stage specific embryonic antigen 1+ (SSEA1+) cells have been described as the most primitive mesenchymal progenitor cell in the bone marrow. Cardiac injury mobilizes SSEA1+ cells into the peripheral blood but their in vivo function has not been characterized. OBJECTIVE We generated animals with chimeric bone marrow to determine the fate and function of bone marrow SSEA1+ cells in response to acute cardiac pressure overload. METHODS AND RESULTS Lethally irradiated mice were transplanted with normal bone marrow where the wild-type SSEA1+ cells were replaced with green fluorescent protein (GFP) SSEA1+ cells. Cardiac injury was induced by trans-aortic constriction (TAC). We identified significant GFP+ cell engraftment into the myocardium after TAC. Bone marrow GFP+ SSEA1 derived cells acquired markers of endothelial lineage, but did not express markers of c-kit+ cardiac progenitor cells. The function of bone marrow SSEA1+ cells after TAC was determined by transplanting lethally irradiated mice with bone marrow depleted of SSEA1+ cells (SSEA1-BM). The cardiac function of SSEA1-BM mice declined at a greater rate after TAC compared to their complete bone marrow transplant counterparts and was associated with decreased bone marrow cell engraftment and greater vessel rarefication in the myocardium. CONCLUSIONS These results provide evidence for the recruitment of endogenous bone marrow SSEA1+ cells to the myocardium after TAC. We demonstrate that, in vivo, bone marrow SSEA1+ cells have the differentiation potential to acquire endothelial lineage markers. We also show that bone marrow SSEA1+ deficiency is associated with a reduced compensatory capacity to cardiac pressure overload, suggesting their importance in cardiac homeostasis. These data demonstrate that bone marrow SSEA1+ cells are critical for sustaining vascular density and cardiac repair to pressure overload.
Collapse
Affiliation(s)
- Amanda Finan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, United States of America
| | - Nikolai Sopko
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, United States of America
| | - Feng Dong
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, United States of America
| | - Ben Turturice
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, United States of America
| | - Matthew Kiedrowski
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, United States of America
| | - Marc S. Penn
- Summa Cardiovascular Institute, Summa Health System, Akron, Ohio, United States of America
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, United States of America
| |
Collapse
|
28
|
Current World Literature. Curr Opin Cardiol 2013; 28:369-79. [DOI: 10.1097/hco.0b013e328360f5be] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|