1
|
Specht SJ, Rohringer S, Hager P, Grasl C, Schmitt AM, Pach VJC, Ehrmann K, Baudis S, Liska R, Kiss H, Schneider KH, Podesser BK, Bergmeister H. Decellularized Extracellular Matrix and Polyurethane Vascular Grafts Have Positive Effects on the Inflammatory and Pro-Thrombotic State of Aged Endothelial Cells. J Biomed Mater Res A 2025; 113:e37830. [PMID: 39610352 DOI: 10.1002/jbm.a.37830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/14/2024] [Accepted: 10/19/2024] [Indexed: 11/30/2024]
Abstract
In vitro assessment of small-diameter synthetic vascular grafts usually uses standard cell culture conditions with early-passage cells. However, these conduits are mainly implanted in elderly patients and are subject to complex cellular interactions influenced by age and inflammation. Understanding these factors is central to the development of vascular grafts tailored to the specific needs of patients. In this study, the effects of aged endothelial cells subjected to pro- and anti-inflammatory agents and cultivated on a newly developed biodegradable electrospun thermoplastic polyurethane/poly(urethane-urea) blend (TPU/TPUU), on clinically available expanded polytetrafluorethylene (ePTFE), and on decellularized extracellular matrix (dECM) grafts were investigated. Young and aged endothelial cells were exposed to pro- and anti-inflammatory agents and characterized by morphology, migration capacity, and gene expression. In addition, the cells were seeded onto the various graft materials and examined microscopically alongside gene expression analyses. When exposed to pro-inflammatory cytokines, young and aged cells demonstrated signs of endothelial activation. Cells seeded on ePTFE showed reduced attachment and increased expression of pro-inflammatory genes compared with the other materials. dECM and TPU/TPUU substrates provided better support for endothelialization with aged cells under inflammatory conditions compared with ePTFE. Moreover, TPU/TPUU showed positive effects on reducing pro-thrombotic and pro-inflammatory gene expression in endothelial cells. Our results thus emphasize the importance of developing new synthetic graft materials as an alternative for clinically used ePTFE.
Collapse
Affiliation(s)
- Sophie J Specht
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Sabrina Rohringer
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Pia Hager
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Christian Grasl
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Anna-Maria Schmitt
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Virginia J C Pach
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Katharina Ehrmann
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Institute of Applied Synthetic Chemistry, Technical University of Vienna, Vienna, Austria
| | - Stefan Baudis
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Institute of Applied Synthetic Chemistry, Technical University of Vienna, Vienna, Austria
| | - Robert Liska
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Institute of Applied Synthetic Chemistry, Technical University of Vienna, Vienna, Austria
| | - Herbert Kiss
- Department of Obstetrics and Gynecology, Division of Obstetrics and Feto-Maternal Medicine, Medical University of Vienna, Vienna, Austria
| | - Karl H Schneider
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Bruno K Podesser
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Helga Bergmeister
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
2
|
Zhu TY, Hu P, Mi YH, Zhang JL, Xu AN, Gao MT, Zhang YY, Shen SB, Yang GM, Pan Y. Telomerase reverse transcriptase gene knock-in unleashes enhanced longevity and accelerated damage repair in mice. Aging Cell 2024:e14445. [PMID: 39660787 DOI: 10.1111/acel.14445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/24/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
While previous research has demonstrated the therapeutic efficacy of telomerase reverse transcriptase (TERT) overexpression using adeno-associated virus and cytomegalovirus vectors to combat aging, the broader implications of TERT germline gene editing on the mammalian genome, proteomic composition, phenotypes, lifespan extension, and damage repair remain largely unexplored. In this study, we elucidate the functional properties of transgenic mice carrying the Tert transgene, guided by precise gene targeting into the Rosa26 locus via embryonic stem (ES) cells under the control of the elongation factor 1α (EF1α) promoter. The Tert knock-in (TertKI) mice harboring the EF1α-Tert gene displayed elevated telomerase activity, elongated telomeres, and extended lifespan, with no spontaneous genotoxicity or carcinogenicity. The TertKI mice showed also enhanced wound healing, characterized by significantly increased expression of Fgf7, Vegf, and collagen. Additionally, TertKI mice exhibited robust resistance to the progression of colitis induced by dextran sodium sulfate (DSS), accompanied by reduced expression of disease-deteriorating genes. These findings foreshadow the potential of TertKI as an extraordinary rejuvenation force, promising not only longevity but also rejuvenation in skin and intestinal aging.
Collapse
Affiliation(s)
- Tian-Yi Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Po Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yu-Hui Mi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jun-Li Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - An-Na Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ming-Tong Gao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ying-Ying Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - San-Bing Shen
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Guang-Ming Yang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yang Pan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Wang Y, Zhang Y, Gong G, Liu Q, Li L, Zhang M, Shen S, Wang R, Wu J, Xu W. Single-cell analysis of human peripheral blood reveals high immune response activity in successful ageing individuals. Mech Ageing Dev 2024; 223:112011. [PMID: 39622417 DOI: 10.1016/j.mad.2024.112011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Beneficial remodeling of the immune system in successful ageing individuals (centenarians and supercentenarians) is critical for healthy ageing. However, mechanisms for dynamic regulation of immunity during ageing remain unclear. We use single-cell RNA sequencing (scRNA-seq) as an analytical strategy to study the dynamic regulation of immunity during aging and its molecular mechanisms at the single-cell level. We performed an integrative analysis of 87,215 peripheral blood mononuclear cells, from seven supercentenarians, three centenarians, and four elderly controls, generated by single-cell transcriptomics complemented with fluorescence-activated cell sorting. Animals experiments were also conducted to validate the makers of healthy aging found by our bioinformatic analysis and further explore the dynamic of immune changes during aging process. We found that CD8+ effector memory T cells and terminally differentiated B cells were enriched in the longevity group (centenarians and supercentenarians), whereas naïve T cells and Tregs were enriched in elderly controls. CD56dim NK cells in the longevity group activated Fc-γ receptor signaling. The higher antigen-presenting ability of CD14+ monocytes in the longevity group and the CellChat analysis indicated that CD14+ monocytes might assist active T and B cells. Here, we revealed the adaptive immune remodeling geromarkers of immunosenescence in centenarians and supercentenarians, which could be considered as biomarkers of healthy aging, and might help sustain immune responses and achieve exceptional longevity.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Department of Geriatrics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing 210031, China
| | - Yuxing Zhang
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ge Gong
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Quanzhong Liu
- Department of Bioinformatics, Nanjing Medical University, Nanjing 211166, China
| | - Liangyu Li
- Department of Bioinformatics, Nanjing Medical University, Nanjing 211166, China; BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Mingjiong Zhang
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shuping Shen
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ran Wang
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jianqing Wu
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Wei Xu
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
4
|
Sanchez-Martinez Y, Lopez-Lopez JP, Gomez-Montoya I, Hernandez-Quiñones D, Ruiz-Uribe G, Rincón-Rueda Z, Garcia RG, Lopez-Jaramillo P. Muscular strength, endothelial function and cognitive disorders: state of the art. J Physiol 2024. [PMID: 39612371 DOI: 10.1113/jp285939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/24/2024] [Indexed: 12/01/2024] Open
Abstract
In recent years, the ageing population has increasingly grown. This process carries a range of pathophysiological changes involving alterations in the skeletal muscle, vascular endothelium and brain function, becoming an important risk factor for developing cognitive disorders and cardiovascular diseases. With ageing, there is a decrease in muscle mass and muscle strength, and a relationship between muscle strength decrease and cognitive decline has been shown. Lower handgrip strength has been linked to memory impairment, lower global cognitive function, decreased attention and reduced visuospatial abilities in the elderly, but understanding of the underlying mechanisms that explain the link between altered skeletal muscle function and structure, endothelial dysfunction, and the role of endothelial dysfunction in the onset of cognitive disorders has been scarcely explored. This review aims to detail the cellular and molecular mechanisms by which the progressive changes associated with ageing can alter healthy skeletal muscle and endothelial function, creating an environment of oxidative stress, inflammation and mitochondrial dysfunction. These changes can lead to reduced muscle strength, and the secretion of detrimental endothelial factors, resulting in endothelial dysfunction, blood-brain barrier disruption, and damage to neurons and microglia, ultimately accelerating the onset of cognitive disorders in the elderly. In addition, we aimed to describe the mechanisms that potentially explain how preserving muscular function with resistance training could prevent brain function deterioration, including the production of different factors that allow an improved endothelial function, haemodynamic parameters and brain plasticity, ultimately delaying the onset of cognitive impairment and chronic diseases.
Collapse
Affiliation(s)
| | - Jose P Lopez-Lopez
- Masira Research Institute, Universidad de Santander (UDES), Bucaramanga, Colombia
| | | | | | - Gabriela Ruiz-Uribe
- Masira Research Institute, Universidad de Santander (UDES), Bucaramanga, Colombia
| | - Zully Rincón-Rueda
- Masira Research Institute, Universidad de Santander (UDES), Bucaramanga, Colombia
| | - Ronald G Garcia
- Masira Research Institute, Universidad de Santander (UDES), Bucaramanga, Colombia
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Patricio Lopez-Jaramillo
- Masira Research Institute, Universidad de Santander (UDES), Bucaramanga, Colombia
- Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| |
Collapse
|
5
|
Liao YL, Fang YF, Sun JX, Dou GR. Senescent endothelial cells: a potential target for diabetic retinopathy. Angiogenesis 2024; 27:663-679. [PMID: 39215875 PMCID: PMC11564237 DOI: 10.1007/s10456-024-09943-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Diabetic retinopathy (DR) is a diabetic complication that results in visual impairment and relevant retinal diseases. Current therapeutic strategies on DR primarily focus on antiangiogenic therapies, which particularly target vascular endothelial growth factor and its related signaling transduction. However, these therapies still have limitations due to the intricate pathogenesis of DR. Emerging studies have shown that premature senescence of endothelial cells (ECs) in a hyperglycemic environment is involved in the disease process of DR and plays multiple roles at different stages. Moreover, these surprising discoveries have driven the development of senotherapeutics and strategies targeting senescent endothelial cells (SECs), which present challenging but promising prospects in DR treatment. In this review, we focus on the inducers and mechanisms of EC senescence in the pathogenesis of DR and summarize the current research advances in the development of senotherapeutics and strategies that target SECs for DR treatment. Herein, we highlight the role played by key factors at different stages of EC senescence, which will be critical for facilitating the development of future innovative treatment strategies that target the different stages of senescence in DR.
Collapse
Affiliation(s)
- Ying-Lu Liao
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- Department of the Cadet Team 6 of the School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yi-Fan Fang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jia-Xing Sun
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Guo-Rui Dou
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
6
|
Ma W, Zhou T, Tang S, Gan L, Cao Y. Advantages and disadvantages of targeting senescent endothelial cells in cardiovascular and cerebrovascular diseases based on small extracellular vesicles. Expert Opin Ther Targets 2024; 28:1001-1015. [PMID: 39475108 DOI: 10.1080/14728222.2024.2421760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/23/2024] [Indexed: 12/13/2024]
Abstract
INTRODUCTION With the growth of the aging population, age-related diseases have become a heavy global burden, particularly cardiovascular and cerebrovascular diseases (CVDs). Endothelial cell (EC) senescence constitutes an essential factor in the development of CVDs, prompting increased focus on strategies to alleviate or reverse EC senescence. AREAS COVERED Small extracellular vesicles (sEVs) are cell-derived membrane structures, that contain proteins, lipids, RNAs, metabolites, growth factors and cytokines. They are widely used in treating CVDs, and show remarkable therapeutic potential in alleviating age-related CVDs by inhibiting or reversing EC senescence. However, unclear anti-senescence mechanism poses challenges for clinical application of sEVs, and a systematic review is lacking. EXPERT OPINION Targeting senescent ECs with sEVs in age-related CVDs treatment represents a promising therapeutic strategy, with modifying sEVs and their contents emerging as a prevalent approach. Nevertheless, challenges remain, such as identifying and selectively targeting senescent cells, understanding the consequences of removing senescent ECs and senescence-associated secretory phenotype (SASP), and assessing the side effects of therapeutic sEVs on CVDs. More substantial experimental and clinical data are needed to advance clinical practice.
Collapse
Affiliation(s)
- Wen Ma
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, China
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
- Disaster Medical Center, Sichuan University, Chengdu, China
| | - Tingyuan Zhou
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, China
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
- Disaster Medical Center, Sichuan University, Chengdu, China
| | - Songling Tang
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
- Disaster Medical Center, Sichuan University, Chengdu, China
| | - Lu Gan
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
- Disaster Medical Center, Sichuan University, Chengdu, China
| | - Yu Cao
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
- Disaster Medical Center, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Shan L, Tao M, Zhang W, Zhao JD, Liu XC, Fang ZH, Gao JR. Comprehensive analysis of the m 6A demethylase FTO in endothelial dysfunction by MeRIP sequencing. Exp Cell Res 2024; 442:114268. [PMID: 39343042 DOI: 10.1016/j.yexcr.2024.114268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 09/17/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
N6-methyladenosine (m6A) is the most general post-transcriptional modification of eukaryotic mRNAs and long-stranded non-coding RNAs. In this process, It has been shown that FTO associates with the m6A mRNA demethylase and plays a role in diabetic vascular endothelial dysfunction. In the present study, we detected FTO protein expression in HUVECs by Western blot and found that FTO was highly expressed in all disease groups relative to the control group. To explore the mechanism of FTO in T2DM vasculopathy, we performed an analysis by methylated RNA immunoprecipitation sequencing (MeRIP-seq) to elucidate the role of aberrant m6A modification and mRNA expression in endothelial dysfunction. The results showed 202 overlapping genes with varying m6A modifications and varied mRNA expression, and GO and KEGG enrichment analysis revealed that these genes were predominantly enriched in pathways associated with T2DM complications and endothelial dysfunction. By an integrated analysis of MeRIP-seq and RNA-seq results, the IGV plots showed elevated kurtosis of downstream candidate gene modifications, which may be downstream targets for FTO to exercise biological functions. HOXA9 and PLAU mRNA expression levels were significantly down after FTO inhibition. In the current work, we set up a typological profile of the m6A genes among HUVECs as well as uncovered a hidden relationship between RNA methylation modifications for T2DM vasculopathy-associated genes. Taken together, this study indicates that endothelial functional impairment is present in T2DM patients and may be related to aberrant expression of FTO.
Collapse
Affiliation(s)
- Li Shan
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China
| | - Meng Tao
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230011, Anhui, China
| | - Wei Zhang
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230011, Anhui, China
| | - Jin-Dong Zhao
- The Key Laboratory of Xin'an Medicine, Hefei, 230012, China
| | - Xiao-Chuang Liu
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China
| | - Zhao-Hui Fang
- The Key Laboratory of Xin'an Medicine, Hefei, 230012, China
| | - Jia-Rong Gao
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China.
| |
Collapse
|
8
|
Ramos-Junior OJF, Pinheiro VDS, de Souza TGDS, Alvares TS. Effect of Curcumin Intake on Skeletal Muscle Oxygen Saturation Parameters in Older Participants. Antioxidants (Basel) 2024; 13:1175. [PMID: 39456429 PMCID: PMC11505174 DOI: 10.3390/antiox13101175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
INTRODUCTION Aging is associated with increased reactive oxygen species (ROS) and reduced bioavailability of nitric oxide (NO). Curcumin has been shown to increase NO bioavailability due to its ability to neutralize ROS, preventing oxidative stress. The present study aimed to investigate the effect of curcumin intake on skeletal muscle oxygen parameters and exercise tolerance in response to exercise in older people. Changes in circulating levels of NO metabolites were also investigated. METHODS Older subjects consumed 10 g of turmeric root extract from Curcuma longa L. (containing 95.33% of the total curcuminoids) or placebo in a randomized, double-blind, crossover study. A time of 2 h after ingestion, the participants performed one set of rhythmic handgrip exercise until the limit of tolerance, followed by 5 min of recovery. During exercise and exercise recovery, skeletal muscle oxygen saturation parameters were recorded. RESULTS During exercise, the amplitude of deoxyhemoglobin was greater after curcumin intake compared to placebo (CUR: 13.11 ± 9.52 vs. PLA: 10.22 ± 8.39 μM, p = 0.030). Furthermore, a faster skeletal muscle oxygen resaturation during exercise recovery was observed after curcumin compared to placebo (CUR: 1.01 ± 0.65 vs. PLA: 0.32 ± 0.20%.s-1, p = 0.004). These results were associated with significant changes in plasma nitrite (CUR: 6.82 ± 11.68 vs. PLA: -4.94 ± 17.28%, p = 0.028). There was no statistical difference in the total hemoglobin, exercise time until fatigue, and plasma nitrate between groups. CONCLUSIONS The present study suggests that curcumin improves muscle oxygenation status at the capillary level in older adults by possibly improving muscle oxygen extraction and/or delivery, with no effect on exercise tolerance.
Collapse
Affiliation(s)
- Olavo João Frederico Ramos-Junior
- Nutrition and Exercise Metabolism Research Group, Federal University of Rio de Janeiro, Macaé 27971-525, RJ, Brazil; (O.J.F.R.-J.); (V.d.S.P.); (T.G.d.S.d.S.)
| | - Vivian dos Santos Pinheiro
- Nutrition and Exercise Metabolism Research Group, Federal University of Rio de Janeiro, Macaé 27971-525, RJ, Brazil; (O.J.F.R.-J.); (V.d.S.P.); (T.G.d.S.d.S.)
| | - Tatiane Gomes dos Santos de Souza
- Nutrition and Exercise Metabolism Research Group, Federal University of Rio de Janeiro, Macaé 27971-525, RJ, Brazil; (O.J.F.R.-J.); (V.d.S.P.); (T.G.d.S.d.S.)
| | - Thiago Silveira Alvares
- Nutrition and Exercise Metabolism Research Group, Federal University of Rio de Janeiro, Macaé 27971-525, RJ, Brazil; (O.J.F.R.-J.); (V.d.S.P.); (T.G.d.S.d.S.)
- Food and Nutrition Institute, Multidisciplinary Center, Federal University of Rio de Janeiro, Macaé 27930-560, RJ, Brazil
| |
Collapse
|
9
|
Maldonado-Rengel R, Sócola-Barsallo Z, Vásquez B. Alterations of Liver Morphology in Senescent Rats. Int J Mol Sci 2024; 25:9846. [PMID: 39337332 PMCID: PMC11431848 DOI: 10.3390/ijms25189846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Age-related liver changes can have important implications for health and metabolic function. This study aimed to describe the morphoquantitative alterations of the liver in senescent rats compared to adult rats. Twelve male rats were used, divided into 6-month-old adults (group A) and 36-month-old senescent rats (group S). Morphometric and histopathological studies, quantification of collagen types I and III, and stereological analyses were performed to determine the volume density of mononucleated (VvhepM) and binucleated (VvhepB) hepatocyte nuclei, surface area density (SvhepM), and number density (NvhepM) of mononucleated hepatocyte nuclei. The findings reveal an alteration of the normal liver tissue architecture in senescent rats and the presence of inflammatory lesions and fibrosis. In addition, there was a decrease in body and liver mass and volume. Group S showed a significant reduction in VvhepM and NvhepM; however, SvhepM was significantly higher. No significant differences were noted in the percentage of binucleated hepatocytes between the two groups. This study reveals substantial morphological changes in the aging liver, with possible functional implications. More research is needed on the underlying mechanisms and their consequences at older ages.
Collapse
Affiliation(s)
- Ruth Maldonado-Rengel
- Doctoral Program in Morphological Sciences, Faculty of Medicine, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco 4811230, Chile
- Department of Health Sciences, Universidad Técnica Particular de Loja, San Cayetano Alto, Calle París, Loja 110107, Ecuador
| | - Zaida Sócola-Barsallo
- Department of Health Sciences, Universidad Técnica Particular de Loja, San Cayetano Alto, Calle París, Loja 110107, Ecuador
| | - Bélgica Vásquez
- Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco 4811230, Chile
- Centre of Excellence in Morphological and Surgical Studies, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco 4811230, Chile
| |
Collapse
|
10
|
Kurhaluk N. Supplementation with l-arginine and nitrates vs age and individual physiological reactivity. Nutr Rev 2024; 82:1239-1259. [PMID: 37903373 DOI: 10.1093/nutrit/nuad131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023] Open
Abstract
Ageing is a natural ontogenetic phenomenon that entails a decrease in the adaptive capacity of the organism, as a result of which the body becomes less adaptable to stressful conditions. Nitrate and nitrite enter the body from exogenous sources and from nitrification of ammonia nitrogen by intestinal microorganisms. This review considers the mechanisms of action of l-arginine, a known inducer of nitric oxide (NO) biosynthesis, and nitrates as supplements in the processes of ageing and aggravated stress states, in which mechanisms of individual physiological reactivity play an important role. This approach can be used as an element of individual therapy or prevention of premature ageing processes depending on the different levels of initial reactivity of the functional systems. A search was performed of the PubMed, Scopus, and Google Scholar databases (n = 181 articles) and the author's own research (n = 4) up to May 5, 2023. The review presents analyses of data on targeted treatment of NO generation by supplementation with l-arginine or nitrates, which is a promising means for prevention of hypoxic conditions frequently accompanying pathological processes in an ageing organism. The review clarifies the role of the individual state of physiological reactivity, using the example of individuals with a high predominance of cholinergic regulatory mechanisms who already have a significant reserve of adaptive capacity. In studies of the predominance of adrenergic influences, a poorly trained organism as well as an elderly organism correspond to low resistance, which is an additional factor of damage at increased energy expenditure. CONCLUSION It is suggested that the role of NO synthesis from supplementation of dietary nitrates and nitrites increases with age rather than from oxygen-dependent biosynthetic reactions from l-arginine supplementation.
Collapse
Affiliation(s)
- Natalia Kurhaluk
- Department of Animal Physiology, Institute of Biology, Pomeranian University in Słupsk, Słupsk, Poland
| |
Collapse
|
11
|
Kim SY, Cheon J. Senescence-associated microvascular endothelial dysfunction: A focus on the blood-brain and blood-retinal barriers. Ageing Res Rev 2024; 100:102446. [PMID: 39111407 DOI: 10.1016/j.arr.2024.102446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/05/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024]
Abstract
The blood-brain barrier (BBB) and blood-retinal barrier (BRB) constitute critical physiochemical interfaces, precisely orchestrating the bidirectional communication between the brain/retina and blood. Increased permeability or leakage of these barriers has been demonstrably linked to age-related vascular and parenchymal damage. While it has been suggested that the gradual aging process may coincide with disruptions in these barriers, this phenomenon is significantly exacerbated in individuals with age-related neurodegenerative disorders (ARND). This review focuses on the microvascular endothelium, a key constituent of BBB and BRB, highlighting the impact of endothelial senescence on barrier dysfunction and exploring recent discoveries regarding core pathways implicated in its breakdown. Subsequently, we address the "vascular senescence hypothesis" for ARND, with a particular emphasis on Alzheimer's disease and age-related macular degeneration, centered on endothelial senescence. Finally, we discuss potential senotherapeutic strategies targeting barrier dysfunction.
Collapse
Affiliation(s)
- Sung Young Kim
- Department of Biochemistry, Konkuk University School of Medicine, Republic of Korea; Research Institute of Medical Science, Konkuk University, Republic of Korea; IBST, Konkuk University, Republic of Korea.
| | - Jaejoung Cheon
- Department of Biochemistry, Konkuk University School of Medicine, Republic of Korea
| |
Collapse
|
12
|
Zieliński A, Jasińska-Sumińska K, Bręborowicz A, Kowalska K, Zabel M, Wysocka T, Khalil RA, Raffetto JD, Urbanek T. Changes of the serum properties and its effect on the endothelial cells restoration in patients with chronic venous disease treated with sulodexide. J Vasc Surg Venous Lymphat Disord 2024; 12:101941. [PMID: 38945361 PMCID: PMC11523325 DOI: 10.1016/j.jvsv.2024.101941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/12/2024] [Accepted: 06/16/2024] [Indexed: 07/02/2024]
Abstract
OBJECTIVE Inflammation and endothelial dysfunction are important venous changes in patients with chronic venous disease (CVD). The use of the venoactive drugs remains an important treatment modality for patients with CVD, reducing the severity of the CVD-related symptoms and swelling but also reducing inflammation and protecting endothelial cells. In this research, the effects of the serum obtained from patients with CVD before and after sulodexide treatment were evaluated for in vivo and in vitro inflammatory markers and endothelial cell function. METHODS Inflammatory markers (IL-6, matrix metalloproteinase-9 [MMP-9], vascular cell adhesion molecule-1 [VCAM-1], and von Willebrand factor [vWF]) from the incompetent great saphenous veins (GSVs) and from the systemic venous circulation were studied in 10 patients with CVD (C2s) before and after 2 months of sulodexide (2 × 500 lipasemic units/d) therapy. Serum obtained from the vein blood before and after sulodexide treatment was evaluated for in vitro cultured human umbilical vein endothelial cell function. RESULTS The serum collected from lower leg incompetent GSVs had significantly elevated levels of VCAM-1 (+29%, P < .001) compared with the serum from the systemic circulation. Endothelial cells exposed to the serum from the incompetent lower leg veins of the untreated CVD patients demonstrated higher stimulated synthesis of MMP-9 (+17%, P < .01), as well as increased markers of senescence (prolongation of population doubling time, β-galactosidase activity, and expression of p21 and p53 genes). CVD serum-induced senescent endothelial cells had a higher expression of genes regulating IL-6, MMP-9, VCAM-1, and vWF synthesis. The overall proinflammatory effect on endothelial cells by the serum collected from the incompetent GSVs was stronger as compared with the serum from the systemic circulation. Serum collected from the veins after sulodexide treatment caused lower levels of endothelial cell inflammatory markers as well as respective gene expression than serum obtained at the beginning of the study (before sulodexide treatment). Sulodexide application also reduced the inflammatory secretory activity of the senescent endothelial cells. Sulodexide treatment resulted in the decrease of the majority of the studied inflammatory parameters in both lower limb incompetent vein and systemic blood. CONCLUSIONS In patients with CVD, there are significant differences between circulating inflammatory markers analyzed from the lower leg incompetent GSV segments compared with the systemic circulation, indicating a higher inflammatory condition in CVD. Treatment with sulodexide reduces the proinflammatory and endothelial cell activation properties of the serum from patients with CVD. CLINICAL RELEVANCE The study documented the significant proinflammatory human vascular endothelial cell activation when exposed to the serum collected from the varicose veins as compared with the serum from the systemic circulation in patients with chronic venous disease (CVD). The inflammatory marker expression, endothelial dysfunction, and endothelial cell senescence transformation can be successfully controlled and downregulated by patients' exposure to the glycosaminoglycan (sulodexide) treatment. Further studies are needed to confirm if glycosaminoglycan application can prevent further CVD clinical progression due to potential CVD-related pathological processes' modulation and their downregulation.
Collapse
Affiliation(s)
- Adam Zieliński
- Section of Surgery, Vascular Surgery and Phlebology, doktorA Medical Center, Warsaw, Poland
| | | | - Andrzej Bręborowicz
- Department of Pathophysiology, Poznan University of Medical Sciences, Poznań, Poland; Department of Anatomy and Histology, University of Zielona Góra, Zielona Góra, Poland
| | - Katarzyna Kowalska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznań, Poland
| | - Maciej Zabel
- Department of Anatomy and Histology, University of Zielona Góra, Zielona Góra, Poland
| | - Teresa Wysocka
- Department of Anatomy and Histology, University of Zielona Góra, Zielona Góra, Poland
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA
| | - Joseph D Raffetto
- VA Boston Healthcare System, Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| | - Tomasz Urbanek
- Department of General Surgery, Vascular Surgery, Angiology and Phlebology, Medical University of Silesia, Katowice, Poland.
| |
Collapse
|
13
|
Sahu Y, Jamadade P, Ch Maharana K, Singh S. Role of mitochondrial homeostasis in D-galactose-induced cardiovascular ageing from bench to bedside. Mitochondrion 2024; 78:101923. [PMID: 38925493 DOI: 10.1016/j.mito.2024.101923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
Ageing is an inevitable phenomenon which affects the cellular to the organism level in the progression of the time. Oxidative stress and inflammation are now widely regarded as the key processes involved in the aging process, which may then cause significant harm to mitochondrial DNA, leading to apoptosis. Normal circulatory function is a significant predictor of disease-free life expectancy. Indeed, disorders affecting the cardiovascular system, which are becoming more common, are the primary cause of worldwide morbidity, disability, and mortality. Cardiovascular aging may precede or possibly underpin overall, age-related health decline. Numerous studies have foundmitochondrial mechanistc approachplays a vital role in the in the onset and development of aging. The D-galactose (D-gal)-induced aging model is well recognized and commonly used in the aging study. In this review we redeposit the association of the previous and current studies on mitochondrial homeostasis and its underlying mechanisms in D-galactose cardiovascular ageing. Further we focus the novel and the treatment strategies to combat the major complication leading to the cardiovascular ageing.
Collapse
Affiliation(s)
- Yogita Sahu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hajipur, Vaishali, Bihar, India
| | - Pratiksha Jamadade
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hajipur, Vaishali, Bihar, India
| | - Krushna Ch Maharana
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hajipur, Vaishali, Bihar, India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hajipur, Vaishali, Bihar, India.
| |
Collapse
|
14
|
Campagna R, Mazzanti L, Pompei V, Alia S, Vignini A, Emanuelli M. The Multifaceted Role of Endothelial Sirt1 in Vascular Aging: An Update. Cells 2024; 13:1469. [PMID: 39273039 PMCID: PMC11394039 DOI: 10.3390/cells13171469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
NAD+-dependent deacetylase sirtuin-1 (Sirt1) belongs to the sirtuins family, known to be longevity regulators, and exerts a key role in the prevention of vascular aging. By aging, the expression levels of Sirt1 decline with a severe impact on vascular function, such as the rise of endothelial dysfunction, which in turn promotes the development of cardiovascular diseases. In this context, the impact of Sirt1 activity in preventing endothelial senescence is particularly important. Given the key role of Sirt1 in counteracting endothelial senescence, great efforts have been made to deepen the knowledge about the intricate cross-talks and interactions of Sirt1 with other molecules, in order to set up possible strategies to boost Sirt1 activity to prevent or treat vascular aging. The aim of this review is to provide a proper background on the regulation and function of Sirt1 in the vascular endothelium and to discuss the recent advances regarding the therapeutic strategies of targeting Sirt1 to counteract vascular aging.
Collapse
Affiliation(s)
- Roberto Campagna
- Department of Clinical Sciences, Polytechnic University of Marche, 60100 Ancona, Italy; (V.P.); (S.A.); (A.V.); (M.E.)
| | - Laura Mazzanti
- Department of Clinical Sciences, Polytechnic University of Marche, 60100 Ancona, Italy; (V.P.); (S.A.); (A.V.); (M.E.)
- Fondazione Salesi, Ospedale G. Salesi, 60100 Ancona, Italy
| | - Veronica Pompei
- Department of Clinical Sciences, Polytechnic University of Marche, 60100 Ancona, Italy; (V.P.); (S.A.); (A.V.); (M.E.)
| | - Sonila Alia
- Department of Clinical Sciences, Polytechnic University of Marche, 60100 Ancona, Italy; (V.P.); (S.A.); (A.V.); (M.E.)
| | - Arianna Vignini
- Department of Clinical Sciences, Polytechnic University of Marche, 60100 Ancona, Italy; (V.P.); (S.A.); (A.V.); (M.E.)
- Research Center of Health Education and Health Promotion, Università Politecnica delle Marche, 60100 Ancona, Italy
| | - Monica Emanuelli
- Department of Clinical Sciences, Polytechnic University of Marche, 60100 Ancona, Italy; (V.P.); (S.A.); (A.V.); (M.E.)
| |
Collapse
|
15
|
Liu Z, Zheng L. Associations between SII, SIRI, and cardiovascular disease in obese individuals: a nationwide cross-sectional analysis. Front Cardiovasc Med 2024; 11:1361088. [PMID: 39238504 PMCID: PMC11374596 DOI: 10.3389/fcvm.2024.1361088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 07/30/2024] [Indexed: 09/07/2024] Open
Abstract
Background Systemic immune-inflammation index (SII) and systemic inflammation response index (SIRI) are comprehensive markers of inflammatory status. However, the correlation between SII and SIRI and the prevalence of cardiovascular disease (CVD) in populations with obesity remains unknown. Methods This is a cross-sectional study with data obtained from the National Health and Nutrition Examination Survey from 1999 to 2018. SII and SIRI were calculated using the following equations: SII = (platelet count × neutrophil count)/lymphocyte count. SIRI = (neutrophil count × monocyte count)/lymphocyte count. Spearman's rank correlation coefficient was used to assess the relationship between SII and SIRI and baseline variables. Logistic regression models and generalized additive model (GAM) with a spline smoothing function were used to evaluate the association between SIRI and CVD prevalence. Nomogram and receiver operating characteristic curve (ROC) analysis were used to assess the value of the risk prediction model. Results A total of 17,261 participants with obesity and SII and SIRI publicly available data were used for this study. Multivariate logistic regression analysis revealed that SIRI, rather than SII, was an independent risk factor for CVD prevalence. For every standard deviation increase in SIRI, there was a 13%, 15%, and 28% increase in the odds ratios of CVD prevalence (OR = 1.13, 95% CI: 1.04-1.22, P = 0.01), coronary heart disease (OR = 1.15, 95% CI: 1.05-1.26, P = 0.002), and congestive heart failure (OR = 1.28, 95% CI: 1.16-1.41, P < 0.001). ROC results demonstrated that SIRI had a certain accuracy in predicting CVD prevalence (AUC = 0.604), especially when combined with other variables used in the nomogram (AUC = 0.828). The smooth curve fitting regression analysis demonstrated a significant linear association between the risk of SIRI and the odds ratio of CVD prevalence (P for nonlinear = 0.275). Conclusions SIRI is a relatively stable indicator of inflammation and is independently associated with the prevalence of CVD. It may serve as a novel inflammatory indicator to estimate CVD prevalence in populations with obesity.
Collapse
Affiliation(s)
- Zhou Liu
- Department of Cardiology, Huai'an Hospital Affiliated to Yangzhou University (The Fifth People's Hospital of Huai'an), Huai'an, China
| | - Longxuan Zheng
- Department of Cardiology, Huai'an Hospital Affiliated to Yangzhou University (The Fifth People's Hospital of Huai'an), Huai'an, China
| |
Collapse
|
16
|
Solovev I, Sergeeva A, Geraskina A, Shaposhnikov M, Vedunova M, Borysova O, Moskalev A. Aging and physiological barriers: mechanisms of barrier integrity changes and implications for age-related diseases. Mol Biol Rep 2024; 51:917. [PMID: 39158744 DOI: 10.1007/s11033-024-09833-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024]
Abstract
The phenomenon of compartmentalization is one of the key traits of life. Biological membranes and histohematic barriers protect the internal environment of the cell and organism from endogenous and exogenous impacts. It is known that the integrity of these barriers decreases with age due to the loss of homeostasis, including age-related gene expression profile changes and the abnormal folding/assembly, crosslinking, and cleavage of barrier-forming macromolecules in addition to morphological changes in cells and tissues. The critical molecular and cellular mechanisms involved in physiological barrier integrity maintenance and aging-associated changes in their functioning are reviewed on different levels: molecular, organelle, cellular, tissue (histohematic, epithelial, and endothelial barriers), and organ one (skin). Biogerontology, which studies physiological barriers in the aspect of age, is still in its infancy; data are being accumulated, but there is no talk of the synthesis of complex theories yet. This paper mainly presents the mechanisms that will become targets of anti-aging therapy only in the future, possibly: pharmacological, cellular, and gene therapies, including potential geroprotectors, hormetins, senomorphic drugs, and senolytics.
Collapse
Affiliation(s)
- Ilya Solovev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st, Syktyvkar, 167982, Russian Federation
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky prosp, Syktyvkar, 167001, Russian Federation
| | - Alena Sergeeva
- Lobachevsky State University, Nizhny Novgorod, 603022, Russian Federation
| | | | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st, Syktyvkar, 167982, Russian Federation
| | - Maria Vedunova
- Laboratory of genetics and epigenetics of aging, Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University, Moscow, 129226, Russian Federation
| | | | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st, Syktyvkar, 167982, Russian Federation.
- Lobachevsky State University, Nizhny Novgorod, 603022, Russian Federation.
- Laboratory of genetics and epigenetics of aging, Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University, Moscow, 129226, Russian Federation.
| |
Collapse
|
17
|
Qian YW, Guo YQ, Li YL, Wang Y, Guo S, Niu QQ, Zhu ML, Li P. The antihypertensive effect of Alizarin is achieved by activating VEGFR2/eNOS pathway, attenuating oxidative stress-induced mitochondrial damage and premature senescence. Life Sci 2024; 351:122862. [PMID: 38917872 DOI: 10.1016/j.lfs.2024.122862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/10/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
The primary and initial manifestations of hypertension encompass arterial hypoelasticity and histiocyte senescence. Oxidative stress plays a pivotal role in the progression of senescence. Elevated intracellular oxidative stress levels will directly induce cell damage, disrupt normal physiological signal transduction, which can cause mitochondrial dysfunction to accelerate the process of senescence. Alizarin, an anthraquinone active ingredient isolated from Rubia cordifolia L., has a variety of pharmacological effects, including antioxidant, anti-inflammatory and anti-platelet. Nevertheless, its potential in lowering blood pressure (BP) and mitigating hypertension-induced vascular senescence remains uncertain. In this study, we used spontaneously hypertensive rats (SHR) and human umbilical vein endothelial cells (HUVECs) to establish a model of vascular senescence in hypertension. Our aim was to elucidate the mechanisms underpinning the vascular protective effects of Alizarin. By assessing systolic blood pressure (SBP) and diastolic blood pressure (DBP), H&E staining, SA-β-Gal staining, vascular function, oxidative stress levels, calcium ion concentration and mitochondrial membrane potential, we found that Alizarin not only restored SBP and increased endothelium-dependent relaxation (EDR) in SHR, but also inhibited oxidative stress-induced mitochondrial damage and significantly delayed the vascular senescence effect in hypertension, and the mechanism may be related to the activation of VEGFR2/eNOS signaling pathway.
Collapse
Affiliation(s)
- Yi-Wen Qian
- Department of Pharmacy, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471000, China
| | - Ya-Qi Guo
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Yin-Lan Li
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Heilongjiang 150040, China
| | - Yang Wang
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Shuang Guo
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437100, China
| | - Qian-Qian Niu
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Mo-Li Zhu
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China.
| | - Peng Li
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437100, China.
| |
Collapse
|
18
|
Huang Y, Liu Z, Li M, Wang D, Ye J, Hu Q, Zhang Q, Lin Y, Chen R, Liang X, Li X, Lin X. Deciphering the impact of aging on splenic endothelial cell heterogeneity and immunosenescence through single-cell RNA sequencing analysis. Immun Ageing 2024; 21:48. [PMID: 39026350 PMCID: PMC11256597 DOI: 10.1186/s12979-024-00452-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Aging is associated with significant structural and functional changes in the spleen, leading to immunosenescence, yet the detailed effects on splenic vascular endothelial cells (ECs) and their immunomodulatory roles are not fully understood. In this study, a single-cell RNA (scRNA) atlas of EC transcriptomes from young and aged mouse spleens was constructed to reveal age-related molecular changes, including increased inflammation and reduced vascular development and also the potential interaction between splenic endothelial cells and immune cells. RESULTS Ten clusters of splenic endothelial cells were identified. DEGs analysis across different EC clusters revealed the molecular changes with aging, showing the increase in the overall inflammatory microenvironment and the loss in vascular development function of aged ECs. Notably, four EC clusters with immunological functions were identified, suggesting an Endothelial-to-Immune-like Cell Transition (EndICLT) potentially driven by aging. Pseudotime analysis of the Immunology4 cluster further indicated a possible aging-induced transitional state, potentially initiated by Ctss gene activation. Finally, the effects of aging on cell signaling communication between different EC clusters and immune cells were analyzed. CONCLUSIONS This comprehensive atlas elucidates the complex interplay between ECs and immune cells in the aging spleen, offering new insights into endothelial heterogeneity, reprogramming, and the mechanisms of immunosenescence.
Collapse
Affiliation(s)
- Yanjing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Zhong Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Mengke Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Dongliang Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Jinguo Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Qiuling Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Qikai Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Yuheng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Rongxin Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xuanwei Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xingyi Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China.
| | - Xianchai Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China.
| |
Collapse
|
19
|
Jiang X, Wang W, Lei L, Feng T, Hu Y, Liu P, Li Y, Sheng R, Zhang Y, Li S, Zhang J, Zhang Y, Jin ZG, Tian Z, Jiang J, Xu Y, Si S. Antirheumatic drug leflunomide attenuates atherosclerosis by regulating lipid metabolism and endothelial dysfunction via DHODH/AMPK signaling pathway. Int J Biol Sci 2024; 20:3725-3741. [PMID: 39113703 PMCID: PMC11302888 DOI: 10.7150/ijbs.93465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/21/2024] [Indexed: 08/10/2024] Open
Abstract
The probability of cardiovascular events has been reported lower in rheumatoid arthritis (RA) patients treated with leflunomide. However, the anti-atherosclerotic and cardiovascular protective effects and metabolism of leflunomide are not explored. In this study, we assessed the potential benefits of leflunomide on atherosclerosis and revealed the underlying mechanism. ApoE-/- mice were fed a western diet (WD) alone or supplemented with leflunomide (20 mg/kg, oral gavage, once per day) for 12 weeks. Samples of the aorta, heart, liver, serum, and macrophages were collected. We found that leflunomide significantly reduced lesion size in both en-face aortas and aortic root in WD-fed ApoE-/- mice. Leflunomide also obviously improved dyslipidemia, reduced hepatic lipid content, and improved disorders of glucose and lipid metabolism in vivo. RNA-Seq results showed that leflunomide effectively regulated the genes' expression involved in the lipid metabolism pathway. Importantly, leflunomide significantly increased the phosphorylation levels of AMPKα and acetyl-CoA carboxylase (ACC) in vivo. Furthermore, leflunomide and its active metabolite teriflunomide suppressed lipid accumulation in free fatty acid (FFA)-induced AML12 cells and improved endothelial dysfunction in palmitic acid (PA)-induced HUVECs through activating AMPK signaling and inhibiting dihydroorotate dehydrogenase (DHODH) signaling pathway. We present evidence that leflunomide and teriflunomide ameliorate atherosclerosis by regulating lipid metabolism and endothelial dysfunction. Our findings suggest a promising use of antirheumatic small-molecule drugs leflunomide and teriflunomide for the treatment of atherosclerosis and related cardiovascular diseases (CVDs).
Collapse
Affiliation(s)
- Xinhai Jiang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), No.1 Tiantan Xili, Beijing, 100050, China
| | - Weizhi Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), No.1 Tiantan Xili, Beijing, 100050, China
| | - Lijuan Lei
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), No.1 Tiantan Xili, Beijing, 100050, China
| | - Tingting Feng
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China
| | - Yang Hu
- Pharmacy Department, Peking Union Medical College Hospital, PUMC & CAMS, Beijing, 100730, China
| | - Peng Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), No.1 Tiantan Xili, Beijing, 100050, China
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave, Box CVRI, Rochester, NY 14642, USA
| | - Yining Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), No.1 Tiantan Xili, Beijing, 100050, China
| | - Ren Sheng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), No.1 Tiantan Xili, Beijing, 100050, China
| | - Yuyan Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), No.1 Tiantan Xili, Beijing, 100050, China
| | - Shunwang Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), No.1 Tiantan Xili, Beijing, 100050, China
| | - Jing Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), No.1 Tiantan Xili, Beijing, 100050, China
| | - Yuhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), No.1 Tiantan Xili, Beijing, 100050, China
| | - Zheng-gen Jin
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave, Box CVRI, Rochester, NY 14642, USA
| | - Zhuang Tian
- Cardiology Department, Peking Union Medical College Hospital, PUMC & CAMS, No.1 Shuaifuyuan, Beijing, 100730, China
| | - Jiandong Jiang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), No.1 Tiantan Xili, Beijing, 100050, China
| | - Yanni Xu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), No.1 Tiantan Xili, Beijing, 100050, China
| | - Shuyi Si
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), No.1 Tiantan Xili, Beijing, 100050, China
| |
Collapse
|
20
|
Xiujin Z, Lili G, Jing F, Wenhai Y, Sikai L, Wan-Yin S. HOXD9 regulated mitophagy to promote endothelial progenitor cells angiogenesis and deep vein thrombosis recanalization and resolution. Mol Med 2024; 30:84. [PMID: 38867168 PMCID: PMC11167931 DOI: 10.1186/s10020-024-00852-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/31/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Deep vein thrombosis (DVT) is a common vascular surgical disease caused by the coagulation of blood in the deep veins, and predominantly occur in the lower limbs. Endothelial progenitor cells (EPCs) are multi-functional stem cells, which are precursors of vascular endothelial cells. EPCs have gradually evolved into a promising treatment strategy for promoting deep vein thrombus dissolution and recanalization through the stimulation of various physical and chemical factors. METHODS In this study, we utilized a mouse DVT model and performed several experiments including qRT-PCR, Western blot, tube formation, wound healing, Transwell assay, immunofluorescence, flow cytometry analysis, and immunoprecipitation to investigate the role of HOXD9 in the function of EPCs cells. The therapeutic effect of EPCs overexpressing HOXD9 on the DVT model and its mechanism were also explored. RESULTS Overexpression of HOXD9 significantly enhanced the angiogenesis and migration abilities of EPCs, while inhibiting cell apoptosis. Additionally, results indicated that HOXD9 specifically targeted the HRD1 promoter region and regulated the downstream PINK1-mediated mitophagy. Interestingly, intravenous injection of EPCs overexpressing HOXD9 into mice promoted thrombus dissolution and recanalization, significantly decreasing venous thrombosis. CONCLUSIONS The findings of this study reveal that HOXD9 plays a pivotal role in stimulating vascular formation in endothelial progenitor cells, indicating its potential as a therapeutic target for DVT management.
Collapse
Affiliation(s)
- Zhang Xiujin
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Guo Lili
- Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Fan Jing
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Ye Wenhai
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Liu Sikai
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Shi Wan-Yin
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| |
Collapse
|
21
|
Rathod ML, Aw WY, Huang S, Lu J, Doherty EL, Whithworth CP, Xi G, Roy-Chaudhury P, Polacheck WJ. Donor-Derived Engineered Microvessels for Cardiovascular Risk Stratification of Patients with Kidney Failure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307901. [PMID: 38185718 PMCID: PMC11168887 DOI: 10.1002/smll.202307901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/28/2023] [Indexed: 01/09/2024]
Abstract
Cardiovascular disease is the cause of death in ≈50% of hemodialysis patients. Accumulation of uremic solutes in systemic circulation is thought to be a key driver of the endothelial dysfunction that underlies elevated cardiovascular events. A challenge in understanding the mechanisms relating chronic kidney disease to cardiovascular disease is the lack of in vitro models that allow screening of the effects of the uremic environment on the endothelium. Here, a method is described for microfabrication of human blood vessels from donor cells and perfused with donor serum. The resulting donor-derived microvessels are used to quantify vascular permeability, a hallmark of endothelial dysfunction, in response to serum spiked with pathophysiological levels of indoxyl sulfate, and in response to serum from patients with chronic kidney disease and from uremic pigs. The uremic environment has pronounced effects on microvascular integrity as demonstrated by irregular cell-cell junctions and increased permeability in comparison to cell culture media and healthy serum. Moreover, the engineered microvessels demonstrate an increase in sensitivity compared to traditional 2D assays. Thus, the devices and the methods presented here have the potential to be utilized to risk stratify and to direct personalized treatments for patients with chronic kidney disease.
Collapse
Affiliation(s)
- Mitesh L. Rathod
- Joint Department of Biomedical Engineering, University of
North Carolina at Chapel Hill and North Carolina State University, Chapel Hill and
Raleigh, NC, United States of America
| | - Wen Yih Aw
- Joint Department of Biomedical Engineering, University of
North Carolina at Chapel Hill and North Carolina State University, Chapel Hill and
Raleigh, NC, United States of America
| | - Stephanie Huang
- Joint Department of Biomedical Engineering, University of
North Carolina at Chapel Hill and North Carolina State University, Chapel Hill and
Raleigh, NC, United States of America
| | - Jingming Lu
- Joint Department of Biomedical Engineering, University of
North Carolina at Chapel Hill and North Carolina State University, Chapel Hill and
Raleigh, NC, United States of America
| | - Elizabeth L. Doherty
- Joint Department of Biomedical Engineering, University of
North Carolina at Chapel Hill and North Carolina State University, Chapel Hill and
Raleigh, NC, United States of America
| | - Chloe P. Whithworth
- Department of Genetics, University of North Carolina at
Chapel Hill School of Medicine, Chapel Hill, NC, United States of America
| | - Gang Xi
- UNC Kidney Centre, University of North Carolina at Chapel
Hill, NC, United States of America
| | - Prabir Roy-Chaudhury
- UNC Kidney Centre, University of North Carolina at Chapel
Hill, NC, United States of America
- WG (Bill Hefner) Salisbury VA Medical Center, United States
of America
| | - William J. Polacheck
- Joint Department of Biomedical Engineering, University of
North Carolina at Chapel Hill and North Carolina State University, Chapel Hill and
Raleigh, NC, United States of America
- Department of Cell Biology and Physiology, University of
North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- McAllister Heart Institute, University of North Carolina at
Chapel Hill, Chapel Hill, NC, United States of America
| |
Collapse
|
22
|
Chen X, Xu Y, Ju Y, Gu P. Metabolic Regulation of Endothelial Cells: A New Era for Treating Wet Age-Related Macular Degeneration. Int J Mol Sci 2024; 25:5926. [PMID: 38892113 PMCID: PMC11172501 DOI: 10.3390/ijms25115926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Wet age-related macular degeneration (wet AMD) is a primary contributor to visual impairment and severe vision loss globally, but the prevailing treatments are often unsatisfactory. The development of conventional treatment strategies has largely been based on the understanding that the angiogenic switch of endothelial cells (ECs) is mainly dictated by angiogenic growth factors. Even though treatments targeting vascular endothelial growth factor (VEGF), like ranibizumab, are widely administered, more than half of patients still exhibit inadequate or null responses, suggesting the involvement of other pathogenic mechanisms. With advances in research in recent years, it has become well recognized that EC metabolic regulation plays an active rather than merely passive responsive role in angiogenesis. Disturbances of these metabolic pathways may lead to excessive neovascularization in angiogenic diseases such as wet AMD, therefore targeted modulation of EC metabolism represents a promising therapeutic strategy for wet AMD. In this review, we comprehensively discuss the potential applications of EC metabolic regulation in wet AMD treatment from multiple perspectives, including the involvement of ECs in wet AMD pathogenesis, the major endothelial metabolic pathways, and novel therapeutic approaches targeting metabolism for wet AMD.
Collapse
Affiliation(s)
- Xirui Chen
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; (X.C.)
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Yang Xu
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; (X.C.)
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Yahan Ju
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; (X.C.)
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Ping Gu
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; (X.C.)
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| |
Collapse
|
23
|
Kwon JY, Maeng YS. Human Cord Blood Endothelial Progenitor Cells and Pregnancy Complications (Preeclampsia, Gestational Diabetes Mellitus, and Fetal Growth Restriction). Int J Mol Sci 2024; 25:4444. [PMID: 38674031 PMCID: PMC11050478 DOI: 10.3390/ijms25084444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Hemangioblasts give rise to endothelial progenitor cells (EPCs), which also express the cell surface markers CD133 and c-kit. They may differentiate into the outgrowth endothelial cells (OECs) that control neovascularization in the developing embryo. According to numerous studies, reduced levels of EPCs in circulation have been linked to human cardiovascular disorders. Furthermore, preeclampsia and senescence have been linked to levels of EPCs produced from cord blood. Uncertainties surround how preeclampsia affects the way EPCs function. It is reasonable to speculate that preeclampsia may have an impact on the function of fetal EPCs during the in utero period; however, the present literature suggests that maternal vasculopathies, including preeclampsia, damage fetal circulation. Additionally, the differentiation potential and general activity of EPCs may serve as an indicator of the health of the fetal vascular system as they promote neovascularization and repair during pregnancy. Thus, the purpose of this review is to compare-through the assessment of their quantity, differentiation potency, angiogenic activity, and senescence-the angiogenic function of fetal EPCs obtained from cord blood for normal and pregnancy problems (preeclampsia, gestational diabetes mellitus, and fetal growth restriction). This will shed light on the relationship between the angiogenic function of fetal EPCs and pregnancy complications, which could have an effect on the management of long-term health issues like metabolic and cardiovascular disorders in offspring with abnormal vasculature development.
Collapse
Affiliation(s)
- Ja-Young Kwon
- Department of Obstetrics and Gynecology, Institute of Women’s Life Medical Science, Yonsei University Health System, Seoul 03722, Republic of Korea;
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, 250 Seongsanno, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Yong-Sun Maeng
- Department of Obstetrics and Gynecology, Institute of Women’s Life Medical Science, Yonsei University Health System, Seoul 03722, Republic of Korea;
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, 250 Seongsanno, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
24
|
Todorov-Völgyi K, González-Gallego J, Müller SA, Beaufort N, Malik R, Schifferer M, Todorov MI, Crusius D, Robinson S, Schmidt A, Körbelin J, Bareyre F, Ertürk A, Haass C, Simons M, Paquet D, Lichtenthaler SF, Dichgans M. Proteomics of mouse brain endothelium uncovers dysregulation of vesicular transport pathways during aging. NATURE AGING 2024; 4:595-612. [PMID: 38519806 DOI: 10.1038/s43587-024-00598-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/20/2024] [Indexed: 03/25/2024]
Abstract
Age-related decline in brain endothelial cell (BEC) function contributes critically to neurological disease. Comprehensive atlases of the BEC transcriptome have become available, but results from proteomic profiling are lacking. To gain insights into endothelial pathways affected by aging, we developed a magnetic-activated cell sorting-based mouse BEC enrichment protocol compatible with proteomics and resolved the profiles of protein abundance changes during aging. Unsupervised cluster analysis revealed a segregation of age-related protein dynamics with biological functions, including a downregulation of vesicle-mediated transport. We found a dysregulation of key regulators of endocytosis and receptor recycling (most prominently Arf6), macropinocytosis and lysosomal degradation. In gene deletion and overexpression experiments, Arf6 affected endocytosis pathways in endothelial cells. Our approach uncovered changes not picked up by transcriptomic studies, such as accumulation of vesicle cargo and receptor ligands, including Apoe. Proteomic analysis of BECs from Apoe-deficient mice revealed a signature of accelerated aging. Our findings provide a resource for analysing BEC function during aging.
Collapse
Affiliation(s)
- Katalin Todorov-Völgyi
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.
| | - Judit González-Gallego
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- Graduate School of Systemic Neuroscience (GSN), University Hospital, LMU Munich, Munich, Germany
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Neuroproteomics, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Nathalie Beaufort
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Rainer Malik
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Martina Schifferer
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Mihail Ivilinov Todorov
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, Neuherberg, Germany
| | - Dennis Crusius
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Sophie Robinson
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- Graduate School of Systemic Neuroscience (GSN), University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Andree Schmidt
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Neuroproteomics, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jakob Körbelin
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florence Bareyre
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany
- Biomedical Center Munich (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Ali Ertürk
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, Neuherberg, Germany
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Division of Metabolic Biochemistry, Biomedical Center Munich (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mikael Simons
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Dominik Paquet
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Neuroproteomics, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
25
|
Hu Y, Zhang F, Ikonomovic M, Yang T. The Role of NRF2 in Cerebrovascular Protection: Implications for Vascular Cognitive Impairment and Dementia (VCID). Int J Mol Sci 2024; 25:3833. [PMID: 38612642 PMCID: PMC11012233 DOI: 10.3390/ijms25073833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Vascular cognitive impairment and dementia (VCID) represents a broad spectrum of cognitive decline secondary to cerebral vascular aging and injury. It is the second most common type of dementia, and the prevalence continues to increase. Nuclear factor erythroid 2-related factor 2 (NRF2) is enriched in the cerebral vasculature and has diverse roles in metabolic balance, mitochondrial stabilization, redox balance, and anti-inflammation. In this review, we first briefly introduce cerebrovascular aging in VCID and the NRF2 pathway. We then extensively discuss the effects of NRF2 activation in cerebrovascular components such as endothelial cells, vascular smooth muscle cells, pericytes, and perivascular macrophages. Finally, we summarize the clinical potential of NRF2 activators in VCID.
Collapse
Affiliation(s)
- Yizhou Hu
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15216, USA; (Y.H.); (F.Z.); (M.I.)
- Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA 15216, USA
- Department of Internal Medicine, University of Pittsburgh Medical Center (UPMC) McKeesport, McKeesport, PA 15132, USA
| | - Feng Zhang
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15216, USA; (Y.H.); (F.Z.); (M.I.)
- Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA 15216, USA
| | - Milos Ikonomovic
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15216, USA; (Y.H.); (F.Z.); (M.I.)
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15216, USA
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| | - Tuo Yang
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15216, USA; (Y.H.); (F.Z.); (M.I.)
- Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA 15216, USA
- Department of Internal Medicine, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15216, USA
| |
Collapse
|
26
|
Whitworth CP, Polacheck WJ. Vascular organs-on-chip made with patient-derived endothelial cells: technologies to transform drug discovery and disease modeling. Expert Opin Drug Discov 2024; 19:339-351. [PMID: 38117223 PMCID: PMC10922379 DOI: 10.1080/17460441.2023.2294947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
INTRODUCTION Vascular diseases impart a tremendous burden on healthcare systems in the United States and across the world. Efforts to improve therapeutic interventions are hindered by limitations of current experimental models. The integration of patient-derived cells with organ-on-chip (OoC) technology is a promising avenue for preclinical drug screening that improves upon traditional cell culture and animal models. AREAS COVERED The authors review induced pluripotent stem cells (iPSC) and blood outgrowth endothelial cells (BOEC) as two sources for patient-derived endothelial cells (EC). They summarize several studies that leverage patient-derived EC and OoC for precision disease modeling of the vasculature, with a focus on applications for drug discovery. They also highlight the utility of patient-derived EC in other translational endeavors, including ex vivo organogenesis and multi-organ-chip integration. EXPERT OPINION Precision disease modeling continues to mature in the academic space, but end-use by pharmaceutical companies is currently limited. To fully realize their transformative potential, OoC systems must balance their complexity with their ability to integrate with the highly standardized and high-throughput experimentation required for drug discovery and development.
Collapse
Affiliation(s)
- Chloe P Whitworth
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William J Polacheck
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
27
|
Kalies K, Knöpp K, Wurmbrand L, Korte L, Dutzmann J, Pilowski C, Koch S, Sedding D. Isolation of circulating endothelial cells provides tool to determine endothelial cell senescence in blood samples. Sci Rep 2024; 14:4271. [PMID: 38383692 PMCID: PMC10882010 DOI: 10.1038/s41598-024-54455-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/13/2024] [Indexed: 02/23/2024] Open
Abstract
Circulating endothelial cells (CEC) are arising as biomarkers for vascular diseases. However, whether they can be utilized as markers of endothelial cell (EC) senescence in vivo remains unknown. Here, we present a protocol to isolate circulating endothelial cells for a characterization of their senescent signature. Further, we characterize different models of EC senescence induction in vitro and show similar patterns of senescence being upregulated in CECs of aged patients as compared to young volunteers. Replication-(ageing), etoposide-(DNA damage) and angiotensin II-(ROS) induced senescence models showed the expected cell morphology and proliferation-reduction effects. Expression of senescence-associated secretory phenotype markers was specifically upregulated in replication-induced EC senescence. All models showed reduced telomere lengths and induction of the INK4a/ARF locus. Additional p14ARF-p21 pathway activation was observed in replication- and etoposide-induced EC senescence. Next, we established a combined magnetic activated- and fluorescence activated cell sorting (MACS-FACS) based protocol for CEC isolation. Interestingly, CECs isolated from aged volunteers showed similar senescence marker patterns as replication- and etoposide-induced senescence models. Here, we provide first proof of senescence in human blood derived circulating endothelial cells. These results hint towards an exciting future of using CECs as mirror cells for in vivo endothelial cell senescence, of particular interest in the context of endothelial dysfunction and cardiovascular diseases.
Collapse
Affiliation(s)
- Katrin Kalies
- Mid-German Heart Center, Department of Internal Medicine III, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Strasse 40, 06120, Halle (Saale), Germany.
| | - Kai Knöpp
- Mid-German Heart Center, Department of Internal Medicine III, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Strasse 40, 06120, Halle (Saale), Germany
| | - Leonie Wurmbrand
- Mid-German Heart Center, Department of Internal Medicine III, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Strasse 40, 06120, Halle (Saale), Germany
| | - Laura Korte
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg Straße 1, 30625, Hannover, Germany
| | - Jochen Dutzmann
- Mid-German Heart Center, Department of Internal Medicine III, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Strasse 40, 06120, Halle (Saale), Germany
| | - Claudia Pilowski
- Mid-German Heart Center, Department of Internal Medicine III, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Strasse 40, 06120, Halle (Saale), Germany
| | - Susanne Koch
- Mid-German Heart Center, Department of Internal Medicine III, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Strasse 40, 06120, Halle (Saale), Germany
| | - Daniel Sedding
- Mid-German Heart Center, Department of Internal Medicine III, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Strasse 40, 06120, Halle (Saale), Germany
| |
Collapse
|
28
|
Luan Y, Zhu X, Jiao Y, Liu H, Huang Z, Pei J, Xu Y, Yang Y, Ren K. Cardiac cell senescence: molecular mechanisms, key proteins and therapeutic targets. Cell Death Discov 2024; 10:78. [PMID: 38355681 PMCID: PMC10866973 DOI: 10.1038/s41420-023-01792-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 02/16/2024] Open
Abstract
Cardiac aging, particularly cardiac cell senescence, is a natural process that occurs as we age. Heart function gradually declines in old age, leading to continuous heart failure, even in people without a prior history of heart disease. To address this issue and improve cardiac cell function, it is crucial to investigate the molecular mechanisms underlying cardiac senescence. This review summarizes the main mechanisms and key proteins involved in cardiac cell senescence. This review further discusses the molecular modulators of cellular senescence in aging hearts. Furthermore, the discussion will encompass comprehensive descriptions of the key drugs, modes of action and potential targets for intervention in cardiac senescence. By offering a fresh perspective and comprehensive insights into the molecular mechanisms of cardiac senescence, this review seeks to provide a fresh perspective and important theoretical foundations for the development of drugs targeting this condition.
Collapse
Affiliation(s)
- Yi Luan
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Xiaofan Zhu
- Genetic and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Yuxue Jiao
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Hui Liu
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, P. R. China
| | - Zhen Huang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, P. R. China
| | - Jinyan Pei
- Quality Management Department, Henan No.3 Provincial People's Hospital, Zhengzhou, 450052, P. R. China
| | - Yawei Xu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
| | - Yang Yang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
| | - Kaidi Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, P. R. China.
| |
Collapse
|
29
|
Miao X, Rong L, Fu B, Cui S, Gu Z, Hu F, Lu Y, Yan S, Sun B, Jiang W, Zhang Y, Gong Y, Li C. Astragalus polysaccharides attenuate rat aortic endothelial senescence via regulation of the SIRT-1/p53 signaling pathway. BMC Complement Med Ther 2024; 24:80. [PMID: 38331805 PMCID: PMC10851563 DOI: 10.1186/s12906-024-04387-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 02/03/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Astragalus polysaccharides (APS) have been verified to have antioxidative and antiaging activities in the mouse liver and brain. However, the effect of APS on aortic endothelial senescence in old rats and its underlying mechanism are currently unclear. Here, we aimed to elucidate the effects of APS on rat aortic endothelial oxidative stress and senescence in vitro and in vivo and investigate the potential molecular targets. METHODS Twenty-month-old natural aging male rats were treated with APS (200 mg/kg, 400 mg/kg, 800 mg/kg daily) for 3 months. Serum parameters were tested using corresponding assay kits. Aortic morphology was observed by staining with hematoxylin and eosin (H&E) and Verhoeff Van Gieson (VVG). Aging-related protein levels were evaluated using immunofluorescence and western blot analysis. Primary rat aortic endothelial cells (RAECs) were isolated by tissue explant method. RAEC mitochondrial function was evaluated by the mitochondrial membrane potential (MMP) measured with the fluorescent lipophilic cationic dye JC‑1. Intracellular total antioxidant capacity (T-AOC) was detected by a commercial kit. Cellular senescence was assessed using senescence-associated-β-galactosidase (SA-β-Gal) staining. RESULTS Treatment of APS for three months was found to lessen aortic wall thickness, renovate vascular elastic tissue, improve vascular endothelial function, and reduce oxidative stress levels in 20-month-old rats. Primary mechanism analysis showed that APS treatment enhanced Sirtuin 1 (SIRT-1) protein expression and decreased the levels of the aging marker proteins p53, p21 and p16 in rat aortic tissue. Furthermore, APS abated hydrogen peroxide (H2O2)-induced cell senescence and restored H2O2-induced impairment of the MMP and T-AOC in RAECs. Similarly, APS increased SIRT-1 and decreased p53, p21 and p16 protein levels in senescent RAECs isolated from old rats. Knockdown of SIRT-1 diminished the protective effect of APS against H2O2-induced RAEC senescence and T-AOC loss, increased the levels of the downstream proteins p53 and p21, and abolished the inhibitory effect of APS on the expression of these proteins in RAECs. CONCLUSION APS may reduce rat aortic endothelial oxidative stress and senescence via the SIRT-1/p53 signaling pathway.
Collapse
Affiliation(s)
- Xinyu Miao
- Department of Endocrinology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, P.R. China
| | - Lingjun Rong
- Department of Endocrinology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, P.R. China
| | - Bo Fu
- Department of Nephrology, The First Medical Center, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital & Chinese PLA Institute of Nephrology, National Clinical Research Center for Kidney Diseases, Beijing, P.R. China
| | - Shaoyuan Cui
- Department of Nephrology, The First Medical Center, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital & Chinese PLA Institute of Nephrology, National Clinical Research Center for Kidney Diseases, Beijing, P.R. China
| | - Zhaoyan Gu
- Department of Endocrinology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, P.R. China
| | - Fan Hu
- Department of Endocrinology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, P.R. China
| | - Yanhui Lu
- Department of Endocrinology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, P.R. China
| | - Shuangtong Yan
- Department of Endocrinology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, P.R. China
| | - Banruo Sun
- Department of Endocrinology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, P.R. China
| | - Wenli Jiang
- School of Life Sciences, Hebei University, Baoding, Hebei, P.R. China
| | - Yuting Zhang
- School of Life Sciences, Hebei University, Baoding, Hebei, P.R. China
| | - Yanping Gong
- Department of Endocrinology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, P.R. China.
| | - Chunlin Li
- Department of Endocrinology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, P.R. China.
| |
Collapse
|
30
|
Bulum T, Brkljačić N, Tičinović Ivančić A, Čavlović M, Prkačin I, Tomić M. In Association with Other Risk Factors, Smoking Is the Main Predictor for Lower Transcutaneous Oxygen Pressure in Type 2 Diabetes. Biomedicines 2024; 12:381. [PMID: 38397984 PMCID: PMC10886561 DOI: 10.3390/biomedicines12020381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) significantly increases the risk of peripheral artery disease (PAD), and diabetes is the leading cause of nontraumatic amputations. This study investigated the risk factors for transcutaneous oxygen pressure (TcPO2) in T2DM, a noninvasive method to quantify skin oxygenation and the underlying microvascular circulation. The study included 119 T2DM patients (91 male/28 female). TcPO2 measurements were conducted with the Tina TCM4 Series transcutaneous monitor (Radiometer, Copenhagen, Sweden) and skin electrodes. Patients with TcPO2 < 40 mmHg were younger (p = 0.001), had significantly higher systolic blood pressure (SBP) (p = 0.023), glycated hemoglobin (HbA1c) (p = 0.013), fasting plasma glucose (fPG) (p = 0.038), total cholesterol (p = 0.006), LDL cholesterol (p = 0.004), and had more frequent smoking habits (p = 0.001) than those with TcPO2 ≥ 40 mmHg. The main predictors for the TcPO2 value (R2 = 0.211) obtained via stepwise regression analysis were age, smoking, SBP, HbA1c, fPG, and total and LDL cholesterol. Among all the listed predictors, smoking, HbA1c, and LDL cholesterol were found to be the most significant, with negative parameter estimates of -3.051310 (p = 0.0007), -2.032018 (p = 0.0003), and -2.560353 (p = 0.0046). The results of our study suggest that in association with other risk factors, smoking is the main predictor for lower TcPO2 in T2DM.
Collapse
Affiliation(s)
- Tomislav Bulum
- Vuk Vrhovac University Clinic for Diabetes, Endocrinology and Metabolic Diseases, Merkur University Hospital, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Neva Brkljačić
- Vuk Vrhovac University Clinic for Diabetes, Endocrinology and Metabolic Diseases, Merkur University Hospital, 10000 Zagreb, Croatia
| | | | - Maja Čavlović
- Vuk Vrhovac University Clinic for Diabetes, Endocrinology and Metabolic Diseases, Merkur University Hospital, 10000 Zagreb, Croatia
| | - Ingrid Prkačin
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department of Internal Medicine, Merkur University Hospital, 10000 Zagreb, Croatia
| | - Martina Tomić
- Vuk Vrhovac University Clinic for Diabetes, Endocrinology and Metabolic Diseases, Merkur University Hospital, 10000 Zagreb, Croatia
| |
Collapse
|
31
|
Marzoog BA. Endothelial Cell Aging and Autophagy Dysregulation. Cardiovasc Hematol Agents Med Chem 2024; 22:413-420. [PMID: 38265402 DOI: 10.2174/0118715257275690231129101408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/26/2023] [Accepted: 11/15/2023] [Indexed: 01/25/2024]
Abstract
Entropy is a natural process that affects all living cells, including senescence, an irreversible physiological process that impairs cell homeostasis. Age is a significant factor in disease development, and the pathogenesis of endothelial cell aging is multifactorial. Autophagy dysfunction accelerates endothelial cell aging and cell death, while autophagy preserves endothelial cell youthfulness through intracellular homeostasis and gene expression regulation. Sirt, mTORC1, and AMPK are youthfulness genes that induce autophagy by inhibiting mTOR and upregulating FIP200/Atg13/ULK1. Aged endothelial cells have decreased levels of Lamin B1, γH2AX, Ki67, BrdU, PCNA, and SA β-Gal. Maintaining healthy young endothelial cells can prevent most cardiovascular diseases. Autophagy targeting is a potential future therapeutic strategy to modify endothelial cell age and potentially slow or reverse the aging process. This article provides state-of-the-art research on the role of autophagy in endothelial cell aging. Hypothesizing that autophagy dysregulation is associated with early endothelial cell dysfunction and further clinical sequelae, including atherosclerosis formation, leading to various cardiovascular diseases.
Collapse
Affiliation(s)
- Basheer Abdullah Marzoog
- World-Class Research Center, Digital Biodesign and Personalized Healthcare, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; Postal Address, 8-2 Trubetskaya Street, 119991, Moscow, Russia
| |
Collapse
|
32
|
Chen Z, Li YY, Liu X. Copper homeostasis and copper-induced cell death: Novel targeting for intervention in the pathogenesis of vascular aging. Biomed Pharmacother 2023; 169:115839. [PMID: 37976889 DOI: 10.1016/j.biopha.2023.115839] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
Copper-induced cell death, also known as cuproptosis, is distinct from other types of cell death such as apoptosis, necrosis, and ferroptosis. It can trigger the accumulation of lethal reactive oxygen species, leading to the onset and progression of aging. The significant increases in copper ion levels in the aging populations confirm a close relationship between copper homeostasis and vascular aging. On the other hand, vascular aging is also closely related to the occurrence of various cardiovascular diseases throughout the aging process. However, the specific causes of vascular aging are not clear, and different living environments and stress patterns can lead to individualized vascular aging. By exploring the correlations between copper-induced cell death and vascular aging, we can gain a novel perspective on the pathogenesis of vascular aging and enhance the prognosis of atherosclerosis. This article aims to provide a comprehensive review of the impacts of copper homeostasis on vascular aging, including their effects on endothelial cells, smooth muscle cells, oxidative stress, ferroptosis, intestinal flora, and other related factors. Furthermore, we intend to discuss potential strategies involving cuproptosis and provide new insights for copper-related vascular aging.
Collapse
Affiliation(s)
- Zhuoying Chen
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Yuan-Yuan Li
- Department of Nursing, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China.
| | - Xiangjie Liu
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China.
| |
Collapse
|
33
|
Iusupova AO, Pakhtusov NN, Slepova OA, Belenkov YN, Privalova EV, Bure IV, Vetchinkina EA, Nemtsova MV. MiRNA-21a, miRNA-145, and miRNA-221 Expression and Their Correlations with WNT Proteins in Patients with Obstructive and Non-Obstructive Coronary Artery Disease. Int J Mol Sci 2023; 24:17613. [PMID: 38139440 PMCID: PMC10744268 DOI: 10.3390/ijms242417613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/08/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023] Open
Abstract
MicroRNAs and the WNT signaling cascade regulate the pathogenetic mechanisms of atherosclerotic coronary artery disease (CAD) development. OBJECTIVE To evaluate the expression of microRNAs (miR-21a, miR-145, and miR-221) and the role of the WNT signaling cascade (WNT1, WNT3a, WNT4, and WNT5a) in obstructive CAD and ischemia with no obstructive coronary arteries (INOCA). METHOD The cross-sectional observational study comprised 94 subjects. The expression of miR-21a, miR-145, miR-221 (RT-PCR) and the protein levels of WNT1, WNT3a, WNT4, WNT5a, LRP6, and SIRT1 (ELISA) were estimated in the plasma of 20 patients with INOCA (66.5 [62.8; 71.2] years; 25% men), 44 patients with obstructive CAD (64.0 [56.5; 71,0] years; 63.6% men), and 30 healthy volunteers without risk factors for cardiovascular diseases (CVD). RESULTS Higher levels of WNT1 (0.189 [0.184; 0.193] ng/mL vs. 0.15 [0.15-0.16] ng/mL, p < 0.001) and WNT3a (0.227 [0.181; 0.252] vs. 0.115 [0.07; 0.16] p < 0.001) were found in plasma samples from patients with obstructive CAD, whereas the INOCA group was characterized by higher concentrations of WNT4 (0.345 [0.278; 0.492] ng/mL vs. 0.203 [0.112; 0.378] ng/mL, p = 0.025) and WNT5a (0.17 [0.16; 0.17] ng/mL vs. 0.01 [0.007; 0.018] ng/mL, p < 0.001). MiR-221 expression level was higher in all CAD groups compared to the control group (p < 0.001), whereas miR-21a was more highly expressed in the control group than in the obstructive (p = 0.012) and INOCA (p = 0.003) groups. Correlation analysis revealed associations of miR-21a expression with WNT1 (r = -0.32; p = 0.028) and SIRT1 (r = 0.399; p = 0.005) protein levels in all CAD groups. A positive correlation between miR-145 expression and the WNT4 protein level was observed in patients with obstructive CAD (r = 0.436; p = 0.016). Based on multivariate regression analysis, a mathematical model was constructed that predicts the type of coronary lesion. WNT3a and LRP6 were the independent predictors of INOCA (p < 0.001 and p = 0.002, respectively). CONCLUSIONS Activation of the canonical cascade of WNT-β-catenin prevailed in patients with obstructive CAD, whereas in the INOCA and control groups, the activity of the non-canonical pathway was higher. It can be assumed that miR-21a has a negative effect on the formation of atherosclerotic CAD. Alternatively, miR-145 could be involved in the development of coronary artery obstruction, presumably through the regulation of the WNT4 protein. A mathematical model with WNT3a and LRP6 as predictors allows for the prediction of the type of coronary artery lesion.
Collapse
Affiliation(s)
- Alfiya Oskarovna Iusupova
- Department of Hospital Therapy No 1, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia (O.A.S.); (Y.N.B.)
| | - Nikolay Nikolaevich Pakhtusov
- Department of Hospital Therapy No 1, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia (O.A.S.); (Y.N.B.)
| | - Olga Alexandrovna Slepova
- Department of Hospital Therapy No 1, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia (O.A.S.); (Y.N.B.)
| | - Yuri Nikitich Belenkov
- Department of Hospital Therapy No 1, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia (O.A.S.); (Y.N.B.)
| | - Elena Vitalievna Privalova
- Department of Hospital Therapy No 1, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia (O.A.S.); (Y.N.B.)
| | - Irina Vladimirovna Bure
- Laboratory of Medical Genetics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (I.V.B.); (E.A.V.); (M.V.N.)
- Research Institute of Molecular and Personalized Medicine, Russian Medical Academy of Continuous Professional Education, 125445 Moscow, Russia
| | - Ekaterina Alexandrovna Vetchinkina
- Laboratory of Medical Genetics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (I.V.B.); (E.A.V.); (M.V.N.)
| | - Marina Vyacheslavovna Nemtsova
- Laboratory of Medical Genetics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (I.V.B.); (E.A.V.); (M.V.N.)
- Laboratory of Epigenetics, Research Centre for Medical Genetics, 115522 Moscow, Russia
| |
Collapse
|
34
|
Yong J, Wang R, Song F, Wang T. The protective effects of pirfenidone in preventing abdominal aortic aneurysm formation. J Biochem Mol Toxicol 2023; 37:e23514. [PMID: 37691532 DOI: 10.1002/jbt.23514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 07/07/2023] [Accepted: 08/17/2023] [Indexed: 09/12/2023]
Abstract
Vascular endothelial growth factor (VEGF)-mediated angiogenesis participates in the initiation and progression of abdominal aortic aneurysm (AAA). Pirfenidone is a compound that has anti-inflammatory and antioxidant properties and suppresses angiogenesis. Pirfenidone targets the extracellular matrix (ECM) and has therapeutic effects on fibrotic diseases. Therefore, we speculated that pirfenidone might have meaningful therapeutic effects in AAA, and the current study was designed to investigate this capacity. An AAA model was constructed in mice using a long-term injection of angiotensin II (Ang II), followed by a 28-day administration of 200 mg/kg/day pirfenidone. Increased maximal external diameter of the abdominal artery, promoted levels of VEGF-A and its receptor VEGF-R2, upregulated matrix metallopeptidases (MMP)-2 and MMP-9, and elevated release of pro-inflammatory cytokines were observed in AAA mice, which were extremely repressed by 200 mg/kg pirfenidone. Human aortic endothelial cells (HAECs) were stimulated with Ang II for 1 day, in the presence or absence of pirfenidone (100 nM). Elevated expression of VEGF-A and VEGF-R2, facilitated proliferation, increased tube formation ability, and upregulated MMP-2 and MMP-9 were observed in Ang II-stimulated HAECs, all of which were significantly rescued by 100 nM pirfenidone. Finally, the elevated levels of myeloid differentiation primary response 88 and phosphorylated nuclear factor-kappa-B subunit p65 observed in Ang II-stimulated HAECs were repressed by pirfenidone. Collectively, pirfenidone alleviated AAA by inhibiting ECM degradation and ameliorating endothelial dysfunction.
Collapse
Affiliation(s)
- Jun Yong
- Department of Vascular Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Rui Wang
- Department of Vascular Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Fubo Song
- Department of Medical Records Room, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Tao Wang
- Department of Vascular Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| |
Collapse
|
35
|
Kotecha EA, Zhang L, Aboklaish A, Cousins M, Hart K, Kotecha SJ, Watkins WJ, Kotecha S. Association of early and current life factors with telomere length in preterm-born children. PLoS One 2023; 18:e0293589. [PMID: 37939053 PMCID: PMC10631654 DOI: 10.1371/journal.pone.0293589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Telomeres shorten after each cell division. Since preterm-born babies are delivered early and often suffer from inflammatory conditions such as bronchopulmonary dysplasia (BPD), their telomere length may be altered. OBJECTIVES We assessed associations of early and current life factors with telomere length in saliva samples obtained from 7-12-year-old children born at ≤34 weeks' gestation and term-born controls. STUDY DESIGN Relative telomere length was measured by qPCR on extracted DNA. Groups were compared using independent t-tests or ANOVA with post-hoc correction. Linear regression analysis was also used. RESULTS 534 children had satisfactory telomere data including 383 who were preterm-born (mean (SD) birthweight 1732g (558g), gestation 31.1 (2.6) weeks) and 151 term-born (3464g (510g); 39.8 (1.3) weeks). Telomere length was longer in children who had intrauterine growth restriction (IUGR) at birth: mean (SD): 464.6 (166.3) vs. 418.6 (110.7) in the no-IUGR group; in females: 440.2 (130.1) vs. 405.7 (101.5) in males; and in the least deprived group (397.8 (95.0) vs. 437.6 (121.9) most vs least deprivation quintile). Differences were most notable in females with IUGR. However, telomere length was not different between the preterm and term groups; the BPD and no BPD groups nor was it related to lung function or cardiovascular measurements. In multivariable regression analyses, telomere length was associated with sex, IUGR and deprivation with the greatest difference observed in females with IUGR. CONCLUSIONS Telomere length was associated with sex, IUGR and deprivation, especially in females with IUGR, but not with prematurity, BPD, lung function or cardiovascular measurements.
Collapse
Affiliation(s)
- Ella A. Kotecha
- Department of Child Health, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Lei Zhang
- Department of Child Health, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Ali Aboklaish
- Department of Child Health, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Michael Cousins
- Department of Child Health, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Kylie Hart
- Department of Child Health, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Sarah J. Kotecha
- Department of Child Health, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - W. John Watkins
- Department of Child Health, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Sailesh Kotecha
- Department of Child Health, Cardiff University School of Medicine, Cardiff, United Kingdom
| |
Collapse
|
36
|
Tanriover C, Copur S, Mutlu A, Peltek IB, Galassi A, Ciceri P, Cozzolino M, Kanbay M. Early aging and premature vascular aging in chronic kidney disease. Clin Kidney J 2023; 16:1751-1765. [PMID: 37915901 PMCID: PMC10616490 DOI: 10.1093/ckj/sfad076] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Indexed: 11/03/2023] Open
Abstract
Aging is the progressive decline of body functions and a number of chronic conditions can lead to premature aging characterized by frailty, a diseased vasculature, osteoporosis, and muscle wasting. One of the major conditions associated with premature and accelerated aging is chronic kidney disease (CKD), which can also result in early vascular aging and the stiffening of the arteries. Premature vascular aging in CKD patients has been considered as a marker of prognosis of mortality and cardiovascular morbidity and therefore requires further attention. Oxidative stress, inflammation, advanced glycation end products, fructose, and an aberrant gut microbiota can contribute to the development of early aging in CKD patients. There are several key molecular pathways and molecules which play a role in aging and vascular aging including nuclear factor erythroid 2-related factor 2 (Nrf-2), AMP-activated protein kinase (AMPK), sirtuin 1 (SIRT1), and klotho. Potential therapeutic strategies can target these pathways. Future studies are needed to better understand the importance of premature aging and early vascular aging and to develop therapeutic alternatives for these conditions.
Collapse
Affiliation(s)
- Cem Tanriover
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Ali Mutlu
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | | | - Andrea Galassi
- Department of Health Sciences, Renal Division, University of Milan, Milan, Italy
| | - Paola Ciceri
- Department of Health Sciences, Renal Division, University of Milan, Milan, Italy
| | - Mario Cozzolino
- Department of Health Sciences, Renal Division, University of Milan, Milan, Italy
| | - Mehmet Kanbay
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| |
Collapse
|
37
|
Bu LL, Yuan HH, Xie LL, Guo MH, Liao DF, Zheng XL. New Dawn for Atherosclerosis: Vascular Endothelial Cell Senescence and Death. Int J Mol Sci 2023; 24:15160. [PMID: 37894840 PMCID: PMC10606899 DOI: 10.3390/ijms242015160] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Endothelial cells (ECs) form the inner linings of blood vessels, and are directly exposed to endogenous hazard signals and metabolites in the circulatory system. The senescence and death of ECs are not only adverse outcomes, but also causal contributors to endothelial dysfunction, an early risk marker of atherosclerosis. The pathophysiological process of EC senescence involves both structural and functional changes and has been linked to various factors, including oxidative stress, dysregulated cell cycle, hyperuricemia, vascular inflammation, and aberrant metabolite sensing and signaling. Multiple forms of EC death have been documented in atherosclerosis, including autophagic cell death, apoptosis, pyroptosis, NETosis, necroptosis, and ferroptosis. Despite this, the molecular mechanisms underlying EC senescence or death in atherogenesis are not fully understood. To provide a comprehensive update on the subject, this review examines the historic and latest findings on the molecular mechanisms and functional alterations associated with EC senescence and death in different stages of atherosclerosis.
Collapse
Affiliation(s)
- Lan-Lan Bu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.-L.B.); (D.-F.L.)
| | - Huan-Huan Yuan
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (H.-H.Y.); (L.-L.X.); (M.-H.G.)
| | - Ling-Li Xie
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (H.-H.Y.); (L.-L.X.); (M.-H.G.)
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Min-Hua Guo
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (H.-H.Y.); (L.-L.X.); (M.-H.G.)
| | - Duan-Fang Liao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.-L.B.); (D.-F.L.)
| | - Xi-Long Zheng
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
38
|
Bloom SI, Tucker JR, Machin DR, Abdeahad H, Adeyemo AO, Thomas TG, Bramwell RC, Lesniewski LA, Donato AJ. Reduction of double-strand DNA break repair exacerbates vascular aging. Aging (Albany NY) 2023; 15:9913-9947. [PMID: 37787989 PMCID: PMC10599741 DOI: 10.18632/aging.205066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/28/2023] [Indexed: 10/04/2023]
Abstract
Advanced age is the greatest risk factor for cardiovascular disease (CVD), the leading cause of death. Arterial function is impaired in advanced age which contributes to the development of CVD. One underexplored hypothesis is that DNA damage within arteries leads to this dysfunction, yet evidence demonstrating the incidence and physiological consequences of DNA damage in arteries, and in particular, in the microvasculature, in advanced age is limited. In the present study, we began by assessing the abundance of DNA damage in human and mouse lung microvascular endothelial cells and found that aging increases the percentage of cells with DNA damage. To explore the physiological consequences of increases in arterial DNA damage, we evaluated measures of endothelial function, microvascular and glycocalyx properties, and arterial stiffness in mice that were lacking or heterozygous for the double-strand DNA break repair protein ATM kinase. Surprisingly, in young mice, vascular function remained unchanged which led us to rationalize that perhaps aging is required to accumulate DNA damage. Indeed, in comparison to wild type littermate controls, mice heterozygous for ATM that were aged to ~18 mo (Old ATM +/-) displayed an accelerated vascular aging phenotype characterized by increases in arterial DNA damage, senescence signaling, and impairments in endothelium-dependent dilation due to elevated oxidative stress. Furthermore, old ATM +/- mice had reduced microvascular density and glycocalyx thickness as well as increased arterial stiffness. Collectively, these data demonstrate that DNA damage that accumulates in arteries in advanced age contributes to arterial dysfunction that is known to drive CVD.
Collapse
Affiliation(s)
- Samuel I. Bloom
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84148, USA
| | - Jordan R. Tucker
- Department of Internal Medicine, Division of Geriatrics, University of Utah School of Medicine, Salt Lake City, UT 84148, USA
| | - Daniel R. Machin
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32304, USA
| | - Hossein Abdeahad
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84148, USA
| | - AdeLola O. Adeyemo
- Department of Internal Medicine, Division of Geriatrics, University of Utah School of Medicine, Salt Lake City, UT 84148, USA
| | - Tyler G. Thomas
- Department of Internal Medicine, Division of Geriatrics, University of Utah School of Medicine, Salt Lake City, UT 84148, USA
| | - R. Colton Bramwell
- Department of Internal Medicine, Division of Geriatrics, University of Utah School of Medicine, Salt Lake City, UT 84148, USA
| | - Lisa A. Lesniewski
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84148, USA
- Department of Internal Medicine, Division of Geriatrics, University of Utah School of Medicine, Salt Lake City, UT 84148, USA
- Geriatric Research, Education and Clinical Center, Veteran’s Affairs Medical Center-Salt Lake City, Salt Lake City, UT 84148, USA
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, UT 84148, USA
| | - Anthony J. Donato
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84148, USA
- Department of Internal Medicine, Division of Geriatrics, University of Utah School of Medicine, Salt Lake City, UT 84148, USA
- Geriatric Research, Education and Clinical Center, Veteran’s Affairs Medical Center-Salt Lake City, Salt Lake City, UT 84148, USA
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, UT 84148, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84148, USA
| |
Collapse
|
39
|
Xuereb RA, Magri CJ, Xuereb RG. Arterial Stiffness and its Impact on Cardiovascular Health. Curr Cardiol Rep 2023; 25:1337-1349. [PMID: 37676581 DOI: 10.1007/s11886-023-01951-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/25/2023] [Indexed: 09/08/2023]
Abstract
PURPOSE OF REVIEW Cardiovascular diseases are the leading cause of mortality globally. Identifying patients at risk is important to initiate preventive strategies. Over the last few decades, the role of the endothelium and its impact on arterial stiffness have been recognised as playing a pivotal role in cardiovascular disease. This review will focus on the effect of arterial stiffness in different patient cohorts with regard to cardiovascular morbidity and mortality, as well as its use in clinical practice. RECENT FINDINGS Arterial stiffness is associated with a range of cardiovascular risk factors and is an independent predictor of cardiovascular mortality. The gold standard for evaluating arterial stiffness is pulse wave velocity. Recently, cardio-ankle vascular index has been implemented as an easy and highly reproducible measure of arterial stiffness. Moreover, certain pharmacologic agents may modify arterial stiffness and alter progression of cardiovascular disease. The endothelium plays an important role in cardiovascular disease. Implementing assessment of arterial stiffness in clinical practice will improve stratification of patients at risk of cardiovascular disease and help modify disease progression.
Collapse
Affiliation(s)
| | - Caroline J Magri
- Department of Cardiology, Mater Dei Hospital, Msida, Malta
- University of Malta, Msida, Malta
| | | |
Collapse
|
40
|
Zhang L, Yang P, Chen J, Chen Z, Liu Z, Feng G, Sha F, Li Z, Xu Z, Huang Y, Shi X, Li X, Cui J, Zhang C, Fan P, Cui L, Shen Y, Zhou G, Jing H, Ma S. CD44 connects autophagy decline and ageing in the vascular endothelium. Nat Commun 2023; 14:5524. [PMID: 37684253 PMCID: PMC10491636 DOI: 10.1038/s41467-023-41346-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
The decline of endothelial autophagy is closely related to vascular senescence and disease, although the molecular mechanisms connecting these outcomes in vascular endothelial cells (VECs) remain unclear. Here, we identify a crucial role for CD44, a multifunctional adhesion molecule, in controlling autophagy and ageing in VECs. The CD44 intercellular domain (CD44ICD) negatively regulates autophagy by reducing PIK3R4 and PIK3C3 levels and disrupting STAT3-dependent PtdIns3K complexes. CD44 and its homologue clec-31 are increased in ageing vascular endothelium and Caenorhabditis elegans, respectively, suggesting that an age-dependent increase in CD44 induces autophagy decline and ageing phenotypes. Accordingly, CD44 knockdown ameliorates age-associated phenotypes in VECs. The endothelium-specific CD44ICD knock-in mouse is shorter-lived, with VECs exhibiting obvious premature ageing characteristics associated with decreased basal autophagy. Autophagy activation suppresses the premature ageing of human and mouse VECs overexpressing CD44ICD, function conserved in the CD44 homologue clec-31 in C. elegans. Our work describes a mechanism coordinated by CD44 function bridging autophagy decline and ageing.
Collapse
Affiliation(s)
- Lu Zhang
- College of Bioengineering, Henan University of Technology, Lianhua Street, Zhengzhou, 450001, China.
| | - Peichang Yang
- College of Bioengineering, Henan University of Technology, Lianhua Street, Zhengzhou, 450001, China
| | - Jingxuan Chen
- College of Bioengineering, Henan University of Technology, Lianhua Street, Zhengzhou, 450001, China
| | - Zhiqiang Chen
- College of Bioengineering, Henan University of Technology, Lianhua Street, Zhengzhou, 450001, China
| | - Zhihui Liu
- College of Bioengineering, Henan University of Technology, Lianhua Street, Zhengzhou, 450001, China
| | - Gaoqing Feng
- College of Bioengineering, Henan University of Technology, Lianhua Street, Zhengzhou, 450001, China
| | - Fangfang Sha
- College of Bioengineering, Henan University of Technology, Lianhua Street, Zhengzhou, 450001, China
| | - Zirui Li
- College of Bioengineering, Henan University of Technology, Lianhua Street, Zhengzhou, 450001, China
| | - Zaoyi Xu
- College of Bioengineering, Henan University of Technology, Lianhua Street, Zhengzhou, 450001, China
| | - Yating Huang
- College of Bioengineering, Henan University of Technology, Lianhua Street, Zhengzhou, 450001, China
| | - Xiaotong Shi
- College of Bioengineering, Henan University of Technology, Lianhua Street, Zhengzhou, 450001, China
| | - Xuebiao Li
- College of Bioengineering, Henan University of Technology, Lianhua Street, Zhengzhou, 450001, China
| | - Jiatian Cui
- College of Bioengineering, Henan University of Technology, Lianhua Street, Zhengzhou, 450001, China
| | - Chenyi Zhang
- College of Bioengineering, Henan University of Technology, Lianhua Street, Zhengzhou, 450001, China
| | - Pei Fan
- College of Bioengineering, Henan University of Technology, Lianhua Street, Zhengzhou, 450001, China
| | - Liuqing Cui
- College of Bioengineering, Henan University of Technology, Lianhua Street, Zhengzhou, 450001, China
| | - Yunpeng Shen
- College of Bioengineering, Henan University of Technology, Lianhua Street, Zhengzhou, 450001, China
| | - Guangzhou Zhou
- College of Bioengineering, Henan University of Technology, Lianhua Street, Zhengzhou, 450001, China
| | - Hongjuan Jing
- College of Bioengineering, Henan University of Technology, Lianhua Street, Zhengzhou, 450001, China
| | - Shiwei Ma
- College of Bioengineering, Henan University of Technology, Lianhua Street, Zhengzhou, 450001, China
| |
Collapse
|
41
|
Volino-Souza M, Oliveira GVD, Tavares AC, Souza K, Alvares T. The effect of microencapsulated watermelon rind ( Citrullus lanatus) and beetroot ( Beta vulgaris L.) ingestion on ischemia/reperfusion-induced endothelial dysfunction: a randomised clinical trial. Food Funct 2023; 14:7959-7968. [PMID: 37561087 DOI: 10.1039/d3fo02612d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Endothelial dysfunction is commonly associated with a cardiovascular event, such as myocardial infarction. Myocardial infarction is marked by an ischemia/reperfusion (IR) phenomenon associated with endothelial dysfunction, contributing even more to future cardiovascular events. Although the supplementation with L-citrulline and nitrate from watermelon and beetroot have been used to improve vascular function, the effect of microencapsulated watermelon rind (WR) or its co-ingestion with beetroot (WR + B) on endothelial IR injury has not been addressed. Therefore, this study aimed to investigate the effect of a single dose of WR and WR + B on IR-induced macro-and microvascular dysfunction. In a randomized, crossover, placebo-controlled study, 12 volunteers underwent macro (flow-mediated dilation) and microvascular (muscle oxygen saturation) assessment and blood collection (to measure L-citrulline, L-arginine, nitrate and nitrite) before and after 20 min of blood occlusion in WR, WR + B and placebo conditions. Prolonged ischemia induced endothelial dysfunction in the macro but not in the microvasculature. The WR and WR + B supplementation significantly restored FMD after IR injury compared to the placebo (p < 0.05). However, there was no significant difference between WR and WR + B in the macrovascular function (p > 0.05). Plasma L-citrulline, L-arginine, nitrate, and nitrite significantly increased (p > 0.05) after WR and WR + B supplementation compared to the placebo. A single dose of WR and WR + B effectively minimizes IR-induced macrovascular endothelial dysfunction in healthy individuals. Beetroot co-ingestion with watermelon did not provide an additional effect of endothelial dysfunction induced by IR (NCT04781595, March 4, 2021).
Collapse
Affiliation(s)
- Mônica Volino-Souza
- Nutrition and Exercise Metabolism Research Group, Multidisciplinary Center UFRJ-Macaé, Federal University of Rio de Janeiro, Macaé, Rio de Janeiro, Brazil.
- Postgraduate Program in Food Science, Chemistry Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - Gustavo Vieira de Oliveira
- Nutrition and Exercise Metabolism Research Group, Multidisciplinary Center UFRJ-Macaé, Federal University of Rio de Janeiro, Macaé, Rio de Janeiro, Brazil.
- Medical Science Institute, Multidisciplinary Center UFRJ-Macaé, Federal University of Rio de Janeiro, Macaé, Brazil
| | - Anna Carolina Tavares
- Nutrition and Exercise Metabolism Research Group, Multidisciplinary Center UFRJ-Macaé, Federal University of Rio de Janeiro, Macaé, Rio de Janeiro, Brazil.
- Food and Nutrition Institute, Multidisciplinary Center UFRJ-Macaé, Federal University of Rio de Janeiro, Macaé, Brazil
| | - Karen Souza
- Nutrition and Exercise Metabolism Research Group, Multidisciplinary Center UFRJ-Macaé, Federal University of Rio de Janeiro, Macaé, Rio de Janeiro, Brazil.
- Food and Nutrition Institute, Multidisciplinary Center UFRJ-Macaé, Federal University of Rio de Janeiro, Macaé, Brazil
| | - Thiago Alvares
- Nutrition and Exercise Metabolism Research Group, Multidisciplinary Center UFRJ-Macaé, Federal University of Rio de Janeiro, Macaé, Rio de Janeiro, Brazil.
- Food and Nutrition Institute, Multidisciplinary Center UFRJ-Macaé, Federal University of Rio de Janeiro, Macaé, Brazil
| |
Collapse
|
42
|
Liu W, Zhang Y, Wei G, Zhang M, Li T, Liu Q, Zhou Z, Du Y, Wei H. Integrated Cascade Nanozymes with Antisenescence Activities for Atherosclerosis Therapy. Angew Chem Int Ed Engl 2023; 62:e202304465. [PMID: 37338457 DOI: 10.1002/anie.202304465] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 06/21/2023]
Abstract
Senescent cells are the critical drivers of atherosclerosis formation and maturation. Mitigating senescent cells holds promise for the treatment of atherosclerosis. In an atherosclerotic plaque microenvironment, senescent cells interact with reactive oxygen species (ROS), promoting the disease development. Here, we hypothesize that a cascade nanozyme with antisenescence and antioxidant activities can serve as an effective therapeutic for atherosclerosis. An integrated cascade nanozyme with superoxide dismutase- and glutathione peroxidase-like activities, named MSe1 , is developed in this work. The obtained cascade nanozyme can attenuate human umbilical vein endothelial cell (HUVEC) senescence by protecting DNA from damage. It significantly weakens inflammation in macrophages and HUVECs by eliminating overproduced intracellular ROS. Additionally, the MSe1 nanozyme effectively inhibits foam cell formation in macrophages and HUVECs by decreasing the internalization of oxidized low-density lipoprotein. After intravenous administration, the MSe1 nanozyme significantly inhibits the formation of atherosclerosis in apolipoprotein E-deficient (ApoE-/- ) mice by reducing oxidative stress and inflammation and then decreases the infiltration of inflammatory cells and senescent cells in atherosclerotic plaques. This study not only provides a cascade nanozyme but also suggests that the combination of antisenescence and antioxidative stress holds considerable promise for treating atherosclerosis.
Collapse
Affiliation(s)
- Wanling Liu
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, 210023, Nanjing, Jiangsu, China
| | - Yihong Zhang
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, 210023, Nanjing, Jiangsu, China
| | - Gen Wei
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, 210023, Nanjing, Jiangsu, China
| | - Minxuan Zhang
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, 210023, Nanjing, Jiangsu, China
| | - Tong Li
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, 210023, Nanjing, Jiangsu, China
| | - Quanyi Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Jilin, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Zijun Zhou
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, 210023, Nanjing, Jiangsu, China
| | - Yan Du
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Jilin, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Hui Wei
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, 210023, Nanjing, Jiangsu, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, Jiangsu, China
| |
Collapse
|
43
|
Jin J, Yang X, Gong H, Li X. Time- and Gender-Dependent Alterations in Mice during the Aging Process. Int J Mol Sci 2023; 24:12790. [PMID: 37628974 PMCID: PMC10454612 DOI: 10.3390/ijms241612790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Compared to young people and adults, there are differences in the ability of elderly people to resist diseases or injuries, with some noticeable features being gender-dependent. However, gender differences in age-related viscera alterations are not clear. To evaluate a potential possibility of gender differences during the natural aging process, we used three age groups to investigate the impact on spleens, kidneys, and adrenal glands. The immunofluorescence results showed that male-specific p21 proteins were concentrated in the renal tubule epithelial cells of the kidney. Histological staining revealed an increase in the frequencies of fat vacuoles located in the renal tubule epithelial cells of the cortex, under the renal capsule in the kidneys of male mice with age. In female mice, we found that the width of the globular zone in the adrenal gland cortex was unchanged with age. On the contrary, the male displayed a reduction in width. Compared to females, the content of epinephrine in adrenal gland tissue according to ELISA analysis was higher in adults, and a greater decline was observed in aged males particularly. These data confirmed the age-dependent differences between female and male mice; therefore, gender should be considered one of the major factors for personalized treatment in clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Jing Jin
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China (H.G.)
| | - Xiaoquan Yang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China (H.G.)
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, HUST-Suzhou Institute for Brainsmatics, JITRI, Chinese Academy of Medical Sciences, Suzhou 215004, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China (H.G.)
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, HUST-Suzhou Institute for Brainsmatics, JITRI, Chinese Academy of Medical Sciences, Suzhou 215004, China
| | - Xiangning Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China (H.G.)
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, HUST-Suzhou Institute for Brainsmatics, JITRI, Chinese Academy of Medical Sciences, Suzhou 215004, China
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
44
|
Cabaro S, Agognon AL, Nigro C, Orso S, Prevenzano I, Leone A, Morelli C, Mormone F, Romano S, Miele C, Beguinot F, Formisano P, Oriente F. Resveratrol Improves Endothelial Function by A PREP1-Mediated Pathway in Mouse Aortic Endothelial Cells. Int J Mol Sci 2023; 24:11891. [PMID: 37569266 PMCID: PMC10419093 DOI: 10.3390/ijms241511891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
PREP1 is a homeodomain transcription factor that impairs metabolism and is involved in age-related aortic thickening. In this study, we evaluated the role of PREP1 on endothelial function. Mouse Aortic Endothelial Cells (MAECs) transiently transfected with a Prep1 cDNA showed a 1.5- and 1.6-fold increase in eNOSThr495 and PKCα phosphorylation, respectively. Proinflammatory cytokines Tnf-α and Il-6 increased by 3.5 and 2.3-fold, respectively, in the presence of Prep1, while the antioxidant genes Sod2 and Atf4 were significantly reduced. Bisindolylmaleimide reverted the effects induced by PREP1, suggesting PKCα to be a mediator of PREP1 action. Interestingly, resveratrol, a phenolic micronutrient compound, reduced the PREP1 levels, eNOSThr495, PKCα phosphorylation, and proinflammatory cytokines and increased Sod2 and Atf4 mRNA levels. The experiments performed on the aorta of 18-month-old Prep1 hypomorphic heterozygous mice (Prep1i/+) expressing low levels of this protein showed a 54 and 60% decrease in PKCα and eNOSThr495 phosphorylation and a 45% reduction in Tnf-α levels, with no change in Il-6, compared to same-age WT mice. However, a significant decrease in Sod2 and Atf4 was observed in Prep1i/+ old mice, indicating the lack of age-induced antioxidant response. These results suggest that Prep1 deficiency partially improved the endothelial function in aged mice and suggested PREP1 as a novel target of resveratrol.
Collapse
Affiliation(s)
- Serena Cabaro
- Department of Translational Medicine, Federico II University of Naples and URT Genomic of Diabetes of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Via Pansini 5, 80131 Naples, Italy; (S.C.); (A.L.A.); (C.N.); (S.O.); (I.P.); (A.L.); (C.M.); (F.M.); (S.R.); (C.M.); (F.B.); (F.O.)
| | - Ayewa L. Agognon
- Department of Translational Medicine, Federico II University of Naples and URT Genomic of Diabetes of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Via Pansini 5, 80131 Naples, Italy; (S.C.); (A.L.A.); (C.N.); (S.O.); (I.P.); (A.L.); (C.M.); (F.M.); (S.R.); (C.M.); (F.B.); (F.O.)
| | - Cecilia Nigro
- Department of Translational Medicine, Federico II University of Naples and URT Genomic of Diabetes of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Via Pansini 5, 80131 Naples, Italy; (S.C.); (A.L.A.); (C.N.); (S.O.); (I.P.); (A.L.); (C.M.); (F.M.); (S.R.); (C.M.); (F.B.); (F.O.)
| | - Sonia Orso
- Department of Translational Medicine, Federico II University of Naples and URT Genomic of Diabetes of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Via Pansini 5, 80131 Naples, Italy; (S.C.); (A.L.A.); (C.N.); (S.O.); (I.P.); (A.L.); (C.M.); (F.M.); (S.R.); (C.M.); (F.B.); (F.O.)
| | - Immacolata Prevenzano
- Department of Translational Medicine, Federico II University of Naples and URT Genomic of Diabetes of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Via Pansini 5, 80131 Naples, Italy; (S.C.); (A.L.A.); (C.N.); (S.O.); (I.P.); (A.L.); (C.M.); (F.M.); (S.R.); (C.M.); (F.B.); (F.O.)
| | - Alessia Leone
- Department of Translational Medicine, Federico II University of Naples and URT Genomic of Diabetes of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Via Pansini 5, 80131 Naples, Italy; (S.C.); (A.L.A.); (C.N.); (S.O.); (I.P.); (A.L.); (C.M.); (F.M.); (S.R.); (C.M.); (F.B.); (F.O.)
| | - Cristina Morelli
- Department of Translational Medicine, Federico II University of Naples and URT Genomic of Diabetes of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Via Pansini 5, 80131 Naples, Italy; (S.C.); (A.L.A.); (C.N.); (S.O.); (I.P.); (A.L.); (C.M.); (F.M.); (S.R.); (C.M.); (F.B.); (F.O.)
| | - Federica Mormone
- Department of Translational Medicine, Federico II University of Naples and URT Genomic of Diabetes of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Via Pansini 5, 80131 Naples, Italy; (S.C.); (A.L.A.); (C.N.); (S.O.); (I.P.); (A.L.); (C.M.); (F.M.); (S.R.); (C.M.); (F.B.); (F.O.)
| | - Serena Romano
- Department of Translational Medicine, Federico II University of Naples and URT Genomic of Diabetes of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Via Pansini 5, 80131 Naples, Italy; (S.C.); (A.L.A.); (C.N.); (S.O.); (I.P.); (A.L.); (C.M.); (F.M.); (S.R.); (C.M.); (F.B.); (F.O.)
| | - Claudia Miele
- Department of Translational Medicine, Federico II University of Naples and URT Genomic of Diabetes of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Via Pansini 5, 80131 Naples, Italy; (S.C.); (A.L.A.); (C.N.); (S.O.); (I.P.); (A.L.); (C.M.); (F.M.); (S.R.); (C.M.); (F.B.); (F.O.)
| | - Francesco Beguinot
- Department of Translational Medicine, Federico II University of Naples and URT Genomic of Diabetes of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Via Pansini 5, 80131 Naples, Italy; (S.C.); (A.L.A.); (C.N.); (S.O.); (I.P.); (A.L.); (C.M.); (F.M.); (S.R.); (C.M.); (F.B.); (F.O.)
| | - Pietro Formisano
- Department of Translational Medicine, Federico II University of Naples and URT Genomic of Diabetes of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Via Pansini 5, 80131 Naples, Italy; (S.C.); (A.L.A.); (C.N.); (S.O.); (I.P.); (A.L.); (C.M.); (F.M.); (S.R.); (C.M.); (F.B.); (F.O.)
| | - Francesco Oriente
- Department of Translational Medicine, Federico II University of Naples and URT Genomic of Diabetes of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Via Pansini 5, 80131 Naples, Italy; (S.C.); (A.L.A.); (C.N.); (S.O.); (I.P.); (A.L.); (C.M.); (F.M.); (S.R.); (C.M.); (F.B.); (F.O.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
45
|
Paget V, Guipaud O, François A, Milliat F. Detection of radiation-induced senescence by the Debacq-Chainiaux protocol: Improvements and upgrade in the detection of positive events. Methods Cell Biol 2023; 181:161-180. [PMID: 38302237 DOI: 10.1016/bs.mcb.2022.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Senescent cells are blocked in the cell cycle but remain metabolically active. These cells, once engaged in the senescence process, fail to initiate DNA replication. Due to the shortening of telomeres, replicative senescence can be triggered by a DNA damage response. Moreover, cells can also be induced to senesce by DNA damage in response to elevated reactive oxygen species (ROS), activation of oncogenes, cell-cell fusion or after ionizing radiation. There are multiple experimental ways to detect senescent cells directly or indirectly. Senescence-associated cellular traits (SA β-Gal activity, increase in cell volume and lysosome content, appearance of γ-H2AX foci, increase of ROS and oxidative damage adducts, etc.) can be identified by numerous methods of detection (flow cytometry, confocal imaging, in situ staining, etc.). Here, we improved an existing flow cytometry protocol and further developed a new one specifically tailored to ionizing radiation-induced endothelial senescence. Thus, we have upgraded the Debacq-Chainiaux protocol and added improvements in this protocol (i) to better detect positive events (ii) to offer a compatibility to simultaneously analyze various intracellular molecules including phosphorylated signaling proteins and cytokines, whether related or not to senescence processes.
Collapse
Affiliation(s)
- V Paget
- Institute for Radiological Protection and Nuclear Safety (IRSN), PSE-SANTE/SERAMED/LRMed (Radiobiology of Medical Exposure Laboratory), Fontenay-aux-Roses, France.
| | - O Guipaud
- Institute for Radiological Protection and Nuclear Safety (IRSN), PSE-SANTE/SERAMED/LRMed (Radiobiology of Medical Exposure Laboratory), Fontenay-aux-Roses, France
| | - A François
- Institute for Radiological Protection and Nuclear Safety (IRSN), PSE-SANTE/SERAMED/LRMed (Radiobiology of Medical Exposure Laboratory), Fontenay-aux-Roses, France
| | - F Milliat
- Institute for Radiological Protection and Nuclear Safety (IRSN), PSE-SANTE/SERAMED/LRMed (Radiobiology of Medical Exposure Laboratory), Fontenay-aux-Roses, France
| |
Collapse
|
46
|
Wang Y, Du W, Sun Y, Zhang J, Ma C, Jin X. CRTC1 is a potential target to delay aging-induced cognitive deficit by protecting the integrity of the blood-brain barrier via inhibiting inflammation. J Cereb Blood Flow Metab 2023; 43:1042-1059. [PMID: 37086081 PMCID: PMC10291461 DOI: 10.1177/0271678x231169133] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/09/2023] [Accepted: 03/24/2023] [Indexed: 04/23/2023]
Abstract
Aging can cause attenuation in the functioning of multiple organs, and blood-brain barrier (BBB) breakdown could promote the occurrence of disorders of the central nervous system during aging. Since inflammation is considered to be an important factor underlying BBB injury during aging, vascular endothelial cell senescence serves as a critical pathological basis for the destruction of BBB integrity. In the current review, we have first introduced the concepts related to aging-induced cognitive deficit and BBB integrity damage. Thereafter, we reviewed the potential relationship between disruption of BBB integrity and cognition deficit and the role of inflammation, vascular endothelial cell senescence, and BBB injury. We have also briefly introduced the function of CREB-regulated transcription co-activator 1 (CRTC1) in cognition and aging-induced CRTC1 changes as well as the critical roles of CRTC1/cyclooxygenase-2 (COX-2) in regulating inflammation, endothelial cell senescence, and BBB injury. Finally, the underlying mechanisms have been summarized and we propose that CRTC1 could be a promising target to delay aging-induced cognitive deficit by protecting the integrity of BBB through promoting inhibition of inflammation-mediated endothelial cell senescence.
Collapse
Affiliation(s)
- Yanping Wang
- Department of Neurology, the Second Hospital of Jiaxing City, Jiaxing, China
| | - Weihong Du
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yanyun Sun
- Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Junfang Zhang
- Department of Physiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Chaolin Ma
- School of Life Science and Institute of Life Science, Nanchang University, Nanchang, China
| | - Xinchun Jin
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
47
|
Banerjee P, Rosales JE, Chau K, Nguyen MTH, Kotla S, Lin SH, Deswal A, Dantzer R, Olmsted-Davis EA, Nguyen H, Wang G, Cooke JP, Abe JI, Le NT. Possible molecular mechanisms underlying the development of atherosclerosis in cancer survivors. Front Cardiovasc Med 2023; 10:1186679. [PMID: 37332576 PMCID: PMC10272458 DOI: 10.3389/fcvm.2023.1186679] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Cancer survivors undergone treatment face an increased risk of developing atherosclerotic cardiovascular disease (CVD), yet the underlying mechanisms remain elusive. Recent studies have revealed that chemotherapy can drive senescent cancer cells to acquire a proliferative phenotype known as senescence-associated stemness (SAS). These SAS cells exhibit enhanced growth and resistance to cancer treatment, thereby contributing to disease progression. Endothelial cell (EC) senescence has been implicated in atherosclerosis and cancer, including among cancer survivors. Treatment modalities for cancer can induce EC senescence, leading to the development of SAS phenotype and subsequent atherosclerosis in cancer survivors. Consequently, targeting senescent ECs displaying the SAS phenotype hold promise as a therapeutic approach for managing atherosclerotic CVD in this population. This review aims to provide a mechanistic understanding of SAS induction in ECs and its contribution to atherosclerosis among cancer survivors. We delve into the mechanisms underlying EC senescence in response to disturbed flow and ionizing radiation, which play pivotal role in atherosclerosis and cancer. Key pathways, including p90RSK/TERF2IP, TGFβR1/SMAD, and BH4 signaling are explored as potential targets for cancer treatment. By comprehending the similarities and distinctions between different types of senescence and the associated pathways, we can pave the way for targeted interventions aim at enhancing the cardiovascular health of this vulnerable population. The insights gained from this review may facilitate the development of novel therapeutic strategies for managing atherosclerotic CVD in cancer survivors.
Collapse
Affiliation(s)
- Priyanka Banerjee
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Julia Enterría Rosales
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- School of Medicine, Instituto Tecnológico de Monterrey, Guadalajara, Mexico
| | - Khanh Chau
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Minh T. H. Nguyen
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
- Department of Life Science, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Steven H. Lin
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anita Deswal
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Robert Dantzer
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Elizabeth A. Olmsted-Davis
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Hung Nguyen
- Cancer Division, Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Guangyu Wang
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - John P. Cooke
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Jun-ichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nhat-Tu Le
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
48
|
Wang Y, Wang Z, Wu X, Zhu S, Guo Q, Jin Z, Chen Z, Zhang D, Hu W, Xu H, Shi L, Yang L, Wang Y. Paeonol Promotes Reendothelialization After Vascular Injury Through Activation of c-Myc/VEGFR2 Signaling Pathway. Drug Des Devel Ther 2023; 17:1567-1582. [PMID: 37249931 PMCID: PMC10225138 DOI: 10.2147/dddt.s403134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
Purpose Dysfunction of endothelium is associated with multiple pathological vascular diseases. However, how to regulate reendothelialization after vascular injury is not well defined. This study aims to determine whether and how Paeonol controls reendothelialization following artery injury. Methods The endothelium of murine carotid artery was denuded by catheter guide wires injury. H&E staining and IF staining were performed to determine whether Paeonol is critical for reendothelialization. BRDU Incorporation Assay, Boyden Chamber Migration Assay, Tube Formation Assay, and Spheroid Sprouting Assay were used to investigate whether Paeonol is involved in regulating proliferation and migration of endothelial cells. The underlying mechanism of how Paeonol regulates reendothelialization was determined by Molecular docking simulation and CO-IP Assay. Results Paeonol treatment significantly inhibits neointima formation in carotid artery ligation model by promoting proliferation and migration of endothelial cells. Mechanistically, Paeonol enhances c-Myc expression, consequently interacts with VEGFR2 results in activating VEGF signaling pathway, and eventually promotes reendothelialization after vascular injury. Conclusion Our data demonstrated that Paeonol plays a critical role in regulating vascular reendothelialization, which may be therapeutically used for treatment of pathological vascular diseases.
Collapse
Affiliation(s)
- Yang Wang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Zheng Wang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Xiao Wu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Song Zhu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Qiru Guo
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Zhong Jin
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Zixian Chen
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Delai Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Wangming Hu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Huan Xu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Liangqin Shi
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Lan Yang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Yong Wang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| |
Collapse
|
49
|
Wang J, Han Y, Huang F, Tang L, Mu J, Liang Y. Diabetic macrophage small extracellular vesicles-associated miR-503/IGF1R axis regulates endothelial cell function and affects wound healing. Front Immunol 2023; 14:1104890. [PMID: 37287964 PMCID: PMC10243549 DOI: 10.3389/fimmu.2023.1104890] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/28/2023] [Indexed: 06/09/2023] Open
Abstract
Diabetic foot ulcer (DFU) is a break in the skin of the foot caused by diabetes. It is one of the most serious and debilitating complications of diabetes. The previous study suggested that dominant M1 polarization during DFU could be the leading reason behind impaired wound healing. This study concluded that macrophage M1 polarization predominates in DFU skin tissue. iNOS was increased in HG-induced M1-polarized macrophages; conversely, Arg-1 was decreased. Macrophage pellets after HG stimulation can impair endothelial cell (EC) function by inhibiting cell viability, tube formation and cell migration, indicating M1 macrophage-derived small extracellular vesicles (sEVs) -mediated HUVEC dysfunction. sEVs miR-503 was significantly upregulated in response to HG stimulation, but inhibition of miR-503 in HG-stimulated macrophages attenuated M1 macrophage-induced HUVEC dysfunction. ACO1 interacted with miR-503 and mediated the miR-503 package into sEVs. Under HG stimulation, sEVs miR-503 taken in by HUVECs targeted IGF1R in HUVECs and inhibited IGF1R expression. In HUVECs, miR-503 inhibition improved HG-caused HUVEC dysfunction, whereas IGF1R knockdown aggravated HUVEC dysfunction; IGF1R knockdown partially attenuated miR-503 inhibition effects on HUVECs. In the skin wound model in control or STZ-induced diabetic mice, miR-503-inhibited sEVs improved, whereas IGF1R knockdown further hindered wound healing. Therefore, it can be inferred from the results that the M1 macrophage-derived sEVs miR-503 targets IGF1R in HUVECs, inhibits IGF1R expression, leads to HUVEC dysfunction, and impedes wound healing in diabetic patients, while packaging miR-503 as an M1 macrophage-derived sEVs may be mediated by ACO1.
Collapse
Affiliation(s)
- Jianqiang Wang
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Yuanshan Han
- Scientific Research Department, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Fang Huang
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Liuhuan Tang
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Jianfei Mu
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Ying Liang
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| |
Collapse
|
50
|
Headley CA, Tsao PS. Building the case for mitochondrial transplantation as an anti-aging cardiovascular therapy. Front Cardiovasc Med 2023; 10:1141124. [PMID: 37229220 PMCID: PMC10203246 DOI: 10.3389/fcvm.2023.1141124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/11/2023] [Indexed: 05/27/2023] Open
Abstract
Mitochondrial dysfunction is a common denominator in both biological aging and cardiovascular disease (CVD) pathology. Understanding the protagonist role of mitochondria in the respective and independent progressions of CVD and biological aging will unravel the synergistic relationship between biological aging and CVD. Moreover, the successful development and implementation of therapies that can simultaneously benefit mitochondria of multiple cell types, will be transformational in curtailing pathologies and mortality in the elderly, including CVD. Several works have compared the status of mitochondria in vascular endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) in CVD dependent context. However, fewer studies have cataloged the aging-associated changes in vascular mitochondria, independent of CVD. This mini review will focus on the present evidence related to mitochondrial dysfunction in vascular aging independent of CVD. Additionally, we discuss the feasibility of restoring mitochondrial function in the aged cardiovascular system through mitochondrial transfer.
Collapse
|