1
|
Dong Y, Liu F. Modeling Fibroblast-Cardiomyocyte Interactions: Unveiling the Role of Ion Currents in Action Potential Modulation. Int J Mol Sci 2024; 25:13396. [PMID: 39769159 PMCID: PMC11677627 DOI: 10.3390/ijms252413396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/01/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Fibrotic cardiomyopathy represents a significant pathological condition characterized by the interaction between cardiomyocytes and fibroblasts in the heart, and it currently lacks an effective cure. In vitro platforms, such as engineered heart tissue (EHT) developed through the co-culturing of cardiomyocytes and fibroblasts, are under investigation to elucidate and manipulate these cellular interactions. We present the first integration of mathematical electrophysiological models that encapsulate fibroblast-cardiomyocyte interactions with experimental EHT studies to identify and modulate the ion channels governing these dynamics. Our findings resolve a long-standing debate regarding the effect of fibroblast coupling on cardiomyocyte action potential duration (APD). We demonstrate that these seemingly contradictory outcomes are contingent upon the specific properties of the cardiomyocyte to which the fibroblast is coupled, particularly the relative magnitudes of the fast Na+ and transient outward K+ currents within the cardiomyocyte. Our results emphasize the critical importance of detailed ionic current representation in cardiomyocytes for accurately predicting the interactions between cardiomyocytes and fibroblasts in EHT. Surprisingly, complex ion channel-based models of fibroblast electrophysiology did not outperform simplified resistance-capacitance models in this analysis. Collectively, our findings highlight the promising potential of synergizing in vitro and in silico approaches to identify therapeutic targets for cardiomyopathies.
Collapse
Affiliation(s)
- Yuqing Dong
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China;
- Bioinspired Engineering and Biomechanics Center, Xi’an Jiaotong University, Xi’an 710049, China
| | - Fusheng Liu
- Bioinspired Engineering and Biomechanics Center, Xi’an Jiaotong University, Xi’an 710049, China
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
2
|
Tang X, Liu H, Rao R, Huang Y, Dong M, Xu M, Feng S, Shi X, Wang L, Wang Z, Zhou B. Modeling drug-induced mitochondrial toxicity with human primary cardiomyocytes. SCIENCE CHINA. LIFE SCIENCES 2024; 67:301-319. [PMID: 37864082 DOI: 10.1007/s11427-023-2369-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/16/2023] [Indexed: 10/22/2023]
Abstract
Mitochondrial toxicity induced by therapeutic drugs is a major contributor for cardiotoxicity, posing a serious threat to pharmaceutical industries and patients' lives. However, mitochondrial toxicity testing is not incorporated into routine cardiac safety screening procedures. To accurately model native human cardiomyocytes, we comprehensively evaluated mitochondrial responses of adult human primary cardiomyocytes (hPCMs) to a nucleoside analog, remdesivir (RDV). Comparison of their response to human pluripotent stem cell-derived cardiomyocytes revealed that the latter utilized a mitophagy-based mitochondrial recovery response that was absent in hPCMs. Accordingly, action potential duration was elongated in hPCMs, reflecting clinical incidences of RDV-induced QT prolongation. In a screen for mitochondrial protectants, we identified mitochondrial ROS as a primary mediator of RDV-induced cardiotoxicity. Our study demonstrates the utility of hPCMs in the detection of clinically relevant cardiac toxicities, and offers a framework for hPCM-based high-throughput screening of cardioprotective agents.
Collapse
Affiliation(s)
- Xiaoli Tang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
| | - Hong Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
| | - Rongjia Rao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
| | - Yafei Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
| | - Mengqi Dong
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
| | - Miaomiao Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
| | - Shanshan Feng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
| | - Xun Shi
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
| | - Li Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, 518020, China
| | - Zengwu Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
- Department of Epidemiology, Cardiovascular Institute and Fuwai Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100037, China
| | - Bingying Zhou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China.
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, 518020, China.
| |
Collapse
|
3
|
Babini H, Jiménez-Sábado V, Stogova E, Arslanova A, Butt M, Dababneh S, Asghari P, Moore EDW, Claydon TW, Chiamvimonvat N, Hove-Madsen L, Tibbits GF. hiPSC-derived cardiomyocytes as a model to study the role of small-conductance Ca 2+-activated K + (SK) ion channel variants associated with atrial fibrillation. Front Cell Dev Biol 2024; 12:1298007. [PMID: 38304423 PMCID: PMC10830749 DOI: 10.3389/fcell.2024.1298007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024] Open
Abstract
Atrial fibrillation (AF), the most common arrhythmia, has been associated with different electrophysiological, molecular, and structural alterations in atrial cardiomyocytes. Therefore, more studies are required to elucidate the genetic and molecular basis of AF. Various genome-wide association studies (GWAS) have strongly associated different single nucleotide polymorphisms (SNPs) with AF. One of these GWAS identified the rs13376333 risk SNP as the most significant one from the 1q21 chromosomal region. The rs13376333 risk SNP is intronic to the KCNN3 gene that encodes for small conductance calcium-activated potassium channels type 3 (SK3). However, the functional electrophysiological effects of this variant are not known. SK channels represent a unique family of K+ channels, primarily regulated by cytosolic Ca2+ concentration, and different studies support their critical role in the regulation of atrial excitability and consequently in the development of arrhythmias like AF. Since different studies have shown that both upregulation and downregulation of SK3 channels can lead to arrhythmias by different mechanisms, an important goal is to elucidate whether the rs13376333 risk SNP is a gain-of-function (GoF) or a loss-of-function (LoF) variant. A better understanding of the functional consequences associated with these SNPs could influence clinical practice guidelines by improving genotype-based risk stratification and personalized treatment. Although research using native human atrial cardiomyocytes and animal models has provided useful insights, each model has its limitations. Therefore, there is a critical need to develop a human-derived model that represents human physiology more accurately than existing animal models. In this context, research with human induced pluripotent stem cells (hiPSC) and subsequent generation of cardiomyocytes derived from hiPSC (hiPSC-CMs) has revealed the underlying causes of various cardiovascular diseases and identified treatment opportunities that were not possible using in vitro or in vivo studies with animal models. Thus, the ability to generate atrial cardiomyocytes and atrial tissue derived from hiPSCs from human/patients with specific genetic diseases, incorporating novel genetic editing tools to generate isogenic controls and organelle-specific reporters, and 3D bioprinting of atrial tissue could be essential to study AF pathophysiological mechanisms. In this review, we will first give an overview of SK-channel function, its role in atrial fibrillation and outline pathophysiological mechanisms of KCNN3 risk SNPs. We will then highlight the advantages of using the hiPSC-CM model to investigate SNPs associated with AF, while addressing limitations and best practices for rigorous hiPSC studies.
Collapse
Affiliation(s)
- Hosna Babini
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Verónica Jiménez-Sábado
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- IIB SANT PAU, and CIBERCV, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Ekaterina Stogova
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Alia Arslanova
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Mariam Butt
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Saif Dababneh
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Parisa Asghari
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Edwin D. W. Moore
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Thomas W. Claydon
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | | | - Leif Hove-Madsen
- IIB SANT PAU, and CIBERCV, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Barcelona, Spain
| | - Glen F. Tibbits
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
Venkateshappa R, Hunter DV, Muralidharan P, Nagalingam RS, Huen G, Faizi S, Luthra S, Lin E, Cheng YM, Hughes J, Khelifi R, Dhunna DP, Johal R, Sergeev V, Shafaattalab S, Julian LM, Poburko DT, Laksman Z, Tibbits GF, Claydon TW. Targeted activation of human ether-à-go-go-related gene channels rescues electrical instability induced by the R56Q+/- long QT syndrome variant. Cardiovasc Res 2023; 119:2522-2535. [PMID: 37739930 PMCID: PMC10676460 DOI: 10.1093/cvr/cvad155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 06/22/2023] [Accepted: 07/10/2023] [Indexed: 09/24/2023] Open
Abstract
AIMS Long QT syndrome type 2 (LQTS2) is associated with inherited variants in the cardiac human ether-à-go-go-related gene (hERG) K+ channel. However, the pathogenicity of hERG channel gene variants is often uncertain. Using CRISPR-Cas9 gene-edited hiPSC-derived cardiomyocytes (hiPSC-CMs), we investigated the pathogenic mechanism underlying the LQTS-associated hERG R56Q variant and its phenotypic rescue by using the Type 1 hERG activator, RPR260243. METHODS AND RESULTS The above approaches enable characterization of the unclear causative mechanism of arrhythmia in the R56Q variant (an N-terminal PAS domain mutation that primarily accelerates channel deactivation) and translational investigation of the potential for targeted pharmacologic manipulation of hERG deactivation. Using perforated patch clamp electrophysiology of single hiPSC-CMs, programmed electrical stimulation showed that the hERG R56Q variant does not significantly alter the mean action potential duration (APD90). However, the R56Q variant increases the beat-to-beat variability in APD90 during pacing at constant cycle lengths, enhances the variance of APD90 during rate transitions, and increases the incidence of 2:1 block. During paired S1-S2 stimulations measuring electrical restitution properties, the R56Q variant was also found to increase the variability in rise time and duration of the response to premature stimulations. Application of the hERG channel activator, RPR260243, reduces the APD variance in hERG R56Q hiPSC-CMs, reduces the variability in responses to premature stimulations, and increases the post-repolarization refractoriness. CONCLUSION Based on our findings, we propose that the hERG R56Q variant leads to heterogeneous APD dynamics, which could result in spatial dispersion of repolarization and increased risk for re-entry without significantly affecting the average APD90. Furthermore, our data highlight the antiarrhythmic potential of targeted slowing of hERG deactivation gating, which we demonstrate increases protection against premature action potentials and reduces electrical heterogeneity in hiPSC-CMs.
Collapse
Affiliation(s)
- Ravichandra Venkateshappa
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Diana V Hunter
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Priya Muralidharan
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Raghu S Nagalingam
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
- Cellular and Regenerative Medicine Centre, British Columbia Children’s Hospital Research Institute, 938 W 28th Ave, Vancouver, BC, Canada V5Z 4H4
| | - Galvin Huen
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Shoaib Faizi
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Shreya Luthra
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Eric Lin
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Yen May Cheng
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Julia Hughes
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Rania Khelifi
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Daman Parduman Dhunna
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Raj Johal
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Valentine Sergeev
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Sanam Shafaattalab
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Lisa M Julian
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Damon T Poburko
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Zachary Laksman
- Department of Medicine, School of Biomedical Engineering, University of British Columbia, 2194 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
| | - Glen F Tibbits
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
- Cellular and Regenerative Medicine Centre, British Columbia Children’s Hospital Research Institute, 938 W 28th Ave, Vancouver, BC, Canada V5Z 4H4
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Tom W Claydon
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| |
Collapse
|
5
|
Galow AM, Brenmoehl J, Hoeflich A. Synergistic effects of hormones on structural and functional maturation of cardiomyocytes and implications for heart regeneration. Cell Mol Life Sci 2023; 80:240. [PMID: 37541969 PMCID: PMC10403476 DOI: 10.1007/s00018-023-04894-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 08/06/2023]
Abstract
The limited endogenous regenerative capacity of the human heart renders cardiovascular diseases a major health threat, thus motivating intense research on in vitro heart cell generation and cell replacement therapies. However, so far, in vitro-generated cardiomyocytes share a rather fetal phenotype, limiting their utility for drug testing and cell-based heart repair. Various strategies to foster cellular maturation provide some success, but fully matured cardiomyocytes are still to be achieved. Today, several hormones are recognized for their effects on cardiomyocyte proliferation, differentiation, and function. Here, we will discuss how the endocrine system impacts cardiomyocyte maturation. After detailing which features characterize a mature phenotype, we will contemplate hormones most promising to induce such a phenotype, the routes of their action, and experimental evidence for their significance in this process. Due to their pleiotropic effects, hormones might be not only valuable to improve in vitro heart cell generation but also beneficial for in vivo heart regeneration. Accordingly, we will also contemplate how the presented hormones might be exploited for hormone-based regenerative therapies.
Collapse
Affiliation(s)
- Anne-Marie Galow
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany.
| | - Julia Brenmoehl
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Andreas Hoeflich
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| |
Collapse
|
6
|
Kumar A, He S, Mali P. Systematic discovery of transcription factors that improve hPSC-derived cardiomyocyte maturation via temporal analysis of bioengineered cardiac tissues. APL Bioeng 2023; 7:026109. [PMID: 37252678 PMCID: PMC10219684 DOI: 10.1063/5.0137458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/09/2023] [Indexed: 05/31/2023] Open
Abstract
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have the potential to become powerful tools for disease modeling, drug testing, and transplantation; however, their immaturity limits their applications. Transcription factor (TF) overexpression can improve hPSC-CM maturity, but identifying these TFs has been elusive. Toward this, we establish here an experimental framework for systematic identification of maturation enhancing factors. Specifically, we performed temporal transcriptome RNAseq analyses of progressively matured hPSC-derived cardiomyocytes across 2D and 3D differentiation systems and further compared these bioengineered tissues to native fetal and adult-derived tissues. These analyses revealed 22 TFs whose expression did not increase in 2D differentiation systems but progressively increased in 3D culture systems and adult mature cell types. Individually overexpressing each of these TFs in immature hPSC-CMs identified five TFs (KLF15, ZBTB20, ESRRA, HOPX, and CAMTA2) as regulators of calcium handling, metabolic function, and hypertrophy. Notably, the combinatorial overexpression of KLF15, ESRRA, and HOPX improved all three maturation parameters simultaneously. Taken together, we introduce a new TF cocktail that can be used in solo or in conjunction with other strategies to improve hPSC-CM maturation and anticipate that our generalizable methodology can also be implemented to identify maturation-associated TFs for other stem cell progenies.
Collapse
Affiliation(s)
- Aditya Kumar
- Department of Bioengineering, University of California, San Diego, California 92093, USA
| | - Starry He
- Department of Bioengineering, University of California, San Diego, California 92093, USA
| | - Prashant Mali
- Department of Bioengineering, University of California, San Diego, California 92093, USA
| |
Collapse
|
7
|
Silva Dos Santos D, Turaça LT, Coutinho KCDS, Barbosa RAQ, Polidoro JZ, Kasai-Brunswick TH, Campos de Carvalho AC, Girardi ACC. Empagliflozin reduces arrhythmogenic effects in rat neonatal and human iPSC-derived cardiomyocytes and improves cytosolic calcium handling at least partially independent of NHE1. Sci Rep 2023; 13:8689. [PMID: 37248416 DOI: 10.1038/s41598-023-35944-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023] Open
Abstract
The antidiabetic agent class of sodium-glucose cotransporter 2 (SGLT2) inhibitors confer unprecedented cardiovascular benefits beyond glycemic control, including reducing the risk of fatal ventricular arrhythmias. However, the impact of SGLT2 inhibitors on the electrophysiological properties of cardiomyocytes exposed to stimuli other than hyperglycemia remains elusive. This investigation tested the hypothesis that the SGLT2 inhibitor empagliflozin (EMPA) affects cardiomyocyte electrical activity under hypoxic conditions. Rat neonatal and human induced pluripotent stem cell (iPSC)-derived cardiomyocytes incubated or not with the hypoxia-mimetic agent CoCl2 were treated with EMPA (1 μM) or vehicle for 24 h. Action potential records obtained using intracellular microelectrodes demonstrated that EMPA reduced the action potential duration at 30%, 50%, and 90% repolarization and arrhythmogenic events in rat and human cardiomyocytes under normoxia and hypoxia. Analysis of Ca2+ transients using Fura-2-AM and contractility kinetics showed that EMPA increased Ca2+ transient amplitude and decreased the half-time to recover Ca2+ transients and relaxation time in rat neonatal cardiomyocytes. We also observed that the combination of EMPA with the Na+/H+ exchanger isoform 1 (NHE1) inhibitor cariporide (10 µM) exerted a more pronounced effect on Ca2+ transients and contractility than either EMPA or cariporide alone. Besides, EMPA, but not cariporide, increased phospholamban phosphorylation at serine 16. Collectively, our data reveal that EMPA reduces arrhythmogenic events, decreases the action potential duration in rat neonatal and human cardiomyocytes under normoxic or hypoxic conditions, and improves cytosolic calcium handling at least partially independent of NHE1. Moreover, we provided further evidence that SGLT2 inhibitor-mediated cardioprotection may be partly attributed to its cardiomyocyte electrophysiological effects.
Collapse
Affiliation(s)
- Danúbia Silva Dos Santos
- Laboratório de Genética e Cardiologia Molecular, Faculdade de Medicina, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Avenida Dr. Enéas de Carvalho Aguiar, 44 - Bloco II 10° Andar, São Paulo, 05403-900, Brazil
| | - Lauro Thiago Turaça
- Laboratório de Genética e Cardiologia Molecular, Faculdade de Medicina, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Avenida Dr. Enéas de Carvalho Aguiar, 44 - Bloco II 10° Andar, São Paulo, 05403-900, Brazil
| | | | - Raiana Andrade Quintanilha Barbosa
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Centro de Tecnologia Celular, Instituto Nacional de Cardiologia, Rio de Janeiro, Brazil
| | - Juliano Zequini Polidoro
- Laboratório de Genética e Cardiologia Molecular, Faculdade de Medicina, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Avenida Dr. Enéas de Carvalho Aguiar, 44 - Bloco II 10° Andar, São Paulo, 05403-900, Brazil
| | - Tais Hanae Kasai-Brunswick
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Antonio Carlos Campos de Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Adriana Castello Costa Girardi
- Laboratório de Genética e Cardiologia Molecular, Faculdade de Medicina, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Avenida Dr. Enéas de Carvalho Aguiar, 44 - Bloco II 10° Andar, São Paulo, 05403-900, Brazil.
| |
Collapse
|
8
|
Metformin Reduces Potassium Currents and Prolongs Repolarization in Non-Diabetic Heart. Int J Mol Sci 2022; 23:ijms23116021. [PMID: 35682699 PMCID: PMC9181026 DOI: 10.3390/ijms23116021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/14/2022] [Accepted: 05/24/2022] [Indexed: 01/27/2023] Open
Abstract
Metformin is the first choice drug for the treatment of type 2 diabetes due to positive results in reducing hyperglycaemia and insulin resistance. However, diabetic patients have higher risk of ventricular arrhythmia and sudden cardiac death, and metformin failed to reduce ventricular arrhythmia in clinical trials. In order to explore the mechanisms responsible for the lack of protective effect, we investigated in vivo the effect of metformin on cardiac electrical activity in non-diabetic rats; and in vitro in isolated ventricular myocytes, HEK293 cells expressing the hERG channel and human induced pluripotent stem cells derived cardiomyocytes (hIPS-CMs). Surface electrocardiograms showed that long-term metformin treatment (7 weeks) at therapeutic doses prolonged cardiac repolarization, reflected as QT and QTc interval duration, and increased ventricular arrhythmia during the caffeine/dobutamine challenge. Patch-clamp recordings in ventricular myocytes isolated from treated animals showed that the cellular mechanism is a reduction in the cardiac transient outward potassium current (Ito). In vitro, incubation with metformin for 24 h also reduced Ito, prolonged action potential duration, and increased spontaneous contractions in ventricular myocytes isolated from control rats. Metformin incubation also reduced IhERG in HEK293 cells. Finally, metformin incubation prolonged action potential duration at 30% and 90% of repolarization in hIPS-CMs, which is compatible with the reduction of Ito and IhERG. Our results show that metformin directly modifies the electrical behavior of the normal heart. The mechanism consists in the inhibition of repolarizing currents and the subsequent decrease in repolarization capacity, which prolongs AP and QTc duration.
Collapse
|
9
|
Liao Y, Zhu L, Wang Y. Maturation of Stem Cell-Derived Cardiomyocytes: Foe in Translation Medicine. Int J Stem Cells 2021; 14:366-385. [PMID: 34711701 PMCID: PMC8611306 DOI: 10.15283/ijsc21077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/16/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
With the in-depth study of heart development, many human cardiomyocytes (CMs) have been generated in a laboratory environment. CMs derived from pluripotent stem cells (PSCs) have been widely used for a series of applications such as laboratory studies, drug toxicology screening, cardiac disease models, and as an unlimited resource for cell-based cardiac regeneration therapy. However, the low maturity of the induced CMs significantly impedes their applicability. Scientists have been committed to improving the maturation of CMs to achieve the purpose of heart regeneration in the past decades. In this review, we take CMs maturation as the main object of discussion, describe the characteristics of CMs maturation, summarize the key regulatory mechanism of regulating maturation and address the approaches to promote CMs maturation. The maturation of CM is gradually improving due to the incorporation of advanced technologies and is expected to continue.
Collapse
Affiliation(s)
- Yingnan Liao
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Liyuan Zhu
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Yan Wang
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| |
Collapse
|
10
|
Murphy SA, Chen EZ, Tung L, Boheler KR, Kwon C. Maturing heart muscle cells: Mechanisms and transcriptomic insights. Semin Cell Dev Biol 2021; 119:49-60. [PMID: 33952430 PMCID: PMC8653577 DOI: 10.1016/j.semcdb.2021.04.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/23/2021] [Accepted: 04/19/2021] [Indexed: 12/17/2022]
Abstract
Cardiomyocyte (CM) maturation is the transformation of differentiated fetal CMs into adult CMs that involves changes in morphology, cell function and metabolism, and the transcriptome. This process is, however, incomplete and ultimately arrested in pluripotent stem cell-derived CMs (PSC-CMs) in culture, which hinders their broad biomedical application. For this reason, enormous efforts are currently being made with the goal of generating mature PSC-CMs. In this review, we summarize key aspects of maturation observed in native CMs and discuss recent findings on the factors and mechanisms that regulate the process. Particular emphasis is put on transcriptional regulation and single-cell RNA-sequencing analysis that has emerged as a key tool to study time-series gene regulation and to determine the maturation state. We then discuss different biomimetic strategies to enhance PSC-CM maturation and discuss their effects at the single cell transcriptomic and functional levels.
Collapse
Affiliation(s)
- Sean A Murphy
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elaine Zhelan Chen
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Leslie Tung
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Kenneth R Boheler
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Chulan Kwon
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
11
|
Modeling Cardiomyopathies in a Dish: State-of-the-Art and Novel Perspectives on hiPSC-Derived Cardiomyocytes Maturation. BIOLOGY 2021; 10:biology10080730. [PMID: 34439963 PMCID: PMC8389603 DOI: 10.3390/biology10080730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 12/23/2022]
Abstract
The stem cell technology and the induced pluripotent stem cells (iPSCs) production represent an excellent alternative tool to study cardiomyopathies, which overcome the limitations associated with primary cardiomyocytes (CMs) access and manipulation. CMs from human iPSCs (hiPSC-CMs) are genetically identical to patient primary cells of origin, with the main electrophysiological and mechanical features of CMs. The key issue to be solved is to achieve a degree of structural and functional maturity typical of adult CMs. In this perspective, we will focus on the main differences between fetal-like hiPSC-CMs and adult CMs. A viewpoint is given on the different approaches used to improve hiPSC-CMs maturity, spanning from long-term culture to complex engineered heart tissue. Further, we outline limitations and future developments needed in cardiomyopathy disease modeling.
Collapse
|
12
|
Treat JA, Pfeiffer R, Barajas-Martinez H, Goodrow RJ, Bot C, Haedo RJ, Knox R, Cordeiro JM. Overlap Arrhythmia Syndromes Resulting from Multiple Genetic Variations Studied in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Int J Mol Sci 2021; 22:7108. [PMID: 34281161 PMCID: PMC8268422 DOI: 10.3390/ijms22137108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/07/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are used for genetic models of cardiac diseases. We report an arrhythmia syndrome consisting of Early Repolarization Syndrome (ERS) and Short QT Syndrome (SQTS). The index patient (MMRL1215) developed arrhythmia-mediated syncope after electrocution and was found to carry six mutations. Functional alterations resulting from these mutations were examined in patient-derived hiPSC-CMs. Electrophysiological recordings were made in hiPSC-CMs from MMRL1215 and healthy controls. ECG analysis of the index patient showed slurring of the QRS complex and QTc = 326 ms. Action potential (AP) recordings from MMRL1215 myocytes showed slower spontaneous activity and AP duration was shorter. Field potential recordings from MMRL1215 hiPSC-CMs lack a "pseudo" QRS complex suggesting reduced inward current(s). Voltage clamp analysis of ICa showed no difference in the magnitude of current. Measurements of INa reveal a 60% reduction in INa density in MMRL1215 hiPSC-CMs. Steady inactivation and recovery of INa was unaffected. mRNA analysis revealed ANK2 and SCN5A are significantly reduced in hiPSC-CM derived from MMRL1215, consistent with electrophysiological recordings. The polygenic cause of ERS/SQTS phenotype is likely due to a loss of INa due to a mutation in PKP2 coupled with and a gain of function in IK,ATP due to a mutation in ABCC9.
Collapse
Affiliation(s)
- Jacqueline A. Treat
- Department of Experimental Cardiology, Masonic Medical Research Institute, Utica, NY 13501, USA; (J.A.T.); (R.P.); (R.J.G.)
| | - Ryan Pfeiffer
- Department of Experimental Cardiology, Masonic Medical Research Institute, Utica, NY 13501, USA; (J.A.T.); (R.P.); (R.J.G.)
| | - Hector Barajas-Martinez
- Department of Cardiovascular Research, Lankenau Institute for Medical Research, Wynnewood, PA 19096, USA;
| | - Robert J. Goodrow
- Department of Experimental Cardiology, Masonic Medical Research Institute, Utica, NY 13501, USA; (J.A.T.); (R.P.); (R.J.G.)
| | - Corina Bot
- Nanion Technologies, 1 Naylon Ave. Suite C, Livingston, NJ 07039, USA; (C.B.); (R.J.H.); (R.K.)
| | - Rodolfo J. Haedo
- Nanion Technologies, 1 Naylon Ave. Suite C, Livingston, NJ 07039, USA; (C.B.); (R.J.H.); (R.K.)
| | - Ronald Knox
- Nanion Technologies, 1 Naylon Ave. Suite C, Livingston, NJ 07039, USA; (C.B.); (R.J.H.); (R.K.)
| | - Jonathan M. Cordeiro
- Department of Experimental Cardiology, Masonic Medical Research Institute, Utica, NY 13501, USA; (J.A.T.); (R.P.); (R.J.G.)
| |
Collapse
|
13
|
Akwaboah AD, Tsevi B, Yamlome P, Treat JA, Brucal-Hallare M, Cordeiro JM, Deo M. An in silico hiPSC-Derived Cardiomyocyte Model Built With Genetic Algorithm. Front Physiol 2021; 12:675867. [PMID: 34220540 PMCID: PMC8242263 DOI: 10.3389/fphys.2021.675867] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/05/2021] [Indexed: 12/25/2022] Open
Abstract
The formulation of in silico biophysical models generally requires optimization strategies for reproducing experimentally observed phenomena. In electrophysiological modeling, robust nonlinear regressive methods are often crucial for guaranteeing high fidelity models. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), though nascent, have proven to be useful in cardiac safety pharmacology, regenerative medicine, and in the implementation of patient-specific test benches for investigating inherited cardiac disorders. This study demonstrates the potency of heuristic techniques at formulating biophysical models, with emphasis on a hiPSC-CM model using a novel genetic algorithm (GA) recipe we proposed. The proposed GA protocol was used to develop a hiPSC-CM biophysical computer model by fitting mathematical formulations to experimental data for five ionic currents recorded in hiPSC-CMs. The maximum conductances of the remaining ionic channels were scaled based on recommendations from literature to accurately reproduce the experimentally observed hiPSC-CM action potential (AP) metrics. Near-optimal parameter fitting was achieved for the GA-fitted ionic currents. The resulting model recapitulated experimental AP parameters such as AP durations (APD50, APD75, and APD90), maximum diastolic potential, and frequency of automaticity. The outcome of this work has implications for validating the biophysics of hiPSC-CMs in their use as viable substitutes for human cardiomyocytes, particularly in cardiac safety pharmacology and in the study of inherited cardiac disorders. This study presents a novel GA protocol useful for formulating robust numerical biophysical models. The proposed protocol is used to develop a hiPSC-CM model with implications for cardiac safety pharmacology.
Collapse
Affiliation(s)
- Akwasi D Akwaboah
- Department of Engineering, Norfolk State University, Norfolk, VA, United States
| | - Bright Tsevi
- Department of Engineering, Norfolk State University, Norfolk, VA, United States
| | - Pascal Yamlome
- Department of Engineering, Norfolk State University, Norfolk, VA, United States
| | | | | | | | - Makarand Deo
- Department of Engineering, Norfolk State University, Norfolk, VA, United States
| |
Collapse
|
14
|
Paci M, Koivumäki JT, Lu HR, Gallacher DJ, Passini E, Rodriguez B. Comparison of the Simulated Response of Three in Silico Human Stem Cell-Derived Cardiomyocytes Models and in Vitro Data Under 15 Drug Actions. Front Pharmacol 2021; 12:604713. [PMID: 33841140 PMCID: PMC8033762 DOI: 10.3389/fphar.2021.604713] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/15/2021] [Indexed: 12/18/2022] Open
Abstract
Objectives: Improvements in human stem cell-derived cardiomyocyte (hSC-CM) technology have promoted their use for drug testing and disease investigations. Several in silico hSC-CM models have been proposed to augment interpretation of experimental findings through simulations. This work aims to assess the response of three hSC-CM in silico models (Koivumäki2018, Kernik2019, and Paci2020) to simulated drug action, and compare simulation results against in vitro data for 15 drugs. Methods: First, simulations were conducted considering 15 drugs, using a simple pore-block model and experimental data for seven ion channels. Similarities and differences were analyzed in the in silico responses of the three models to drugs, in terms of Ca2+ transient duration (CTD90) and occurrence of arrhythmic events. Then, the sensitivity of each model to different degrees of blockage of Na+ (INa), L-type Ca2+ (ICaL), and rapid delayed rectifying K+ (IKr) currents was quantified. Finally, we compared the drug-induced effects on CTD90 against the corresponding in vitro experiments. Results: The observed CTD90 changes were overall consistent among the in silico models, all three showing changes of smaller magnitudes compared to the ones measured in vitro. For example, sparfloxacin 10 µM induced +42% CTD90 prolongation in vitro, and +17% (Koivumäki2018), +6% (Kernik2019), and +9% (Paci2020) in silico. Different arrhythmic events were observed following drug application, mainly for drugs affecting IKr. Paci2020 and Kernik2019 showed only repolarization failure, while Koivumäki2018 also displayed early and delayed afterdepolarizations. The spontaneous activity was suppressed by Na+ blockers and by drugs with similar effects on ICaL and IKr in Koivumäki2018 and Paci2020, while only by strong ICaL blockers, e.g. nisoldipine, in Kernik2019. These results were confirmed by the sensitivity analysis. Conclusion: To conclude, The CTD90 changes observed in silico are qualitatively consistent with our in vitro data, although our simulations show differences in drug responses across the hSC-CM models, which could stem from variability in the experimental data used in their construction.
Collapse
Affiliation(s)
- Michelangelo Paci
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jussi T Koivumäki
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Hua Rong Lu
- Global Safety Pharmacology, Discovery Sciences, Janssen Research and Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - David J Gallacher
- Global Safety Pharmacology, Discovery Sciences, Janssen Research and Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Elisa Passini
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
15
|
Verkerk AO, Wilders R. Dynamic Clamp in Electrophysiological Studies on Stem Cell-Derived Cardiomyocytes-Why and How? J Cardiovasc Pharmacol 2021; 77:267-279. [PMID: 33229908 DOI: 10.1097/fjc.0000000000000955] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/31/2020] [Indexed: 12/15/2022]
Abstract
ABSTRACT Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are supposed to be a good human-based model, with virtually unlimited cell source, for studies on mechanisms underlying cardiac development and cardiac diseases, and for identification of drug targets. However, a major drawback of hPSC-CMs as a model system, especially for electrophysiological studies, is their depolarized state and associated spontaneous electrical activity. Various approaches are used to overcome this drawback, including the injection of "synthetic" inward rectifier potassium current (IK1), which is computed in real time, based on the recorded membrane potential ("dynamic clamp"). Such injection of an IK1-like current results in quiescent hPSC-CMs with a nondepolarized resting potential that show "adult-like" action potentials on stimulation, with functional availability of the most important ion channels involved in cardiac electrophysiology. These days, dynamic clamp has become a widely appreciated electrophysiological tool. However, setting up a dynamic clamp system can still be laborious and difficult, both because of the required hardware and the implementation of the dedicated software. In the present review, we first summarize the potential mechanisms underlying the depolarized state of hPSC-CMs and the functional consequences of this depolarized state. Next, we explain how an existing manual patch clamp setup can be extended with dynamic clamp. Finally, we shortly validate the extended setup with atrial-like and ventricular-like hPSC-CMs. We feel that dynamic clamp is a highly valuable tool in the field of cellular electrophysiological studies on hPSC-CMs and hope that our directions for setting up such dynamic clamp system may prove helpful.
Collapse
Affiliation(s)
- Arie O Verkerk
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands ; and
- Department of Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ronald Wilders
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands ; and
| |
Collapse
|
16
|
Deo M, Akwaboah A, Tsevi B, Treat JA, Cordeiro JM. Role of the rapid delayed rectifier K + current in human induced pluripotent stem cells derived cardiomyocytes. ARCHIVES OF STEM CELL AND THERAPY 2021; 1:14-18. [PMID: 33604593 PMCID: PMC7889062 DOI: 10.46439/stemcell.1.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Makarand Deo
- Department of Engineering, Norfolk State University, Norfolk, Virginia, USA
| | - Akwasi Akwaboah
- Department of Engineering, Norfolk State University, Norfolk, Virginia, USA
| | - Bright Tsevi
- Department of Engineering, Norfolk State University, Norfolk, Virginia, USA
| | - Jacqueline A Treat
- Department of Experimental Cardiology, Masonic Medical Research Institute, Utica, New York, USA
| | - Jonathan M Cordeiro
- Department of Experimental Cardiology, Masonic Medical Research Institute, Utica, New York, USA
| |
Collapse
|
17
|
Benzoni P, Campostrini G, Landi S, Bertini V, Marchina E, Iascone M, Ahlberg G, Olesen MS, Crescini E, Mora C, Bisleri G, Muneretto C, Ronca R, Presta M, Poliani PL, Piovani G, Verardi R, Di Pasquale E, Consiglio A, Raya A, Torre E, Lodrini AM, Milanesi R, Rocchetti M, Baruscotti M, DiFrancesco D, Memo M, Barbuti A, Dell'Era P. Human iPSC modelling of a familial form of atrial fibrillation reveals a gain of function of If and ICaL in patient-derived cardiomyocytes. Cardiovasc Res 2021; 116:1147-1160. [PMID: 31504264 PMCID: PMC7177512 DOI: 10.1093/cvr/cvz217] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 07/19/2019] [Accepted: 08/26/2019] [Indexed: 12/16/2022] Open
Abstract
AIMS Atrial fibrillation (AF) is the most common type of cardiac arrhythmias, whose incidence is likely to increase with the aging of the population. It is considered a progressive condition, frequently observed as a complication of other cardiovascular disorders. However, recent genetic studies revealed the presence of several mutations and variants linked to AF, findings that define AF as a multifactorial disease. Due to the complex genetics and paucity of models, molecular mechanisms underlying the initiation of AF are still poorly understood. Here we investigate the pathophysiological mechanisms of a familial form of AF, with particular attention to the identification of putative triggering cellular mechanisms, using patient's derived cardiomyocytes (CMs) differentiated from induced pluripotent stem cells (iPSCs). METHODS AND RESULTS Here we report the clinical case of three siblings with untreatable persistent AF whose whole-exome sequence analysis revealed several mutated genes. To understand the pathophysiology of this multifactorial form of AF we generated three iPSC clones from two of these patients and differentiated these cells towards the cardiac lineage. Electrophysiological characterization of patient-derived CMs (AF-CMs) revealed that they have higher beating rates compared to control (CTRL)-CMs. The analysis showed an increased contribution of the If and ICaL currents. No differences were observed in the repolarizing current IKr and in the sarcoplasmic reticulum calcium handling. Paced AF-CMs presented significantly prolonged action potentials and, under stressful conditions, generated both delayed after-depolarizations of bigger amplitude and more ectopic beats than CTRL cells. CONCLUSIONS Our results demonstrate that the common genetic background of the patients induces functional alterations of If and ICaL currents leading to a cardiac substrate more prone to develop arrhythmias under demanding conditions. To our knowledge this is the first report that, using patient-derived CMs differentiated from iPSC, suggests a plausible cellular mechanism underlying this complex familial form of AF.
Collapse
Affiliation(s)
- Patrizia Benzoni
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy
| | - Giulia Campostrini
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy
| | - Sara Landi
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy
| | - Valeria Bertini
- Department of Molecular and Translational Medicine, cFRU lab, Università degli Studi di Brescia, viale Europa 11, 25123 Brescia, Italy
| | - Eleonora Marchina
- Department of Molecular and Translational Medicine, cFRU lab, Università degli Studi di Brescia, viale Europa 11, 25123 Brescia, Italy
| | - Maria Iascone
- USSD Laboratorio di Genetica Medica, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Piazza OMS, 1, 24127 Bergamo, Italy
| | - Gustav Ahlberg
- The Heart Centre, Rigshospitalet, Laboratory for Molecular Cardiology, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Morten Salling Olesen
- The Heart Centre, Rigshospitalet, Laboratory for Molecular Cardiology, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Elisabetta Crescini
- Department of Molecular and Translational Medicine, cFRU lab, Università degli Studi di Brescia, viale Europa 11, 25123 Brescia, Italy
| | - Cristina Mora
- Department of Molecular and Translational Medicine, cFRU lab, Università degli Studi di Brescia, viale Europa 11, 25123 Brescia, Italy
| | - Gianluigi Bisleri
- Department of Surgery, Division of Cardiac Surgery, Queen's University, 99 University Avenue, Kingston, Ontario K7L 3N6, Canada
| | - Claudio Muneretto
- Clinical Department of Cardiovascular Surgery, University of Brescia, viale Europa 11, 25123 Brescia, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, cFRU lab, Università degli Studi di Brescia, viale Europa 11, 25123 Brescia, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, cFRU lab, Università degli Studi di Brescia, viale Europa 11, 25123 Brescia, Italy
| | - Pier Luigi Poliani
- Department of Molecular and Translational Medicine, cFRU lab, Università degli Studi di Brescia, viale Europa 11, 25123 Brescia, Italy
| | - Giovanna Piovani
- Department of Molecular and Translational Medicine, cFRU lab, Università degli Studi di Brescia, viale Europa 11, 25123 Brescia, Italy
| | - Rosanna Verardi
- Department of Trasfusion Medicine, Laboratory for Stem Cells Manipulation and Cryopreservation, ASST Spedali Civili, viale Europa 11, 25123 Brescia, Italy
| | - Elisa Di Pasquale
- Department of Cardiovascular Medicine, Humanitas Clinical and Research Center, Via Rita Levi Montalcini, 4, 20090 Pieve Emanuele, Milan, Italy
| | - Antonella Consiglio
- Department of Molecular and Translational Medicine, cFRU lab, Università degli Studi di Brescia, viale Europa 11, 25123 Brescia, Italy.,Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, 08908 Hospitalet de Llobregat, C/Feixa Larga s/n, 08907 Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), Carrer Baldiri Reixac 15-21, Barcelona 08028, Spain
| | - Angel Raya
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, Hospitalet de Llobregat, 08908 Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23 08010 Barcelona, Spain.,Networking Center of Biomedical Research in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Eleonora Torre
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, iazza dell'Ateneo Nuovo 1, 20126 Milan, Italy
| | - Alessandra Maria Lodrini
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, iazza dell'Ateneo Nuovo 1, 20126 Milan, Italy
| | - Raffaella Milanesi
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy
| | - Marcella Rocchetti
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, iazza dell'Ateneo Nuovo 1, 20126 Milan, Italy
| | - Mirko Baruscotti
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy
| | - Dario DiFrancesco
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, cFRU lab, Università degli Studi di Brescia, viale Europa 11, 25123 Brescia, Italy
| | - Andrea Barbuti
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy
| | - Patrizia Dell'Era
- Department of Molecular and Translational Medicine, cFRU lab, Università degli Studi di Brescia, viale Europa 11, 25123 Brescia, Italy
| |
Collapse
|
18
|
Verkerk AO, Knottnerus SJG, Portero V, Bleeker JC, Ferdinandusse S, Guan K, IJlst L, Visser G, Wanders RJA, Wijburg FA, Bezzina CR, Mengarelli I, Houtkooper RH. Electrophysiological Abnormalities in VLCAD Deficient hiPSC-Cardiomyocytes Do not Improve with Carnitine Supplementation. Front Pharmacol 2021; 11:616834. [PMID: 33597881 PMCID: PMC7883678 DOI: 10.3389/fphar.2020.616834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Patients with a deficiency in very long-chain acyl-CoA dehydrogenase (VLCAD), an enzyme that is involved in the mitochondrial beta-oxidation of long-chain fatty acids, are at risk for developing cardiac arrhythmias. In human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs), VLCAD deficiency (VLCADD) results in a series of abnormalities, including: 1) accumulation of long-chain acylcarnitines, 2) action potential shortening, 3) higher systolic and diastolic intracellular Ca2+ concentrations, and 4) development of delayed afterdepolarizations. In the fatty acid oxidation process, carnitine is required for bidirectional transport of acyl groups across the mitochondrial membrane. Supplementation has been suggested as potential therapeutic approach in VLCADD, but its benefits are debated. Here, we studied the effects of carnitine supplementation on the long-chain acylcarnitine levels and performed electrophysiological analyses in VLCADD patient-derived hiPSC-CMs with a ACADVL gene mutation (p.Val283Ala/p.Glu381del). Under standard culture conditions, VLCADD hiPSC-CMs showed high concentrations of long-chain acylcarnitines, short action potentials, and high delayed afterdepolarizations occurrence. Incubation of the hiPSC-CMs with 400 µM L-carnitine for 48 h led to increased long-chain acylcarnitine levels both in medium and cells. In addition, carnitine supplementation neither restored abnormal action potential parameters nor the increased occurrence of delayed afterdepolarizations in VLCADD hiPSC-CMs. We conclude that long-chain acylcarnitine accumulation and electrophysiological abnormalities in VLCADD hiPSC-CMs are not normalized by carnitine supplementation, indicating that this treatment is unlikely to be beneficial against cardiac arrhythmias in VLCADD patients.
Collapse
Affiliation(s)
- Arie O Verkerk
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Suzan J G Knottnerus
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands.,Department of Pediatric Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Vincent Portero
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Jeannette C Bleeker
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands.,Department of Pediatric Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Kaomei Guan
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Lodewijk IJlst
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Gepke Visser
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands.,Department of Pediatric Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Frits A Wijburg
- Department of Pediatric Metabolic Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Connie R Bezzina
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Isabella Mengarelli
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| |
Collapse
|
19
|
Akwaboah AD, Yamlome P, Treat JA, Cordeiro JM, Deo M. Genetic Algorithm For Fitting Cardiac Cell Biophysical Model Formulations. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:2463-2466. [PMID: 33018505 DOI: 10.1109/embc44109.2020.9175707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Modeling cardiac cell electrophysiology relies on fitting model equations to experimental data obtained under voltage/current clamping conditions. The fitting procedure for these often-nonlinear ionic current equations are mostly executed by trial-and-error by hand or by gradient-based optimization approaches. These methods, though sometimes sufficient at converging at optimal solutions is based on the premise that the characteristic objective function is convex, which often does not apply to cardiac model equations. Meta-heuristic methods, such as evolutionary algorithms and particle swarm algorithms, have proven resilient against early convergence to local optima and saddle-point parameter solutions. This work presents a genetic algorithm-based approach for fitting the adult cardiomyocyte biophysical model formulations to the experimental data obtained in human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM). Specifically, whole-cell patch clamp ionic current data of rapid delayed rectifier potassium current, IKr, transient outward potassium current, Ito and hyperpolarization-activated current, If, was used for fitting. Using a two-point crossover scheme along with initial population and mutation constraints randomly selected from a uniformly distributed constrained parameter space, near-optimal fitting was achieved with R2 values (n = 5) of 0.9960±0.0007, 0.9995±0.0002, and 0.9974±0.0014 for IKr, Ito and If respectively.
Collapse
|
20
|
Li W, Han JL, Entcheva E. Syncytium cell growth increases Kir2.1 contribution in human iPSC-cardiomyocytes. Am J Physiol Heart Circ Physiol 2020; 319:H1112-H1122. [PMID: 32986966 PMCID: PMC7789971 DOI: 10.1152/ajpheart.00148.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) enable cardiotoxicity testing and personalized medicine. However, their maturity is of concern, including relatively depolarized resting membrane potential and more spontaneous activity compared with adult cardiomyocytes, implicating low or lacking inward rectifier potassium current (Ik1). Here, protein quantification confirms Kir2.1 expression in hiPSC-CM syncytia, albeit several times lower than in adult heart tissue. We find that hiPSC-CM culture density influences Kir2.1 expression at the mRNA level (potassium inwardly rectifying channel subfamily J member 2) and at the protein level and its associated electrophysiology phenotype. Namely, all-optical cardiac electrophysiology and pharmacological treatments reveal reduction of spontaneous and irregular activity and increase in action potential upstroke in denser cultures. Blocking Ik1-like currents with BaCl2 increased spontaneous frequency and blunted action potential upstrokes during pacing in a dose-dependent manner only in the highest-density cultures, in line with Ik1’s role in regulating the resting membrane potential. Our results emphasize the importance of syncytial growth of hiPSC-CMs for more physiologically relevant phenotype and the power of all-optical electrophysiology to study cardiomyocytes in their multicellular setting. NEW & NOTEWORTHY We identify cell culture density and cell-cell contact as an important factor in determining the expression of a key ion channel at the transcriptional and the protein levels, KCNJ2/Kir2.1, and its contribution to the electrophysiology of human induced pluripotent stem cell-derived cardiomyocytes. Our results indicate that studies on isolated cells, out of tissue context, may underestimate the cellular ion channel properties being characterized.
Collapse
Affiliation(s)
- Weizhen Li
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia
| | - Julie L Han
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia
| | - Emilia Entcheva
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia
| |
Collapse
|
21
|
Barajas-Martinez H, Smith M, Hu D, Goodrow RJ, Puleo C, Hasdemir C, Antzelevitch C, Pfeiffer R, Treat JA, Cordeiro JM. Susceptibility to Ventricular Arrhythmias Resulting from Mutations in FKBP1B, PXDNL, and SCN9A Evaluated in hiPSC Cardiomyocytes. Stem Cells Int 2020; 2020:8842398. [PMID: 32952569 PMCID: PMC7481990 DOI: 10.1155/2020/8842398] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/29/2020] [Accepted: 08/11/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND We report an inherited cardiac arrhythmia syndrome consisting of Brugada and Early Repolarization Syndrome associated with variants in SCN9A, PXDNL, and FKBP1B. The proband inherited the 3 mutations and exhibited palpitations and arrhythmia-mediated syncope, whereas the parents and sister, who carried one or two of the mutations, were asymptomatic. METHODS AND RESULTS We assessed the functional impact of these mutations in induced pluripotent stem cell cardiomyocytes (hiPSC-CMs) derived from the proband and an unaffected family member. Current and voltage clamp recordings, as well as confocal microscopy analysis of Ca2+ transients, were evaluated in hiPSC-CMs from the proband and compared these results with hiPSC-CMs from undiseased controls. Genetic analysis using next-generation DNA sequencing revealed heterozygous mutations in SCN9A, PXDNL, and FKBP1B in the proband. The proband displayed right bundle branch block and exhibited episodes of syncope. The father carried a mutation in FKBP1B, whereas the mother and sister carried the SCN9A mutation. None of the 3 family members screened developed cardiac events. Action potential recordings from control hiPSC-CM showed spontaneous activity and a low upstroke velocity. In contrast, the hiPSC-CM from the proband showed irregular spontaneous activity. Confocal microscopy of the hiPSC-CM of the proband revealed low fluorescence intensity Ca2+ transients that were episodic in nature. Patch-clamp measurements in hiPSC-CM showed no difference in I Na but reduced I Ca in the proband compared with control. Coexpression of PXDNL-R391Q with SCN5A-WT displayed lower I Na density compared to PXDNL-WT. In addition, coexpression of PXDNL-R391Q with KCND3-WT displayed significantly higher I to density compared to PXDNL-WT. CONCLUSION SCN9A, PXDNL, and FKBP1B variants appeared to alter spontaneous activity in hiPSC-CM. Only the proband carrying all 3 mutations displayed the ERS/BrS phenotype, whereas one nor two mutations alone did not produce the clinical phenotype. Our results suggest a polygenic cause of the BrS/ERS arrhythmic phenotype due to mutations in these three gene variants caused a very significant loss of function of I Na and I Ca and gain of function of I to.
Collapse
Affiliation(s)
- Hector Barajas-Martinez
- Department of Experimental Cardiology, Masonic Medical Research Institute, Utica, NY, USA
- Department of Cardiovascular Research, Lakenau Institute for Medical Research, Wynnewood, PA, USA
| | - Maya Smith
- Department of Experimental Cardiology, Masonic Medical Research Institute, Utica, NY, USA
| | - Dan Hu
- Department of Experimental Cardiology, Masonic Medical Research Institute, Utica, NY, USA
- Department of Cardiology & Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, China
| | - Robert J. Goodrow
- Department of Experimental Cardiology, Masonic Medical Research Institute, Utica, NY, USA
| | - Colleen Puleo
- Department of Experimental Cardiology, Masonic Medical Research Institute, Utica, NY, USA
| | - Can Hasdemir
- Department of Cardiology, Ege University School of Medicine, Izmir, Turkey
| | - Charles Antzelevitch
- Department of Cardiovascular Research, Lakenau Institute for Medical Research, Wynnewood, PA, USA
- Kimmel College of Medicine of Thomas Jefferson University, Philadelphia, PA, USA
| | - Ryan Pfeiffer
- Department of Experimental Cardiology, Masonic Medical Research Institute, Utica, NY, USA
| | - Jacqueline A. Treat
- Department of Experimental Cardiology, Masonic Medical Research Institute, Utica, NY, USA
| | - Jonathan M. Cordeiro
- Department of Experimental Cardiology, Masonic Medical Research Institute, Utica, NY, USA
| |
Collapse
|
22
|
Nakao S, Ihara D, Hasegawa K, Kawamura T. Applications for Induced Pluripotent Stem Cells in Disease Modelling and Drug Development for Heart Diseases. Eur Cardiol 2020; 15:1-10. [PMID: 32180835 PMCID: PMC7066852 DOI: 10.15420/ecr.2019.03] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/09/2019] [Indexed: 12/22/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) are derived from reprogrammed somatic cells by the introduction of defined transcription factors. They are characterised by a capacity for self-renewal and pluripotency. Human (h)iPSCs are expected to be used extensively for disease modelling, drug screening and regenerative medicine. Obtaining cardiac tissue from patients with mutations for genetic studies and functional analyses is a highly invasive procedure. In contrast, disease-specific hiPSCs are derived from the somatic cells of patients with specific genetic mutations responsible for disease phenotypes. These disease-specific hiPSCs are a better tool for studies of the pathophysiology and cellular responses to therapeutic agents. This article focuses on the current understanding, limitations and future direction of disease-specific hiPSC-derived cardiomyocytes for further applications.
Collapse
Affiliation(s)
- Shu Nakao
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Japan.,Global Innovation Research Organization, Ritsumeikan University, Kusatsu, Japan.,Division of Translational Research, Kyoto Medical Center, National Hospital Organization, Kyoto, Japan
| | - Dai Ihara
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Japan.,Global Innovation Research Organization, Ritsumeikan University, Kusatsu, Japan
| | - Koji Hasegawa
- Division of Translational Research, Kyoto Medical Center, National Hospital Organization, Kyoto, Japan
| | - Teruhisa Kawamura
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Japan.,Global Innovation Research Organization, Ritsumeikan University, Kusatsu, Japan.,Division of Translational Research, Kyoto Medical Center, National Hospital Organization, Kyoto, Japan
| |
Collapse
|
23
|
Karbassi E, Fenix A, Marchiano S, Muraoka N, Nakamura K, Yang X, Murry CE. Cardiomyocyte maturation: advances in knowledge and implications for regenerative medicine. Nat Rev Cardiol 2020; 17:341-359. [PMID: 32015528 DOI: 10.1038/s41569-019-0331-x] [Citation(s) in RCA: 431] [Impact Index Per Article: 86.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2019] [Indexed: 12/20/2022]
Abstract
Our knowledge of pluripotent stem cell (PSC) biology has advanced to the point where we now can generate most cells of the human body in the laboratory. PSC-derived cardiomyocytes can be generated routinely with high yield and purity for disease research and drug development, and these cells are now gradually entering the clinical research phase for the testing of heart regeneration therapies. However, a major hurdle for their applications is the immature state of these cardiomyocytes. In this Review, we describe the structural and functional properties of cardiomyocytes and present the current approaches to mature PSC-derived cardiomyocytes. To date, the greatest success in maturation of PSC-derived cardiomyocytes has been with transplantation into the heart in animal models and the engineering of 3D heart tissues with electromechanical conditioning. In conventional 2D cell culture, biophysical stimuli such as mechanical loading, electrical stimulation and nanotopology cues all induce substantial maturation, particularly of the contractile cytoskeleton. Metabolism has emerged as a potent means to control maturation with unexpected effects on electrical and mechanical function. Different interventions induce distinct facets of maturation, suggesting that activating multiple signalling networks might lead to increased maturation. Despite considerable progress, we are still far from being able to generate PSC-derived cardiomyocytes with adult-like phenotypes in vitro. Future progress will come from identifying the developmental drivers of maturation and leveraging them to create more mature cardiomyocytes for research and regenerative medicine.
Collapse
Affiliation(s)
- Elaheh Karbassi
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.,Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA.,Department of Pathology, University of Washington, Seattle, WA, USA
| | - Aidan Fenix
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.,Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA.,Department of Pathology, University of Washington, Seattle, WA, USA
| | - Silvia Marchiano
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.,Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA.,Department of Pathology, University of Washington, Seattle, WA, USA
| | - Naoto Muraoka
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.,Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA.,Department of Pathology, University of Washington, Seattle, WA, USA
| | - Kenta Nakamura
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.,Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA.,Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Xiulan Yang
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.,Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA.,Department of Pathology, University of Washington, Seattle, WA, USA
| | - Charles E Murry
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA. .,Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA. .,Department of Pathology, University of Washington, Seattle, WA, USA. .,Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA. .,Department of Bioengineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
24
|
Van de Sande DV, Kopljar I, Teisman A, Gallacher DJ, Snyders DJ, Lu HR, Labro AJ. Pharmacological Profile of the Sodium Current in Human Stem Cell-Derived Cardiomyocytes Compares to Heterologous Nav1.5+β1 Model. Front Pharmacol 2019; 10:1374. [PMID: 31920633 PMCID: PMC6917651 DOI: 10.3389/fphar.2019.01374] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/29/2019] [Indexed: 12/20/2022] Open
Abstract
The cardiac Nav1.5 mediated sodium current (INa) generates the upstroke of the action potential in atrial and ventricular myocytes. Drugs that modulate this current can therefore be antiarrhythmic or proarrhythmic, which requires preclinical evaluation of their potential drug-induced inhibition or modulation of Nav1.5. Since Nav1.5 assembles with, and is modulated by, the auxiliary β1-subunit, this subunit can also affect the channel’s pharmacological response. To investigate this, the effect of known Nav1.5 inhibitors was compared between COS-7 cells expressing Nav1.5 or Nav1.5+β1 using whole-cell voltage clamp experiments. For the open state class Ia blockers ajmaline and quinidine, and class Ic drug flecainide, the affinity did not differ between both models. For class Ib drugs phenytoin and lidocaine, which are inactivated state blockers, the affinity decreased more than a twofold when β1 was present. Thus, β1 did not influence the affinity for the class Ia and Ic compounds but it did so for the class Ib drugs. Human stem cell-derived cardiomyocytes (hSC-CMs) are a promising translational cell source for in vitro models that express a representative repertoire of channels and auxiliary proteins, including β1. Therefore, we subsequently evaluated the same drugs for their response on the INa in hSC-CMs. Consequently, it was expected and confirmed that the drug response of INa in hSC-CMs compares best to INa expressed by Nav1.5+β1.
Collapse
Affiliation(s)
- Dieter V Van de Sande
- Laboratory of Molecular, Cellular, and Network Excitability, University of Antwerp, Antwerp, Belgium
| | - Ivan Kopljar
- Laboratory of Molecular, Cellular, and Network Excitability, University of Antwerp, Antwerp, Belgium.,Global Safety Pharmacology, Non-Clinical Safety, Janssen R&D, Beerse, Belgium
| | - Ard Teisman
- Global Safety Pharmacology, Non-Clinical Safety, Janssen R&D, Beerse, Belgium
| | - David J Gallacher
- Global Safety Pharmacology, Non-Clinical Safety, Janssen R&D, Beerse, Belgium
| | - Dirk J Snyders
- Laboratory of Molecular, Cellular, and Network Excitability, University of Antwerp, Antwerp, Belgium
| | - Hua Rong Lu
- Global Safety Pharmacology, Non-Clinical Safety, Janssen R&D, Beerse, Belgium
| | - Alain J Labro
- Laboratory of Molecular, Cellular, and Network Excitability, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
25
|
Establishment of an automated patch-clamp platform for electrophysiological and pharmacological evaluation of hiPSC-CMs. Stem Cell Res 2019; 41:101662. [DOI: 10.1016/j.scr.2019.101662] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 11/05/2019] [Accepted: 11/17/2019] [Indexed: 02/04/2023] Open
|
26
|
Zhang H, Zhang H, Wang C, Wang Y, Zou R, Shi C, Guan B, Gamper N, Xu Y. Auxiliary subunits control biophysical properties and response to compound NS5806 of the Kv4 potassium channel complex. FASEB J 2019; 34:807-821. [PMID: 31914636 PMCID: PMC6972550 DOI: 10.1096/fj.201902010rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 12/19/2022]
Abstract
Kv4 pore‐forming subunits co‐assemble with β‐subunits including KChIP2 and DPP6 and the resultant complexes conduct cardiac transient outward K+ current (Ito). Compound NS5806 has been shown to potentate Ito in canine cardiomyocytes; however, its effects on Ito in other species yet to be determined. We found that NS5806 inhibited native Ito in a concentration‐dependent manner (0.1~30 μM) in both mouse ventricular cardiomyocytes and human‐induced pluripotent stem cell‐derived cardiomyocytes (hiPSC‐CMs), but potentiated Ito in the canine cardiomyocytes. In HEK293 cells co‐transfected with cloned Kv4.3 (or Kv4.2) and β‐subunit KChIP2, NS5806 significantly increased the peak current amplitude and slowed the inactivation. In contrast, NS5806 suppressed the current and accelerated inactivation of the channels when cells were co‐transfected with Kv4.3 (or Kv4.2), KChIP2 and another β‐subunit, DPP6‐L (long isoform). Western blot analysis showed that DPP6‐L was dominantly expressed in both mouse ventricular myocardium and hiPSC‐CMs, while it was almost undetectable in canine ventricular myocardium. In addition, low level of DPP6‐S expression was found in canine heart, whereas levels of KChIP2 expression were comparable among all three species. siRNA knockdown of DPP6 antagonized the Ito inhibition by NS5806 in hiPSC‐CMs. Molecular docking simulation suggested that DPP6‐L may associate with KChIP2 subunits. Mutations of putative KChIP2‐interacting residues of DPP6‐L reversed the inhibitory effect of NS5806 into potentiation of the current. We conclude that a pharmacological modulator can elicit opposite regulatory effects on Kv4 channel complex among different species, depending on the presence of distinct β‐subunits. These findings provide novel insight into the molecular design and regulation of cardiac Ito. Since Ito is a potential therapeutic target for treatment of multiple cardiovascular diseases, our data will facilitate the development of new therapeutic Ito modulators.
Collapse
Affiliation(s)
- Hongxue Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
| | - Hua Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
| | - Chanjuan Wang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
| | - Yuhong Wang
- Institute of Masteria Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ruya Zou
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
| | - Chenxia Shi
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
| | - Bingcai Guan
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
| | - Nikita Gamper
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Yanfang Xu
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
| |
Collapse
|
27
|
Garg P, Garg V, Shrestha R, Sanguinetti MC, Kamp TJ, Wu JC. Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes as Models for Cardiac Channelopathies: A Primer for Non-Electrophysiologists. Circ Res 2019; 123:224-243. [PMID: 29976690 DOI: 10.1161/circresaha.118.311209] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Life threatening ventricular arrhythmias leading to sudden cardiac death are a major cause of morbidity and mortality. In the absence of structural heart disease, these arrhythmias, especially in the younger population, are often an outcome of genetic defects in specialized membrane proteins called ion channels. In the heart, exceptionally well-orchestrated activity of a diversity of ion channels mediates the cardiac action potential. Alterations in either the function or expression of these channels can disrupt the configuration of the action potential, leading to abnormal electrical activity of the heart that can sometimes initiate an arrhythmia. Understanding the pathophysiology of inherited arrhythmias can be challenging because of the complexity of the disorder and lack of appropriate cellular and in vivo models. Recent advances in human induced pluripotent stem cell technology have provided remarkable progress in comprehending the underlying mechanisms of ion channel disorders or channelopathies by modeling these complex arrhythmia syndromes in vitro in a dish. To fully realize the potential of induced pluripotent stem cells in elucidating the mechanistic basis and complex pathophysiology of channelopathies, it is crucial to have a basic knowledge of cardiac myocyte electrophysiology. In this review, we will discuss the role of the various ion channels in cardiac electrophysiology and the molecular and cellular mechanisms of arrhythmias, highlighting the promise of human induced pluripotent stem cell-cardiomyocytes as a model for investigating inherited arrhythmia syndromes and testing antiarrhythmic strategies. Overall, this review aims to provide a basic understanding of the electrical activity of the heart and related channelopathies, especially to clinicians or research scientists in the cardiovascular field with limited electrophysiology background.
Collapse
Affiliation(s)
- Priyanka Garg
- From the Stanford Cardiovascular Institute (P.G., R.S., J.C.W.).,Department of Medicine, Division of Cardiology (P.G., R.S., J.C.W.).,Institute for Stem Cell Biology and Regenerative Medicine (P.G., R.S., J.C.W.)
| | - Vivek Garg
- Stanford University School of Medicine, CA; Department of Physiology, University of California San Francisco (V.G.)
| | - Rajani Shrestha
- From the Stanford Cardiovascular Institute (P.G., R.S., J.C.W.).,Department of Medicine, Division of Cardiology (P.G., R.S., J.C.W.).,Institute for Stem Cell Biology and Regenerative Medicine (P.G., R.S., J.C.W.)
| | | | - Timothy J Kamp
- Department of Medicine, University of Wisconsin-Madison (T.J.K.)
| | - Joseph C Wu
- From the Stanford Cardiovascular Institute (P.G., R.S., J.C.W.) .,Department of Medicine, Division of Cardiology (P.G., R.S., J.C.W.).,Institute for Stem Cell Biology and Regenerative Medicine (P.G., R.S., J.C.W.)
| |
Collapse
|
28
|
Drabkin M, Zilberberg N, Menahem S, Mulla W, Halperin D, Yogev Y, Wormser O, Perez Y, Kadir R, Etzion Y, Katz A, Birk OS. Nocturnal Atrial Fibrillation Caused by Mutation in KCND2, Encoding Pore-Forming (α) Subunit of the Cardiac Kv4.2 Potassium Channel. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 11:e002293. [PMID: 30571183 DOI: 10.1161/circgen.118.002293] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Paroxysmal atrial fibrillation (AF) can be caused by gain-of-function mutations in genes, encoding the cardiac potassium channel subunits KCNJ2, KCNE1, and KCNH2 that mediate the repolarizing potassium currents Ik1, Iks, and Ikr, respectively. METHODS Linkage analysis, whole-exome sequencing, and Xenopus oocyte electrophysiology studies were used in this study. RESULTS Through genetic studies, we showed that autosomal dominant early-onset nocturnal paroxysmal AF is caused by p.S447R mutation in KCND2, encoding the pore-forming (α) subunit of the Kv4.2 cardiac potassium channel. Kv4.2, along with Kv4.3, contributes to the cardiac fast transient outward K+ current, Ito. Ito underlies the early phase of repolarization in the cardiac action potential, thereby setting the initial potential of the plateau phase and governing its duration and amplitude. In Xenopus oocytes, the mutation increased the channel's inactivation time constant and affected its regulation: p.S447 resides in a protein kinase C (PKC) phosphorylation site, which normally allows attenuation of Kv4.2 membrane expression. The mutant Kv4.2 exhibited impaired response to PKC; hence, Kv4.2 membrane expression was augmented, enhancing potassium currents. Coexpression of mutant and wild-type channels (recapitulating heterozygosity in affected individuals) showed results similar to the mutant channel alone. Finally, in a hybrid channel composed of Kv4.3 and Kv4.2, simulating the mature endogenous heterotetrameric channel underlying Ito, the p.S447R Kv4.2 mutation exerted a gain-of-function effect on Kv4.3. CONCLUSIONS The mutation alters Kv4.2's kinetic properties, impairs its inhibitory regulation, and exerts gain-of-function effect on both Kv4.2 homotetramers and Kv4.2-Kv4.3 heterotetramers. These effects presumably increase the repolarizing potassium current Ito, thereby abbreviating action potential duration, creating arrhythmogenic substrate for nocturnal AF. Interestingly, Kv4.2 expression was previously shown to demonstrate circadian variation, with peak expression at daytime in murine hearts (human nighttime), with possible relevance to the nocturnal onset of paroxysmal AF symptoms in our patients. The atrial-specific phenotype suggests that targeting Kv4.2 might be effective in the treatment of nocturnal paroxysmal AF, avoiding adverse ventricular effects.
Collapse
Affiliation(s)
- Max Drabkin
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel. (M.D., W.M., D.H., Y.Y., O.W., Y.P., R.K., O.S.B.)
| | - Noam Zilberberg
- Department of Life Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University, Beer-Sheva, Israel (N.Z.)
| | - Sasson Menahem
- Department of Family Medicine, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel. (S.M.)
| | - Wesam Mulla
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel. (M.D., W.M., D.H., Y.Y., O.W., Y.P., R.K., O.S.B.).,Regenerative Medicine and Stem Cell Research Center and Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel. (W.M., Y.E.)
| | - Daniel Halperin
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel. (M.D., W.M., D.H., Y.Y., O.W., Y.P., R.K., O.S.B.)
| | - Yuval Yogev
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel. (M.D., W.M., D.H., Y.Y., O.W., Y.P., R.K., O.S.B.)
| | - Ohad Wormser
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel. (M.D., W.M., D.H., Y.Y., O.W., Y.P., R.K., O.S.B.)
| | - Yonatan Perez
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel. (M.D., W.M., D.H., Y.Y., O.W., Y.P., R.K., O.S.B.)
| | - Rotem Kadir
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel. (M.D., W.M., D.H., Y.Y., O.W., Y.P., R.K., O.S.B.)
| | - Yoram Etzion
- Regenerative Medicine and Stem Cell Research Center and Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel. (W.M., Y.E.)
| | - Amos Katz
- Department of Cardiology, Barzilai University Medical Center, Ashkelon, Israel (A.K.).,affiliated to the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel. (A.K., O.S.B.)
| | - Ohad S Birk
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel. (M.D., W.M., D.H., Y.Y., O.W., Y.P., R.K., O.S.B.).,The Genetics Institute, Soroka University Medical Center, Beer-Sheva, Israel (O.S.B.).,affiliated to the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel. (A.K., O.S.B.)
| |
Collapse
|
29
|
Treat JA, Goodrow RJ, Bot CT, Haedo RJ, Cordeiro JM. Pharmacological enhancement of repolarization reserve in human induced pluripotent stem cells derived cardiomyocytes. Biochem Pharmacol 2019; 169:113608. [PMID: 31465775 DOI: 10.1016/j.bcp.2019.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/14/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are used for many applications including safety pharmacology. However, a deficiency or complete absence of several K+ currents suggests repolarization reserve is low in hiPSC-CMs. We determined whether a dual Ito and IKr activator can improve repolarization reserve in hiPSC-CMs resulting in a more electrophysiologically mature phenotype. METHODS AND RESULTS Human iPSC were maintained on growth factor and differentiated into the cardiac phenotype by addition of selective Wnt molecules. Current and voltage clamp recordings in single cells were made using patch electrodes. Extracellular field potentials were made using a microelectrode array on hiPSC monolayers. Action potential recordings from hiPSC-CMs following application of an IKr inhibitor resulted in depolarization of the membrane potential and prolongation of the APD. A flattening of the T-wave was noted on the pseudo-ECG. In contrast, application of the IKr and Ito agonist, NS3623, resulted in hyperpolarization of the membrane, slowing of the spontaneous rate and shortening of the APD. Voltage clamp recording showed a significant increase in IKr; no enhancement of Ito in hiPSC-CMs was noted. AP clamp experiments revealed that IKr plays a role in both phase 3 repolarization and phase 4 depolarization. mRNA analysis revealed that KCNH2 is abundantly expressed in hiPSC-CM, consistent with electrophysiological recordings. CONCLUSIONS Although NS3623 is a dual Ito and IKr activator in ventricular myocytes, application of this compound to hiPSC-CMs enhanced only IKr and no effect on Ito was noted. Our results suggest IKr enhancement can improve repolarization reserve in this cell type. The disconnect between a dramatic increase in Ito in adult myocytes versus the lack of effect in hiPSC-CMs suggest that the translation of pharmacological effects in hiPSC-CM to adult myocytes should be viewed with caution.
Collapse
Affiliation(s)
- Jacqueline A Treat
- Department of Experimental Cardiology, Masonic Medical Research Institute, Utica, NY 13501 USA
| | - Robert J Goodrow
- Department of Experimental Cardiology, Masonic Medical Research Institute, Utica, NY 13501 USA
| | - Corina T Bot
- Nanion Technologies, 1 Naylon Ave. Suite C, Livingston, NJ 07039, USA
| | - Rodolfo J Haedo
- Nanion Technologies, 1 Naylon Ave. Suite C, Livingston, NJ 07039, USA
| | - Jonathan M Cordeiro
- Department of Experimental Cardiology, Masonic Medical Research Institute, Utica, NY 13501 USA.
| |
Collapse
|
30
|
Kernik DC, Morotti S, Wu H, Garg P, Duff HJ, Kurokawa J, Jalife J, Wu JC, Grandi E, Clancy CE. A computational model of induced pluripotent stem-cell derived cardiomyocytes incorporating experimental variability from multiple data sources. J Physiol 2019; 597:4533-4564. [PMID: 31278749 PMCID: PMC6767694 DOI: 10.1113/jp277724] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/05/2019] [Indexed: 12/22/2022] Open
Abstract
Key points Induced pluripotent stem cell‐derived cardiomyocytes (iPSC‐CMs) capture patient‐specific genotype–phenotype relationships, as well as cell‐to‐cell variability of cardiac electrical activity Computational modelling and simulation provide a high throughput approach to reconcile multiple datasets describing physiological variability, and also identify vulnerable parameter regimes We have developed a whole‐cell model of iPSC‐CMs, composed of single exponential voltage‐dependent gating variable rate constants, parameterized to fit experimental iPSC‐CM outputs We have utilized experimental data across multiple laboratories to model experimental variability and investigate subcellular phenotypic mechanisms in iPSC‐CMs This framework links molecular mechanisms to cellular‐level outputs by revealing unique subsets of model parameters linked to known iPSC‐CM phenotypes
Abstract There is a profound need to develop a strategy for predicting patient‐to‐patient vulnerability in the emergence of cardiac arrhythmia. A promising in vitro method to address patient‐specific proclivity to cardiac disease utilizes induced pluripotent stem cell‐derived cardiomyocytes (iPSC‐CMs). A major strength of this approach is that iPSC‐CMs contain donor genetic information and therefore capture patient‐specific genotype–phenotype relationships. A cited detriment of iPSC‐CMs is the cell‐to‐cell variability observed in electrical activity. We postulated, however, that cell‐to‐cell variability may constitute a strength when appropriately utilized in a computational framework to build cell populations that can be employed to identify phenotypic mechanisms and pinpoint key sensitive parameters. Thus, we have exploited variation in experimental data across multiple laboratories to develop a computational framework for investigating subcellular phenotypic mechanisms. We have developed a whole‐cell model of iPSC‐CMs composed of simple model components comprising ion channel models with single exponential voltage‐dependent gating variable rate constants, parameterized to fit experimental iPSC‐CM data for all major ionic currents. By optimizing ionic current model parameters to multiple experimental datasets, we incorporate experimentally‐observed variability in the ionic currents. The resulting population of cellular models predicts robust inter‐subject variability in iPSC‐CMs. This approach links molecular mechanisms to known cellular‐level iPSC‐CM phenotypes, as shown by comparing immature and mature subpopulations of models to analyse the contributing factors underlying each phenotype. In the future, the presented models can be readily expanded to include genetic mutations and pharmacological interventions for studying the mechanisms of rare events, such as arrhythmia triggers. Induced pluripotent stem cell‐derived cardiomyocytes (iPSC‐CMs) capture patient‐specific genotype–phenotype relationships, as well as cell‐to‐cell variability of cardiac electrical activity Computational modelling and simulation provide a high throughput approach to reconcile multiple datasets describing physiological variability, and also identify vulnerable parameter regimes We have developed a whole‐cell model of iPSC‐CMs, composed of single exponential voltage‐dependent gating variable rate constants, parameterized to fit experimental iPSC‐CM outputs We have utilized experimental data across multiple laboratories to model experimental variability and investigate subcellular phenotypic mechanisms in iPSC‐CMs This framework links molecular mechanisms to cellular‐level outputs by revealing unique subsets of model parameters linked to known iPSC‐CM phenotypes
Collapse
Affiliation(s)
- Divya C Kernik
- Department of Physiology and Membrane Biology, Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, USA
| | - Stefano Morotti
- Department of Pharmacology, School of Medicine, University of California, Davis, CA, USA
| | - HaoDi Wu
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Priyanka Garg
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Henry J Duff
- Libin Cardiovascular Institute of Alberta, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - Junko Kurokawa
- Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - José Jalife
- Department of Internal Medicine, Center for Arrhythmia Research, Cardiovascular Research Center, University of Michigan, Ann Arbor, MI, USA.,Centro Nacional de Investigaciones Cardiovasculares (CNIC), and CIBERV, Madrid, Spain
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Eleonora Grandi
- Department of Pharmacology, School of Medicine, University of California, Davis, CA, USA
| | - Colleen E Clancy
- Department of Physiology and Membrane Biology, Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, USA
| |
Collapse
|
31
|
Ma D, Liu Z, Loh LJ, Zhao Y, Li G, Liew R, Islam O, Wu J, Chung YY, Teo WS, Ching CK, Tan BY, Chong D, Ho KL, Lim P, Yong RYY, Panama BK, Kaplan AD, Bett GCL, Ware J, Bezzina CR, Verkerk AO, Cook SA, Rasmusson RL, Wei H. Identification of an I Na-dependent and I to-mediated proarrhythmic mechanism in cardiomyocytes derived from pluripotent stem cells of a Brugada syndrome patient. Sci Rep 2018; 8:11246. [PMID: 30050137 PMCID: PMC6062539 DOI: 10.1038/s41598-018-29574-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 07/16/2018] [Indexed: 02/08/2023] Open
Abstract
Brugada syndrome (BrS) is an inherited cardiac arrhythmia commonly associated with SCN5A mutations, yet its ionic mechanisms remain unclear due to a lack of cellular models. Here, we used human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from a BrS patient (BrS1) to evaluate the roles of Na+ currents (INa) and transient outward K+ currents (Ito) in BrS induced action potential (AP) changes. To understand the role of these current changes in repolarization we employed dynamic clamp to “electronically express” IK1 and restore normal resting membrane potentials and allow normal recovery of the inactivating currents, INa, ICa and Ito. HiPSC-CMs were generated from BrS1 with a compound SCN5A mutation (p. A226V & p. R1629X) and a healthy sibling control (CON1). Genome edited hiPSC-CMs (BrS2) with a milder p. T1620M mutation and a commercial control (CON2) were also studied. CON1, CON2 and BrS2, had unaltered peak INa amplitudes, and normal APs whereas BrS1, with over 75% loss of INa, displayed a loss-of-INa basal AP morphology (at 1.0 Hz) manifested by a reduced maximum upstroke velocity (by ~80%, p < 0.001) and AP amplitude (p < 0.001), and an increased phase-1 repolarization pro-arrhythmic AP morphology (at 0.1 Hz) in ~25% of cells characterized by marked APD shortening (~65% shortening, p < 0.001). Moreover, Ito densities of BrS1 and CON1 were comparable and increased from 1.0 Hz to 0.1 Hz by ~ 100%. These data indicate that a repolarization deficit could be a mechanism underlying BrS.
Collapse
Affiliation(s)
- Dongrui Ma
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, 169609, Republic of Singapore
| | - Zhenfeng Liu
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, 169609, Republic of Singapore
| | - Li Jun Loh
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, 169609, Republic of Singapore
| | - Yongxing Zhao
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, 169609, Republic of Singapore
| | - Guang Li
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, 169609, Republic of Singapore
| | - Reginald Liew
- Cardiovascular & Metabolic Disorders Program, Duke-NUS Medical School Singapore, Singapore, 169857, Republic of Singapore
| | - Omedul Islam
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, 169609, Republic of Singapore
| | - Jianjun Wu
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, 169609, Republic of Singapore
| | - Ying Ying Chung
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, 169609, Republic of Singapore
| | - Wee Siong Teo
- Department of Cardiology, National Heart Centre Singapore, Singapore, 169609, Republic of Singapore
| | - Chi Keong Ching
- Department of Cardiology, National Heart Centre Singapore, Singapore, 169609, Republic of Singapore
| | - Boon Yew Tan
- Department of Cardiology, National Heart Centre Singapore, Singapore, 169609, Republic of Singapore
| | - Daniel Chong
- Department of Cardiology, National Heart Centre Singapore, Singapore, 169609, Republic of Singapore
| | - Kah Leng Ho
- Department of Cardiology, National Heart Centre Singapore, Singapore, 169609, Republic of Singapore
| | - Paul Lim
- Department of Cardiology, National Heart Centre Singapore, Singapore, 169609, Republic of Singapore
| | - Rita Yu Yin Yong
- Defense Medical and Environmental Research Institute, DSO National Laboratories, Singapore, 117510, Republic of Singapore
| | - Brian K Panama
- University at Buffalo, State University of New York, Buffalo, NY, 14214, USA
| | - Aaron D Kaplan
- University at Buffalo, State University of New York, Buffalo, NY, 14214, USA
| | - Glenna C L Bett
- University at Buffalo, State University of New York, Buffalo, NY, 14214, USA
| | - James Ware
- Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Connie R Bezzina
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Arie O Verkerk
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Stuart A Cook
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, 169609, Republic of Singapore.,Cardiovascular & Metabolic Disorders Program, Duke-NUS Medical School Singapore, Singapore, 169857, Republic of Singapore.,Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Randall L Rasmusson
- University at Buffalo, State University of New York, Buffalo, NY, 14214, USA.
| | - Heming Wei
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, 169609, Republic of Singapore. .,Cardiovascular & Metabolic Disorders Program, Duke-NUS Medical School Singapore, Singapore, 169857, Republic of Singapore.
| |
Collapse
|
32
|
Human iPSC-Derived Cardiomyocytes for Investigation of Disease Mechanisms and Therapeutic Strategies in Inherited Arrhythmia Syndromes: Strengths and Limitations. Cardiovasc Drugs Ther 2018; 31:325-344. [PMID: 28721524 PMCID: PMC5550530 DOI: 10.1007/s10557-017-6735-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During the last two decades, significant progress has been made in the identification of genetic defects underlying inherited arrhythmia syndromes, which has provided some clinical benefit through elucidation of gene-specific arrhythmia triggers and treatment. However, for most arrhythmia syndromes, clinical management is hindered by insufficient knowledge of the functional consequences of the mutation in question, the pro-arrhythmic mechanisms involved, and hence the most optimal treatment strategy. Moreover, disease expressivity and sensitivity to therapeutic interventions often varies between mutations and/or patients, underlining the need for more individualized strategies. The development of the induced pluripotent stem cell (iPSC) technology now provides the opportunity for generating iPSC-derived cardiomyocytes (CMs) from human material (hiPSC-CMs), enabling patient- and/or mutation-specific investigations. These hiPSC-CMs may furthermore be employed for identification and assessment of novel therapeutic strategies for arrhythmia syndromes. However, due to their relative immaturity, hiPSC-CMs also display a number of essential differences as compared to adult human CMs, and hence there are certain limitations in their use. We here review the electrophysiological characteristics of hiPSC-CMs, their use for investigating inherited arrhythmia syndromes, and their applicability for identification and assessment of (novel) anti-arrhythmic treatment strategies.
Collapse
|
33
|
Golovko VA, Kosevich IA, Gonotkov MA. Pharmacological analysis of the transmembrane action potential configuration in myoepithelial cells of the spontaneously beating heart of the ascidian Styela rustica in vitro. ACTA ACUST UNITED AC 2017; 220:4589-4599. [PMID: 28982967 DOI: 10.1242/jeb.154641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 09/28/2017] [Indexed: 11/20/2022]
Abstract
The mechanisms of action potential (AP) generation in the myoepithelial cells of the tunicate heart are not yet well understood. Here, an attempt was made to elucidate these mechanisms by analyzing the effects of specific blockers of K+, Na+ and Ca2+ currents on the configuration of transmembrane APs and their frequency in the spontaneously beating ascidian heart. In addition, an immunocytochemical analysis of heart myoepithelial cells was performed. Staining with anti-FMRF-amide and anti-tubulin antibodies did not reveal any nerve elements within the heart tube. Treatment with 1 mmol l-1 TEA (IK blocker) resulted in depolarization of heart cell sarcolemma by 10 mV, and inhibition of APs generation was recorded after 3 min of exposure. Prior to this moment, the frequency of AP generation in a burst decreased from 16-18 to 2 beats min-1 owing to prolongation of the diastole. After application of ivabradine (3 or 10 µmol l-1), the spontaneous APs generation frequency decreased by 24%. Based on these results and published data, it is concluded that the key role in the automaticity of the ascidian heart is played by the outward K+ currents, Na+ currents, activated hyperpolarization current If and a current of unknown nature IX.
Collapse
Affiliation(s)
- Vladimir A Golovko
- Institute of Physiology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 50 Pervomayskaya St., Syktyvkar 167982, Russia
| | - Igor A Kosevich
- Faculty of Biology, M.Lomonosov Moscow State University, Moscow 119991, Russia
| | - Mikhail A Gonotkov
- Institute of Physiology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 50 Pervomayskaya St., Syktyvkar 167982, Russia
| |
Collapse
|
34
|
Nelson BC, Hashem SI, Adler ED. Human-Induced Pluripotent Stem Cell-Based Modeling of Cardiac Storage Disorders. Curr Cardiol Rep 2017; 19:26. [PMID: 28251514 DOI: 10.1007/s11886-017-0829-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW The aim of this study is to review the published human-induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) models of cardiac storage disorders and to evaluate the limitations and future applications of this technology. RECENT FINDINGS Several cardiac storage disorders (CSDs) have been modeled using patient-specific hiPSC-CMs, including Anderson-Fabry disease, Danon disease, and Pompe disease. These models have shown that patient-specific hiPSC-CMs faithfully recapitulate key phenotypic features of CSDs and respond predictably to pharmacologic manipulation. hiPSC-CMs generated from patients with CSDs are representative models of the patient disease state and can be used as an in vitro system for the study of human cardiomyocytes. While these models suffer from several limitations, they are likely to play an important role in future mechanistic studies of cardiac storage disorders and the development of targeted therapeutics for these diseases.
Collapse
Affiliation(s)
- Bradley C Nelson
- Department of Medicine, Division of Cardiology, University of California San Diego, 9500 Gilman Drive, Biomedical Research Facility, Room 1217 AA, La Jolla, CA, 92093, USA
| | - Sherin I Hashem
- Department of Medicine, Division of Cardiology, University of California San Diego, 9500 Gilman Drive, Biomedical Research Facility, Room 1217 AA, La Jolla, CA, 92093, USA
| | - Eric D Adler
- Department of Medicine, Division of Cardiology, University of California San Diego, 9500 Gilman Drive, Biomedical Research Facility, Room 1217 AA, La Jolla, CA, 92093, USA.
| |
Collapse
|
35
|
Biophysical comparison of sodium currents in native cardiac myocytes and human induced pluripotent stem cell-derived cardiomyocytes. J Pharmacol Toxicol Methods 2017; 90:19-30. [PMID: 29128504 DOI: 10.1016/j.vascn.2017.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/22/2017] [Accepted: 11/02/2017] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are used for safety pharmacology and to investigate genetic diseases affecting cardiac ion channels. It is unclear whether adult myocytes or hiPSC-CMs are the better platform for cardiac safety pharmacology. We examined the biophysical and molecular properties of INa in adult myocytes and hiPSC-CMs. METHODS hiPSC-CMs were plated at low density. Atrial and ventricular cells were obtained from dog hearts. Whole cell patch clamp was used to record INa. RESULTS Voltage clamp recordings showed a large INa in all three cell types but different densities. Small differences in steady-state inactivation and recovery from inactivation were noted in the three cell types. Application of lidocaine to the three cell types showed a similar pattern of block of INa under voltage clamp; however, lidocaine produced different effects on AP waveform under current clamp. AP clamp experiments showed that application of ventricular or atrial cell waveforms to the same hiPSC-CM elicited a large INa while application of a sinoatrial node waveform elicited no INa. Molecular analysis of Na+ channel subunits showed SCN5A and SCN1B-4B were expressed in adult cells and iPSC-CMs. However, iPSC-CMs express both fetal (exon 6A) and adult (exon 6) isoforms of SCN5A. DISCUSSION There are major differences in INa density and smaller differences in other biophysical properties of INa in adult atrial, ventricular, and hiPSC-CMs. The depolarized maximum diastolic potential coupled with the presence of phase 4 depolarization limits the contribution of INa in hiPSC-CM action potentials. Our results suggest that hiPSC-CMs may be useful for drug screening of Na+ channel inhibitors under voltage clamp but not current clamp.
Collapse
|
36
|
Yamamoto Y, Makiyama T, Harita T, Sasaki K, Wuriyanghai Y, Hayano M, Nishiuchi S, Kohjitani H, Hirose S, Chen J, Yokoi F, Ishikawa T, Ohno S, Chonabayashi K, Motomura H, Yoshida Y, Horie M, Makita N, Kimura T. Allele-specific ablation rescues electrophysiological abnormalities in a human iPS cell model of long-QT syndrome with a CALM2 mutation. Hum Mol Genet 2017; 26:1670-1677. [PMID: 28335032 DOI: 10.1093/hmg/ddx073] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/22/2017] [Indexed: 12/14/2022] Open
Abstract
Calmodulin is a ubiquitous Ca2+ sensor molecule encoded by three distinct calmodulin genes, CALM1-3. Recently, mutations in CALM1-3 have been reported to be associated with severe early-onset long-QT syndrome (LQTS). However, the underlying mechanism through which heterozygous calmodulin mutations lead to severe LQTS remains unknown, particularly in human cardiomyocytes. We aimed to establish an LQTS disease model associated with a CALM2 mutation (LQT15) using human induced pluripotent stem cells (hiPSCs) and to assess mutant allele-specific ablation by genome editing for the treatment of LQT15. We generated LQT15-hiPSCs from a 12-year-old boy with LQTS carrying a CALM2-N98S mutation and differentiated these hiPSCs into cardiomyocytes (LQT15-hiPSC-CMs). Action potentials (APs) and L-type Ca2+ channel (LTCC) currents in hiPSC-CMs were analyzed by the patch-clamp technique and compared with those of healthy controls. Furthermore, we performed mutant allele-specific knockout using a CRISPR-Cas9 system and analyzed electrophysiological properties. Electrophysiological analyses revealed that LQT15-hiPSC-CMs exhibited significantly lower beating rates, prolonged AP durations, and impaired inactivation of LTCC currents compared with control cells, consistent with clinical phenotypes. Notably, ablation of the mutant allele rescued the electrophysiological abnormalities of LQT15-hiPSC-CMs, indicating that the mutant allele caused dominant-negative suppression of LTCC inactivation, resulting in prolonged AP duration. We successfully recapitulated the disease phenotypes of LQT15 and revealed that inactivation of LTCC currents was impaired in CALM2-N98S hiPSC model. Additionally, allele-specific ablation using the latest genome-editing technology provided important insights into a promising therapeutic approach for inherited cardiac diseases.
Collapse
Affiliation(s)
- Yuta Yamamoto
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takeru Makiyama
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takeshi Harita
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kenichi Sasaki
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yimin Wuriyanghai
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8507, Japan.,Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu 520-2192, Japan
| | - Mamoru Hayano
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8507, Japan
| | - Suguru Nishiuchi
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hirohiko Kohjitani
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8507, Japan
| | - Sayako Hirose
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8507, Japan
| | - Jiarong Chen
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8507, Japan
| | - Fumika Yokoi
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8507, Japan
| | - Taisuke Ishikawa
- Department of Molecular Physiology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| | - Seiko Ohno
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu 520-2192, Japan
| | - Kazuhisa Chonabayashi
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hideki Motomura
- Department of Pediatrics, Nagasaki University Hospital, Nagasaki 852-8501, Japan
| | - Yoshinori Yoshida
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Minoru Horie
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu 520-2192, Japan
| | - Naomasa Makita
- Department of Molecular Physiology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
37
|
Goversen B, van der Heyden MAG, van Veen TAB, de Boer TP. The immature electrophysiological phenotype of iPSC-CMs still hampers in vitro drug screening: Special focus on I K1. Pharmacol Ther 2017; 183:127-136. [PMID: 28986101 DOI: 10.1016/j.pharmthera.2017.10.001] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Preclinical drug screens are not based on human physiology, possibly complicating predictions on cardiotoxicity. Drug screening can be humanised with in vitro assays using human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). However, in contrast to adult ventricular cardiomyocytes, iPSC-CMs beat spontaneously due to presence of the pacemaking current If and reduced densities of the hyperpolarising current IK1. In adult cardiomyocytes, IK1 finalises repolarisation by stabilising the resting membrane potential while also maintaining excitability. The reduced IK1 density contributes to proarrhythmic traits in iPSC-CMs, which leads to an electrophysiological phenotype that might bias drug responses. The proarrhythmic traits can be suppressed by increasing IK1 in a balanced manner. We systematically evaluated all studies that report strategies to mature iPSC-CMs and found that only few studies report IK1 current densities. Furthermore, these studies did not succeed in establishing sufficient IK1 levels as they either added too little or too much IK1. We conclude that reduced densities of IK1 remain a major flaw in iPSC-CMs, which hampers their use for in vitro drug screening.
Collapse
Affiliation(s)
- Birgit Goversen
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM, Utrecht, The Netherlands
| | - Marcel A G van der Heyden
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM, Utrecht, The Netherlands
| | - Toon A B van Veen
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM, Utrecht, The Netherlands
| | - Teun P de Boer
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM, Utrecht, The Netherlands.
| |
Collapse
|
38
|
Verkerk AO, Veerman CC, Zegers JG, Mengarelli I, Bezzina CR, Wilders R. Patch-Clamp Recording from Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes: Improving Action Potential Characteristics through Dynamic Clamp. Int J Mol Sci 2017; 18:ijms18091873. [PMID: 28867785 PMCID: PMC5618522 DOI: 10.3390/ijms18091873] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 08/22/2017] [Accepted: 08/22/2017] [Indexed: 01/10/2023] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) hold great promise for studying inherited cardiac arrhythmias and developing drug therapies to treat such arrhythmias. Unfortunately, until now, action potential (AP) measurements in hiPSC-CMs have been hampered by the virtual absence of the inward rectifier potassium current (IK1) in hiPSC-CMs, resulting in spontaneous activity and altered function of various depolarising and repolarising membrane currents. We assessed whether AP measurements in "ventricular-like" and "atrial-like" hiPSC-CMs could be improved through a simple, highly reproducible dynamic clamp approach to provide these cells with a substantial IK1 (computed in real time according to the actual membrane potential and injected through the patch-clamp pipette). APs were measured at 1 Hz using perforated patch-clamp methodology, both in control cells and in cells treated with all-trans retinoic acid (RA) during the differentiation process to increase the number of cells with atrial-like APs. RA-treated hiPSC-CMs displayed shorter APs than control hiPSC-CMs and this phenotype became more prominent upon addition of synthetic IK1 through dynamic clamp. Furthermore, the variability of several AP parameters decreased upon IK1 injection. Computer simulations with models of ventricular-like and atrial-like hiPSC-CMs demonstrated the importance of selecting an appropriate synthetic IK1. In conclusion, the dynamic clamp-based approach of IK1 injection has broad applicability for detailed AP measurements in hiPSC-CMs.
Collapse
Affiliation(s)
- Arie O Verkerk
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
- Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Christiaan C Veerman
- Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Jan G Zegers
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Isabella Mengarelli
- Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Connie R Bezzina
- Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Ronald Wilders
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
39
|
Veerman CC, Mengarelli I, Lodder EM, Kosmidis G, Bellin M, Zhang M, Dittmann S, Guan K, Wilde AAM, Schulze-Bahr E, Greber B, Bezzina CR, Verkerk AO. Switch From Fetal to Adult SCN5A Isoform in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Unmasks the Cellular Phenotype of a Conduction Disease-Causing Mutation. J Am Heart Assoc 2017; 6:JAHA.116.005135. [PMID: 28739862 PMCID: PMC5586268 DOI: 10.1161/jaha.116.005135] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background Human induced pluripotent stem cell–derived cardiomyocytes (hiPSC‐CMs) can recapitulate features of ion channel mutations causing inherited rhythm disease. However, the lack of maturity of these cells is considered a significant limitation of the model. Prolonged culture of hiPSC‐CMs promotes maturation of these cells. We studied the electrophysiological effects of the I230T mutation in the sodium channel gene SCN5A in hiPSC‐CMs generated from a homozygous (I230Thomo) and a heterozygous (I230Thet) individual from a family with recessive cardiac conduction disease. Since the I230T mutation occurs in the developmentally regulated “adult” isoform of SCN5A, we investigated the relationship between the expression fraction of the adult SCN5A isoform and the electrophysiological phenotype at different time points in culture. Methods and Results After a culture period of 20 days, sodium current (INa) was mildly reduced in I230Thomo hiPSC‐CMs compared with control hiPSC‐CMs, while I230Thet hiPSC‐CMs displayed no reduction in INa. This coincided with a relatively high expression fraction of the “fetal” SCN5A isoform compared with the adult isoform as measured by quantitative polymerase chain reaction. Following prolonged culture to 66 days, the fraction of adult SCN5A isoform increased; this was paralleled by a marked decrease in INa in I230Thomo hiPSC‐CMs, in line with the severe clinical phenotype in homozygous patients. At this time in culture, I230Thet hiPSC‐CMs displayed an intermediate loss of INa, compatible with a gene dosage effect. Conclusions Prolonged culture of hiPSC‐CMs leads to an increased expression fraction of the adult sodium channel isoform. This new aspect of electrophysiological immaturity should be taken into account in studies that focus on the effects of SCN5A mutations in hiPSC‐CMs.
Collapse
Affiliation(s)
- Christiaan C Veerman
- Department of Experimental and Clinical Cardiology, Heart Center, Academic Medical Center, Amsterdam, The Netherlands
| | - Isabella Mengarelli
- Department of Experimental and Clinical Cardiology, Heart Center, Academic Medical Center, Amsterdam, The Netherlands
| | - Elisabeth M Lodder
- Department of Experimental and Clinical Cardiology, Heart Center, Academic Medical Center, Amsterdam, The Netherlands
| | - Georgios Kosmidis
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Milena Bellin
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Miao Zhang
- Human Pluripotent Stem Cell Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Chemical Genomics Centre of the Max Planck Society, Dortmund, Germany
| | - Sven Dittmann
- Department of Cardiovascular Medicine, Institute for Genetics of Heart Diseases, University Hospital Münster, Münster, Germany
| | - Kaomei Guan
- Department of Pharmacology and Toxicology, Dresden University of Technology, Dresden, Germany
| | - Arthur A M Wilde
- Department of Experimental and Clinical Cardiology, Heart Center, Academic Medical Center, Amsterdam, The Netherlands
| | - Eric Schulze-Bahr
- Department of Cardiovascular Medicine, Institute for Genetics of Heart Diseases, University Hospital Münster, Münster, Germany
| | - Boris Greber
- Human Pluripotent Stem Cell Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Chemical Genomics Centre of the Max Planck Society, Dortmund, Germany
| | - Connie R Bezzina
- Department of Experimental and Clinical Cardiology, Heart Center, Academic Medical Center, Amsterdam, The Netherlands
| | - Arie O Verkerk
- Department of Experimental and Clinical Cardiology, Heart Center, Academic Medical Center, Amsterdam, The Netherlands .,Department of Anatomy, Embryology and Physiology, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
40
|
Sayed N, Liu C, Wu JC. Translation of Human-Induced Pluripotent Stem Cells: From Clinical Trial in a Dish to Precision Medicine. J Am Coll Cardiol 2017; 67:2161-2176. [PMID: 27151349 DOI: 10.1016/j.jacc.2016.01.083] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/26/2016] [Accepted: 01/26/2016] [Indexed: 12/14/2022]
Abstract
The prospect of changing the plasticity of terminally differentiated cells toward pluripotency has completely altered the outlook for biomedical research. Human-induced pluripotent stem cells (iPSCs) provide a new source of therapeutic cells free from the ethical issues or immune barriers of human embryonic stem cells. iPSCs also confer considerable advantages over conventional methods of studying human diseases. Since its advent, iPSC technology has expanded with 3 major applications: disease modeling, regenerative therapy, and drug discovery. Here we discuss, in a comprehensive manner, the recent advances in iPSC technology in relation to basic, clinical, and population health.
Collapse
Affiliation(s)
- Nazish Sayed
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California; Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California.
| | - Chun Liu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California; Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California; Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
41
|
Sun X, Nunes SS. Bioengineering Approaches to Mature Human Pluripotent Stem Cell-Derived Cardiomyocytes. Front Cell Dev Biol 2017; 5:19. [PMID: 28337437 PMCID: PMC5343210 DOI: 10.3389/fcell.2017.00019] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/21/2017] [Indexed: 11/26/2022] Open
Abstract
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CM) represent a potential unlimited cell supply for cardiac tissue engineering and possibly regenerative medicine applications. However, hPSC-CMs produced by current protocols are not representative of native adult human cardiomyocytes as they display immature gene expression profile, structure and function. In order to improve hPSC-CM maturity and function, various approaches have been developed, including genetic manipulations to induce gene expression, delivery of biochemical factors, such as triiodothyronine and alpha-adrenergic agonist phenylephrine, induction of cell alignment in 3D tissues, mechanical stress as a mimic of cardiac load and electrical stimulation/pacing or a combination of these. In this mini review, we discuss biomimetic strategies for the maturation for hPSC-CMs with a particular focus on electromechanical conditioning methods.
Collapse
Affiliation(s)
- Xuetao Sun
- Toronto General Research Institute, University Health Network Toronto, ON, Canada
| | - Sara S Nunes
- Toronto General Research Institute, University Health NetworkToronto, ON, Canada; Institute of Biomaterials and Biomedical Engineering, University of TorontoToronto, ON, Canada; Heart & Stroke/Richard Lewar Centre of Excellence, University of TorontoToronto, ON, Canada
| |
Collapse
|
42
|
Barbuti A, Benzoni P, Campostrini G, Dell'Era P. Human derived cardiomyocytes: A decade of knowledge after the discovery of induced pluripotent stem cells. Dev Dyn 2016; 245:1145-1158. [DOI: 10.1002/dvdy.24455] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/05/2016] [Accepted: 05/05/2016] [Indexed: 12/27/2022] Open
Affiliation(s)
- Andrea Barbuti
- Department of Biosciences; Università degli Studi di Milano; Milan Italy
| | - Patrizia Benzoni
- Department of Biosciences; Università degli Studi di Milano; Milan Italy
| | - Giulia Campostrini
- Department of Biosciences; Università degli Studi di Milano; Milan Italy
| | - Patrizia Dell'Era
- Cellular Fate Reprogramming Unit, Department of Molecular and Translational Medicine; Università degli Studi di Brescia; Brescia Italy
| |
Collapse
|
43
|
Veerman CC, Mengarelli I, Guan K, Stauske M, Barc J, Tan HL, Wilde AAM, Verkerk AO, Bezzina CR. hiPSC-derived cardiomyocytes from Brugada Syndrome patients without identified mutations do not exhibit clear cellular electrophysiological abnormalities. Sci Rep 2016; 6:30967. [PMID: 27485484 PMCID: PMC4971529 DOI: 10.1038/srep30967] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 07/11/2016] [Indexed: 12/19/2022] Open
Abstract
Brugada syndrome (BrS) is a rare cardiac rhythm disorder associated with sudden cardiac death. Mutations in the sodium channel gene SCN5A are found in ~20% of cases while mutations in other genes collectively account for <5%. In the remaining patients the genetic defect and the underlying pathogenic mechanism remain obscure. To provide insight into the mechanism of BrS in individuals without identified mutations, we here studied electrophysiological properties of cardiomyocytes (CMs) generated from human induced pluripotent stem cells (hiPSCs) from 3 BrS patients who tested negative for mutations in the known BrS-associated genes. Patch clamp studies revealed no differences in sodium current (INa) in hiPSC-CMs from the 3 BrS patients compared to 2 unrelated controls. Moreover, action potential upstroke velocity (Vmax), reflecting INa, was not different between hiPSC-CMs from the BrS patients and the controls. hiPSC-CMs harboring the BrS-associated SCN5A-1795insD mutation exhibited a reduction in both INa and Vmax, demonstrating our ability to detect reduced sodium channel function. hiPSC-CMs from one of the BrS lines demonstrated a mildly reduced action potential duration, however, the transient outward potassium current (Ito) and the L-type calcium current (ICa,L), both implicated in BrS, were not different compared to the controls. Our findings indicate that ion channel dysfunction, in particular in the cardiac sodium channel, may not be a prerequisite for BrS.
Collapse
Affiliation(s)
- Christiaan C Veerman
- Heart Centre, Department of Experimental and Clinical Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Isabella Mengarelli
- Heart Centre, Department of Experimental and Clinical Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Kaomei Guan
- Department of Cardiology and Pneumonology, Georg-August-University Göttingen, Göttingen, Germany
| | - Michael Stauske
- Department of Cardiology and Pneumonology, Georg-August-University Göttingen, Göttingen, Germany
| | - Julien Barc
- Heart Centre, Department of Experimental and Clinical Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,l'institut du thorax, INSERM, CNRS, Université de Nantes, Nantes, France
| | - Hanno L Tan
- Heart Centre, Department of Experimental and Clinical Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Arthur A M Wilde
- Heart Centre, Department of Experimental and Clinical Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Arie O Verkerk
- Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Connie R Bezzina
- Heart Centre, Department of Experimental and Clinical Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
44
|
Hartman ME, Dai DF, Laflamme MA. Human pluripotent stem cells: Prospects and challenges as a source of cardiomyocytes for in vitro modeling and cell-based cardiac repair. Adv Drug Deliv Rev 2016; 96:3-17. [PMID: 25980938 DOI: 10.1016/j.addr.2015.05.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/27/2015] [Accepted: 05/07/2015] [Indexed: 12/13/2022]
Abstract
Human pluripotent stem cells (PSCs) represent an attractive source of cardiomyocytes with potential applications including disease modeling, drug discovery and safety screening, and novel cell-based cardiac therapies. Insights from embryology have contributed to the development of efficient, reliable methods capable of generating large quantities of human PSC-cardiomyocytes with cardiac purities ranging up to 90%. However, for human PSCs to meet their full potential, the field must identify methods to generate cardiomyocyte populations that are uniform in subtype (e.g. homogeneous ventricular cardiomyocytes) and have more mature structural and functional properties. For in vivo applications, cardiomyocyte production must be highly scalable and clinical grade, and we will need to overcome challenges including graft cell death, immune rejection, arrhythmogenesis, and tumorigenic potential. Here we discuss the types of human PSCs, commonly used methods to guide their differentiation into cardiomyocytes, the phenotype of the resultant cardiomyocytes, and the remaining obstacles to their successful translation.
Collapse
|
45
|
Eder A, Vollert I, Hansen A, Eschenhagen T. Human engineered heart tissue as a model system for drug testing. Adv Drug Deliv Rev 2016; 96:214-24. [PMID: 26026976 DOI: 10.1016/j.addr.2015.05.010] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/11/2015] [Accepted: 05/21/2015] [Indexed: 12/29/2022]
Abstract
Drug development is time- and cost-intensive and, despite extensive efforts, still hampered by the limited value of current preclinical test systems to predict side effects, including proarrhythmic and cardiotoxic effects in clinical practice. Part of the problem may be related to species-dependent differences in cardiomyocyte biology. Therefore, the event of readily available human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CM) has raised hopes that this human test bed could improve preclinical safety pharmacology as well as drug discovery approaches. However, hiPSC-CM are immature and exhibit peculiarities in terms of ion channel function, gene expression, structural organization and functional responses to drugs that limit their present usefulness. Current efforts are thus directed towards improving hiPSC-CM maturity and high-content readouts. Culturing hiPSC-CM as 3-dimensional engineered heart tissue (EHT) improves CM maturity and anisotropy and, in a 24-well format using silicone racks, enables automated, multiplexed high content readout of contractile function. This review summarizes the principal technology and focuses on advantages and disadvantages of this technology and its potential for preclinical drug screening.
Collapse
|
46
|
Yang C, Al-Aama J, Stojkovic M, Keavney B, Trafford A, Lako M, Armstrong L. Concise Review: Cardiac Disease Modeling Using Induced Pluripotent Stem Cells. Stem Cells 2015; 33:2643-51. [PMID: 26033645 DOI: 10.1002/stem.2070] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 05/07/2015] [Accepted: 05/12/2015] [Indexed: 12/16/2022]
Abstract
Genetic cardiac diseases are major causes of morbidity and mortality. Although animal models have been created to provide some useful insights into the pathogenesis of genetic cardiac diseases, the significant species differences and the lack of genetic information for complex genetic diseases markedly attenuate the application values of such data. Generation of induced pluripotent stem cells (iPSCs) from patient-specific specimens and subsequent derivation of cardiomyocytes offer novel avenues to study the mechanisms underlying cardiac diseases, to identify new causative genes, and to provide insights into the disease aetiology. In recent years, the list of human iPSC-based models for genetic cardiac diseases has been expanding rapidly, although there are still remaining concerns on the level of functionality of iPSC-derived cardiomyocytes and their ability to be used for modeling complex cardiac diseases in adults. This review focuses on the development of cardiomyocyte induction from pluripotent stem cells, the recent progress in heart disease modeling using iPSC-derived cardiomyocytes, and the challenges associated with understanding complex genetic diseases. To address these issues, we examine the similarity between iPSC-derived cardiomyocytes and their ex vivo counterparts and how this relates to the method used to differentiate the pluripotent stem cells into a cardiomyocyte phenotype. We progress to examine categories of congenital cardiac abnormalities that are suitable for iPSC-based disease modeling.
Collapse
Affiliation(s)
- Chunbo Yang
- Institute of Genetic Medicine, Newcastle University, The International Centre for Life, Central Parkway, Newcastle upon Tyne, United Kingdom
| | - Jumana Al-Aama
- Princess Al Jawhara Center of Excellence in Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Miodrag Stojkovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Bernard Keavney
- Institute of Cardiovascular Sciences Core Technology, Manchester University, Manchester, United Kingdom
| | - Andrew Trafford
- Institute of Cardiovascular Sciences Core Technology, Manchester University, Manchester, United Kingdom
| | - Majlinda Lako
- Institute of Genetic Medicine, Newcastle University, The International Centre for Life, Central Parkway, Newcastle upon Tyne, United Kingdom
| | - Lyle Armstrong
- Institute of Genetic Medicine, Newcastle University, The International Centre for Life, Central Parkway, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
47
|
Patocskai B, Antzelevitch C. Novel Therapeutic Strategies for the Management of Ventricular Arrhythmias Associated with the Brugada Syndrome. Expert Opin Orphan Drugs 2015; 3:633-651. [PMID: 27559494 PMCID: PMC4993532 DOI: 10.1517/21678707.2015.1037280] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Brugada syndrome (BrS) is an inherited cardiac arrhythmia syndrome characterized by prominent J waves appearing as distinct coved type ST segment elevation in the right precordial leads of the ECG. It is associated with a high risk for sudden cardiac death. AREAS COVERED We discuss 1) ECG manifestations of BrS which can be unmasked or aggravated by sodium channel blockers, febrile states, vagotonic agents, as well as tricyclic and tetracyclic antidepressants; 2) Genetic basis of BrS; 3) Ionic and cellular mechanisms underlying BrS; 4) Therapy involving devices including an implantable cardioverter defibrillator (ICD); 5) Therapy involving radiofrequency ablation; and 6) Therapy involving pharmacological therapy which is aimed at producing an inward shift in the balance of the currents active during phase 1 of the right ventricular action potential either by boosting calcium channel current (isoproterenol, cilostazol and milrinone) or by inhibition of transient outward current Ito (quinidine, bepridil and the Chinese herb extract Wenxin Keli). EXPERT OPINION This review provides an overview of the clinical and molecular aspects of BrS with a focus on approaches to therapy. Available data suggest that agents capable of inhibiting the transient outward current Ito can exert an ameliorative effect regardless of the underlying cause.
Collapse
Affiliation(s)
- Bence Patocskai
- Department of Pharmacology & Pharmacotherapy, University of Szeged, Szeged, Hungary
| | | |
Collapse
|
48
|
Veerman CC, Kosmidis G, Mummery CL, Casini S, Verkerk AO, Bellin M. Immaturity of Human Stem-Cell-Derived Cardiomyocytes in Culture: Fatal Flaw or Soluble Problem? Stem Cells Dev 2015; 24:1035-52. [DOI: 10.1089/scd.2014.0533] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Christiaan C. Veerman
- Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Georgios Kosmidis
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| | - Christine L. Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| | - Simona Casini
- Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| | - Arie O. Verkerk
- Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Milena Bellin
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
49
|
Ma D, Wei H, Lu J, Huang D, Liu Z, Loh LJ, Islam O, Liew R, Shim W, Cook SA. Characterization of a novel KCNQ1 mutation for type 1 long QT syndrome and assessment of the therapeutic potential of a novel IKs activator using patient-specific induced pluripotent stem cell-derived cardiomyocytes. Stem Cell Res Ther 2015; 6:39. [PMID: 25889101 PMCID: PMC4396080 DOI: 10.1186/s13287-015-0027-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 02/27/2015] [Accepted: 02/27/2015] [Indexed: 12/14/2022] Open
Abstract
Introduction Type 1 long QT syndrome (LQT1) is a common type of cardiac channelopathy associated with loss-of-function mutations of KCNQ1. Currently there is a lack of drugs that target the defected slowly activating delayed rectifier potassium channel (IKs). With LQT1 patient-specific human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (hiPSC-CMs), we tested the effects of a selective IKs activator ML277 on reversing the disease phenotypes. Methods A LQT1 family with a novel heterozygous exon 7 deletion in the KCNQ1 gene was identified. Dermal fibroblasts from the proband and her healthy father were reprogrammed to hiPSCs and subsequently differentiated into hiPSC-CMs. Results Compared with the control, LQT1 patient hiPSC-CMs showed reduced levels of wild type KCNQ1 mRNA accompanied by multiple exon skipping mRNAs and a ~50% reduction of the full length Kv7.1 protein. Patient hiPSC-CMs showed reduced IKs current (tail current density at 30 mV: 0.33 ± 0.02 vs. 0.92 ± 0.21, P < 0.05) and prolonged action potential duration (APD) (APD 50 and APD90: 603.9 ± 39.2 vs. 319.3 ± 13.8 ms, P < 0.005; and 671.0 ± 41.1 vs. 372.9 ± 14.2 ms, P < 0.005). ML277, a small molecule recently identified to selectively activate KV7.1, reversed the decreased IKs and partially restored APDs in patient hiPSC-CMs. Conclusions From a LQT1 patient carrying a novel heterozygous exon7 deletion mutation of KCNQ1, we generated hiPSC-CMs that faithfully recapitulated the LQT1 phenotypes that are likely associated with haploinsufficiency and trafficking defect of KCNQ1/Kv7.1. The small molecule ML277 restored IKs function in hiPSC-CMs and could have therapeutic value for LQT1 patients. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0027-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dongrui Ma
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5th Hospital Drive, Singapore, 169609, Singapore.
| | - Heming Wei
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5th Hospital Drive, Singapore, 169609, Singapore. .,Cardiovascular & Metabolic Disorders Program, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore, 169857, Singapore.
| | - Jun Lu
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5th Hospital Drive, Singapore, 169609, Singapore.
| | - Dou Huang
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5th Hospital Drive, Singapore, 169609, Singapore.
| | - Zhenfeng Liu
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5th Hospital Drive, Singapore, 169609, Singapore.
| | - Li Jun Loh
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5th Hospital Drive, Singapore, 169609, Singapore.
| | - Omedul Islam
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5th Hospital Drive, Singapore, 169609, Singapore.
| | - Reginald Liew
- Cardiovascular & Metabolic Disorders Program, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore, 169857, Singapore.
| | - Winston Shim
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5th Hospital Drive, Singapore, 169609, Singapore. .,Cardiovascular & Metabolic Disorders Program, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore, 169857, Singapore.
| | - Stuart A Cook
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5th Hospital Drive, Singapore, 169609, Singapore. .,Cardiovascular & Metabolic Disorders Program, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore, 169857, Singapore. .,National Heart and Lung Institute, Imperial College, South Kensington Campus, London, SW7 2AZ, UK.
| |
Collapse
|
50
|
Meijer van Putten RME, Mengarelli I, Guan K, Zegers JG, van Ginneken ACG, Verkerk AO, Wilders R. Ion channelopathies in human induced pluripotent stem cell derived cardiomyocytes: a dynamic clamp study with virtual IK1. Front Physiol 2015; 6:7. [PMID: 25691870 PMCID: PMC4315032 DOI: 10.3389/fphys.2015.00007] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/07/2015] [Indexed: 12/11/2022] Open
Abstract
Human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) are widely used in studying basic mechanisms of cardiac arrhythmias that are caused by ion channelopathies. Unfortunately, the action potential profile of hiPSC-CMs-and consequently the profile of individual membrane currents active during that action potential-differs substantially from that of native human cardiomyocytes, largely due to almost negligible expression of the inward rectifier potassium current (IK1). In the present study, we attempted to "normalize" the action potential profile of our hiPSC-CMs by inserting a voltage dependent in silico IK1 into our hiPSC-CMs, using the dynamic clamp configuration of the patch clamp technique. Recordings were made from single hiPSC-CMs, using the perforated patch clamp technique at physiological temperature. We assessed three different models of IK1, with different degrees of inward rectification, and systematically varied the magnitude of the inserted IK1. Also, we modified the inserted IK1 in order to assess the effects of loss- and gain-of-function mutations in the KCNJ2 gene, which encodes the Kir2.1 protein that is primarily responsible for the IK1 channel in human ventricle. For our experiments, we selected spontaneously beating hiPSC-CMs, with negligible IK1 as demonstrated in separate voltage clamp experiments, which were paced at 1 Hz. Upon addition of in silico IK1 with a peak outward density of 4-6 pA/pF, these hiPSC-CMs showed a ventricular-like action potential morphology with a stable resting membrane potential near -80 mV and a maximum upstroke velocity >150 V/s (n = 9). Proarrhythmic action potential changes were observed upon injection of both loss-of-function and gain-of-function IK1, as associated with Andersen-Tawil syndrome type 1 and short QT syndrome type 3, respectively (n = 6). We conclude that injection of in silico IK1 makes the hiPSC-CM a more reliable model for investigating mechanisms underlying cardiac arrhythmias.
Collapse
Affiliation(s)
- Rosalie M E Meijer van Putten
- Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| | - Isabella Mengarelli
- Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| | - Kaomei Guan
- Department of Cardiology and Pneumology, Georg-August-University of Göttingen Göttingen, Germany
| | - Jan G Zegers
- Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| | - Antoni C G van Ginneken
- Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| | - Arie O Verkerk
- Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| | - Ronald Wilders
- Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| |
Collapse
|