1
|
Li D, Ma Q. Ubiquitin-specific protease: an emerging key player in cardiomyopathy. Cell Commun Signal 2025; 23:143. [PMID: 40102846 PMCID: PMC11921692 DOI: 10.1186/s12964-025-02123-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/23/2025] [Indexed: 03/20/2025] Open
Abstract
Protein quality control (PQC) plays a vital role in maintaining normal heart function, as cardiomyocytes are relatively sensitive to misfolded or damaged proteins, which tend to accumulate under pathological conditions. Ubiquitin-specific protease (USP) is the largest deubiquitinating enzyme family and a key component of the ubiquitin proteasome system (UPS), which is a non-lysosomal protein degradation machinery to mediate PQC in cells. USPs regulate the stability or activity of the target proteins that involve intracellular signaling, transcriptional control of inflammation, antioxidation, and cell growth. Recent studies demonstrate that the USPs can regulate fibrosis, lipid metabolism, glucose homeostasis, hypertrophic response, post-ischemic recovery and cell death such as apoptosis and ferroptosis in cardiomyocytes. Since myocardial cell loss is an important component of cardiomyopathy, therefore, these findings suggest that the UPSs play emerging roles in cardiomyopathy. This review briefly summarizes recent literature on the regulatory roles of USPs in the occurrence and development of cardiomyopathy, giving us new insights into the molecular mechanisms of USPs in different cardiomyopathy and potential preventive strategies for cardiomyopathy.
Collapse
Affiliation(s)
- Danlei Li
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan Province, China
| | - Qilin Ma
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan Province, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan Province, China.
| |
Collapse
|
2
|
Jiang X, Sun Y, Shi H, Liu Z, Zhang J, Xu C, Hu Y, Niu T. Deubiquitinase Ubiquitin-Specific Protease 29 Ameliorates Pathological Cardiac Hypertrophy through Inhibiting Transforming Growth Factor β-Activated Kinase 1. J Am Heart Assoc 2025; 14:e034962. [PMID: 40040611 DOI: 10.1161/jaha.124.034962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 09/30/2024] [Indexed: 03/06/2025]
Abstract
BACKGROUND Pathological cardiac hypertrophy, characterized by the involvement of multiple regulators, ultimately leads to heart failure in the absence of effective interventions. The identification of key factors involved is crucial for exploring novel treatments for heart failure. However, the function and pathological implications of USP29 (ubiquitin-specific protease 29) in cardiomyocytes remain unknown. METHODS AND RESULTS The impacts of USP29 on pathological cardiac hypertrophy were investigated through the use of knockout/overexpression mice and overexpression/knockdown cardiomyocytes, accompanied by bioinformatic analysis and multiple molecular biological techniques to elucidate the underlying mechanisms. We observed upregulation of USP29 protein levels in both transverse aortic constriction-induced hypertrophic hearts (upregulated by 159.8%) and phenylephrine-induced hypertrophic cardiomyocytes (upregulated by 184.6%). Moreover, genetic knockout of USP29 in mice exacerbated transverse aortic constriction-induced heart hypertrophy, dysfunction, and fibrosis, whereas overexpression of USP29 in cardiomyocytes using adeno-associated virus 9 effectively attenuated the hypertrophic response. Similarly, USP29 alleviated phenylephrine-induced hypertrophy of primary neonatal rat cardiomyocytes. Mechanistically, the cardioprotective effects mediated by USP29 were attributed to its suppression of TAK1 (transforming growth factor β-activated kinase 1) activation. Further molecular analysis revealed that USP29 directly interacts with TAK1 through amino acids 284 to 922 of USP29 and amino acids 1 to 306 of TAK1, subsequently inhibiting TAK1 activation via K63-linked deubiquitination, which is indispensable for regulating cardiac hypertrophy by USP29. CONCLUSIONS Here, we have identified USP29 as a novel negative regulator of pathological cardiac hypertrophy. Our findings suggest that targeting either USP29 or its interaction with TAK1 could represent an innovative therapeutic strategy for treating heart failure and cardiac hypertrophy.
Collapse
Affiliation(s)
- Xi Jiang
- Department of Cardiology Shengjing Hospital of China Medical University Shenyang Liaoning Province China
| | - Yan Sun
- Department of Gastroenterology Shengjing Hospital of China Medical University Shenyang China
| | - Hongjie Shi
- Institute of Model Animal Wuhan University Wuhan China
| | - Zhen Liu
- Institute of Model Animal Wuhan University Wuhan China
| | | | - Changlu Xu
- Department of Cardiology Shengjing Hospital of China Medical University Shenyang Liaoning Province China
| | - Yufeng Hu
- Gannan Innovation and Translational Medicine Research Institute Ganzhou China
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education First Affiliated Hospital of Gannan Medical University Gannan Medical University Ganzhou China
| | - Tiesheng Niu
- Department of Cardiology Shengjing Hospital of China Medical University Shenyang Liaoning Province China
| |
Collapse
|
3
|
Jiang Y, Cai W, Lei G, Cai G, Wu Q, Lu P. Deubiquitinase USP47 Ameliorates Cardiac Hypertrophy Through Reducing Protein O-GlcNAcylation. J Cardiovasc Pharmacol 2025; 85:54-62. [PMID: 39436323 DOI: 10.1097/fjc.0000000000001640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/07/2024] [Indexed: 10/23/2024]
Abstract
ABSTRACT Cardiac hypertrophy is a crucial risk factor for heart failure when the heart is confronted with physiologic or pathologic stimuli. The ubiquitin-proteasome system plays a critical role in the pathogenesis of cardiac hypertrophy. However, as a key component of the ubiquitin-proteasome system, the role of deubiquitinating enzymes in cardiac hypertrophy is not well understood. In this study, we observed that the expression level of deubiquitinase USP47 was increased in hypertrophic hearts and angiotensin II (Ang II)-stimulated neonatal rat cardiomyocytes. Adenovirus-mediated gain- and loss-of-function approaches indicated that USP47 overexpression significantly attenuated Ang II-induced cardiac hypertrophy in vitro and in vivo, whereas endogenous USP47 deficiency promoted the prohypertrophic effect of Ang II. Further investigation demonstrated that USP47 inhibited O-GlcNAcylation in cardiomyocytes by controlling the expression of O-GlcNAcase. Mechanistically, USP47 bound, deubiquitinated, and stabilized protein arginine methyltransferase 5 (PRMT5), thus upregulating O-GlcNAcase expression. We found that the restoration of PRMT5 abolished the prohypertrophic effects of USP47 silence in vitro. Therefore, our results provide the first evidence of the involvement of USP47 in cardiac hypertrophy and identify USP47 as a potential target for hypertrophic therapy.
Collapse
Affiliation(s)
- Yu Jiang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China ; and
| | - Wenyao Cai
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China ; and
| | - Guangtao Lei
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Guorong Cai
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China ; and
| | - Qinghua Wu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Peng Lu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
4
|
Zeng L, Zhang X, Huang Z, Song S, Li M, Wang T, Sun A, Ge J. Ubiquitin proteasome system in cardiac fibrosis. J Adv Res 2024:S2090-1232(24)00562-9. [PMID: 39653114 DOI: 10.1016/j.jare.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/20/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024] Open
Abstract
BACKGROUND Cardiac fibrosis, including reactive fibrosis and replacement fibrosis, is a common pathological process in most cardiovascular diseases. The ubiquitin proteasome system (UPS) plays an important role in the development of fibrosis by mediating the degradation and synthesis of proteins involved in transforming growth factor-β (TGF-β)-dependent and TGF-β-independent fibrous pathways. AIM OF REVIEW This review aims to provide an overview of ubiquitinated and deubiquitinated molecules that participating in cardiac fibrosis, with the ultimate purpose to identify promising targets for therapeutic strategies. KEY SCIENTIFIC CONCEPTS OF REVIEW The UPS primarily impacts cardiac fibrosis through modulation of the TGF-β signaling pathway targeting key molecules involved, including the TGF-β receptors, Smad2/3/4 complexes, and inhibitory Smad7, thereby influencing fibrotic processes. In addition to its effect on TGF-β signaling, UPS also regulates pro-fibrotic pathways independent of TGF-β, including p53, AKT1-p38, and JNK1/2. Understanding these pathways is critical due to their involvement in diverse fibrotic mechanisms. The interplay between ubiquitination and deubiquitination of crucial pathways and molecules is pivotal in cardiac fibrosis and represents a promising area for identifying novel therapeutic targets. Different types of cardiac fibrosis involve distinct fibrotic pathways, leading to differential effects of ubiquitin ligases (E3 ligases) and deubiquitinating enzymes (DUBs) across various cardiac fibrotic diseases. Insights into UPS-mediated regulation of cardiac fibrosis provide potential anti-fibrotic therapeutic strategies, emphasizing the importance of targeting UPS components specific to the heart for effective therapy against cardiac fibrosis.
Collapse
Affiliation(s)
- Linqi Zeng
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Xiaokai Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Zihang Huang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Shuai Song
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Mohan Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Tongyao Wang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Aijun Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Jean-Charles PY, Roy B, Yu SMW, Pironti G, Nagi K, Mao L, Kaur S, Abraham DM, Maudsley S, Rockman HA, Shenoy SK. USP20 deletion promotes eccentric cardiac remodeling in response to pressure overload and increases mortality. Am J Physiol Heart Circ Physiol 2024; 327:H1257-H1271. [PMID: 39365672 PMCID: PMC11559650 DOI: 10.1152/ajpheart.00329.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024]
Abstract
Left ventricular hypertrophy (LVH) caused by chronic pressure overload with subsequent pathological remodeling is a major cardiovascular risk factor for heart failure and mortality. The role of deubiquitinases in LVH has not been well characterized. To define whether the deubiquitinase ubiquitin-specific peptidase 20 (USP20) regulates LVH, we subjected USP20 knockout (KO) and cognate wild-type (WT) mice to chronic pressure overload by transverse aortic constriction (TAC) and measured changes in cardiac function by serial echocardiography followed by histological and biochemical evaluations. USP20-KO mice showed severe deterioration of systolic function within 4 wk of TAC compared with WT cohorts. Both USP20-KO TAC and WT-TAC cohorts presented cardiac hypertrophy following pressure overload. However, USP20-KO-TAC mice showed an increase in cardiomyocyte length and developed maladaptive eccentric hypertrophy, a phenotype generally observed with volume overload states and decompensated heart failure. In contrast, WT-TAC mice displayed an increase in cardiomyocyte width, producing concentric remodeling that is characteristic of pressure overload. In addition, cardiomyocyte apoptosis, interstitial fibrosis, and mouse mortality were augmented in USP20-KO-TAC compared with WT-TAC mice. Quantitative mass spectrometry of LV tissue revealed that the expression of sarcomeric myosin heavy chain 7 (MYH7), a fetal gene normally upregulated during cardiac remodeling, was significantly reduced in USP20-KO after TAC. Mechanistically, we identified increased degradative lysine-48 polyubiquitination of MYH7 in USP20-KO hearts, indicating that USP20-mediated deubiquitination likely prevents protein degradation of MYH7 during pressure overload. Our findings suggest that USP20-dependent signaling pathways regulate the layering pattern of sarcomeres to suppress maladaptive remodeling during chronic pressure overload and prevent cardiac failure.NEW & NOTEWORTHY We identify ubiquitin-specific peptidase 20 (USP20) as an important enzyme that is required for cardiac homeostasis and function, particularly during myocardial pressure overload. USP20 regulates protein stability of cardiac MYH7, an essential molecular motor protein expressed in sarcomeres; loss-of-function mutations of MYH7 are associated with human hypertrophic cardiomyopathy, cardiac failure, and sudden death. Enhancing USP20 activity could be a potential therapeutic approach to prevent the development of maladaptive state of eccentric hypertrophy and heart failure.
Collapse
MESH Headings
- Animals
- Ventricular Remodeling
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Mice, Knockout
- Ubiquitin Thiolesterase/metabolism
- Ubiquitin Thiolesterase/genetics
- Apoptosis
- Hypertrophy, Left Ventricular/physiopathology
- Hypertrophy, Left Ventricular/genetics
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/pathology
- Mice
- Mice, Inbred C57BL
- Male
- Heart Failure/physiopathology
- Heart Failure/metabolism
- Heart Failure/genetics
- Heart Failure/pathology
- Fibrosis
- Ventricular Function, Left
- Disease Models, Animal
- Ubiquitination
- Myosin Heavy Chains/metabolism
- Myosin Heavy Chains/genetics
Collapse
Affiliation(s)
- Pierre-Yves Jean-Charles
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States
| | - Bipradas Roy
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States
| | - Samuel Mon-Wei Yu
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States
| | - Gianluigi Pironti
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States
| | - Karim Nagi
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States
| | - Lan Mao
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States
| | - Suneet Kaur
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States
| | - Dennis M Abraham
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States
| | - Stuart Maudsley
- Receptor Biology Laboratory, Department of Biomedical Science, University of Antwerp, Antwerp, Belgium
| | - Howard A Rockman
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States
| | - Sudha K Shenoy
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States
| |
Collapse
|
6
|
Zhan X, Yang Y, Li Q, He F. The role of deubiquitinases in cardiac disease. Expert Rev Mol Med 2024; 26:e3. [PMID: 38525836 PMCID: PMC11062144 DOI: 10.1017/erm.2024.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/10/2023] [Accepted: 12/28/2023] [Indexed: 03/26/2024]
Abstract
Deubiquitinases are a group of proteins that identify and digest monoubiquitin chains or polyubiquitin chains attached to substrate proteins, preventing the substrate protein from being degraded by the ubiquitin-proteasome system. Deubiquitinases regulate cellular autophagy, metabolism and oxidative stress by acting on different substrate proteins. Recent studies have revealed that deubiquitinases act as a critical regulator in various cardiac diseases, and control the onset and progression of cardiac disease through a board range of mechanism. This review summarizes the function of different deubiquitinases in cardiac disease, including cardiac hypertrophy, myocardial infarction and diabetes mellitus-related cardiac disease. Besides, this review briefly recapitulates the role of deubiquitinases modulators in cardiac disease, providing the potential therapeutic targets in the future.
Collapse
Affiliation(s)
- Xiaona Zhan
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yi Yang
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Qing Li
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Fan He
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
7
|
Wang Q, Liang S, Qian J, Xu J, Zheng Q, Wang M, Guo X, Min J, Wu G, Zhuang Z, Luo W, Liang G. OTUD1 promotes isoprenaline- and myocardial infarction-induced heart failure by targeting PDE5A in cardiomyocytes. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167018. [PMID: 38185350 DOI: 10.1016/j.bbadis.2024.167018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/29/2023] [Accepted: 01/01/2024] [Indexed: 01/09/2024]
Abstract
Heart failure represents a major cause of death worldwide. Recent research has emphasized the potential role of protein ubiquitination/deubiquitination protein modification in cardiac pathology. Here, we investigate the role of the ovarian tumor deubiquitinase 1 (OTUD1) in isoprenaline (ISO)- and myocardial infarction (MI)-induced heart failure and its molecular mechanism. OTUD1 protein levels were raised markedly in murine cardiomyocytes after MI and ISO treatment. OTUD1 deficiency attenuated myocardial hypertrophy and cardiac dysfunction induced by ISO infusion or MI operation. In vitro, OTUD1 knockdown in neonatal rat ventricular myocytes (NRVMs) attenuated ISO-induced injuries, while OTUD1 overexpression aggravated the pathological changes. Mechanistically, LC-MS/MS and Co-IP studies showed that OTUD1 bound directly to the GAF1 and PDEase domains of PDE5A. OTUD1 was found to reverse K48 ubiquitin chain in PDE5A through cysteine at position 320 of OTUD1, preventing its proteasomal degradation. PDE5A could inactivates the cGMP-PKG-SERCA2a signaling axis which dysregulate the calcium handling in cardiomyocytes, and leading to the cardiomyocyte injuries. In conclusion, OTUD1 promotes heart failure by deubiquitinating and stabilizing PDE5A in cardiomyocytes. These findings have identified PDE5A as a new target of OTUD1 and emphasize the potential of OTUD1 as a target for treating heart failure.
Collapse
Affiliation(s)
- Qinyan Wang
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China; Department of Cardiology and Medical Research Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shiqi Liang
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China; Department of Cardiology and Medical Research Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jinfu Qian
- Department of Cardiology and Medical Research Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiachen Xu
- Department of Cardiology and Medical Research Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qingsong Zheng
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Mengyang Wang
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin 132013, China
| | - Xiaochen Guo
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Julian Min
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Gaojun Wu
- Department of Cardiology and Medical Research Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zaishou Zhuang
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Wu Luo
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China; Department of Cardiology and Medical Research Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Guang Liang
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China; Department of Cardiology and Medical Research Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China.
| |
Collapse
|
8
|
Bekas N, Samiotaki M, Papathanasiou M, Mokos P, Pseftogas A, Xanthopoulos K, Thanos D, Mosialos G, Dafou D. Inactivation of Tumor Suppressor CYLD Inhibits Fibroblast Reprogramming to Pluripotency. Cancers (Basel) 2023; 15:4997. [PMID: 37894364 PMCID: PMC10605754 DOI: 10.3390/cancers15204997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
CYLD is a tumor suppressor gene coding for a deubiquitinating enzyme that has a critical regulatory function in a variety of signaling pathways and biological processes involved in cancer development and progression, many of which are also key modulators of somatic cell reprogramming. Nevertheless, the potential role of CYLD in this process has not been studied. With the dual aim of investigating the involvement of CYLD in reprogramming and developing a better understanding of the intricate regulatory system governing this process, we reprogrammed control (CYLDWT/WT) and CYLD DUB-deficient (CYLDΔ9/Δ9) mouse embryonic fibroblasts (MEFs) into induced pluripotent stem cells (iPSCs) through ectopic overexpression of the Yamanaka factors (Oct3/4, Sox2, Klf4, c-myc). CYLD DUB deficiency led to significantly reduced reprogramming efficiency and slower early reprogramming kinetics. The introduction of WT CYLD to CYLDΔ9/Δ9 MEFs rescued the phenotype. Nevertheless, CYLD DUB-deficient cells were capable of establishing induced pluripotent colonies with full spontaneous differentiation potential of the three germ layers. Whole proteome analysis (Data are available via ProteomeXchange with identifier PXD044220) revealed that the mesenchymal-to-epithelial transition (MET) during the early reprogramming stages was disrupted in CYLDΔ9/Δ9 MEFs. Interestingly, differentially enriched pathways revealed that the primary processes affected by CYLD DUB deficiency were associated with the organization of the extracellular matrix and several metabolic pathways. Our findings not only establish for the first time CYLD's significance as a regulatory component of early reprogramming but also highlight its role as an extracellular matrix regulator, which has profound implications in cancer research.
Collapse
Affiliation(s)
- Nikolaos Bekas
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.B.); (P.M.); (G.M.)
| | - Martina Samiotaki
- Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece;
| | - Maria Papathanasiou
- Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece; (M.P.); (D.T.)
| | - Panagiotis Mokos
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.B.); (P.M.); (G.M.)
| | - Athanasios Pseftogas
- Division of Experimental Oncology, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, 20132 Milan, Italy;
| | - Konstantinos Xanthopoulos
- Laboratory of Pharmacology, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Dimitris Thanos
- Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece; (M.P.); (D.T.)
| | - George Mosialos
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.B.); (P.M.); (G.M.)
| | - Dimitra Dafou
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.B.); (P.M.); (G.M.)
| |
Collapse
|
9
|
Huang Z, Tan Y. The Potential of Cylindromatosis (CYLD) as a Therapeutic Target in Oxidative Stress-Associated Pathologies: A Comprehensive Evaluation. Int J Mol Sci 2023; 24:8368. [PMID: 37176077 PMCID: PMC10179184 DOI: 10.3390/ijms24098368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Oxidative stress (OS) arises as a consequence of an imbalance between the formation of reactive oxygen species (ROS) and the capacity of antioxidant defense mechanisms to neutralize them. Excessive ROS production can lead to the damage of critical biomolecules, such as lipids, proteins, and DNA, ultimately contributing to the onset and progression of a multitude of diseases, including atherosclerosis, chronic obstructive pulmonary disease, Alzheimer's disease, and cancer. Cylindromatosis (CYLD), initially identified as a gene linked to familial cylindromatosis, has a well-established and increasingly well-characterized function in tumor inhibition and anti-inflammatory processes. Nevertheless, burgeoning evidence suggests that CYLD, as a conserved deubiquitination enzyme, also plays a pivotal role in various key signaling pathways and is implicated in the pathogenesis of numerous diseases driven by oxidative stress. In this review, we systematically examine the current research on the function and pathogenesis of CYLD in diseases instigated by oxidative stress. Therapeutic interventions targeting CYLD may hold significant promise for the treatment and management of oxidative stress-induced human diseases.
Collapse
Affiliation(s)
| | - Yanjie Tan
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250358, China;
| |
Collapse
|
10
|
Federti E, Vinchi F, Iatcenko I, Ghigo A, Matte A, Toya SCM, Siciliano A, Chiabrando D, Tolosano E, Vance SZ, Riccardi V, Andolfo I, Iezzi M, Lamolinara A, Iolascon A, De Franceschi L. Duality of Nrf2 in iron-overload cardiomyopathy. Haematologica 2023; 108:1335-1348. [PMID: 36700398 PMCID: PMC10153524 DOI: 10.3324/haematol.2022.281995] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
Cardiomyopathy deeply affects quality of life and mortality of patients with b-thalassemia or with transfusion-dependent myelodysplastic syndromes. Recently, a link between Nrf2 activity and iron metabolism has been reported in liver ironoverload murine models. Here, we studied C57B6 mice as healthy control and nuclear erythroid factor-2 knockout (Nrf2-/-) male mice aged 4 and 12 months. Eleven-month-old wild-type and Nrf2-/- mice were fed with either standard diet or a diet containing 2.5% carbonyl-iron (iron overload [IO]) for 4 weeks. We show that Nrf2-/- mice develop an age-dependent cardiomyopathy, characterized by severe oxidation, degradation of SERCA2A and iron accumulation. This was associated with local hepcidin expression and increased serum non-transferrin-bound iron, which promotes maladaptive cardiac remodeling and interstitial fibrosis related to overactivation of the TGF-b pathway. When mice were exposed to IO diet, the absence of Nrf2 was paradoxically protective against further heart iron accumulation. Indeed, the combination of prolonged oxidation and the burst induced by IO diet resulted in activation of the unfolded protein response (UPR) system, which in turn promotes hepcidin expression independently from heart iron accumulation. In the heart of Hbbth3/+ mice, a model of b-thalassemia intermedia, despite the activation of Nrf2 pathway, we found severe protein oxidation, activation of UPR system and cardiac fibrosis independently from heart iron content. We describe the dual role of Nrf2 when aging is combined with IO and its novel interrelation with UPR system to ensure cell survival. We open a new perspective for early and intense treatment of cardiomyopathy in patients with b-thalassemia before the appearance of heart iron accumulation.
Collapse
Affiliation(s)
- Enrica Federti
- Department of Medicine, University of Verona and AOUI Verona, Verona
| | - Francesca Vinchi
- Iron Research Laboratory, Lindsley Kimball Research Institute, New York Blood Center, New York, NY, USA; Dept. of Pathology and Laboratory Medicine, Weill Cornell Medicine
| | - Iana Iatcenko
- Department of Medicine, University of Verona and AOUI Verona, Verona
| | - Alessandra Ghigo
- Department Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarrone", University of Torino, Torino
| | - Alessandro Matte
- Department of Medicine, University of Verona and AOUI Verona, Verona
| | | | - Angela Siciliano
- Department of Medicine, University of Verona and AOUI Verona, Verona
| | - Deborah Chiabrando
- Department Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarrone", University of Torino, Torino
| | - Emanuela Tolosano
- Department Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarrone", University of Torino, Torino
| | - Steven Zebulon Vance
- Iron Research Laboratory, Lindsley Kimball Research Institute, New York Blood Center, New York, NY
| | - Veronica Riccardi
- Department of Medicine, University of Verona and AOUI Verona, Verona
| | - Immacolata Andolfo
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University of Naples; CEINGE - Biotecnologie Avanzate, Naples
| | - Manuela Iezzi
- Department of Medicine and Aging Science, "G. d'Annunzio" University of Chieti, Chieti
| | - Alessia Lamolinara
- Department of Medicine and Aging Science, "G. d'Annunzio" University of Chieti, Chieti
| | - Achille Iolascon
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University of Naples; CEINGE - Biotecnologie Avanzate, Naples
| | | |
Collapse
|
11
|
Xie W, Gao S, Yang Y, Li H, Zhou J, Chen M, Yang S, Zhang Y, Zhang L, Meng X, Xie S, Liu M, Li D, Chen Y, Zhou J. CYLD deubiquitinates plakoglobin to promote Cx43 membrane targeting and gap junction assembly in the heart. Cell Rep 2022; 41:111864. [PMID: 36577382 DOI: 10.1016/j.celrep.2022.111864] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 10/06/2022] [Accepted: 11/30/2022] [Indexed: 12/29/2022] Open
Abstract
During heart maturation, gap junctions assemble into hemichannels and polarize to the intercalated disc at cell borders to mediate electrical impulse conduction. However, the molecular mechanism underpinning cardiac gap junction assembly remains elusive. Herein, we demonstrate an important role for the deubiquitinating enzyme cylindromatosis (CYLD) in this process. Depletion of CYLD in mice impairs the formation of cardiac gap junctions, accelerates cardiac fibrosis, and increases heart failure. Mechanistically, CYLD interacts with plakoglobin and removes lysine 63-linked polyubiquitin chains from plakoglobin. The deubiquitination of plakoglobin enhances its interaction with the desmoplakin/end-binding protein 1 complex localized at the microtubule plus end, thereby promoting microtubule-dependent transport of connexin 43 (Cx43), a key component of gap junctions, to the cell membrane. These findings establish CYLD as a critical player in regulating gap junction assembly and have important implications in heart development and diseases.
Collapse
Affiliation(s)
- Wei Xie
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Siqi Gao
- Department of Genetics and Cell Biology, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yunfan Yang
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| | - Hongjie Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Junyan Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Mingzhen Chen
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Song Yang
- Department of Genetics and Cell Biology, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yijun Zhang
- Department of Genetics and Cell Biology, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Liang Zhang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Xiaoqian Meng
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Songbo Xie
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Min Liu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Dengwen Li
- Department of Genetics and Cell Biology, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yan Chen
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China; Department of Genetics and Cell Biology, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
12
|
Mansouri A, Reiner Ž, Ruscica M, Tedeschi-Reiner E, Radbakhsh S, Bagheri Ekta M, Sahebkar A. Antioxidant Effects of Statins by Modulating Nrf2 and Nrf2/HO-1 Signaling in Different Diseases. J Clin Med 2022; 11:1313. [PMID: 35268403 PMCID: PMC8911353 DOI: 10.3390/jcm11051313] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
Statins are competitive inhibitors of hydroxymethylglutaryl-CoA (HMG-CoA) reductase and have been used to treat elevated low-density lipoprotein cholesterol (LDL-C) for almost four decades. Antioxidant and anti-inflammatory properties which are independent of the lipid-lowering effects of statins, i.e., their pleiotropic effects, might be beneficial in the prevention or treatment of many diseases. This review discusses the antioxidant effects of statins achieved by modulating the nuclear factor erythroid 2 related factor 2/ heme oxygenase-1 (Nrf2/HO-1) pathway in different organs and diseases. Nrf2 and other proteins involved in the Nrf2/HO-1 signaling pathway have a crucial role in cellular responses to oxidative stress, which is a risk factor for ASCVD. Statins can significantly increase the DNA-binding activity of Nrf2 and induce the expression of its target genes, such as HO-1 and glutathione peroxidase) GPx, (thus protecting the cells against oxidative stress. Antioxidant and anti-inflammatory properties of statins, which are independent of their lipid-lowering effects, could be partly explained by the modulation of the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Atena Mansouri
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Željko Reiner
- Department of Internal Medicine, School of Medicine, University Hospital Center Zagreb, University of Zagreb, 10000 Zagreb, Croatia;
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20100 Milan, Italy;
| | - Eugenia Tedeschi-Reiner
- University Hospital Center Sestre Milosrdnice, University of Osijek, Vinogradska Cesta 29, 10000 Zagreb, Croatia;
| | - Shabnam Radbakhsh
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran;
- Department of Medical Biotechnology and Nanotechnology, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Mariam Bagheri Ekta
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, A.P. Avtsyn Research Institute of Human Morphology, 3 Tsyurupy Str., 117418 Moscow, Russia;
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| |
Collapse
|
13
|
Zhang Q, Jia Q, Gao W, Zhang W. The Role of Deubiquitinases in Virus Replication and Host Innate Immune Response. Front Microbiol 2022; 13:839624. [PMID: 35283827 PMCID: PMC8908266 DOI: 10.3389/fmicb.2022.839624] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
As a critical post-translational modification, ubiquitination is known to affect almost all the cellular processes including immunity, signaling pathways, cell death, cancer development, and viral infection by controlling protein stability. Deubiquitinases (DUBs) cleave ubiquitin from proteins and reverse the process of ubiquitination. Thus, DUBs play an important role in the deubiquitination process and serve as therapeutic targets for various diseases. DUBs are found in eukaryotes, bacteria, and viruses and influence various biological processes. Here, we summarize recent findings on the function of DUBs in modulating viral infection, the mechanism by which viral DUBs regulate host innate immune response, and highlight those DUBs that have recently been discovered as antiviral therapeutic targets.
Collapse
Affiliation(s)
- Qinglin Zhang
- College of Life Sciences of Jilin University, Changchun, China
| | - Qizhen Jia
- College of Life Sciences of Jilin University, Changchun, China
| | - Wenying Gao
- Center for Pathogen Biology and Infectious Diseases, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Wenyan Zhang
- Center for Pathogen Biology and Infectious Diseases, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
Erol A. IKK-mediated CYLD phosphorylation and cellular redox activity. Mol Med 2022; 28:14. [PMID: 35109788 PMCID: PMC8811971 DOI: 10.1186/s10020-022-00439-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/17/2022] [Indexed: 01/12/2023] Open
Abstract
Oxidative stress is important in the development of obesity-related nephropathy (ORN). A causal relationship between IKK and ORN via CYLD-mediated inhibition of NRF2 has been described. However, contradictory explanations about the functioning of the mechanisms that will be effective in the pathogenesis require clarification.
Collapse
|
15
|
Yuan Y, Zhou C, Guo X, Ding Y, Ma S, Gong X, Jiang H, Wang Y, Wang X. Palmitate impairs the autophagic flux to induce p62-dependent apoptosis through the upregulation of CYLD in NRCMs. Toxicology 2022; 465:153032. [PMID: 34774660 DOI: 10.1016/j.tox.2021.153032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/01/2023]
Abstract
The most abundant saturated free fatty acid such as palmitate (PA), can accumulate in cardiomyocytes and induce lipotoxicity. CYLD is a known regulator in the development of cardiovascular disease and an important mediator of apoptosis. The role of CYLD in PA-induced cardiomyocyte apoptosis is not completely known. Here, we showed that PA treatment resulted in a concentration- and time-dependent effect on neonatal rat cardiomyocytes (NRCMs) apoptosis. PA impaired autophagy by significantly increasing the expression levels of LC3-II, Beclin 1, and also p62 in NRCMs. The autophagy flux was measured by detecting the fluorescence in the cells with Ad-mCherry-GFP-LC3B, a decrease in red puncta and a significant increase in yellow puncta in response to PA stimulation indicated that PA impairs the autophagic flux at the late stage of autophagosome-lysosome fusion. We further found knocked down of p62 by siRNA significantly decreased the expression level of cleaved caspase-3, decreased the apoptosis rate, also alleviated the loss of mitochondrial membrane potential, and decreased AIF and Cyt C releasing from mitochondria into the cytoplasm in the PA-treated NRCMs. From this, we considered that p62 accumulation was responsible for mitochondria-mediated apoptosis in PA-treated NRCMs. In addition, PA-induced a strong elevation of CYLD, siRNA-mediated knockdown of CYLD significantly antagonized PA-induced apoptosis and restored the autophagic flux in NRCMs. Knockdown of CYLD activation of the Wnt/β-catenin pathway to restore the autophagic flux and reduce the accumulation of p62 in PA- stimulated NRCMs, while an inhibitor of the Wnt/β-catenin pathway reversed this effect. Thus, our findings provide new insight into the molecular mechanism of PA toxicity in myocardial cells and suggest that CYLD may be a new therapeutic target for lipotoxic cardiomyopathy.
Collapse
Affiliation(s)
- Yahong Yuan
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China; Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Chunfang Zhou
- Department of Gastroenterology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Xingrong Guo
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Yan Ding
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Shinan Ma
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Xuewen Gong
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Hongkuan Jiang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Yunfen Wang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Xiaoli Wang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China; Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China.
| |
Collapse
|
16
|
Chen YY, Hong H, Lei YT, Zou J, Yang YY, He LY. IκB kinase promotes Nrf2 ubiquitination and degradation by phosphorylating cylindromatosis, aggravating oxidative stress injury in obesity-related nephropathy. Mol Med 2021; 27:137. [PMID: 34711178 PMCID: PMC8555227 DOI: 10.1186/s10020-021-00398-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/12/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Obesity-related nephropathy (ORN) has become one of the leading causes of end-stage renal disease and has tripled over the past decade. Previous studies have demonstrated that decreased reactive oxygen species production may contribute to improving ORN by ameliorating oxidative stress injury. Here, IκB kinase (IKK) was hypothesized to inactivate the deubiquitination activity of cylindromatosis (CYLD) by activating the phosphorylation of CYLD, thus promoting the ubiquitination of NF-E2-related factor 2 (Nrf2) and further aggravating oxidative stress injury of the kidney in ORN. This study was aimed to confirm this hypothesis. METHODS Haematoxylin and eosin (HE), periodic acid-Schiff (PAS) and Oil Red O staining were performed to assess histopathology. Dihydroethidium (DHE) staining and MDA, SOD, CAT, and GSH-PX assessments were performed to measure reactive oxygen species (ROS) production. Immunohistochemical (IHC) staining, qRT-PCR and/or western blotting were performed to assess the expression of related genes. JC-1 assays were used to measure the mitochondrial membrane potential (ΔΨm) of treated HK-2 cells. Co-immunoprecipitation experiments (Co-IP) were used to analyse the interaction between CYLD and Nrf2 in ORN. RESULTS ORN in vivo and in vitro models were successfully constructed, and oxidative stress injury was detected in the model tissues and cells. Compared with the control groups, the phosphorylation level of CYLD increased while Nrf2 levels decreased in ORN model cells. An IKK inhibitor reduced lipid deposition, ROS production, CYLD phosphorylation levels and ΔΨm in vitro, which were reversed by knockdown of CYLD. Nrf2 directly bound to CYLD and was ubiquitinated in ORN cells. The proteasome inhibitor MG132 activated the Nrf2/ARE signalling pathway, thereby reversing the promoting effect of CYLD knockdown on oxidative stress. CONCLUSION IKK inactivates the deubiquitination activity of CYLD by activating the phosphorylation of CYLD, thus promoting the ubiquitination of Nrf2 and further aggravating oxidative stress injury of the kidney in ORN. This observation provided a feasible basis for the treatment of kidney damage caused by ORN.
Collapse
Affiliation(s)
- Yin-Yin Chen
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, Hunan, People's Republic of China
- Changsha Clinical Research Center for Kidney Disease, Changsha, 410000, Hunan, People's Republic of China
- Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, 410000, Hunan, People's Republic of China
| | - Han Hong
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, Hunan, People's Republic of China
- Changsha Clinical Research Center for Kidney Disease, Changsha, 410000, Hunan, People's Republic of China
- Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, 410000, Hunan, People's Republic of China
| | - Yu-Ting Lei
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, Hunan, People's Republic of China
- Changsha Clinical Research Center for Kidney Disease, Changsha, 410000, Hunan, People's Republic of China
- Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, 410000, Hunan, People's Republic of China
| | - Jia Zou
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, Hunan, People's Republic of China
- Changsha Clinical Research Center for Kidney Disease, Changsha, 410000, Hunan, People's Republic of China
- Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, 410000, Hunan, People's Republic of China
| | - Yi-Ya Yang
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, Hunan, People's Republic of China
- Changsha Clinical Research Center for Kidney Disease, Changsha, 410000, Hunan, People's Republic of China
- Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, 410000, Hunan, People's Republic of China
| | - Li-Yu He
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, No. 139 people's Middle Road, Changsha, 410011, Hunan, People's Republic of China.
| |
Collapse
|
17
|
Zhang L, Gao X, Qin Z, Shi X, Xu K, Wang S, Tang M, Wang W, Gao S, Zuo L, Zhang L, Zhang W. USP15 participates in DBP-induced testicular oxidative stress injury through regulating the Keap1/Nrf2 signaling pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:146898. [PMID: 34088152 DOI: 10.1016/j.scitotenv.2021.146898] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 03/21/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
Di-n-butylphthalate (DBP) has been listed as an environmental priority pollutant in China due to its distinct biotoxicity. Epidemiological studies have shown that exposure to DBP is closely related to a series of congenital and acquired defects in the male reproductive system. The oxidative stress injury caused by DBP plays an important role in these defects. Previous studies have demonstrated that the Keap1/Nrf2 antioxidative pathway plays a protective role in DBP-induced oxidative stress injury. However, the further molecular regulation mechanism of the activation of Nrf2 pathway remains unclear. Here, we demonstrate that DBP caused testicular oxidative stress injury and Nrf2 pathway was activated in response to the injury in vivo and in vitro. Moreover, we validated that reduced level of USP15 attenuates DBP-induced oxidative stress injury through restraining the ubiquitylation and degradation of Nrf2. Notably, USP15 is confirmed as a target of miR-135b-5p and miR-135b-5p mediated inhibition of USP15 is involved in the DBP-induced oxidative stress injury. Collectively, these findings indicated that decreased level of USP15 functions a significant protective effect on the oxidative stress injury of testis caused by DBP via regulating the Keap1/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, Jiangsu Province, China; Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China.
| | - Xian Gao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Zhiqiang Qin
- Department of Urology and Transplantation, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Xiaokai Shi
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, Jiangsu Province, China
| | - Kai Xu
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, Jiangsu Province, China
| | - Shangqian Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Min Tang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Wei Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Shenglin Gao
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, Jiangsu Province, China
| | - Li Zuo
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, Jiangsu Province, China.
| | - Lifeng Zhang
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, Jiangsu Province, China.
| | - Wei Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| |
Collapse
|
18
|
Hartwick Bjorkman S, Oliveira Pereira R. The Interplay Between Mitochondrial Reactive Oxygen Species, Endoplasmic Reticulum Stress, and Nrf2 Signaling in Cardiometabolic Health. Antioxid Redox Signal 2021; 35:252-269. [PMID: 33599550 PMCID: PMC8262388 DOI: 10.1089/ars.2020.8220] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: Mitochondria-derived reactive oxygen species (mtROS) are by-products of normal physiology that may disrupt cellular redox homeostasis on a regular basis. Nonetheless, failure to resolve sustained mitochondrial stress to mitigate high levels of mtROS might contribute to the etiology of numerous pathological conditions, such as obesity, insulin resistance, and cardiovascular disease (CVD). Recent Advances: Notably, recent studies have demonstrated that moderate mitochondrial stress might result in the induction of different stress response pathways that ultimately improve the organism's ability to deal with subsequent stress, a process termed mitohormesis. mtROS have been shown to play a key role in regulating this adaptation. Critical Issue: mtROS regulate the convergence of different signaling pathways that, when disturbed, might impair cardiometabolic health. Conversely, mtROS seem to be required to mediate activation of prosurvival pathways, contributing to improved cardiometabolic fitness. In the present review, we will primarily focus on the role of mtROS in the activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant pathway and examine the role of endoplasmic reticulum (ER) stress in coordinating the convergence of ER stress and oxidative stress signaling through activation of Nrf2 and activating transcription factor 4 (ATF4). Future Directions: The mechanisms underlying cardiometabolic protection in response to mitochondrial stress have only started to be investigated. Integrated understanding of how mtROS and ER stress cooperatively promote activation of prosurvival pathways might shed mechanistic insight into the role of mitohormesis in mediating cardiometabolic protection and might inform future therapeutic avenues for the treatment of metabolic diseases contributing to CVD. Antioxid. Redox Signal. 35, 252-269.
Collapse
Affiliation(s)
- Sarah Hartwick Bjorkman
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Renata Oliveira Pereira
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
19
|
Lu P, Xu Y, Sheng ZY, Peng XG, Zhang JJ, Wu QH, Wu YQ, Cheng XS, Zhu K. De-ubiquitination of p300 by USP12 Critically Enhances METTL3 Expression and Ang II-induced cardiac hypertrophy. Exp Cell Res 2021; 406:112761. [PMID: 34339675 DOI: 10.1016/j.yexcr.2021.112761] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 01/22/2023]
Abstract
Stresses, such as neurohumoral activation, induced pathological cardiac hypertrophy is the main risk factor for heart failure. The ubiquitin-proteasome system (UPS) plays a key role in maintaining protein homeostasis and cardiac function. However, research on the role and mechanism of deubiquitinating enzymes (DUBs) in cardiac hypertrophy is limited. Here, we observe that the deubiquitinating enzyme ubiquitin-specific protease 12(USP12) is upregulated in Ang II-induced hypertrophic hearts and primary neonatal rat cardiomyocytes (NRCMs). Inhibition of USP12 ameliorate Ang II-induced myocardial hypertrophy, while overexpression of USP12 have the opposite effect. USP12 deficiency also significantly attenuate the phenotype of Ang II-induced cardiac hypertrophy in vivo. Moreover, we demonstrate that USP12 aggravate Ang II-induced cardiac hypertrophy by enhancing METTL3, a methyltransferase which catalyze N6-methyladenosine (m6A) modification on messenger RNA and acts as a harmful factor in pathological cardiac hypertrophy. Upregulation of METTL3 reverse the reduction of myocardial hypertrophy induced by USP12 silencing in NRCMs. In contrast, knockdown of METTL3 attenuate the aggravation of myocardial hypertrophy in USP12-overexpressing NRCMs. Furthermore, we discover that USP12 promote the expression of METTL3 via upregulating p300. Mechanistically, USP12 binds and stabilizes p300, thereby activating the transcription of its downstream gene METTL3. Finally, our data show that USP12 is partially dependent on the stabilization of p300 to activate METTL3 expression and promote myocardial hypertrophy. Taken together, our results demonstrate that USP12 acts as a pro-hypertrophic deubiquitinating enzyme via enhancing p300/METTL3 axis, indicating that targeting USP12 could be a potential treatment strategy for pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Peng Lu
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Yun Xu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Zhi-Yong Sheng
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Xiao-Gang Peng
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Jing-Jing Zhang
- Graduate School of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Qing-Hua Wu
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Yan-Qing Wu
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Xiao-Shu Cheng
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Kai Zhu
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
20
|
Xu Q, Liu M, Zhang F, Liu X, Ling S, Chen X, Gu J, Ou W, Liu S, Liu N. Ubiquitin-specific protease 2 regulates Ang Ⅱ-induced cardiac fibroblasts activation by up-regulating cyclin D1 and stabilizing β-catenin in vitro. J Cell Mol Med 2021; 25:1001-1011. [PMID: 33314748 PMCID: PMC7812274 DOI: 10.1111/jcmm.16162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/16/2020] [Accepted: 11/21/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiac fibrosis, featuring abnormally elevated extracellular matrix accumulation, decreases tissue compliance, impairs cardiac function and accelerates heart failure. Mounting evidence suggests that the ubiquitin proteasome pathway is involved in cardiac fibrosis. In the present study, ubiquitin-specific protease 2 (USP2) was identified as a novel therapeutic target in cardiac fibrosis. Indeed, USP2 expression was increased in angiotensin II-induced primary cardiac fibroblasts (CFs) from neonatal rats. In addition, USP2 inhibition suppressed CFs proliferation, collagen synthesis and cell cycle progression. Furthermore, USP2 interacted with β-catenin, thereby regulating its deubiquitination and stabilization in CFs. To sum up, these findings revealed that USP2 has a therapeutic potential for the treatment of cardiac fibrosis.
Collapse
Affiliation(s)
- Qiong Xu
- Guangzhou Institute of Cardiovascular DiseaseGuangdong Key Laboratory of Vascular DiseasesState Key Laboratory of Respiratory DiseaseThe Second Affiliated Hospital, Guangzhou Medical UniversityGuangzhouChina
| | - Mingke Liu
- Guangzhou Institute of Cardiovascular DiseaseGuangdong Key Laboratory of Vascular DiseasesState Key Laboratory of Respiratory DiseaseThe Second Affiliated Hospital, Guangzhou Medical UniversityGuangzhouChina
| | - Fangcheng Zhang
- Guangzhou Institute of Cardiovascular DiseaseGuangdong Key Laboratory of Vascular DiseasesState Key Laboratory of Respiratory DiseaseThe Second Affiliated Hospital, Guangzhou Medical UniversityGuangzhouChina
| | - Xiaolin Liu
- Guangzhou Institute of Cardiovascular DiseaseGuangdong Key Laboratory of Vascular DiseasesState Key Laboratory of Respiratory DiseaseThe Second Affiliated Hospital, Guangzhou Medical UniversityGuangzhouChina
| | - Sisi Ling
- Guangzhou Institute of Cardiovascular DiseaseGuangdong Key Laboratory of Vascular DiseasesState Key Laboratory of Respiratory DiseaseThe Second Affiliated Hospital, Guangzhou Medical UniversityGuangzhouChina
| | - Xuke Chen
- Guangzhou Institute of Cardiovascular DiseaseGuangdong Key Laboratory of Vascular DiseasesState Key Laboratory of Respiratory DiseaseThe Second Affiliated Hospital, Guangzhou Medical UniversityGuangzhouChina
| | - Jielei Gu
- Guangzhou Institute of Cardiovascular DiseaseGuangdong Key Laboratory of Vascular DiseasesState Key Laboratory of Respiratory DiseaseThe Second Affiliated Hospital, Guangzhou Medical UniversityGuangzhouChina
| | - Wenchao Ou
- Guangzhou Institute of Cardiovascular DiseaseGuangdong Key Laboratory of Vascular DiseasesState Key Laboratory of Respiratory DiseaseThe Second Affiliated Hospital, Guangzhou Medical UniversityGuangzhouChina
| | - Shiming Liu
- Guangzhou Institute of Cardiovascular DiseaseGuangdong Key Laboratory of Vascular DiseasesState Key Laboratory of Respiratory DiseaseThe Second Affiliated Hospital, Guangzhou Medical UniversityGuangzhouChina
| | - Ningning Liu
- Guangzhou Institute of Cardiovascular DiseaseGuangdong Key Laboratory of Vascular DiseasesState Key Laboratory of Respiratory DiseaseThe Second Affiliated Hospital, Guangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
21
|
Xu F, Gao J, Munkhsaikhan U, Li N, Gu Q, Pierre JF, Starlard-Davenport A, Towbin JA, Cui Y, Purevjav E, Lu L. The Genetic Dissection of Ace2 Expression Variation in the Heart of Murine Genetic Reference Population. Front Cardiovasc Med 2020; 7:582949. [PMID: 33330645 PMCID: PMC7714829 DOI: 10.3389/fcvm.2020.582949] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022] Open
Abstract
Background: A high inflammatory and cytokine burden that induces vascular inflammation, myocarditis, cardiac arrhythmias, and myocardial injury is associated with a lethal outcome in COVID-19. The SARS-CoV-2 virus utilizes the ACE2 receptor for cell entry in a similar way to SARS-CoV. This study investigates the regulation, gene network, and associated pathways of ACE2 that may be involved in inflammatory and cardiovascular complications of COVID-19. Methods: Cardiovascular traits were determined in the one of the largest mouse genetic reference populations: BXD recombinant inbred strains using blood pressure, electrocardiography, and echocardiography measurements. Expression quantitative trait locus (eQTL) mapping, genetic correlation, and functional enrichment analysis were used to identify Ace2 regulation, gene pathway, and co-expression networks. Results: A wide range of variation was found in expression of Ace2 among the BXD strains. Levels of Ace2 expression are negatively correlated with cardiovascular traits, including systolic and diastolic blood pressure and P wave duration and amplitude. Ace2 co-expressed genes are significantly involved in cardiac- and inflammatory-related pathways. The eQTL mapping revealed that Cyld is a candidate upstream regulator for Ace2. Moreover, the protein–protein interaction (PPI) network analysis inferred several potential key regulators (Cul3, Atf2, Vcp, Jun, Ppp1cc, Npm1, Mapk8, Set, Dlg1, Mapk14, and Hspa1b) for Ace2 co-expressed genes in the heart. Conclusions:Ace2 is associated with blood pressure, atrial morphology, and sinoatrial conduction in BXD mice. Ace2 co-varies with Atf2, Cyld, Jun, Mapk8, and Mapk14 and is enriched in the RAS, TGFβ, TNFα, and p38α signaling pathways, involved in inflammation and cardiac damage. We suggest that all these novel Ace2-associated genes and pathways may be targeted for preventive, diagnostic, and therapeutic purposes in cardiovascular damage in patients with systemic inflammation, including COVID-19 patients.
Collapse
Affiliation(s)
- Fuyi Xu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Jun Gao
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Undral Munkhsaikhan
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States.,Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, United States
| | - Ning Li
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States.,Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, United States.,Department of Cardiology, Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Qingqing Gu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States.,Department of Cardiology, The Affiliated Hospital of Nantong University, Nantong, China
| | - Joseph F Pierre
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States.,Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, United States
| | - Athena Starlard-Davenport
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Jeffrey A Towbin
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States.,Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, United States.,Pediatric Cardiology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Yan Cui
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Enkhsaikhan Purevjav
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States.,Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, United States
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
22
|
Abstract
Heart failure is a worldwide pandemic influencing 26 million individuals worldwide and is expanding. Imbalanced redox homeostasis in cardiac cells alters the structure and function of the cells, which leads to contractile dysfunction, myocardial hypertrophy, and fibrosis in chronic heart failure. Various targets and agents acting on these such as siRNA, miRNA, interleukin-1, opioids, vasodilators, and SGLT2 inhibitors are being evaluated for heart failure, and nuclear factor erythroid 2-related factor 2 (NRF2) is one of them. NRF2 is a master transcription factor which is expressed in most of the tissues and exhibits a major role in amplification of the antioxidant pathways associated with the enzymes present in myocardium. Increased ROS generation and PI3K-Akt signaling can activate the receptor NRF2. Various in vitro and in vivo and few clinical studies suggested NRF2 may possess a potential for targeting oxidative stress-induced cardiovascular diseases including heart failures. All these studies collectively propose that upregulation of NRF2 will attenuate the increase in hemodynamic stress and provide beneficial role in cardiovascular diseases. The current review shall familiarize readers about the regulations and functions of NRF2. We have also discussed the current evidences suggesting beneficial role of NRF2 activators in heart failure. Graphical abstract.
Collapse
|
23
|
Kaur N, Raja R, Ruiz-Velasco A, Liu W. Cellular Protein Quality Control in Diabetic Cardiomyopathy: From Bench to Bedside. Front Cardiovasc Med 2020; 7:585309. [PMID: 33195472 PMCID: PMC7593653 DOI: 10.3389/fcvm.2020.585309] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022] Open
Abstract
Heart failure is a serious comorbidity and the most common cause of mortality in diabetes patients. Diabetic cardiomyopathy (DCM) features impaired cellular structure and function, culminating in heart failure; however, there is a dearth of specific clinical therapy for treating DCM. Protein homeostasis is pivotal for the maintenance of cellular viability under physiological and pathological conditions, particularly in the irreplaceable cardiomyocytes; therefore, it is tightly regulated by a protein quality control (PQC) system. Three evolutionarily conserved molecular processes, the unfolded protein response (UPR), the ubiquitin-proteasome system (UPS), and autophagy, enhance protein turnover and preserve protein homeostasis by suppressing protein translation, degrading misfolded or unfolded proteins in cytosol or organelles, disposing of damaged and toxic proteins, recycling essential amino acids, and eliminating insoluble protein aggregates. In response to increased cellular protein demand under pathological insults, including the diabetic condition, a coordinated PQC system retains cardiac protein homeostasis and heart performance, on the contrary, inappropriate PQC function exaggerates cardiac proteotoxicity with subsequent heart dysfunction. Further investigation of the PQC mechanisms in diabetes propels a more comprehensive understanding of the molecular pathogenesis of DCM and opens new prospective treatment strategies for heart disease and heart failure in diabetes patients. In this review, the function and regulation of cardiac PQC machinery in diabetes mellitus, and the therapeutic potential for the diabetic heart are discussed.
Collapse
Affiliation(s)
- Namrita Kaur
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| | - Rida Raja
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| | - Andrea Ruiz-Velasco
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| | - Wei Liu
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
24
|
Shi Y, Li M, Yu Y, Zhou Y, Zhang W, Hua H, Wang S. Stress response in periodontal ligament stem cells may contribute to bisphosphonate‑associated osteonecrosis of the jaw: A gene expression array analysis. Mol Med Rep 2020; 22:2043-2051. [PMID: 32705175 PMCID: PMC7411417 DOI: 10.3892/mmr.2020.11276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 06/03/2020] [Indexed: 01/22/2023] Open
Abstract
Gene expression alterations in periodontal ligament stem cells (PDLSCs) during bisphosphonate (BP) usage and the transcriptomic mechanism underlying BP-related osteonecrosis of the jaw have not been fully elucidated. In the present study, human PDLSCs were isolated from adults with no history of periodontal disease, and subsequently incubated and treated with zoledronate on days 3 and 5. Subsequently, PDLSCs from all timepoints were screened using an Affymetrix Gene Expression Array. Limma differential expression analysis was performed on a normalized gene expression matrix, followed by cluster analysis, pathway and network analyses. Overall, 906 genes (352 upregulated and 554 downregulated) exhibited differential expression levels between days 0 and 5, and these were termed slow-response genes. These slow-response genes were enriched in cellular stress response signaling pathways (upregulated genes), as well as proliferation- and ossification-associated signaling pathways (downregulated genes). Furthermore, 168 (day 3 vs. 0) and 105 (day 5 vs. 3) genes were differentially expressed between adjacent timepoints. These genes were also enriched in stress response- and proliferation-associated signaling pathways, but not in ossification-associated signaling pathways. Poly(ADP-ribose) polymerase 1 (PARP1) and CYLD lysine 63 deubiquitinase (CYLD) had the most protein-protein interaction partners among the slow-response genes and were connected with both stress- (e.g. caspase-1) and ossification-associated genes [e.g. secreted phosphoprotein 1 and collagen type I α1 chain (COL1A1)]. BP treatment induced stress response-like transcriptional alterations in PDLSCs, followed by inhibition of proliferation and ossification. These alterations may contribute to the onset of jaw osteonecrosis. PARP1 and CYLD may be two key genes involved in this pathological procedure.
Collapse
Affiliation(s)
- Yueqi Shi
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Mengyu Li
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Yejia Yu
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Yuqiong Zhou
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Wenjie Zhang
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology; National Clinical Research Center of Stomatology, Shanghai 200011, P.R. China
| | - Hongfei Hua
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Shaoyi Wang
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
25
|
CYLD exaggerates pressure overload-induced cardiomyopathy via suppressing autolysosome efflux in cardiomyocytes. J Mol Cell Cardiol 2020; 145:59-73. [PMID: 32553594 DOI: 10.1016/j.yjmcc.2020.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/20/2020] [Accepted: 06/07/2020] [Indexed: 02/06/2023]
Abstract
Deubiquitinating enzymes (DUBs) appear to be a new class of regulators of cardiac homeostasis and disease. However, DUB-mediated signaling in the heart is not well understood. Herein we report a novel mechanism by which cylindromatosis (CYLD), a DUB mediates cardiac pathological remodeling and dysfunction. Cardiomyocyte-restricted (CR) overexpression of CYLD (CR-CYLD) did not cause gross health issues and hardly affected cardiac function up to age of one year in both female and male mice at physiological conditions. However, CR-CYLD overexpression exacerbated pressure overload (PO)-induced cardiac dysfunction associated with suppressed cardiac hypertrophy and increased myocardial apoptosis in mice independent of the gender. At the molecular level, CR-CYLD overexpression enhanced PO-induced increases in poly-ubiquitinated proteins marked by lysine (K)48-linked ubiquitin chains and autophagic vacuoles containing undegraded contents while suppressing autophagic flux. Augmentation of cardiac autophagy via CR-ATG7 overexpression protected against PO-induced cardiac pathological remodeling and dysfunction in both female and male mice. Intriguingly, CR-CYLD overexpression switched the CR-ATG7 overexpression-dependent cardiac protection into myocardial damage and dysfunction associated with increased accumulation of autophagic vacuoles containing undegraded contents in the heart. Genetic manipulation of Cyld in combination with pharmacological modulation of autophagic functional status revealed that CYLD suppressed autolysosomal degradation and promoted cell death in cardiomyocytes. In addition, Cyld gene gain- and/or loss-of-function approaches in vitro and in vivo demonstrated that CYLD mediated cardiomyocyte death associated with impaired reactivation of mechanistic target of rapamycin complex 1 (mTORC1) and upregulated Ras genes from rat brain 7 (Rab7), two key components for autolysosomal degradation. These results demonstrate that CYLD serves as a novel mediator of cardiac pathological remodeling and dysfunction by suppressing autolysosome efflux in cardiomyocytes. Mechanistically, it is most likely that CYLD suppresses autolysosome efflux via impairing mTORC1 reactivation and interrupting Rab7 release from autolysosomes in cardiomyocytes.
Collapse
|
26
|
Xie Y, Gao Y, Gao R, Yang W, Dong Z, Moses RE, Sun A, Li X, Ge J. The proteasome activator REGγ accelerates cardiac hypertrophy by declining PP2Acα-SOD2 pathway. Cell Death Differ 2020; 27:2952-2972. [PMID: 32424140 PMCID: PMC7494903 DOI: 10.1038/s41418-020-0554-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/05/2022] Open
Abstract
Pathological cardiac hypertrophy eventually leads to heart failure without adequate treatment. REGγ is emerging as 11S proteasome activator of 20S proteasome to promote the degradation of cellular proteins in a ubiquitin- and ATP-independent manner. Here, we found that REGγ was significantly upregulated in the transverse aortic constriction (TAC)-induced hypertrophic hearts and angiotensin II (Ang II)-treated cardiomyocytes. REGγ deficiency ameliorated pressure overload-induced cardiac hypertrophy were associated with inhibition of cardiac reactive oxygen species (ROS) accumulation and suppression of protein phosphatase 2A catalytic subunit α (PP2Acα) decay. Mechanistically, REGγ interacted with and targeted PP2Acα for degradation directly, thereby leading to increase of phosphorylation levels and nuclear export of Forkhead box protein O (FoxO) 3a and subsequent of SOD2 decline, ROS accumulation, and cardiac hypertrophy. Introducing exogenous PP2Acα or SOD2 to human cardiomyocytes significantly rescued the REGγ-mediated ROS accumulation of Ang II stimulation in vitro. Furthermore, treatment with superoxide dismutase mimetic, MnTBAP prevented cardiac ROS production and hypertrophy features that REGγ caused in vivo, thereby establishing a REGγ–PP2Acα–FoxO3a–SOD2 pathway in cardiac oxidative stress and hypertrophy, indicates modulating the REGγ-proteasome activity may be a potential therapeutic approach in cardiac hypertrophy-associated disorders.
Collapse
Affiliation(s)
- Yifan Xie
- Department of Cardiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.,Institutes of Biomedical Science, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.,Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, 200032, China
| | - Yang Gao
- Department of Cardiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.,Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, 200032, China
| | - Rifeng Gao
- Department of Cardiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.,Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, 200032, China
| | - Wenlong Yang
- Department of Cardiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.,Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, 200032, China
| | - Zheng Dong
- Department of Cardiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.,Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, 200032, China
| | - Robb E Moses
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Aijun Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China. .,Institutes of Biomedical Science, Fudan University, 180 Fenglin Road, Shanghai, 200032, China. .,Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, 200032, China.
| | - Xiaotao Li
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA. .,Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China. .,Institutes of Biomedical Science, Fudan University, 180 Fenglin Road, Shanghai, 200032, China. .,Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
27
|
Bi HL, Zhang XL, Zhang YL, Xie X, Xia YL, Du J, Li HH. The deubiquitinase UCHL1 regulates cardiac hypertrophy by stabilizing epidermal growth factor receptor. SCIENCE ADVANCES 2020; 6:eaax4826. [PMID: 32494592 PMCID: PMC7164950 DOI: 10.1126/sciadv.aax4826] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 01/23/2020] [Indexed: 05/09/2023]
Abstract
Pathological cardiac hypertrophy leads to heart failure (HF). The ubiquitin-proteasome system (UPS) plays a key role in maintaining protein homeostasis and cardiac function. However, research on the role of deubiquitinating enzymes (DUBs) in cardiac function is limited. Here, we observed that the deubiquitinase ubiquitin C-terminal hydrolase 1 (UCHL1) was significantly up-regulated in agonist-stimulated primary cardiomyocytes and in hypertrophic and failing hearts. Knockdown of UCHL1 in cardiomyocytes and mouse hearts significantly ameliorated cardiac hypertrophy induced by agonist or pressure overload. Conversely, overexpression of UCHL1 had the opposite effect in cardiomyocytes and rAAV9-UCHL1-treated mice. Mechanistically, UCHL1 bound, deubiquitinated, and stabilized epidermal growth factor receptor (EGFR) and activated its downstream mediators. Systemic administration of the UCHL1 inhibitor LDN-57444 significantly reversed cardiac hypertrophy and remodeling. These findings suggest that UCHL1 positively regulates cardiac hypertrophy by stabilizing EGFR and identify UCHL1 as a target for hypertrophic therapy.
Collapse
Affiliation(s)
- Hai-Lian Bi
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 11600, China
| | - Xiao-Li Zhang
- Department of Medical Technology, Beijing Health Vocational College, Beijing 101101, China
| | - Yun-Long Zhang
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 11600, China
| | - Xin Xie
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 11600, China
| | - Yun-Long Xia
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 11600, China
| | - Jie Du
- Beijing AnZhen Hospital the Key Laboratory of Remodeling-Related Cardiovascular Diseases, School of Basic Medical Sciences, Capital Medical University, Beijing 100029, China
| | - Hui-Hua Li
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 11600, China
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
28
|
Functional analysis of deubiquitylating enzymes in tumorigenesis and development. Biochim Biophys Acta Rev Cancer 2019; 1872:188312. [DOI: 10.1016/j.bbcan.2019.188312] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023]
|
29
|
Wei L, Zhang Y, Qi X, Sun X, Li Y, Xu Y. Ubiquitin‑proteasomes are the dominant mediators of the regulatory effect of microRNA‑1 on cardiac remodeling after myocardial infarction. Int J Mol Med 2019; 44:1899-1907. [PMID: 31485642 PMCID: PMC6777676 DOI: 10.3892/ijmm.2019.4330] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 08/20/2019] [Indexed: 12/25/2022] Open
Abstract
Patients with ischemic hearts who have refused coronary vascular reconstruction may exhibit dynamic myocardial remodeling and cardiac dysfunction. In the present study, the role of miRNA-1 and its association with the ubiquitin-proteasome system (UPS) in regulating myocardial remodeling was investigated. A myocardial infarction (MI) model was constructed and the hearts were treated with miRNA-1 antagomir, miRNA-1 lentiviral vectors and the UPS proteasome blocker bortezomib. The expression levels of miRNA-1 were evaluated using reverse transcription PCR and the abundance of the ubiquitin-proteasome protein and caspase-3 were evaluated via western blot analysis. Furthermore, the collagen volume fraction was calculated using Masson's trichrome staining, and the apoptosis index was detected via terminal deoxynucleotidyl transferase dUTP-biotin nick end labeling staining. Transforming growth factor (TGF)-β expression was assessed via immunohistochemical staining. Echocardiographic characteristics and myocardial infarct size were analyzed. miRNA-1 expression levels were found to be increased following MI. miRNA-1 antagomir administration clearly inhibited miRNA-1 expression, whereas the miRNA-1 lentiviral vector exerted the opposite effect. The levels of 19s proteasome, 20S proteasome and ubiquitin ligase E3 were decreased in the miRNA-1 antagomir group, but were significantly increased in the miRNA-1 lentiviral group; however, only 20S proteasome expression was decreased in the bortezomib group. Collagen hyperplasia and TGF-β expression were decreased in both the miRNA-1 antagomir and bortezomib groups, although the effects of the miRNA-1 antagomir were more noticeable. The miRNA-1 antagomir and the UPS proteasome blocker both alleviated the ultrastructural impairments, demonstrated by a decreased left ventricular (LV) end-diastolic diameter and LV mass, but the miRNA-1 antagomir was also able to increase LV ejection fraction and LV fractional shortening. miRNA-1 regulated UPS-associated mRNA expression and affected the majority of the UPS components in the myocardium, thereby leading to increased myocardial cell apoptosis, myocardial fibrosis and remodeling. The miRNA-1 antagomir exerted a more prominent cardioprotective effect compared with the UPS proteasome blocker bortezomib.
Collapse
Affiliation(s)
- Liping Wei
- Department of Cardiology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin 300121, P.R. China
| | - Yufan Zhang
- School of Graduate Studies, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Xin Qi
- Department of Cardiology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin 300121, P.R. China
| | - Xuseng Sun
- School of Graduate Studies, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Yuanyang Li
- School of Graduate Studies, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Yue Xu
- School of Graduate Studies, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| |
Collapse
|
30
|
Jiang J, Zheng Y, Chen Y, Zahra A, Long C, Yang L. Exposure to prenatal antidepressant alters medial prefrontal-striatal synchronization in mice. Brain Res 2019; 1717:27-34. [DOI: 10.1016/j.brainres.2019.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/21/2019] [Accepted: 04/11/2019] [Indexed: 11/28/2022]
|
31
|
Yan K, Wang K, Li P. The role of post-translational modifications in cardiac hypertrophy. J Cell Mol Med 2019; 23:3795-3807. [PMID: 30950211 PMCID: PMC6533522 DOI: 10.1111/jcmm.14330] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/06/2019] [Accepted: 03/19/2019] [Indexed: 12/19/2022] Open
Abstract
Pathological cardiac hypertrophy involves excessive protein synthesis, increased cardiac myocyte size and ultimately the development of heart failure. Thus, pathological cardiac hypertrophy is a major risk factor for many cardiovascular diseases and death in humans. Extensive research in the last decade has revealed that post‐translational modifications (PTMs), including phosphorylation, ubiquitination, SUMOylation, O‐GlcNAcylation, methylation and acetylation, play important roles in pathological cardiac hypertrophy pathways. These PTMs potently mediate myocardial hypertrophy responses via the interaction, stability, degradation, cellular translocation and activation of receptors, adaptors and signal transduction events. These changes occur in response to pathological hypertrophy stimuli. In this review, we summarize the roles of PTMs in regulating the development of pathological cardiac hypertrophy. Furthermore, PTMs are discussed as potential targets for treating or preventing cardiac hypertrophy.
Collapse
Affiliation(s)
- Kaowen Yan
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China
| | - Kun Wang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
32
|
Shukla SK, Rafiq K. Proteasome biology and therapeutics in cardiac diseases. Transl Res 2019; 205:64-76. [PMID: 30342797 PMCID: PMC6372329 DOI: 10.1016/j.trsl.2018.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 08/30/2018] [Accepted: 09/25/2018] [Indexed: 02/07/2023]
Abstract
The ubiquitin proteasome system (UPS) is the major pathway for intracellular protein degradation in most organs, including the heart. UPS controls many fundamental biological processes such as cell cycle, cell division, immune responses, antigen presentation, apoptosis, and cell signaling. The UPS not only degrades substrates but also regulates activity of gene transcription at the post-transcription level. Emerging evidence suggests that impairment of UPS function is sufficient to cause a number of cardiac diseases, including heart failure, cardiomyopathies, hypertrophy, atrophy, ischemia-reperfusion, and atherosclerosis. Alterations in the expression of UPS components, changes in proteasomal peptidase activities and increased ubiquitinated and oxidized proteins have also been detected in diabetic cardiomyopathy (DCM). However, the pathophysiological role of the UPS in DCM has not been examined. Recently, in vitro and in vivo studies have proven highly valuable in assessing effects of various stressors on the UPS and, in some cases, suggesting a causal link between defective protein clearance and disease phenotypes in different cardiac diseases, including DCM. Translation of these findings to human disease can be greatly strengthened by corroboration of discoveries from experimental model systems using human heart tissue from well-defined patient populations. This review will summarize the general role of the UPS in different cardiac diseases, with major focus on DCM, and on recent advances in therapeutic development.
Collapse
Affiliation(s)
- Sanket Kumar Shukla
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Khadija Rafiq
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
33
|
Gupta I, Varshney NK, Khan S. Emergence of Members of TRAF and DUB of Ubiquitin Proteasome System in the Regulation of Hypertrophic Cardiomyopathy. Front Genet 2018; 9:336. [PMID: 30186311 PMCID: PMC6110912 DOI: 10.3389/fgene.2018.00336] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/03/2018] [Indexed: 01/10/2023] Open
Abstract
The ubiquitin proteasome system (UPS) plays an imperative role in many critical cellular processes, frequently by mediating the selective degradation of misfolded and damaged proteins and also by playing a non-degradative role especially important as in many signaling pathways. Over the last three decades, accumulated evidence indicated that UPS proteins are primal modulators of cell cycle progression, DNA replication, and repair, transcription, immune responses, and apoptosis. Comparatively, latest studies have demonstrated a substantial complexity by the UPS regulation in the heart. In addition, various UPS proteins especially ubiquitin ligases and proteasome have been identified to play a significant role in the cardiac development and dynamic physiology of cardiac pathologies such as ischemia/reperfusion injury, hypertrophy, and heart failure. However, our understanding of the contribution of UPS dysfunction in the plausible development of cardiac pathophysiology and the complete list of UPS proteins regulating these afflictions is still in infancy. The recent emergence of the roles of TNF receptor-associated factor (TRAFs) and deubiquitinating enzymes (DUBs) superfamily in hypertrophic cardiomyopathy has enhanced our knowledge. In this review, we have mainly compiled the TRAF superfamily of E3 ligases and few DUBs proteins with other well-documented E3 ligases such as MDM2, MuRF-1, Atrogin-I, and TRIM 32 that are specific to myocardial hypertrophy. In this review, we also aim to highlight their expression profile following physiological and pathological stimulation leading to the onset of hypertrophic phenotype in the heart that can serve as biomarkers and the opportunity for the development of novel therapies.
Collapse
Affiliation(s)
- Ishita Gupta
- Structural Immunology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.,Drug Discovery Research Center, Translational Health Science and Technology Institute, Faridabad, India
| | - Nishant K Varshney
- Drug Discovery Research Center, Translational Health Science and Technology Institute, Faridabad, India
| | - Sameena Khan
- Drug Discovery Research Center, Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
34
|
Yan K, Ponnusamy M, Xin Y, Wang Q, Li P, Wang K. The role of K63-linked polyubiquitination in cardiac hypertrophy. J Cell Mol Med 2018; 22:4558-4567. [PMID: 30102008 PMCID: PMC6156430 DOI: 10.1111/jcmm.13669] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/20/2018] [Indexed: 12/26/2022] Open
Abstract
Ubiquitination, also known as ubiquitylation, is a vital post‐translational modification of proteins that play a crucial role in the multiple biological processes including cell growth, proliferation and apoptosis. K63‐linked ubiquitination is one of the vital post‐translational modifications of proteins that are involved in the activation of protein kinases and protein trafficking during cell survival and proliferation. It also contributes to the development of various disorders including cancer, neurodegeneration and cardiac hypertrophy. In this review, we summarize the role of K63‐linked ubiquitination signalling in protein kinase activation and its implications in cardiac hypertrophy. We have also provided our perspectives on therapeutically targeting K63‐linked ubiquitination in downstream effector molecules of growth factor receptors for the treatment of cardiac hypertrophy.
Collapse
Affiliation(s)
- Kaowen Yan
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| | | | - Ying Xin
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qi Wang
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Kun Wang
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
35
|
Noma M, Matsubara M, Tokunaga C, Nakajima T, Mathis BJ, Sakamoto H, Hiramatsu Y. Predictors of Pericardial Effusion in Patients Undergoing Pulmonary Artery Banding. World J Pediatr Congenit Heart Surg 2018; 9:201-205. [PMID: 29544417 DOI: 10.1177/2150135118754523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Although pulmonary artery banding (PAB) is a common palliative procedure for pediatric heart malformation, there are concerns of pressure overload and concomitant immune reactions in the right ventricle causing postsurgical complications such as pericardial effusion. At this time, no clear guidelines as to potential risk factors or procedural contraindications have been widely disseminated. Therefore, a study was undertaken to examine wide-ranging factors to find potential biomarkers for postsurgical pericardial effusion formation risk. METHODS A retrospective study was conducted on all cardiac surgeries performed over an eight-year period, and the main inclusion criterion was pericardial effusion development after PAB that required surgical drainage. Nine cases were then analyzed against a control group of 45 cases with respect to body measurements, concomitant surgeries, genetic screens, laboratory tests results, and cardiac function parameters. RESULTS Trisomy 21 was strongly associated with the development of severe pericardial effusion after PAB, and postoperative serum albumin levels in patients with trisomy 21 were associated with pericardial effusion development. Other parameters showed no significant correlation with pericardial effusion development. CONCLUSIONS Our data indicate a strong association between trisomy 21 and pericardial effusion requiring drainage after PAB, which is in line with translational research findings. Pressure overload from PAB may play a role in the formation of severe pericardial effusion that is exacerbated by cardiac structural defects commonly associated with trisomy 21. Surgical teams should therefore use caution and plan to implement drainage in PAB cases, and postoperative serum albumin may serve as a useful biomarker for pericardial effusion formation.
Collapse
Affiliation(s)
- Mio Noma
- 1 Department of Cardiovascular Surgery, University of Tsukuba Hospital, Amakubo, Tsukuba, Japan
| | - Muneaki Matsubara
- 1 Department of Cardiovascular Surgery, University of Tsukuba Hospital, Amakubo, Tsukuba, Japan
| | - Chiho Tokunaga
- 1 Department of Cardiovascular Surgery, University of Tsukuba Hospital, Amakubo, Tsukuba, Japan
| | - Tomomi Nakajima
- 1 Department of Cardiovascular Surgery, University of Tsukuba Hospital, Amakubo, Tsukuba, Japan
| | - Bryan James Mathis
- 2 Medical English Communications Center, Faculty of Medicine, University of Tsukuba, Tennodai, Tsukuba, Japan
| | - Hiroaki Sakamoto
- 1 Department of Cardiovascular Surgery, University of Tsukuba Hospital, Amakubo, Tsukuba, Japan
| | - Yuji Hiramatsu
- 1 Department of Cardiovascular Surgery, University of Tsukuba Hospital, Amakubo, Tsukuba, Japan
| |
Collapse
|
36
|
Abstract
The NFE2L2 gene encodes the transcription factor Nrf2 best known for regulating the expression of antioxidant and detoxification genes. Gene knockout approaches have demonstrated its universal cytoprotective features. While Nrf2 has been the topic of intensive research in cancer biology since its discovery in 1994, understanding the role of Nrf2 in cardiovascular disease has just begun. The literature concerning Nrf2 in experimental models of atherosclerosis, ischemia, reperfusion, cardiac hypertrophy, heart failure, and diabetes supports its cardiac protective character. In addition to antioxidant and detoxification genes, Nrf2 has been found to regulate genes participating in cell signaling, transcription, anabolic metabolism, autophagy, cell proliferation, extracellular matrix remodeling, and organ development, suggesting that Nrf2 governs damage resistance as well as wound repair and tissue remodeling. A long list of small molecules, most derived from natural products, have been characterized as Nrf2 inducers. These compounds disrupt Keap1-mediated Nrf2 ubquitination, thereby prohibiting proteasomal degradation and allowing Nrf2 protein to accumulate and translocate to the nucleus, where Nrf2 interacts with sMaf to bind to ARE in the promoter of genes. Recently alternative mechanisms driving Nrf2 protein increase have been revealed, including removal of Keap1 by autophagy due to p62/SQSTM1 binding, inhibition of βTrCP or Synoviolin/Hrd1-mediated ubiquitination of Nrf2, and de novo Nrf2 protein translation. We review here a large volume of literature reporting historical and recent discoveries about the function and regulation of Nrf2 gene. Multiple lines of evidence presented here support the potential of dialing up the Nrf2 pathway for cardiac protection in the clinic.
Collapse
Affiliation(s)
- Qin M Chen
- Department of Pharmacology, College of Medicine, University of Arizona , Tucson, Arizona
| | - Anthony J Maltagliati
- Department of Pharmacology, College of Medicine, University of Arizona , Tucson, Arizona
| |
Collapse
|
37
|
Brown DI, Parry TL, Willis MS. Ubiquitin Ligases and Posttranslational Regulation of Energy in the Heart: The Hand that Feeds. Compr Physiol 2017. [PMID: 28640445 DOI: 10.1002/cphy.c160024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Heart failure (HF) is a costly and deadly syndrome characterized by the reduced capacity of the heart to adequately provide systemic blood flow. Mounting evidence implicates pathological changes in cardiac energy metabolism as a contributing factor in the development of HF. While the main source of fuel in the healthy heart is the oxidation of fatty acids, in the failing heart the less energy efficient glucose and glycogen metabolism are upregulated. The ubiquitin proteasome system plays a key role in regulating metabolism via protein-degradation/regulation of autophagy and regulating metabolism-related transcription and cell signaling processes. In this review, we discuss recent research that describes the role of the ubiquitin-proteasome system (UPS) in regulating metabolism in the context of HF. We focus on ubiquitin ligases (E3s), the component of the UPS that confers substrate specificity, and detail the current understanding of how these E3s contribute to cardiac pathology and metabolism. © 2017 American Physiological Society. Compr Physiol 7:841-862, 2017.
Collapse
Affiliation(s)
- David I Brown
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Traci L Parry
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Monte S Willis
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
38
|
Zhang Y, Zhang XJ, Wang PX, Zhang P, Li H. Reprogramming Innate Immune Signaling in Cardiometabolic Disease. Hypertension 2017; 69:747-760. [PMID: 28320852 DOI: 10.1161/hypertensionaha.116.08192] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yaxing Zhang
- From the Department of Cardiology, Renmin Hospital (Y.Z., X.-J.Z., P.-X.W., P.Z., H.L.), School of Basic Medical Sciences (Y.Z., X.-J.Z., P.-X.W., P.Z., H.L.), Institute of Model Animal (Y.Z., X.-J.Z., P.-X.W., P.Z., H.L.), and Medical Research Institute, School of Medicine (Y.Z., X.-J.Z., P.-X.W., P.Z., H.L.), Wuhan University, P.R. China
| | - Xiao-Jing Zhang
- From the Department of Cardiology, Renmin Hospital (Y.Z., X.-J.Z., P.-X.W., P.Z., H.L.), School of Basic Medical Sciences (Y.Z., X.-J.Z., P.-X.W., P.Z., H.L.), Institute of Model Animal (Y.Z., X.-J.Z., P.-X.W., P.Z., H.L.), and Medical Research Institute, School of Medicine (Y.Z., X.-J.Z., P.-X.W., P.Z., H.L.), Wuhan University, P.R. China
| | - Pi-Xiao Wang
- From the Department of Cardiology, Renmin Hospital (Y.Z., X.-J.Z., P.-X.W., P.Z., H.L.), School of Basic Medical Sciences (Y.Z., X.-J.Z., P.-X.W., P.Z., H.L.), Institute of Model Animal (Y.Z., X.-J.Z., P.-X.W., P.Z., H.L.), and Medical Research Institute, School of Medicine (Y.Z., X.-J.Z., P.-X.W., P.Z., H.L.), Wuhan University, P.R. China
| | - Peng Zhang
- From the Department of Cardiology, Renmin Hospital (Y.Z., X.-J.Z., P.-X.W., P.Z., H.L.), School of Basic Medical Sciences (Y.Z., X.-J.Z., P.-X.W., P.Z., H.L.), Institute of Model Animal (Y.Z., X.-J.Z., P.-X.W., P.Z., H.L.), and Medical Research Institute, School of Medicine (Y.Z., X.-J.Z., P.-X.W., P.Z., H.L.), Wuhan University, P.R. China
| | - Hongliang Li
- From the Department of Cardiology, Renmin Hospital (Y.Z., X.-J.Z., P.-X.W., P.Z., H.L.), School of Basic Medical Sciences (Y.Z., X.-J.Z., P.-X.W., P.Z., H.L.), Institute of Model Animal (Y.Z., X.-J.Z., P.-X.W., P.Z., H.L.), and Medical Research Institute, School of Medicine (Y.Z., X.-J.Z., P.-X.W., P.Z., H.L.), Wuhan University, P.R. China.
| |
Collapse
|
39
|
Jiang S, Yang Y, Li T, Ma Z, Hu W, Deng C, Fan C, Lv J, Sun Y, Yi W. An overview of the mechanisms and novel roles of Nrf2 in cardiovascular diseases. Expert Opin Ther Targets 2016; 20:1413-1424. [PMID: 27756179 DOI: 10.1080/14728222.2016.1250887] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
40
|
Ubiquitin-specific protease 14 regulates cardiac hypertrophy progression by increasing GSK-3β phosphorylation. Biochem Biophys Res Commun 2016; 478:1236-41. [PMID: 27545607 DOI: 10.1016/j.bbrc.2016.08.100] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 08/17/2016] [Indexed: 12/27/2022]
Abstract
Cardiac hypertrophy, a compensatory response to various stimuli in the heart, independently predicts cardiovascular ailments and related deaths. Increasing evidence indicates ubiquitin-proteasome signaling contributes to cardiac hypertrophy regulation. Here, we identified ubiquitin-specific protease 14 (USP14), a 19S proteasome associated deubiquitinase (DUB), as a novel target for cardiac hypertrophy therapy via inhibition of the GSK-3β pathway. Indeed, USP14 expression was increased in an animal model of abdominal aorta constriction. In an angiotensin II (AngII) induced primary neonatal rat cardiomyocyte hypertrophy model, USP14 expression was increased in a time-dependent manner, and reduced USP14 deubiquitinase activity or USP14 knockdown resulted in lower expression levels of the myocardial hypertrophy specific marker β-MHC, and subsequent decreased GSK-3β phosphorylation. In conclusion, USP14 mediates the development of cardiac hypertrophy by promoting GSK-3β phosphorylation, suggesting that USP14 might represent a novel therapeutic target for cardiac hypertrophy treatment.
Collapse
|
41
|
Altered striatal rhythmic activity in cylindromatosis knock-out mice due to enhanced GABAergic inhibition. Neuropharmacology 2016; 110:260-267. [PMID: 27342122 DOI: 10.1016/j.neuropharm.2016.06.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 06/18/2016] [Accepted: 06/20/2016] [Indexed: 02/01/2023]
Abstract
Despite the highest expression in striatum, physiological function of cylindromatosis (CYLD), a deubiquitinating enzyme, remains unexplored. We found, in the present study, that the duration of spontaneous up-states in the striatum is shorter and membrane potential fluctuation preceding action potential and firing rate are increased in Cyld(-/-) mice. Excess striatal GABAergic inhibition likely plays the major role in this alteration as supported by the findings: (1) the levels of striatal GABAA and GABAB receptors in Cyld(-/-) mice are increased, (2) pharmacological blockade of GABAB receptors rescues the shortened up-state phenotype, and (3) pharmacological blockade of GABAA receptors rescues the power of beta frequency oscillations. Our results indicate that CYLD alters striatal network function by regulating the protein expression levels of GABA receptors.
Collapse
|
42
|
He B, Zhao YC, Gao LC, Ying XY, Xu LW, Su YY, Ji QQ, Lin N, Pu J. Ubiquitin-Specific Protease 4 Is an Endogenous Negative Regulator of Pathological Cardiac Hypertrophy. Hypertension 2016; 67:1237-48. [PMID: 27045030 DOI: 10.1161/hypertensionaha.116.07392] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/08/2016] [Indexed: 11/16/2022]
Abstract
Dysregulation of the ubiquitin proteasome system components ubiquitin ligases and proteasome plays an important role in the pathogenesis of cardiac hypertrophy. However, little is known about the role of another ubiquitin proteasome system component, the deubiquitinating enzymes, in cardiac hypertrophy. Here, we revealed a crucial role of ubiquitin specific protease 4 (USP4), a deubiquitinating enzyme prominently expressed in the heart, in attenuating pathological cardiac hypertrophy and dysfunction. USP4 levels were consistently decreased in human failing hearts and in murine hypertrophied hearts. Adenovirus-mediated gain- and loss-of-function approaches indicated that deficiency of endogenous USP4 promoted myocyte hypertrophy induced by angiotensin II in vitro, whereas restoration of USP4 significantly attenuated the prohypertrophic effect of angiotensin II. To corroborate the role of USP4 in vivo, we generated USP4 global knockout mice and mice with cardiac-specific overexpression of USP4. Consistent with the in vitro study, USP4 depletion exacerbated the hypertrophic phenotype and cardiac dysfunction in mice subjected to pressure overload, whereas USP4 transgenic mice presented ameliorated pathological cardiac hypertrophy compared with their control littermates. Molecular analysis revealed that USP4 deficiency augmented the activation of the transforming growth factor β–activated kinase 1 (TAK1)-(JNK1/2)/P38 signaling in response to hypertrophic stress, and blockage of TAK1 activation abolished the pathological effects of USP4 deficiency in vivo. These findings provide the first evidence for the involvement of USP4 in cardiac hypertrophy, and shed light on the therapeutic potential of targeting USP4 in the treatment of cardiac hypertrophy.
Collapse
Affiliation(s)
- Ben He
- From the Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi-Chao Zhao
- From the Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ling-Chen Gao
- From the Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Ying Ying
- From the Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Long-Wei Xu
- From the Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan-Yuan Su
- From the Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qing-Qi Ji
- From the Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Nan Lin
- From the Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Pu
- From the Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
43
|
Hellerbrand C, Massoumi R. Cylindromatosis-A Protective Molecule against Liver Diseases. Med Res Rev 2016; 36:342-59. [DOI: 10.1002/med.21381] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 11/12/2015] [Accepted: 11/17/2015] [Indexed: 12/27/2022]
Affiliation(s)
- Claus Hellerbrand
- Department of Internal Medicine I; University Hospital Regensburg; 93053 Regensburg Germany
| | - Ramin Massoumi
- Department of Laboratory Medicine, Medicon Village; Lund University; 22381 Lund Sweden
| |
Collapse
|
44
|
Mathis BJ, Cui T. CDDO and Its Role in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 929:291-314. [PMID: 27771930 DOI: 10.1007/978-3-319-41342-6_13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There has been a continued interest in translational research focused on both natural products and manipulation of functional groups on these compounds to create novel derivatives with higher desired activities. Oleanolic acid, a component of traditional Chinese medicine used in hepatitis therapy, was modified by chemical processes to form 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO). This modification increased anti-inflammatory activity significantly and additional functional groups on the CDDO backbone have shown promise in treating conditions ranging from kidney disease to obesity to diabetes. CDDO's therapeutic effect is due to its upregulation of the master antioxidant transcription factor Nuclear factor erythroid 2-related factor 2 (Nrf2) through conformational change of Nrf2-repressing, Kelch-like erythroid cell-derived protein with CNC homology-associated protein 1 (Keap1) and multiple animal and human studies have verified subsequent activation of Nrf2-controlled antioxidant genes via upstream Antioxidant Response Element (ARE) regions. At the present time, positive results have been obtained in the laboratory and clinical trials with CDDO derivatives treating conditions such as lung injury, inflammation and chronic kidney disease. However, clinical trials for cancer and cardiovascular disease have not shown equally positive results and further exploration of CDDO and its derivatives is needed to put these shortcomings into context for the purpose of future therapeutic modalities.
Collapse
Affiliation(s)
- Bryan J Mathis
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, 29208, USA
| | - Taixing Cui
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, 6439 Garners Ferry Rd., Columbia, South Carolina, 29209, USA.
| |
Collapse
|