1
|
Kajiho H, Sakisaka T. Degradation of STIM1 through FAM134B-mediated ER-phagy is potentially involved in cell proliferation. J Biol Chem 2024; 300:107674. [PMID: 39128711 PMCID: PMC11414581 DOI: 10.1016/j.jbc.2024.107674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024] Open
Abstract
Autophagy is classified as nonselective or selective depending on the types of degrading substrates. Endoplasmic reticulum (ER)-phagy is a form of selective autophagy for transporting the ER-resident proteins to autolysosomes. FAM134B, a member of the family with sequence similarity 134, is a well-known ER-phagy receptor. Dysfunction of FAM134B results in several diseases including viral infection, inflammation, neurodegenerative disorder, and cancer, indicating that FAM134B has crucial roles in various kinds of intracellular functions. However, how FAM134B-mediated ER-phagy regulates intracellular functions is not well understood. In this study, we found that FAM134B knockdown in mammalian cells accelerated cell proliferation. FAM134B knockdown increased the protein amount of stromal interaction molecule 1 (STIM1), an ER Ca2+ sensor protein mediating the store-operated Ca2+ entry involved in G1 to S phase transition. FAM134B bound to STIM1 through its C-terminal cytosolic region. FAM134B knockdown reduced transport of STIM1 from the ER to autolysosomes. Finally, FAM134B knockdown accelerated G1 to S phase transition. These results suggest that FAM134B is involved in cell proliferation possibly through degradation of STIM1 via ER-phagy.
Collapse
Affiliation(s)
- Hiroaki Kajiho
- Division of Membrane Dynamics, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan; Department of Biochemical Pathophysiology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Toshiaki Sakisaka
- Division of Membrane Dynamics, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
2
|
Luo R, Gourriérec PL, Antigny F, Bedouet K, Domenichini S, Gomez AM, Benitah JP, Sabourin J. STIM2 variants regulate Orai1/TRPC1/TRPC4-mediated store-operated Ca 2+ entry and mitochondrial Ca 2+ homeostasis in cardiomyocytes. Cell Calcium 2024; 119:102871. [PMID: 38537434 DOI: 10.1016/j.ceca.2024.102871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
The stromal interaction molecules (STIMs) are the sarcoplasmic reticulum (SR) Ca2+ sensors that trigger store-operated Ca2+ entry (SOCE) in a variety of cell types. While STIM1 isoform has been the focus of the research in cardiac pathophysiology, the function of the homolog STIM2 remains unknown. Using Ca2+ imaging and patch-clamp techniques, we showed that knockdown (KD) of STIM2 by siRNAs increased SOCE and the ISOC current in neonatal rat ventricular cardiomyocytes (NRVMs). Within this cardiomyocyte model, we identified the transcript expression of Stim2.1 and Stim2.2 splice variants, with predominance for Stim2.2. Using conventional and super-resolution confocal microscopy (STED), we found that exogenous STIM2.1 and STIM2.2 formed pre-clusters with a reticular organization at rest. Following SR Ca2+ store depletion, some STIM2.1 and STIM2.2 clusters were translocated to SR-plasma membrane (PM) junctions and co-localized with Orai1. The overexpression strategy revealed that STIM2.1 suppressed Orai1-mediated SOCE and the ISOC current while STIM2.2 enhanced SOCE. STIM2.2-enhanced SOCE was also dependent on TRPC1 and TRPC4. Even if STIM2 KD or splice variants overexpression did not affect cytosolic Ca2+ cycling, we observed, using Rhod-2/AM Ca2+ imaging, that Orai1 inhibition or STIM2.1 overexpression abolished the mitochondrial Ca2+ (mCa2+) uptake, as opposed to STIM2 KD. We also found that STIM2 was present in the mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) by interacting with the inositol trisphosphate receptors (IP3Rs), voltage-dependent anion channel (VDAC), mitochondrial Ca2+ uniporter (MCU), and mitofusin-2 (MNF2). Our results suggested that, in NRVMs, STIM2.1 constitutes the predominant functional variant that negatively regulates Orai1-generated SOCE. It participates in the control of mCa2+ uptake capacity possibly via the STIM2-IP3Rs-VDAC-MCU and MNF2 complex.
Collapse
Affiliation(s)
- Rui Luo
- Inserm, UMR-S 1180, Signalisation et Physiopathologie Cardiovasculaire, Université Paris-Saclay, 91400 Orsay, France
| | - Pauline Le Gourriérec
- Inserm, UMR-S 1180, Signalisation et Physiopathologie Cardiovasculaire, Université Paris-Saclay, 91400 Orsay, France
| | - Fabrice Antigny
- Inserm, UMR-S 999 « Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France; Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
| | - Kaveen Bedouet
- Inserm, UMR-S 1180, Signalisation et Physiopathologie Cardiovasculaire, Université Paris-Saclay, 91400 Orsay, France
| | - Séverine Domenichini
- Université Paris-Saclay, Inserm, CNRS, Ingénierie et Plateformes au Service de l'Innovation Thérapeutique-Plateforme MIPSIT, Orsay, France
| | - Ana-Maria Gomez
- Inserm, UMR-S 1180, Signalisation et Physiopathologie Cardiovasculaire, Université Paris-Saclay, 91400 Orsay, France
| | - Jean-Pierre Benitah
- Inserm, UMR-S 1180, Signalisation et Physiopathologie Cardiovasculaire, Université Paris-Saclay, 91400 Orsay, France
| | - Jessica Sabourin
- Inserm, UMR-S 1180, Signalisation et Physiopathologie Cardiovasculaire, Université Paris-Saclay, 91400 Orsay, France.
| |
Collapse
|
3
|
Falcón D, Calderón-Sánchez EM, Mayoral-González I, Martín-Bórnez M, Dominguez-Rodriguez A, Gutiérrez-Carretero E, Ordóñez-Fernández A, Rosado JA, Smani T. Inhibition of adenylyl cyclase 8 prevents the upregulation of Orai1 channel, which improves cardiac function after myocardial infarction. Mol Ther 2024; 32:646-662. [PMID: 38291755 PMCID: PMC10928147 DOI: 10.1016/j.ymthe.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/14/2023] [Accepted: 01/19/2024] [Indexed: 02/01/2024] Open
Abstract
The upregulation of Orai1 and subsequent store-operated Ca2+ entry (SOCE) has been associated with adverse cardiac remodeling and heart failure (HF). However, the mechanism underlying Orai1 upregulation and its role in myocardial infarction remains unclear. Our study investigated the role of Orai1 in activating adenylyl cyclase 8 (AC8) and cyclic AMP (cAMP) response element-binding protein (CREB), as well as its contribution to cardiac dysfunction induced by ischemia and reperfusion (I/R). We found that I/R evoked an increase in the expression of Orai1 and AC8 in rats' hearts, resulting in a substantial rise in diastolic Ca2+ concentration ([Ca2+]i), and reduced ventricular contractions. The expression of Orai1 and AC8 was also increased in ventricular biopsies of post-ischemic HF patients. Mechanistically, we demonstrate that I/R activation of Orai1 stimulated AC8, which produced cAMP and phosphorylated CREB. Subsequently, p-CREB activated the ORAI1 promoter, resulting in Orai1 upregulation and SOCE exacerbation. Intramyocardial administration of AAV9 carrying AC8 short hairpin RNA decreased the expression of AC8, Orai1 and CREB, which restored diastolic [Ca2+]i and improved cardiac contraction. Therefore, our data suggests that the axis composed by Orai1/AC8/CREB plays a critical role in I/R-induced cardiac dysfunction, representing a potential new therapeutic target to limit the progression of the disease toward HF.
Collapse
Affiliation(s)
- Débora Falcón
- Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocio/University of Seville/CSIC, 41013 Seville, Spain; Department of Medical Physiology and Biophysics, Faculty of Medicine, University of Seville, 41009 Seville, Spain.
| | - Eva M Calderón-Sánchez
- Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocio/University of Seville/CSIC, 41013 Seville, Spain; Department of Medical Physiology and Biophysics, Faculty of Medicine, University of Seville, 41009 Seville, Spain
| | - Isabel Mayoral-González
- Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocio/University of Seville/CSIC, 41013 Seville, Spain
| | - Marta Martín-Bórnez
- Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocio/University of Seville/CSIC, 41013 Seville, Spain; Department of Medical Physiology and Biophysics, Faculty of Medicine, University of Seville, 41009 Seville, Spain
| | - Alejandro Dominguez-Rodriguez
- Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocio/University of Seville/CSIC, 41013 Seville, Spain
| | - Encarnación Gutiérrez-Carretero
- Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocio/University of Seville/CSIC, 41013 Seville, Spain; Department of Surgery, Faculty of Medicine, University of Seville, 41009 Seville, Spain
| | - Antonio Ordóñez-Fernández
- Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocio/University of Seville/CSIC, 41013 Seville, Spain
| | - Juan Antonio Rosado
- Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain
| | - Tarik Smani
- Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocio/University of Seville/CSIC, 41013 Seville, Spain; Department of Medical Physiology and Biophysics, Faculty of Medicine, University of Seville, 41009 Seville, Spain.
| |
Collapse
|
4
|
Li HX, Ma Y, Yan YX, Zhai XK, Xin MY, Wang T, Xu DC, Song YT, Song CD, Pan CX. The purified extract of steamed Panax ginseng protects cardiomyocyte from ischemic injury via caveolin-1 phosphorylation-mediating calcium influx. J Ginseng Res 2023; 47:755-765. [PMID: 38107394 PMCID: PMC10721475 DOI: 10.1016/j.jgr.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 12/19/2023] Open
Abstract
Background Caveolin-1, the scaffolding protein of cholesterol-rich invaginations, plays an important role in store-operated Ca2+ influx and its phosphorylation at Tyr14 (p-caveolin-1) is vital to mobilize protection against myocardial ischemia (MI) injury. SOCE, comprising STIM1, ORAI1 and TRPC1, contributes to intracellular Ca2+ ([Ca2+]i) accumulation in cardiomyocytes. The purified extract of steamed Panax ginseng (EPG) attenuated [Ca2+]i overload against MI injury. Thus, the aim of this study was to investigate the possibility of EPG affecting p-caveolin-1 to further mediate SOCE/[Ca2+]i against MI injury in neonatal rat cardiomyocytes and a rat model. Methods PP2, an inhibitor of p-caveolin-1, was used. Cell viability, [Ca2+]i concentration were analyzed in cardiomyocytes. In rats, myocardial infarct size, pathological damages, apoptosis and cardiac fibrosis were evaluated, p-caveolin-1 and STIM1 were detected by immunofluorescence, and the levels of caveolin-1, STIM1, ORAI1 and TRPC1 were determined by RT-PCR and Western blot. And, release of LDH, cTnI and BNP was measured. Results EPG, ginsenosides accounting for 57.96%, suppressed release of LDH, cTnI and BNP, and protected cardiomyocytes by inhibiting Ca2+ influx. And, EPG significantly relieved myocardial infarct size, cardiac apoptosis, fibrosis, and ultrastructure abnormality. Moreover, EPG negatively regulated SOCE via increasing p-caveolin-1 protein, decreasing ORAI1 mRNA and protein levels of ORAI1, TRPC1 and STIM1. More importantly, inhibition of the p-caveolin-1 significantly suppressed all of the above cardioprotection of EPG. Conclusions Caveolin-1 phosphorylation is involved in the protective effects of EPG against MI injury via increasing p-caveolin-1 to negatively regulate SOCE/[Ca2+]i.
Collapse
Affiliation(s)
- Hai-Xia Li
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan Province, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, Henan Province, China
| | - Yan Ma
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan Province, China
| | - Yu-Xiao Yan
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan Province, China
| | - Xin-Ke Zhai
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan Province, China
| | - Meng-Yu Xin
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan Province, China
| | - Tian Wang
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan Province, China
| | - Dong-Cao Xu
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan Province, China
| | - Yu-Tong Song
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan Province, China
| | - Chun-Dong Song
- The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, 9 Renmin Road, Zhengzhou, Henan Province, China
| | - Cheng-Xue Pan
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan Province, China
| |
Collapse
|
5
|
Balderas-Villalobos J, Medina-Contreras JML, Lynch C, Kabadi R, Hayles J, Ramirez RJ, Tan AY, Kaszala K, Samsó M, Huizar JF, Eltit JM. Mechanisms of adaptive hypertrophic cardiac remodeling in a large animal model of premature ventricular contraction-induced cardiomyopathy. IUBMB Life 2023; 75:926-940. [PMID: 37427864 PMCID: PMC10592397 DOI: 10.1002/iub.2765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023]
Abstract
Frequent premature ventricular contractions (PVCs) promoted eccentric cardiac hypertrophy and reduced ejection fraction (EF) in a large animal model of PVC-induced cardiomyopathy (PVC-CM), but the molecular mechanisms and markers of this hypertrophic remodeling remain unexplored. Healthy mongrel canines were implanted with pacemakers to deliver bigeminal PVCs (50% burden with 200-220 ms coupling interval). After 12 weeks, left ventricular (LV) free wall samples were studied from PVC-CM and Sham groups. In addition to reduced LV ejection fraction (LVEF), the PVC-CM group showed larger cardiac myocytes without evident ultrastructural alterations compared to the Sham group. Biochemical markers of pathological hypertrophy, such as store-operated Ca2+ entry, calcineurin/NFAT pathway, β-myosin heavy chain, and skeletal type α-actin were unaltered in the PVC-CM group. In contrast, pro-hypertrophic and antiapoptotic pathways including ERK1/2 and AKT/mTOR were activated and/or overexpressed in the PVC-CM group, which appeared counterbalanced by an overexpression of protein phosphatase 1 and a borderline elevation of the anti-hypertrophic factor atrial natriuretic peptide. Moreover, the potent angiogenic and pro-hypertrophic factor VEGF-A and its receptor VEGFR2 were significantly elevated in the PVC-CM group. In conclusion, a molecular program is in place to keep this structural remodeling associated with frequent PVCs as an adaptive pathological hypertrophy.
Collapse
Affiliation(s)
| | - JML Medina-Contreras
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University
| | - Christopher Lynch
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University
| | - Rajiv Kabadi
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Janée Hayles
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Rafael J. Ramirez
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University
| | - Alex Y. Tan
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States of America
- Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, VA, United States of America
| | - Karoly Kaszala
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States of America
- Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, VA, United States of America
| | - Montserrat Samsó
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University
| | - Jose F. Huizar
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States of America
- Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, VA, United States of America
| | - Jose M. Eltit
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University
| |
Collapse
|
6
|
Shemarova I. The Dysfunction of Ca 2+ Channels in Hereditary and Chronic Human Heart Diseases and Experimental Animal Models. Int J Mol Sci 2023; 24:15682. [PMID: 37958665 PMCID: PMC10650855 DOI: 10.3390/ijms242115682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Chronic heart diseases, such as coronary heart disease, heart failure, secondary arterial hypertension, and dilated and hypertrophic cardiomyopathies, are widespread and have a fairly high incidence of mortality and disability. Most of these diseases are characterized by cardiac arrhythmias, conduction, and contractility disorders. Additionally, interruption of the electrical activity of the heart, the appearance of extensive ectopic foci, and heart failure are all symptoms of a number of severe hereditary diseases. The molecular mechanisms leading to the development of heart diseases are associated with impaired permeability and excitability of cell membranes and are mainly caused by the dysfunction of cardiac Ca2+ channels. Over the past 50 years, more than 100 varieties of ion channels have been found in the cardiovascular cells. The relationship between the activity of these channels and cardiac pathology, as well as the general cellular biological function, has been intensively studied on several cell types and experimental animal models in vivo and in situ. In this review, I discuss the origin of genetic Ca2+ channelopathies of L- and T-type voltage-gated calcium channels in humans and the role of the non-genetic dysfunctions of Ca2+ channels of various types: L-, R-, and T-type voltage-gated calcium channels, RyR2, including Ca2+ permeable nonselective cation hyperpolarization-activated cyclic nucleotide-gated (HCN), and transient receptor potential (TRP) channels, in the development of cardiac pathology in humans, as well as various aspects of promising experimental studies of the dysfunctions of these channels performed on animal models or in vitro.
Collapse
Affiliation(s)
- Irina Shemarova
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223 Saint-Petersburg, Russia
| |
Collapse
|
7
|
Palioura D, Mellidis K, Ioannidou-Kabouri K, Galatou E, Mouchtouri ET, Stamatiou R, Mavrommatis-Parasidis P, Panteris E, Varela A, Davos C, Drosatos K, Mavroidis M, Lazou A. PPARδ activation improves cardiac mitochondrial homeostasis in desmin deficient mice but does not alleviate systolic dysfunction. J Mol Cell Cardiol 2023; 183:27-41. [PMID: 37603971 DOI: 10.1016/j.yjmcc.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 07/22/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023]
Abstract
Peroxisome proliferator-activated receptor (PPAR) δ is a major transcriptional regulator of cardiac energy metabolism with pleiotropic properties, including anti-inflammatory, anti-oxidative and cardioprotective action. In this study, we sought to investigate whether pharmacological activation of PPARδ via intraperitoneal administration of the selective ligand GW0742 could ameliorate heart failure and mitochondrial dysfunction that have been previously reported in a characterized genetic model of heart failure, the desmin null mice (Des-/-). Our studies demonstrate that treatment of Des-/- mice with the PPARδ agonist attenuated cardiac inflammation, fibrosis and cardiac remodeling. In addition, PPARδ activation alleviated oxidative stress in the failing myocardium as evidenced by decreased ROS levels. Importantly, PPARδ activation stimulated mitochondrial biogenesis, prevented mitochondrial and sarcoplasmic reticulum vacuolar degeneration and improved the mitochondrial intracellular distribution. Finally, PPARδ activation alleviated the mitochondrial respiratory dysfunction, prevented energy depletion and alleviated excessive autophagy and mitophagy in Des-/- hearts. Nevertheless, improvement of all these parameters did not suffice to overcome the significant structural deficiencies that desmin deletion incurs in cardiomyocytes and cardiac function did not improve significantly. In conclusion, pharmacological PPARδ activation in Des-/- hearts exerts protective effects during myocardial degeneration and heart failure by preserving the function and quality of the mitochondrial network. These findings implicate PPARδ agonists as a supplemental constituent of heart failure medications.
Collapse
Affiliation(s)
- Dimitra Palioura
- Laboratory of Animal Physiology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Kyriakos Mellidis
- Laboratory of Animal Physiology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Konstantina Ioannidou-Kabouri
- Laboratory of Animal Physiology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Eleftheria Galatou
- Laboratory of Animal Physiology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | | | - Rodopi Stamatiou
- Laboratory of Animal Physiology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | | | - Emmanuel Panteris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Aimilia Varela
- Clinical, Experimental Surgery & Translational Research Center, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Constantinos Davos
- Clinical, Experimental Surgery & Translational Research Center, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Konstantinos Drosatos
- Metabolic Biology Laboratory, Cardiovascular Center, Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Manolis Mavroidis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Antigone Lazou
- Laboratory of Animal Physiology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
8
|
Liu P, Yang Z, Wang Y, Sun A. Role of STIM1 in the Regulation of Cardiac Energy Substrate Preference. Int J Mol Sci 2023; 24:13188. [PMID: 37685995 PMCID: PMC10487555 DOI: 10.3390/ijms241713188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The heart requires a variety of energy substrates to maintain proper contractile function. Glucose and long-chain fatty acids (FA) are the major cardiac metabolic substrates under physiological conditions. Upon stress, a shift of cardiac substrate preference toward either glucose or FA is associated with cardiac diseases. For example, in pressure-overloaded hypertrophic hearts, there is a long-lasting substrate shift toward glucose, while in hearts with diabetic cardiomyopathy, the fuel is switched toward FA. Stromal interaction molecule 1 (STIM1), a well-established calcium (Ca2+) sensor of endoplasmic reticulum (ER) Ca2+ store, is increasingly recognized as a critical player in mediating both cardiac hypertrophy and diabetic cardiomyopathy. However, the cause-effect relationship between STIM1 and glucose/FA metabolism and the possible mechanisms by which STIM1 is involved in these cardiac metabolic diseases are poorly understood. In this review, we first discussed STIM1-dependent signaling in cardiomyocytes and metabolic changes in cardiac hypertrophy and diabetic cardiomyopathy. Second, we provided examples of the involvement of STIM1 in energy metabolism to discuss the emerging role of STIM1 in the regulation of energy substrate preference in metabolic cardiac diseases and speculated the corresponding underlying molecular mechanisms of the crosstalk between STIM1 and cardiac energy substrate preference. Finally, we briefly discussed and presented future perspectives on the possibility of targeting STIM1 to rescue cardiac metabolic diseases. Taken together, STIM1 emerges as a key player in regulating cardiac energy substrate preference, and revealing the underlying molecular mechanisms by which STIM1 mediates cardiac energy metabolism could be helpful to find novel targets to prevent or treat cardiac metabolic diseases.
Collapse
Affiliation(s)
- Panpan Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Zhuli Yang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Aomin Sun
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
9
|
Bonilla IM, Baine S, Pokrass A, Mariángelo JIE, Kalyanasundaram A, Bogdanov V, Mezache L, Sakuta G, Beard CM, Belevych A, Tikunova S, Terentyeva R, Terentyev D, Davis J, Veeraraghavan R, Carnes CA, Györke S. STIM1 ablation impairs exercise-induced physiological cardiac hypertrophy and dysregulates autophagy in mouse hearts. J Appl Physiol (1985) 2023; 134:1287-1299. [PMID: 36995910 PMCID: PMC10190841 DOI: 10.1152/japplphysiol.00363.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
Cardiac stromal interaction molecule 1 (STIM1), a key mediator of store-operated Ca2+ entry (SOCE), is a known determinant of cardiomyocyte pathological growth in hypertrophic cardiomyopathy. We examined the role of STIM1 and SOCE in response to exercise-dependent physiological hypertrophy. Wild-type (WT) mice subjected to exercise training (WT-Ex) showed a significant increase in exercise capacity and heart weight compared with sedentary (WT-Sed) mice. Moreover, myocytes from WT-Ex hearts displayed an increase in length, but not width, compared with WT-Sed myocytes. Conversely, exercised cardiac-specific STIM1 knock-out mice (cSTIM1KO-Ex), although displaying significant increase in heart weight and cardiac dilation, evidenced no changes in myocyte size and displayed a decreased exercise capacity, impaired cardiac function, and premature death compared with sedentary cardiac-specific STIM1 knock-out mice (cSTIM1KO-Sed). Confocal Ca2+ imaging demonstrated enhanced SOCE in WT-Ex myocytes compared with WT-Sed myocytes with no measurable SOCE detected in cSTIM1KO myocytes. Exercise training induced a significant increase in cardiac phospho-Akt Ser473 in WT mice but not in cSTIM1KO mice. No differences were observed in phosphorylation of mammalian target of rapamycin (mTOR) and glycogen synthase kinase (GSK) in exercised versus sedentary cSTIM1KO mice hearts. cSTIM1KO-Sed mice showed increased basal MAPK phosphorylation compared with WT-Sed that was not altered by exercise training. Finally, histological analysis revealed exercise resulted in increased autophagy in cSTIM1KO but not in WT myocytes. Taken together, our results suggest that adaptive cardiac hypertrophy in response to exercise training involves STIM1-mediated SOCE. Our results demonstrate that STIM1 is involved in and essential for the myocyte longitudinal growth and mTOR activation in response to endurance exercise training.NEW & NOTEWORTHY Store-operated Ca2+ entry (SOCE) has been implicated in pathological cardiac hypertrophy; however, its role in physiological hypertrophy is unknown. Here we report that SOCE is also essential for physiological cardiac hypertrophy and functional adaptations in response to endurance exercise. These adaptations were associated with activation of AKT/mTOR pathway and curtailed cardiac autophagy and degeneration. Thus, SOCE is a common mechanism and an important bifurcation point for signaling paths involved in physiological and pathological hypertrophy.
Collapse
Affiliation(s)
- Ingrid M Bonilla
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, United States
- Veterans Affairs Caribbean Healthcare System, San Juan, Puerto Rico, United States
- Department of Pharmacology and Toxicology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico, United States
| | - Stephen Baine
- Department of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, United States
| | - Anastasia Pokrass
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Juan Ignacio Elio Mariángelo
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Anuradha Kalyanasundaram
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, United States
- Bob and Corrine Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart & Lung Research Institute, Columbus, Ohio, United States
| | - Vladimir Bogdanov
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Louisa Mezache
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, United States
| | - Galina Sakuta
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Casey M Beard
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Andriy Belevych
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Svetlana Tikunova
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Radmila Terentyeva
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Dmitry Terentyev
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Jonathan Davis
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Rengasayee Veeraraghavan
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, United States
| | - Cynthia A Carnes
- Department of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, United States
| | - Sandor Györke
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
10
|
Gao PC, Wang AQ, Chen XW, Cui H, Li Y, Fan RF. Selenium alleviates endoplasmic reticulum calcium depletion-induced endoplasmic reticulum stress and apoptosis in chicken myocardium after mercuric chloride exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:51531-51541. [PMID: 36810819 DOI: 10.1007/s11356-023-25970-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Mercury is a highly toxic heavy metal with definite cardiotoxic properties and can affect the health of humans and animals through diet. Selenium (Se) is a heart-healthy trace element and dietary Se has the potential to attenuate heavy metal-induced myocardial damage in humans and animals. This study was designed to explore antagonistic effect of Se on the cardiotoxicity of mercuric chloride (HgCl2) in chickens. Hyline brown hens received a normal diet, a diet containing 250 mg/L HgCl2, or a diet containing 250 mg/L HgCl2 and 10 mg/kg Na2SeO3 for 7 weeks, respectively. Histopathological observations demonstrated that Se attenuated HgCl2-induced myocardial injury, which was further confirmed by the results of serum creatine kinase and lactate dehydrogenase levels assay and myocardial tissues oxidative stress indexes assessment. The results showed that Se prevented HgCl2-induced cytoplasmic calcium ion (Ca2+) overload and endoplasmic reticulum (ER) Ca2+ depletion mediated by Ca2+-regulatory dysfunction of ER. Importantly, ER Ca2+ depletion led to unfolded protein response and endoplasmic reticulum stress (ERS), resulting in apoptosis of cardiomyocytes via PERK/ATF4/CHOP pathway. In addition, heat shock protein expression was activated by HgCl2 through these stress responses, which was reversed by Se. Moreover, Se supplementation partially eliminated the effects of HgCl2 on the expression of several ER-settled selenoproteins, including selenoprotein K (SELENOK), SELENOM, SELENON, and SELENOS. In conclusion, these results suggested that Se alleviated ER Ca2+ depletion and oxidative stress-induced ERS-dependent apoptosis in chicken myocardium after HgCl2 exposure.
Collapse
Affiliation(s)
- Pei-Chao Gao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
| | - An-Qi Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
| | - Xue-Wei Chen
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
| | - Han Cui
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
| | - Yue Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
| | - Rui-Feng Fan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China.
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China.
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China.
| |
Collapse
|
11
|
Maione AS, Faris P, Iengo L, Catto V, Bisonni L, Lodola F, Negri S, Casella M, Guarino A, Polvani G, Cerrone M, Tondo C, Pompilio G, Sommariva E, Moccia F. Ca 2+ dysregulation in cardiac stromal cells sustains fibro-adipose remodeling in Arrhythmogenic Cardiomyopathy and can be modulated by flecainide. J Transl Med 2022; 20:522. [PMID: 36371290 PMCID: PMC9652790 DOI: 10.1186/s12967-022-03742-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/30/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Cardiac mesenchymal stromal cells (C-MSC) were recently shown to differentiate into adipocytes and myofibroblasts to promote the aberrant remodeling of cardiac tissue that characterizes arrhythmogenic cardiomyopathy (ACM). A calcium (Ca2+) signaling dysfunction, mainly demonstrated in mouse models, is recognized as a mechanism impacting arrhythmic risk in ACM cardiomyocytes. Whether similar mechanisms influence ACM C-MSC fate is still unknown. Thus, we aim to ascertain whether intracellular Ca2+ oscillations and the Ca2+ toolkit are altered in human C-MSC obtained from ACM patients, and to assess their link with C-MSC-specific ACM phenotypes. METHODS AND RESULTS ACM C-MSC show enhanced spontaneous Ca2+ oscillations and concomitant increased Ca2+/Calmodulin dependent kinase II (CaMKII) activation compared to control cells. This is manly linked to a constitutive activation of Store-Operated Ca2+ Entry (SOCE), which leads to enhanced Ca2+ release from the endoplasmic reticulum through inositol-1,4,5-trisphosphate receptors. By targeting the Ca2+ handling machinery or CaMKII activity, we demonstrated a causative link between Ca2+ oscillations and fibro-adipogenic differentiation of ACM C-MSC. Genetic silencing of the desmosomal gene PKP2 mimics the remodelling of the Ca2+ signalling machinery occurring in ACM C-MSC. The anti-arrhythmic drug flecainide inhibits intracellular Ca2+ oscillations and fibro-adipogenic differentiation by selectively targeting SOCE. CONCLUSIONS Altogether, our results extend the knowledge of Ca2+ dysregulation in ACM to the stromal compartment, as an etiologic mechanism of C-MSC-related ACM phenotypes. A new mode of action of flecainide on a novel mechanistic target is unveiled against the fibro-adipose accumulation in ACM.
Collapse
Affiliation(s)
- Angela S Maione
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Via Parea 4, 20138, Milan, Italy.
| | - Pawan Faris
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Lara Iengo
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Via Parea 4, 20138, Milan, Italy
| | - Valentina Catto
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Luca Bisonni
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Via Parea 4, 20138, Milan, Italy
| | - Francesco Lodola
- Laboratory of Cardiac Cellular Physiology, Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy
| | - Sharon Negri
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Michela Casella
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Cardiology and Arrhythmology Clinic, University Hospital "Umberto I-Salesi-Lancisi", Ancona, Italy
| | - Anna Guarino
- Cardiovascular Tissue Bank of Lombardy, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Gianluca Polvani
- Cardiovascular Tissue Bank of Lombardy, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Marina Cerrone
- Medicine, Leon H. Charney Division of Cardiology, Heart Rhythm Center and Cardiovascular Genetics Program, New York University School of Medicine, New York, USA
| | - Claudio Tondo
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Biomedical, Surgical and Dentist Sciences, University of Milano, Milan, Italy
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Via Parea 4, 20138, Milan, Italy
- Department of Biomedical, Surgical and Dentist Sciences, University of Milano, Milan, Italy
| | - Elena Sommariva
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Via Parea 4, 20138, Milan, Italy
| | - Francesco Moccia
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| |
Collapse
|
12
|
Sabourin J, Beauvais A, Luo R, Montani D, Benitah JP, Masson B, Antigny F. The SOCE Machinery: An Unbalanced Knowledge between Left and Right Ventricular Pathophysiology. Cells 2022; 11:cells11203282. [PMID: 36291148 PMCID: PMC9600889 DOI: 10.3390/cells11203282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/09/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
Right ventricular failure (RVF) is the most important prognostic factor for morbidity and mortality in pulmonary arterial hypertension (PAH) or pulmonary hypertension (PH) caused by left heart diseases. However, right ventricle (RV) remodeling is understudied and not targeted by specific therapies. This can be partly explained by the lack of basic knowledge of RV remodeling. Since the physiology and hemodynamic function of the RV differ from those of the left ventricle (LV), the mechanisms of LV dysfunction cannot be generalized to that of the RV, albeit a knowledge of these being helpful to understanding RV remodeling and dysfunction. Store-operated Ca2+ entry (SOCE) has recently emerged to participate in the LV cardiomyocyte Ca2+ homeostasis and as a critical player in Ca2+ mishandling in a pathological context. In this paper, we highlight the current knowledge on the SOCE contribution to the LV and RV dysfunctions, as SOCE molecules are present in both compartments. he relative lack of studies on RV dysfunction indicates the necessity of further investigations, a significant challenge over the coming years.
Collapse
Affiliation(s)
- Jessica Sabourin
- Signalisation et Physiopathologie Cardiovasculaire, Inserm, Université Paris-Saclay, UMR-S 1180, 91400 Orsay, France
- Correspondence: (J.S.); (F.A.); Tel.: +(33)-180-006-302 (J.S.); +(33)-140-942-299 (F.A.)
| | - Antoine Beauvais
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
- Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Université Paris-Saclay, Inserm, UMR-S 999, 92350 Le Plessis-Robinson, France
- Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Rui Luo
- Signalisation et Physiopathologie Cardiovasculaire, Inserm, Université Paris-Saclay, UMR-S 1180, 91400 Orsay, France
| | - David Montani
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
- Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Université Paris-Saclay, Inserm, UMR-S 999, 92350 Le Plessis-Robinson, France
- Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Jean-Pierre Benitah
- Signalisation et Physiopathologie Cardiovasculaire, Inserm, Université Paris-Saclay, UMR-S 1180, 91400 Orsay, France
| | - Bastien Masson
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
- Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Université Paris-Saclay, Inserm, UMR-S 999, 92350 Le Plessis-Robinson, France
- Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Fabrice Antigny
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
- Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Université Paris-Saclay, Inserm, UMR-S 999, 92350 Le Plessis-Robinson, France
- Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
- Correspondence: (J.S.); (F.A.); Tel.: +(33)-180-006-302 (J.S.); +(33)-140-942-299 (F.A.)
| |
Collapse
|
13
|
Ye J, Li M, Li Q, Jia Z, Hu X, Zhao G, Zhi S, Hong G, Lu Z. Activation of STIM1/Orai1‑mediated SOCE in sepsis‑induced myocardial depression. Mol Med Rep 2022; 26:259. [PMID: 35713214 DOI: 10.3892/mmr.2022.12775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/21/2022] [Indexed: 11/05/2022] Open
Abstract
Unbalanced Ca2+ homeostasis serves an essential role in the occurrence and development of septic myocardial injury. However, the mechanism of Ca2+ homeostasis in septic myocardial depression is poorly understood due to the complexity of Ca2+ transporters in excitable cells. It was therefore hypothesized that cardiac dysfunction, myocardial injury and cardiac apoptosis in septic myocardial depression are associated with elevated intracellular Ca2+ concentrations caused by stromal interaction molecule 1 (STIM1)/Orai calcium release‑activated calcium modulator 1 (Orai1)‑mediated store‑operated Ca2+ entry (SOCE). A septic myocardial depression model was established using the cecal ligation and puncture operation (CLP) in mice and was simulated in H9C2 cells via lipopolysaccharide (LPS) stimulation. Cardiac function, myocardial injury, cardiac apoptosis and the expression levels of Bax, Bcl‑2, STIM1 and Orai1 were quantified in vivo at 6, 12 and 24 h. Changes in the intracellular Ca2+ concentration, SOCE and the distribution of STIM1 were assessed in vitro within 6 h. The morphological changes of heart tissue were observed by hematoxylin‑eosin staining. Myocardial cellular apoptosis was determined by TUNEL method. The expression of Bax, Bcl‑2, STIM1 and Orai1 were visualized by western blot. Cytosolic calcium concentration and SOCE were evaluated by confocal microscopy. The results demonstrated that cardiac contractile function was significantly reduced at 6 h and morphological changes in cardiac tissues, as well as the myocardial apoptosis rate, were markedly increased at 6, 12 and 24 h following CLP. mRNA and protein expression levels of Bax/Bcl‑2 were significantly enhanced at 6 and 12 h and glycosylation of Orai1 in the myocardium of septic mice was significantly increased at 6 h following CLP. The intracellular Ca2+ concentration, SOCE, was significantly increased at 1‑2 h and the clustering and distribution of STIM1 were markedly changed in H9C2 cells at 1 and 2 h. These findings suggested that myocardial dysfunction, cardiac injury and myocardial depression may be related to increased intracellular Ca2+ concentration resulting from STIM1/Orai1‑mediated SOCE, which may provide a potential method to alleviate septic myocardial depression.
Collapse
Affiliation(s)
- Jingjing Ye
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Mengfang Li
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Qiao Li
- Ultrasound Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhijun Jia
- Ultrasound Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiyi Hu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Guangju Zhao
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Shaoce Zhi
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Guangliang Hong
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhongqiu Lu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
14
|
Pharmacological blockade of angiotensin II receptor restores diabetes-associated reduction of store operated Ca2+ entry in adult cardiomyocytes. Biochem Biophys Res Commun 2022; 610:56-60. [DOI: 10.1016/j.bbrc.2022.04.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/07/2022] [Indexed: 02/06/2023]
|
15
|
Collins HE, Zhang D, Chatham JC. STIM and Orai Mediated Regulation of Calcium Signaling in Age-Related Diseases. FRONTIERS IN AGING 2022; 3:876785. [PMID: 35821821 PMCID: PMC9261457 DOI: 10.3389/fragi.2022.876785] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/30/2022] [Indexed: 01/19/2023]
Abstract
Tight spatiotemporal regulation of intracellular Ca2+ plays a critical role in regulating diverse cellular functions including cell survival, metabolism, and transcription. As a result, eukaryotic cells have developed a wide variety of mechanisms for controlling Ca2+ influx and efflux across the plasma membrane as well as Ca2+ release and uptake from intracellular stores. The STIM and Orai protein families comprising of STIM1, STIM2, Orai1, Orai2, and Orai3, are evolutionarily highly conserved proteins that are core components of all mammalian Ca2+ signaling systems. STIM1 and Orai1 are considered key players in the regulation of Store Operated Calcium Entry (SOCE), where release of Ca2+ from intracellular stores such as the Endoplasmic/Sarcoplasmic reticulum (ER/SR) triggers Ca2+ influx across the plasma membrane. SOCE, which has been widely characterized in non-excitable cells, plays a central role in Ca2+-dependent transcriptional regulation. In addition to their role in Ca2+ signaling, STIM1 and Orai1 have been shown to contribute to the regulation of metabolism and mitochondrial function. STIM and Orai proteins are also subject to redox modifications, which influence their activities. Considering their ubiquitous expression, there has been increasing interest in the roles of STIM and Orai proteins in excitable cells such as neurons and myocytes. While controversy remains as to the importance of SOCE in excitable cells, STIM1 and Orai1 are essential for cellular homeostasis and their disruption is linked to various diseases associated with aging such as cardiovascular disease and neurodegeneration. The recent identification of splice variants for most STIM and Orai isoforms while complicating our understanding of their function, may also provide insight into some of the current contradictions on their roles. Therefore, the goal of this review is to describe our current understanding of the molecular regulation of STIM and Orai proteins and their roles in normal physiology and diseases of aging, with a particular focus on heart disease and neurodegeneration.
Collapse
Affiliation(s)
- Helen E. Collins
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Dingguo Zhang
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at Birmingham, Birmingham, AL, United States
| | - John C. Chatham
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at Birmingham, Birmingham, AL, United States,*Correspondence: John C. Chatham,
| |
Collapse
|
16
|
Durak A, Olgar Y, Genc K, Tuncay E, Akat F, Degirmenci S, Turan B. STIM1-Orai1 interaction mediated calcium influx activation contributes to cardiac contractility of insulin-resistant rats. BMC Cardiovasc Disord 2022; 22:147. [PMID: 35379188 PMCID: PMC8981683 DOI: 10.1186/s12872-022-02586-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/23/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Metabolic syndrome (MetS) became a tremendous public health burden in the last decades. Store-operated calcium entry (SOCE) is a unique mechanism that causes a calcium influx, which is triggered by calcium store depletion. MetS-induced alterations in cardiac calcium signaling, especially in SOCE are still unclear. Therefore, we aim to examine the possible role of SOCE and its components (STIM1 and Orai1) in the MetS-induced cardiac remodeling. METHODS We used male, adult (12 weeks) Wistar albino rats (n = 20). Animals were randomly divided into two groups which were: control (C) and MetS. We gave 33% sucrose solution to animals instead of water for 24 weeks to establish MetS model. In the end, papillary muscle function was evaluated, and various electrophysiological analyses were made in isolated cardiomyocytes. Additionally, STIM1 and Orai1 protein and mRNA expressions were analyzed. RESULTS We observed a deterioration in contractility in MetS animals and demonstrated the contribution of SOCE by applying a SOCE inhibitor (BTP2). Calcium spark frequency was increased while its amplitude was decreasing in MetS hearts, which was reversed after SOCE inhibition. The amplitude of transient calcium changes in the MetS group was decreased, and it decreased further BTP2 application. Both protein and mRNA levels of STIM1 and Orai1 were increased significantly in MetS hearts. CONCLUSION Current data indicate the significant contribution of SOCE to cardiac calcium handling in the MetS model. We think MetS-induced SOCE activation is a compensation mechanism that is required for the continuum of proper cardiac functioning, although the activation can also cause cardiac hypertrophy.
Collapse
Affiliation(s)
- Aysegul Durak
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey.
| | - Yusuf Olgar
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Kardelen Genc
- Stem Cell Institute, Ankara University, Ankara, Turkey
| | - Erkan Tuncay
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Fırat Akat
- Department of Physiology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Sinan Degirmenci
- Department of Biophysics, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Belma Turan
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
- Department of Biophysics, Faculty of Medicine, Lokman Hekim University, Ankara, Turkey
| |
Collapse
|
17
|
Lu T, Zhang Y, Su Y, Zhou D, Xu Q. Role of store-operated Ca2+ entry in cardiovascular disease. Cell Commun Signal 2022; 20:33. [PMID: 35303866 PMCID: PMC8932232 DOI: 10.1186/s12964-022-00829-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/14/2022] [Indexed: 01/01/2023] Open
Abstract
Store-operated channels (SOCs) are highly selective Ca2+ channels that mediate Ca2+ influx in non-excitable and excitable (i.e., skeletal and cardiac muscle) cells. These channels are triggered by Ca2+ depletion of the endoplasmic reticulum and sarcoplasmic reticulum, independently of inositol 1,4,5-trisphosphate (InsP3), which is involved in cell growth, differentiation, and gene transcription. When the Ca2+ store is depleted, stromal interaction molecule1 (STIM1) as Ca2+ sensor redistributes into discrete puncta near the plasma membrane and activates the protein Ca2+ release activated Ca2+ channel protein 1 (Orai1). Accumulating evidence suggests that SOC is associated with several physiological roles in endothelial dysfunction and vascular smooth muscle proliferation that contribute to the progression of cardiovascular disease. This review mainly elaborates on the contribution of SOC in the vasculature (endothelial cells and vascular smooth muscle cells). We will further retrospect the literature implicating a critical role for these proteins in cardiovascular disease.
Collapse
Affiliation(s)
- Ting Lu
- Department of Cardiology, Chongqing Fifth People's Hospital, No. 24 Renji Road, Chongqing, 400000, China
| | - Yihua Zhang
- Department of Cardiology, Chongqing Fifth People's Hospital, No. 24 Renji Road, Chongqing, 400000, China
| | - Yong Su
- Department of Cardiology, Chongqing Fifth People's Hospital, No. 24 Renji Road, Chongqing, 400000, China
| | - Dayan Zhou
- Department of Cardiology, Chongqing Fifth People's Hospital, No. 24 Renji Road, Chongqing, 400000, China
| | - Qiang Xu
- Department of Cardiology, Chongqing Fifth People's Hospital, No. 24 Renji Road, Chongqing, 400000, China.
| |
Collapse
|
18
|
Krishnan V, Ali S, Gonzales AL, Thakore P, Griffin CS, Yamasaki E, Alvarado MG, Johnson MT, Trebak M, Earley S. STIM1-dependent peripheral coupling governs the contractility of vascular smooth muscle cells. eLife 2022; 11:70278. [PMID: 35147077 PMCID: PMC8947769 DOI: 10.7554/elife.70278] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 02/10/2022] [Indexed: 11/28/2022] Open
Abstract
Peripheral coupling between the sarcoplasmic reticulum (SR) and plasma membrane (PM) forms signaling complexes that regulate the membrane potential and contractility of vascular smooth muscle cells (VSMCs). The mechanisms responsible for these membrane interactions are poorly understood. In many cells, STIM1 (stromal interaction molecule 1), a single-transmembrane-domain protein that resides in the endoplasmic reticulum (ER), transiently moves to ER-PM junctions in response to depletion of ER Ca2+ stores and initiates store-operated Ca2+ entry (SOCE). Fully differentiated VSMCs express STIM1 but exhibit only marginal SOCE activity. We hypothesized that STIM1 is constitutively active in contractile VSMCs and maintains peripheral coupling. In support of this concept, we found that the number and size of SR-PM interacting sites were decreased, and SR-dependent Ca2+-signaling processes were disrupted in freshly isolated cerebral artery SMCs from tamoxifen-inducible, SMC-specific STIM1-knockout (Stim1-smKO) mice. VSMCs from Stim1-smKO mice also exhibited a reduction in nanoscale colocalization between Ca2+-release sites on the SR and Ca2+-activated ion channels on the PM, accompanied by diminished channel activity. Stim1-smKO mice were hypotensive, and resistance arteries isolated from them displayed blunted contractility. These data suggest that STIM1 – independent of SR Ca2+ store depletion – is critically important for stable peripheral coupling in contractile VSMCs.
Collapse
Affiliation(s)
- Vivek Krishnan
- Department of Pharmacology, University of Nevada Reno, Reno, United States
| | - Sher Ali
- Department of Pharmacology, University of Nevada Reno, Reno, United States
| | - Albert L Gonzales
- Department of Physiology and Cell Biology, University of Nevada Reno, Reno, United States
| | - Pratish Thakore
- Department of Pharmacology, University of Nevada, Reno, Reno, United States
| | - Caoimhin S Griffin
- Department of Pharmacology, University of Nevada Reno, Reno, United States
| | - Evan Yamasaki
- Department of Pharmacology, University of Nevada Reno, Reno, United States
| | - Michael G Alvarado
- Department of Pharmacology, University of Nevada Reno, Reno, United States
| | - Martin T Johnson
- Department of Cellular and Molecular Physiology, Penn State University, Hershey, United States
| | - Mohamed Trebak
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, United States
| | - Scott Earley
- Department of Pharmacology, University of Nevada Reno, Reno, United States
| |
Collapse
|
19
|
Abstract
Store-operated Ca2+ entry (SOCE) is a ubiquitous Ca2+ signaling pathway that is evolutionarily conserved across eukaryotes. SOCE is triggered physiologically when the endoplasmic reticulum (ER) Ca2+ stores are emptied through activation of inositol 1,4,5-trisphosphate receptors. SOCE is mediated by the Ca2+ release-activated Ca2+ (CRAC) channels, which are highly Ca2+ selective. Upon store depletion, the ER Ca2+-sensing STIM proteins aggregate and gain extended conformations spanning the ER-plasma membrane junctional space to bind and activate Orai, the pore-forming proteins of hexameric CRAC channels. In recent years, studies on STIM and Orai tissue-specific knockout mice and gain- and loss-of-function mutations in humans have shed light on the physiological functions of SOCE in various tissues. Here, we describe recent findings on the composition of native CRAC channels and their physiological functions in immune, muscle, secretory, and neuronal systems to draw lessons from transgenic mice and human diseases caused by altered CRAC channel activity.
Collapse
Affiliation(s)
- Scott M Emrich
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA;
| | - Ryan E Yoast
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA;
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA;
- Department of Pharmacology and Chemical Biology and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
20
|
Collins HE, Anderson JC, Wende AR, Chatham JC. Cardiomyocyte stromal interaction molecule 1 is a key regulator of Ca 2+ -dependent kinase and phosphatase activity in the mouse heart. Physiol Rep 2022; 10:e15177. [PMID: 35179826 PMCID: PMC8855923 DOI: 10.14814/phy2.15177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 04/26/2023] Open
Abstract
Stromal interaction molecule 1 (STIM1) is a major regulator of store-operated calcium entry in non-excitable cells. Recent studies have suggested that STIM1 plays a role in pathological hypertrophy; however, the physiological role of STIM1 in the heart is not well understood. We have shown that mice with a cardiomyocyte deletion of STIM1 (cr STIM1-/- ) develop ER stress, mitochondrial, and metabolic abnormalities, and dilated cardiomyopathy. However, the specific signaling pathways and kinases regulated by STIM1 are largely unknown. Therefore, we used a discovery-based kinomics approach to identify kinases differentially regulated by STIM1. Twelve-week male control and cr STIM1-/- mice were injected with saline or phenylephrine (PE, 15 mg/kg, s.c, 15 min), and hearts obtained for analysis of the Serine/threonine kinome. Primary analysis was performed using BioNavigator 6.0 (PamGene), using scoring from the Kinexus PhosphoNET database and GeneGo network modeling, and confirmed using standard immunoblotting. Kinomics revealed significantly lower PKG and protein kinase C (PKC) signaling in the hearts of the cr STIM1-/- in comparison to control hearts, confirmed by immunoblotting for the calcium-dependent PKC isoform PKCα and its downstream target MARCKS. Similar reductions in cr STIM1-/- hearts were found for the kinases: MEK1/2, AMPK, and PDPK1, and in the activity of the Ca2+ -dependent phosphatase, calcineurin. Electrocardiogram analysis also revealed that cr STIM1-/- mice have significantly lower HR and prolonged QT interval. In conclusion, we have shown several calcium-dependent kinases and phosphatases are regulated by STIM1 in the adult mouse heart. This has important implications in understanding how STIM1 contributes to the regulation of cardiac physiology and pathophysiology.
Collapse
Affiliation(s)
- Helen E. Collins
- Division of Environmental MedicineDepartment of MedicineUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Joshua C. Anderson
- Department of Radiation OncologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Adam R. Wende
- Division of Molecular and Cellular PathologyDepartment of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - John C. Chatham
- Division of Molecular and Cellular PathologyDepartment of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
21
|
Petersen CE, Tripoli BA, Schoborg TA, Smyth JT. Analysis of Drosophila cardiac hypertrophy by microcomputerized tomography for genetic dissection of heart growth mechanisms. Am J Physiol Heart Circ Physiol 2022; 322:H296-H309. [PMID: 34951542 PMCID: PMC8782661 DOI: 10.1152/ajpheart.00387.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Heart failure is often preceded by pathological cardiac hypertrophy, a thickening of the heart musculature driven by complex gene regulatory and signaling processes. The Drosophila heart has great potential as a genetic model for deciphering the underlying mechanisms of cardiac hypertrophy. However, current methods for evaluating hypertrophy of the Drosophila heart are laborious and difficult to carry out reproducibly. Here, we demonstrate that microcomputerized tomography (microCT) is an accessible, highly reproducible method for nondestructive, quantitative analysis of Drosophila heart morphology and size. To validate our microCT approach for analyzing Drosophila cardiac hypertrophy, we show that expression of constitutively active Ras (Ras85DV12), previously shown to cause hypertrophy of the fly heart, results in significant thickening of both adult and larval heart walls when measured from microCT images. We then show using microCT analysis that genetic upregulation of store-operated Ca2+ entry (SOCE) driven by expression of constitutively active Stim (StimCA) or Orai (OraiCA) proteins also results in significant hypertrophy of the Drosophila heart, through a process that specifically depends on Orai Ca2+ influx channels. Intravital imaging of heart contractility revealed significantly reduced end-diastolic and end-systolic dimensions in StimCA- and OraiCA-expressing hearts, consistent with the hypertrophic phenotype. These results demonstrate that increased SOCE activity is an important driver of hypertrophic cardiomyocyte growth, and demonstrate how microCT analysis combined with tractable genetic tools in Drosophila can be used to delineate molecular signaling processes that underlie cardiac hypertrophy and heart failure.NEW & NOTEWORTHY Genetic analysis of Drosophila cardiac hypertrophy holds immense potential for the discovery of new therapeutic targets to prevent and treat heart failure. This potential has been hindered by a lack of rapid and effective methods for analyzing heart size in flies. Here, we demonstrate that analysis of the Drosophila heart with microcomputerized tomography yields accurate and highly reproducible heart size measurements that can be used to analyze heart growth and cardiac hypertrophy in Drosophila.
Collapse
Affiliation(s)
- Courtney E. Petersen
- 1Graduate Program in Molecular and Cell Biology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Benjamin A. Tripoli
- 1Graduate Program in Molecular and Cell Biology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Todd A. Schoborg
- 2Department of Molecular Biology, University of Wyoming, Laramie, Wyoming
| | - Jeremy T. Smyth
- 3Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
22
|
Weckbach LT, Schweizer L, Kraechan A, Bieber S, Ishikawa-Ankerhold H, Hausleiter J, Massberg S, Straub T, Klingel K, Grabmaier U, Zwiebel M, Mann M, Schulz C. Association of Complement and MAPK Activation With SARS-CoV-2-Associated Myocardial Inflammation. JAMA Cardiol 2021; 7:286-297. [PMID: 34910083 PMCID: PMC8674808 DOI: 10.1001/jamacardio.2021.5133] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Question What is the cardiac phenotype of patients with SARS-CoV-2 infection compared with viral and immune-mediated myocarditis and noninflammatory cardiomyopathy? Findings In this case series of 19 patients undergoing endomyocardial biopsies, cardiac specimens of patients with SARS-CoV-2 infection had a higher abundance of complement-associated factors and serine/threonine protein kinases, with mitogen-activated protein kinase–associated pathways having the highest abundance. Similarities in the cardiac immune signature were found among those with SARS-CoV-2 infection and viral myocarditis. Meaning In this study, the exploratory data, which characterized myocardial inflammation by deep phenotyping, have implications for the development of treatment strategies to reduce SARS-CoV-2–mediated tissue injury; these findings require confirmation in a prospective and extended cohort of patients. Importance Myocardial injury is a common feature of patients with SARS-CoV-2 infection. However, the cardiac inflammatory processes associated with SARS-CoV-2 infection are not completely understood. Objective To investigate the inflammatory cardiac phenotype associated with SARS-CoV-2 infection compared with viral myocarditis, immune-mediated myocarditis, and noninflammatory cardiomyopathy by integrating histologic, transcriptomic, and proteomic profiling. Design, Setting, and Participants This case series was a cooperative study between the Ludwig Maximilian University Hospital Munich and the Cardiopathology Referral Center at the University of Tübingen in Germany. A cohort of 19 patients with suspected myocarditis was examined; of those, 5 patients were hospitalized with SARS-CoV-2 infection between March and May 2020. Cardiac tissue specimens from those 5 patients were compared with specimens from 5 patients with immune-mediated myocarditis, 4 patients with non–SARS-CoV-2 viral myocarditis, and 5 patients with noninflammatory cardiomyopathy, collected from January to August 2019. Exposures Endomyocardial biopsy. Main Outcomes and Measures The inflammatory cardiac phenotypes were measured by immunohistologic analysis, RNA exome capture sequencing, and mass spectrometry–based proteomic analysis of endomyocardial biopsy specimens. Results Among 19 participants, the median age was 58 years (range, 37-76 years), and 15 individuals (79%) were male. Data on race and ethnicity were not collected. The abundance of CD163+ macrophages was generally higher in the cardiac tissue of patients with myocarditis, whereas lymphocyte counts were lower in the tissue of patients with SARS-CoV-2 infection vs patients with non–SARS-CoV-2 virus-associated and immune-mediated myocarditis. Among those with SARS-CoV-2 infection, components of the complement cascade, including C1q subunits (transcriptomic analysis: 2.5-fold to 3.6-fold increase; proteomic analysis: 2.0-fold to 3.4-fold increase) and serine/cysteine proteinase inhibitor clade G member 1 (transcriptomic analysis: 1.7-fold increase; proteomic analysis: 2.6-fold increase), belonged to the most commonly upregulated transcripts and differentially abundant proteins. In cardiac macrophages, the abundance of C1q was highest in SARS-CoV-2 infection. Assessment of important signaling cascades identified an upregulation of the serine/threonine mitogen-activated protein kinase pathways. Conclusions and Relevance This case series found that the cardiac immune signature varied in inflammatory conditions with different etiologic characteristics. Future studies are needed to examine the role of these immune pathways in myocardial inflammation.
Collapse
Affiliation(s)
- Ludwig T Weckbach
- Medizinische Klinik und Poliklinik I, Ludwig Maximilian University Hospital Munich, Munich, Germany.,Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig Maximilian University Munich, Planegg-Martinsried, Germany.,Munich Heart Alliance, German Centre for Cardiovascular Research, Munich, Germany
| | - Lisa Schweizer
- Department of Proteomics and Signal Transduction, Max Plank Institute of Biochemistry, Planegg-Martinsried, Germany
| | - Angelina Kraechan
- Medizinische Klinik und Poliklinik I, Ludwig Maximilian University Hospital Munich, Munich, Germany.,Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig Maximilian University Munich, Planegg-Martinsried, Germany
| | - Stephanie Bieber
- Medizinische Klinik und Poliklinik I, Ludwig Maximilian University Hospital Munich, Munich, Germany
| | | | - Jörg Hausleiter
- Medizinische Klinik und Poliklinik I, Ludwig Maximilian University Hospital Munich, Munich, Germany.,Munich Heart Alliance, German Centre for Cardiovascular Research, Munich, Germany
| | - Steffen Massberg
- Medizinische Klinik und Poliklinik I, Ludwig Maximilian University Hospital Munich, Munich, Germany.,Munich Heart Alliance, German Centre for Cardiovascular Research, Munich, Germany
| | - Tobias Straub
- Core Facility Bioinformatics, Biomedical Center, Ludwig Maximilian University Munich, Planegg-Martinsried, Germany
| | - Karin Klingel
- Cardiopathology Department, Institute for Pathology and Neuropathology, Tübingen University Hospital, Tübingen, Germany
| | - Ulrich Grabmaier
- Medizinische Klinik und Poliklinik I, Ludwig Maximilian University Hospital Munich, Munich, Germany.,Munich Heart Alliance, German Centre for Cardiovascular Research, Munich, Germany
| | - Maximilian Zwiebel
- Department of Proteomics and Signal Transduction, Max Plank Institute of Biochemistry, Planegg-Martinsried, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Plank Institute of Biochemistry, Planegg-Martinsried, Germany.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Schulz
- Medizinische Klinik und Poliklinik I, Ludwig Maximilian University Hospital Munich, Munich, Germany.,Munich Heart Alliance, German Centre for Cardiovascular Research, Munich, Germany
| | | |
Collapse
|
23
|
Zhang Q, He Y, Xu H, Li L, Guo Y, Zhang J, Cheng L, Yu H, Dai Y, Yang Q, Yang Z, Li C, Zhang S, Zhu S, Luo B, Gao Y. Modulation of STIM1 by a risk insertion/deletion polymorphism underlying genetics susceptibility to sudden cardiac death originated from coronary artery disease. Forensic Sci Int 2021; 328:111010. [PMID: 34592581 DOI: 10.1016/j.forsciint.2021.111010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/17/2021] [Indexed: 12/29/2022]
Abstract
Stromal interaction molecule 1 (STIM1), as a dynamic calcium signal transducer and key regulator of cardiomyocyte Ca2+ homeostasis, has been implicated in various pathological processes related to sudden cardiac death originated from coronary artery disease (SCD-CAD). In this study, we performed a systematic variant screening on promoter region of STIM1 to filter potential functional genetic variations. Based on the screening results, a 5-bp insertion/deletion (indel) polymorphism (rs3061890) in promoter region of STIM1 was selected as the candidate variant. We investigated the association of rs3061890 with SCD-CAD susceptibility in Chinese Han populations. The homozygote del/del genotype significantly increased risk for SCD-CAD as compared with the ins/ins genotype (odds ratio, 2.86 [95% confidence interval, 1.69-4.29]; P = 2.3 × 10-5). Compared with the common allele, the 5-bp deletion risk allele exhibited lower transcriptional capacity in luciferase assays. Intriguingly, genotype-phenotype correlation studies using human myocardium tissue samples revealed that the expression of STIM1 was associated with the genotype of rs3061890. Computational prediction combined with electrophoretic mobility shift (EMSA) and chromatin immunoprecipitation (ChIP) assays provided convincing evidence for stronger binding affinity of ELF1 (E74 like ETS transcription factor 1) with the deletion allele promoter. Taken together, our findings implied an allele-specific mechanism of regulating the transcription of STIM1 via ELF1, which contribute to SCD-CAD susceptibility. rs3061890 may thus considered as a candidate genetic marker for SCD-CAD prediction and prevention.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China.
| | - Yan He
- Department of Epidemiology, Medical College of Soochow University, Suzhou, China.
| | - Hongfei Xu
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China.
| | - Lijuan Li
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China.
| | - Yadong Guo
- Department of Forensic Sciences, School of Basic Medical Sciences, Central South University, Changsha, China.
| | - Jianhua Zhang
- Shanghai Key Laboratory of Forensic Medicine, Institute of Forensic Sciences, Ministry of Justice, Shanghai, China.
| | - Lei Cheng
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Huan Yu
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China.
| | - Yunda Dai
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Qi Yang
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China.
| | - Zhenzhen Yang
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China.
| | - Chengtao Li
- Shanghai Key Laboratory of Forensic Medicine, Institute of Forensic Sciences, Ministry of Justice, Shanghai, China.
| | - Suhua Zhang
- Shanghai Key Laboratory of Forensic Medicine, Institute of Forensic Sciences, Ministry of Justice, Shanghai, China.
| | - Shaohua Zhu
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China.
| | - Bin Luo
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Yuzhen Gao
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
24
|
Nan J, Li J, Lin Y, Saif Ur Rahman M, Li Z, Zhu L. The interplay between mitochondria and store-operated Ca 2+ entry: Emerging insights into cardiac diseases. J Cell Mol Med 2021; 25:9496-9512. [PMID: 34564947 PMCID: PMC8505841 DOI: 10.1111/jcmm.16941] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/20/2021] [Accepted: 09/08/2021] [Indexed: 12/14/2022] Open
Abstract
Store‐operated Ca2+ entry (SOCE) machinery, including Orai channels, TRPCs, and STIM1, is key to cellular calcium homeostasis. The following characteristics of mitochondria are involved in the physiological and pathological regulation of cells: mitochondria mediate calcium uptake through calcium uniporters; mitochondria are regulated by mitochondrial dynamic related proteins (OPA1, MFN1/2, and DRP1) and form mitochondrial networks through continuous fission and fusion; mitochondria supply NADH to the electron transport chain through the Krebs cycle to produce ATP; under stress, mitochondria will produce excessive reactive oxygen species to regulate mitochondria‐endoplasmic reticulum interactions and the related signalling pathways. Both SOCE and mitochondria play critical roles in mediating cardiac hypertrophy, diabetic cardiomyopathy, and cardiac ischaemia‐reperfusion injury. All the mitochondrial characteristics mentioned above are determinants of SOCE activity, and vice versa. Ca2+ signalling dictates the reciprocal regulation between mitochondria and SOCE under the specific pathological conditions of cardiomyocytes. The coupling of mitochondria and SOCE is essential for various pathophysiological processes in the heart. Herein, we review the research focussing on the reciprocal regulation between mitochondria and SOCE and provide potential interplay patterns in cardiac diseases.
Collapse
Affiliation(s)
- Jinliang Nan
- Provincial Key Cardiovascular Research Laboratory, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Province, Hangzhou, China
| | - Jiamin Li
- Provincial Key Cardiovascular Research Laboratory, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Province, Hangzhou, China
| | - Yinuo Lin
- Wenzhou Municipal Key Cardiovascular Research Laboratory, Department of Cardiology, The First Affiliated Hospital, Wenzhou Medical University, Zhejiang Province, Wenzhou, China
| | - Muhammad Saif Ur Rahman
- Zhejiang University-University of Edinburgh Biomedical Institute, Haining, Zhejiang, China.,Clinical Research Center, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengzheng Li
- Department of Neurology, Research Institute of Experimental Neurobiology, The First Affiliated Hospital, Wenzhou Medical University, Zhejiang Province, Wenzhou, China
| | - Lingjun Zhu
- Provincial Key Cardiovascular Research Laboratory, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Province, Hangzhou, China
| |
Collapse
|
25
|
Regulation of Store-Operated Ca 2+ Entry by SARAF. Cells 2021; 10:cells10081887. [PMID: 34440656 PMCID: PMC8391525 DOI: 10.3390/cells10081887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022] Open
Abstract
Calcium (Ca2+) signaling plays a dichotomous role in cellular biology, controlling cell survival and proliferation on the one hand and cellular toxicity and cell death on the other. Store-operated Ca2+ entry (SOCE) by CRAC channels represents a major pathway for Ca2+ entry in non-excitable cells. The CRAC channel has two key components, the endoplasmic reticulum Ca2+ sensor stromal interaction molecule (STIM) and the plasma-membrane Ca2+ channel Orai. Physical coupling between STIM and Orai opens the CRAC channel and the resulting Ca2+ flux is regulated by a negative feedback mechanism of slow Ca2+ dependent inactivation (SCDI). The identification of the SOCE-associated regulatory factor (SARAF) and investigations of its role in SCDI have led to new functional and molecular insights into how SOCE is controlled. In this review, we provide an overview of the functional and molecular mechanisms underlying SCDI and discuss how the interaction between SARAF, STIM1, and Orai1 shapes Ca2+ signaling in cells.
Collapse
|
26
|
Díaz Del Moral S, Barrena S, Hernández-Torres F, Aránega A, Villaescusa JM, Gómez Doblas JJ, Franco D, Jiménez-Navarro M, Muñoz-Chápuli R, Carmona R. Deletion of the Wilms' Tumor Suppressor Gene in the Cardiac Troponin-T Lineage Reveals Novel Functions of WT1 in Heart Development. Front Cell Dev Biol 2021; 9:683861. [PMID: 34368133 PMCID: PMC8339973 DOI: 10.3389/fcell.2021.683861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Expression of Wilms’ tumor suppressor transcription factor (WT1) in the embryonic epicardium is essential for cardiac development, but its myocardial expression is little known. We have found that WT1 is expressed at low levels in 20–25% of the embryonic cardiomyocytes. Conditional ablation of WT1 using a cardiac troponin T driver (Tnnt2Cre) caused abnormal sinus venosus and atrium development, lack of pectinate muscles, thin ventricular myocardium and, in some cases, interventricular septum and cardiac wall defects, ventricular diverticula and aneurisms. Coronary development was normal and there was not embryonic lethality, although survival of adult mutant mice was reduced probably due to perinatal mortality. Adult mutant mice showed electrocardiographic anomalies, including increased RR and QRS intervals, and decreased PR intervals. RNASeq analysis identified differential expression of 137 genes in the E13.5 mutant heart as compared to controls. GO functional enrichment analysis suggested that both calcium ion regulation and modulation of potassium channels are deeply altered in the mutant myocardium. In summary, together with its essential function in the embryonic epicardium, myocardial WT1 expression is also required for normal cardiac development.
Collapse
Affiliation(s)
| | - Silvia Barrena
- Department of Animal Biology, University of Málaga, Málaga, Spain
| | - Francisco Hernández-Torres
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, Granada, Spain.,Medina Foundation, Technology Park of Health Sciences, Granada, Spain
| | - Amelia Aránega
- Medina Foundation, Technology Park of Health Sciences, Granada, Spain.,Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
| | - José Manuel Villaescusa
- Heart Area Clinical Management Unit, University Hosp tal Virgen de la Victoria, CIBERCV Enfermedades Cardiovasculares Health Institute Carlos III, Biomedical Research Institute of Malaga (IBIMA), University of Málaga, Málaga, Spain
| | - Juan José Gómez Doblas
- Heart Area Clinical Management Unit, University Hosp tal Virgen de la Victoria, CIBERCV Enfermedades Cardiovasculares Health Institute Carlos III, Biomedical Research Institute of Malaga (IBIMA), University of Málaga, Málaga, Spain
| | - Diego Franco
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
| | - Manuel Jiménez-Navarro
- Heart Area Clinical Management Unit, University Hosp tal Virgen de la Victoria, CIBERCV Enfermedades Cardiovasculares Health Institute Carlos III, Biomedical Research Institute of Malaga (IBIMA), University of Málaga, Málaga, Spain
| | | | - Rita Carmona
- Department of Animal Biology, University of Málaga, Málaga, Spain
| |
Collapse
|
27
|
He X, Yang S, Deng J, Wu Q, Zang WJ. Amelioration of circadian disruption and calcium-handling protein defects by choline alleviates cardiac remodeling in abdominal aorta coarctation rats. J Transl Med 2021; 101:878-896. [PMID: 33649466 DOI: 10.1038/s41374-021-00578-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 01/08/2023] Open
Abstract
The key pathophysiological process leading to heart failure is cardiac remodeling, a term referring to cardiac hypertrophy, fibrosis, and apoptosis. We explored circadian rhythm disruption and calcium dyshomeostasis in cardiac remodeling and investigated the cardioprotective effect of choline. The experiments were conducted using a model of cardiac remodeling by abdominal aorta coarctation (AAC) in Sprague-Dawley rats. In vitro cardiomyocyte remodeling was induced by exposing neonatal rat cardiomyocytes to angiotensin II. The circadian rhythms of the transcript levels of the seven major components of the mammalian clock (Bmal1, Clock, Rev-erbα, Per1/2, and Cry1/2) were altered in AAC rat hearts during a normal 24 h light/dark cycle. AAC also upregulated the levels of proteins that mediate store-operated Ca2+ entry/receptor-operated Ca2+ entry (stromal interaction molecule 1 [STIM1], Orai1, and transient receptor potential canonical 6 [TRPC6]) in rat hearts. Moreover, choline ameliorated circadian rhythm disruption, reduced the upregulated protein levels of STIM1, Orai1, and TRPC6, and alleviated cardiac dysfunction and remodeling (evidenced by attenuated cardiac hypertrophy, fibrosis, and apoptosis) in AAC rats. In vitro analyses showed that choline ameliorated calcium overload, downregulated STIM1, Orai1, and TRPC6, and inhibited thapsigargin-induced store-operated Ca2+ entry and 1-oleoyl-2-acetyl-sn-glycerol-induced receptor-operated Ca2+ entry in angiotensin II-treated cardiomyocytes. In conclusion, choline attenuated AAC-induced cardiac remodeling and cardiac dysfunction, which was related to amelioration of circadian rhythm disruption and attenuation of calcium-handling protein defects. Modulation of vagal activity by choline targeting the circadian rhythm and calcium homeostasis may have therapeutic potential for cardiac remodeling and heart failure.
Collapse
Affiliation(s)
- Xi He
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, PR China
| | - Si Yang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, PR China
| | - Juan Deng
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, PR China
| | - Qing Wu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, PR China
| | - Wei-Jin Zang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, PR China.
| |
Collapse
|
28
|
Guang B, Liu X, Liang T. Effect of miRNA-223-3p Targeting Stromal Interaction Molecule 1 on Proliferation and Apoptosis of Hypoxia/Reoxygenation-Applied H9c2 Cardiomyocytes. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study was established to determine the effect of miRNA-223-3p on the proliferation and apoptosis of hypoxia/reoxygenation-applied H9c2 cardiomyocytes and the associated mechanisms. A hypoxia/reoxygenation (H/R) model was established, with normal cells also used as a control. miRNA-NC,
miRNA-223-3p, anti-miRNA-NC, and anti-miRNA-223-3p plasmids were transfected into normally cultured cardiomyocytes, defined as the miRNA-NC, miRNA-223-3p, anti-miRNA-NC, and anti-miRNA-223-3p groups. In addition, miRNA-223-3p was co-transfected into normally cultured cardiomyocytes with pcDNA3.1
and pcDNA3.1-STIM1 plasmids, followed by treatment with H/R for cells in the miR-NC and miR-223-3p groups, defined as the H/R+miRNA-NC, H/R+miRNA-223-3p, H/R+miRNA-223-3p+pcDNA3.1, and H/R+miRNA-223-3p+pcDNA3.1-STIM1 groups. A liposome method was adopted for assessing transfection. qRT-PCR
was used to detect miRNA-223-3p expression, while western blotting was used to detect protein expression. MTT assay was used to detect cell viability, flow cytometry to detect apoptosis, and dual luciferase reporter gene assay to detect fluorescence activity. After H/R treatment, miR-223-3p,
cyclin D1, and Bcl-2 expression of cardiomyocytes decreased, p21 and Bax expression significantly increased, cell activity decreased, and the apoptosis rate increased. miRNA-223-3p achieved the targeted regulation of STIM1 expression. miRNA-223-3p overexpression promoted the H/R-induced cardiomyocyte
proliferation and inhibited cardiomyocyte apoptosis. STIM1 overexpression reversed the proliferation-promoting and apoptosis-inhibiting effects of miRNA-223-3p on cardiomyocytes treated with H/R. The findings show that miRNA-223-3p overexpression promotes H/R-induced cell proliferation, inhibits
apoptosis, and protects H/R-induced cardiomyocytes from injury, via a mechanism probably associated with STIM1 expression. miRNA-223-3p thus provides a new target for treating cardiomyocyte injury.
Collapse
Affiliation(s)
- Bin Guang
- Department of Cardiology, Jinzhong First People’s Hospital, Jinzhong 030600, Shanxi, PR China
| | - Xiaoqin Liu
- Department of Cardiology, Jinzhong First People’s Hospital, Jinzhong 030600, Shanxi, PR China
| | - Tingchen Liang
- Department of Cardiology, Jinzhong First People’s Hospital, Jinzhong 030600, Shanxi, PR China
| |
Collapse
|
29
|
Baine S, Bonilla I, Belevych A, Stepanov A, Dorn LE, Terentyeva R, Terentyev D, Accornero F, Carnes CA, Gyorke S. Pyridostigmine improves cardiac function and rhythmicity through RyR2 stabilization and inhibition of STIM1-mediated calcium entry in heart failure. J Cell Mol Med 2021; 25:4637-4648. [PMID: 33755308 PMCID: PMC8107086 DOI: 10.1111/jcmm.16356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/12/2021] [Accepted: 01/25/2021] [Indexed: 12/20/2022] Open
Abstract
Heart failure (HF) is characterized by asymmetrical autonomic balance. Treatments to restore parasympathetic activity in human heart failure trials have shown beneficial effects. However, mechanisms of parasympathetic-mediated improvement in cardiac function remain unclear. The present study examined the effects and underpinning mechanisms of chronic treatment with the cholinesterase inhibitor, pyridostigmine (PYR), in pressure overload HF induced by transverse aortic constriction (TAC) in mice. TAC mice exhibited characteristic adverse structural (left ventricular hypertrophy) and functional remodelling (reduced ejection fraction, altered myocyte calcium (Ca) handling, increased arrhythmogenesis) with enhanced predisposition to arrhythmogenic aberrant sarcoplasmic reticulum (SR) Ca release, cardiac ryanodine receptor (RyR2) hyper-phosphorylation and up-regulated store-operated Ca entry (SOCE). PYR treatment resulted in improved cardiac contractile performance and rhythmic activity relative to untreated TAC mice. Chronic PYR treatment inhibited altered intracellular Ca handling by alleviating aberrant Ca release and diminishing pathologically enhanced SOCE in TAC myocytes. At the molecular level, these PYR-induced changes in Ca handling were associated with reductions of pathologically enhanced phosphorylation of RyR2 serine-2814 and STIM1 expression in HF myocytes. These results suggest that chronic cholinergic augmentation alleviates HF via normalization of both canonical RyR2-mediated SR Ca release and non-canonical hypertrophic Ca signaling via STIM1-dependent SOCE.
Collapse
Affiliation(s)
- Stephen Baine
- College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Ingrid Bonilla
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Andriy Belevych
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Andrei Stepanov
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Lisa E Dorn
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Radmila Terentyeva
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Dmitry Terentyev
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Federica Accornero
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Cynthia A Carnes
- College of Pharmacy, The Ohio State University, Columbus, OH, USA.,Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Sandor Gyorke
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
30
|
Zhou X, Li A, Lin PH, Zhou J, Ma J. TRIC-A regulates intracellular Ca 2+ homeostasis in cardiomyocytes. Pflugers Arch 2021; 473:547-556. [PMID: 33474637 PMCID: PMC7940156 DOI: 10.1007/s00424-021-02513-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/14/2020] [Accepted: 01/04/2021] [Indexed: 01/26/2023]
Abstract
Trimeric intracellular cation (TRIC) channels have been identified as monovalent cation channels that are located in the ER/SR membrane. Two isoforms discovered in mammals are TRIC-A (TMEM38a) and TRIC-B (TMEM38b). TRIC-B ubiquitously expresses in all tissues, and TRIC-B-/- mice is lethal at the neonatal stage. TRIC-A mainly expresses in excitable cells. TRIC-A-/- mice survive normally but show abnormal SR Ca2+ handling in both skeletal and cardiac muscle cells. Importantly, TRIC-A mutations have been identified in human patients with stress-induced arrhythmia. In the past decade, important discoveries have been made to understand the structure and function of TRIC channels, especially its role in regulating intracellular Ca2+ homeostasis. In this review article, we focus on the potential roles of TRIC-A in regulating cardiac function, particularly its effects on intracellular Ca2+ signaling of cardiomyocytes and discuss the current knowledge gaps.
Collapse
Affiliation(s)
- Xinyu Zhou
- Department of Surgery, The Ohio State University Columbus, Columbus, OH, 43210, USA
| | - Ang Li
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, 76019, USA
| | - Pei-Hui Lin
- Department of Surgery, The Ohio State University Columbus, Columbus, OH, 43210, USA
| | - Jingsong Zhou
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, 76019, USA
| | - Jianjie Ma
- Department of Surgery, The Ohio State University Columbus, Columbus, OH, 43210, USA.
| |
Collapse
|
31
|
Rosenberg P, Zhang H, Bryson VG, Wang C. SOCE in the cardiomyocyte: the secret is in the chambers. Pflugers Arch 2021; 473:417-434. [PMID: 33638008 PMCID: PMC7910201 DOI: 10.1007/s00424-021-02540-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/28/2021] [Accepted: 02/05/2021] [Indexed: 11/24/2022]
Abstract
Store-operated Ca2+ entry (SOCE) is an ancient and ubiquitous Ca2+ signaling pathway that is present in virtually every cell type. Over the last two decades, many studies have implicated this non-voltage dependent Ca2+ entry pathway in cardiac physiology. The relevance of the SOCE pathway in cardiomyocytes is often questioned given the well-established role for excitation contraction coupling. In this review, we consider the evidence that STIM1 and SOCE contribute to Ca2+ dynamics in cardiomyocytes. We discuss the relevance of this pathway to cardiac growth in response to developmental and pathologic cues. We also address whether STIM1 contributes to Ca2+ store refilling that likely impacts cardiac pacemaking and arrhythmogenesis in cardiomyocytes.
Collapse
Affiliation(s)
- Paul Rosenberg
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27705, USA.
| | - Hengtao Zhang
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27705, USA
| | | | - Chaojian Wang
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27705, USA
| |
Collapse
|
32
|
Liu X, Pan Z. Store-Operated Calcium Entry in the Cardiovascular System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1349:303-333. [DOI: 10.1007/978-981-16-4254-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Balderas-Villalobos J, Steele TWE, Eltit JM. Physiological and Pathological Relevance of Selective and Nonselective Ca 2+ Channels in Skeletal and Cardiac Muscle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1349:225-247. [PMID: 35138617 PMCID: PMC10683374 DOI: 10.1007/978-981-16-4254-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Contraction of the striated muscle is fundamental for human existence. The action of voluntary skeletal muscle enables activities such as breathing, establishing body posture, and diverse body movements. Additionally, highly precise motion empowers communication, artistic expression, and other activities that define everyday human life. The involuntary contraction of striated muscle is the core function of the heart and is essential for blood flow. Several ion channels are important in the transduction of action potentials to cytosolic Ca2+ signals that enable muscle contraction; however, other ion channels are involved in the progression of muscle pathologies that can impair normal life or threaten it. This chapter describes types of selective and nonselective Ca2+ permeable ion channels expressed in the striated muscle, their participation in different aspects of muscle excitation and contraction, and their relevance to the progression of some pathological states.
Collapse
Affiliation(s)
- Jaime Balderas-Villalobos
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Tyler W E Steele
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Jose M Eltit
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
34
|
Kharkovskaya EЕ, Osipov GV, Mukhina IV. Ventricular fibrillation induced by 2-aminoethoxydiphenyl borate under conditions of hypoxia/reoxygenation. Minerva Cardioangiol 2020; 68:619-628. [DOI: 10.23736/s0026-4725.20.05376-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
35
|
Luo R, Gomez AM, Benitah JP, Sabourin J. Targeting Orai1-Mediated Store-Operated Ca 2+ Entry in Heart Failure. Front Cell Dev Biol 2020; 8:586109. [PMID: 33117812 PMCID: PMC7578222 DOI: 10.3389/fcell.2020.586109] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
The archetypal store-operated Ca2+ channels (SOCs), Orai1, which are stimulated by the endo/sarcoplasmic reticulum (ER/SR) Ca2+ sensor stromal interaction molecule 1 (STIM1) upon Ca2+ store depletion is traditionally viewed as instrumental for the function of non-excitable cells. In the recent years, expression and function of Orai1 have gained recognition in excitable cardiomyocytes, albeit controversial. Even if its cardiac physiological role in adult is still elusive and needs to be clarified, Orai1 contribution in cardiac diseases such as cardiac hypertrophy and heart failure (HF) is increasingly recognized. The present review surveys our current arising knowledge on the new role of Orai1 channels in the heart and debates on its participation to cardiac hypertrophy and HF.
Collapse
Affiliation(s)
- Rui Luo
- Inserm, UMR-S 1180, Signalisation et Physiopathologie Cardiovasculaire, Université Paris-Saclay, Châtenay-Malabry, France
| | - Ana-Maria Gomez
- Inserm, UMR-S 1180, Signalisation et Physiopathologie Cardiovasculaire, Université Paris-Saclay, Châtenay-Malabry, France
| | - Jean-Pierre Benitah
- Inserm, UMR-S 1180, Signalisation et Physiopathologie Cardiovasculaire, Université Paris-Saclay, Châtenay-Malabry, France
| | - Jessica Sabourin
- Inserm, UMR-S 1180, Signalisation et Physiopathologie Cardiovasculaire, Université Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
36
|
Gavali JT, Carrillo ED, García MC, Sánchez JA. The mitochondrial K-ATP channel opener diazoxide upregulates STIM1 and Orai1 via ROS and the MAPK pathway in adult rat cardiomyocytes. Cell Biosci 2020; 10:96. [PMID: 32817784 PMCID: PMC7424994 DOI: 10.1186/s13578-020-00460-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/07/2020] [Indexed: 11/15/2022] Open
Abstract
Background Openers of mitochondrial adenosine triphosphate-dependent potassium (mKATP) channels like diazoxide increase reactive oxygen species (ROS) production in cardiac cells and reduce Ca2+ elevations produced by ischemia–reperfusion, protecting the heart from damage. In this study we tested the hypothesis that opening mKATP channels regulates expression of the major components of store-operated Ca2+ entry (SOCE) STIM1 and Orai1. Results Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and western blot experiments showed that diazoxide increased expression of STIM1 and Orai1 at the mRNA and protein levels, respectively, in adult rat cardiomyocytes. Immunofluorescence analyses revealed that diazoxide also disrupted the striated distribution pattern of STIM1. These effects were prevented by the ROS scavenger N-acetyl cysteine (NAC), the mKATP channel antagonist 5-hydroxydecanoate (5-HD), or the protein synthesis inhibitor cycloheximide (CHX). Confocal microscopy revealed that diazoxide also led to nuclear translocation of the transcription factors c-Fos and NFκB, which was also blocked by NAC or 5-HD. Finally, the MAPK pathway inhibitor UO126 attenuated diazoxide-induced upregulation of STIM1 and Orai1 expression. Conclusions Our results suggest that opening mitochondrial potassium ATP channels with diazoxide upregulates the expression of STIM1 and Orai1 by de novo synthesis by a mechanism that involves NFkB, c-Fos, and ROS via MAPK/ERK signaling.
Collapse
Affiliation(s)
- Joice T Gavali
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, 07360 Ciudad de México, CDMX Mexico
| | - Elba D Carrillo
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, 07360 Ciudad de México, CDMX Mexico
| | - María C García
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, 07360 Ciudad de México, CDMX Mexico
| | - Jorge A Sánchez
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, 07360 Ciudad de México, CDMX Mexico
| |
Collapse
|
37
|
Shrestha N, Bacsa B, Ong HL, Scheruebel S, Bischof H, Malli R, Ambudkar IS, Groschner K. TRIC-A shapes oscillatory Ca2+ signals by interaction with STIM1/Orai1 complexes. PLoS Biol 2020; 18:e3000700. [PMID: 32330125 PMCID: PMC7202670 DOI: 10.1371/journal.pbio.3000700] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/06/2020] [Accepted: 04/09/2020] [Indexed: 01/08/2023] Open
Abstract
Trimeric intracellular cation (TRIC) channels have been proposed to modulate Ca2+ release from the endoplasmic reticulum (ER) and determine oscillatory Ca2+ signals. Here, we report that TRIC-A-mediated amplitude and frequency modulation of ryanodine receptor 2 (RyR2)-mediated Ca2+ oscillations and inositol 1,4,5-triphosphate receptor (IP3R)-induced cytosolic signals is based on attenuating store-operated Ca2+ entry (SOCE). Further, TRIC-A-dependent delay in ER Ca2+ store refilling contributes to shaping the pattern of Ca2+ oscillations. Upon ER Ca2+ depletion, TRIC-A clusters with stromal interaction molecule 1 (STIM1) and Ca2+-release-activated Ca2+ channel 1 (Orai1) within ER-plasma membrane (PM) junctions and impairs assembly of the STIM1/Orai1 complex, causing a decrease in Orai1-mediated Ca2+ current and SOCE. Together, our findings demonstrate that TRIC-A is a negative regulator of STIM1/Orai1 function. Thus, aberrant SOCE could contribute to muscle disorders associated with loss of TRIC-A.
Collapse
Affiliation(s)
- Niroj Shrestha
- Gottfried Schatz Research Center-Biophysics, Medical University of Graz, Graz, Austria
| | - Bernadett Bacsa
- Gottfried Schatz Research Center-Biophysics, Medical University of Graz, Graz, Austria
| | - Hwei Ling Ong
- Secretory Physiology Section, NIDCR, NIH, Bethesda, Maryland, United States of America
| | - Susanne Scheruebel
- Gottfried Schatz Research Center-Biophysics, Medical University of Graz, Graz, Austria
| | - Helmut Bischof
- Gottfried Schatz Research Center-Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Roland Malli
- Gottfried Schatz Research Center-Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Indu Suresh Ambudkar
- Secretory Physiology Section, NIDCR, NIH, Bethesda, Maryland, United States of America
| | - Klaus Groschner
- Gottfried Schatz Research Center-Biophysics, Medical University of Graz, Graz, Austria
| |
Collapse
|
38
|
Sanlialp A, Schumacher D, Kiper L, Varma E, Riechert E, Ho TC, Hofmann C, Kmietczyk V, Zimmermann F, Dlugosz S, Wirth A, Gorska AA, Burghaus J, Camacho Londoño JE, Katus HA, Doroudgar S, Freichel M, Völkers M. Saraf-dependent activation of mTORC1 regulates cardiac growth. J Mol Cell Cardiol 2020; 141:30-42. [PMID: 32173353 DOI: 10.1016/j.yjmcc.2020.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 10/24/2022]
Abstract
Pathological cardiac hypertrophy is an independent risk for heart failure (HF) and sudden death. Deciphering signaling pathways regulating intracellular Ca2+ homeostasis that control adaptive and pathological cardiac growth may enable identification of novel therapeutic targets. The objective of the present study is to determine the role of the store-operated calcium entry-associated regulatory factor (Saraf), encoded by the Tmem66 gene, on cardiac growth control in vitro and in vivo. Saraf is a single-pass membrane protein located at the sarco/endoplasmic reticulum and regulates intracellular calcium homeostasis. We found that Saraf expression was upregulated in the hypertrophied myocardium and was sufficient for cell growth in response to neurohumoral stimulation. Increased Saraf expression caused cell growth, which was associated with dysregulation of calcium-dependent signaling and sarcoplasmic reticulum calcium content. In vivo, Saraf augmented cardiac myocyte growth in response to angiotensin II and resulted in increased cardiac remodeling together with worsened cardiac function. Mechanistically, Saraf activated mTORC1 (mechanistic target of rapamycin complex 1) and increased protein synthesis, while mTORC1 inhibition blunted Saraf-dependent cell growth. In contrast, the hearts of Saraf knockout mice and Saraf-deficient myocytes did not show any morphological or functional alterations after neurohumoral stimulation, but Saraf depletion resulted in worsened cardiac function after acute pressure overload. SARAF knockout blunted transverse aortic constriction cardiac myocyte hypertrophy and impaired cardiac function, demonstrating a role for SARAF in compensatory myocyte growth. Collectively, these results reveal a novel link between sarcoplasmic reticulum calcium homeostasis and mTORC1 activation that is regulated by Saraf.
Collapse
Affiliation(s)
- Ayse Sanlialp
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Dagmar Schumacher
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany; Institute of Pharmacology, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Leon Kiper
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Eshita Varma
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Eva Riechert
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Thanh Cao Ho
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Christoph Hofmann
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Vivien Kmietczyk
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Frank Zimmermann
- Interfacultary Biomedical Faculty (IBF), University of Heidelberg, Im Neuenheimer Feld 347, 69120 Heidelberg, Germany
| | - Sascha Dlugosz
- Interfacultary Biomedical Faculty (IBF), University of Heidelberg, Im Neuenheimer Feld 347, 69120 Heidelberg, Germany
| | - Angela Wirth
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany; Institute of Pharmacology, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Agnieszka A Gorska
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Jana Burghaus
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Juan E Camacho Londoño
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany; Institute of Pharmacology, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Hugo A Katus
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Shirin Doroudgar
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Marc Freichel
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany; Institute of Pharmacology, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Mirko Völkers
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany.
| |
Collapse
|
39
|
Petersen CE, Wolf MJ, Smyth JT. Suppression of store-operated calcium entry causes dilated cardiomyopathy of the Drosophila heart. Biol Open 2020; 9:bio049999. [PMID: 32086252 PMCID: PMC7075072 DOI: 10.1242/bio.049999] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/07/2020] [Indexed: 11/20/2022] Open
Abstract
Store-operated Ca2+ entry (SOCE) is an essential Ca2+ signaling mechanism present in most animal cells. SOCE refers to Ca2+ influx that is activated by depletion of sarco/endoplasmic reticulum (S/ER) Ca2+ stores. The main components of SOCE are STIM and Orai. STIM proteins function as S/ER Ca2+ sensors, and upon S/ER Ca2+ depletion STIM rearranges to S/ER-plasma membrane junctions and activates Orai Ca2+ influx channels. Studies have implicated SOCE in cardiac hypertrophy pathogenesis, but SOCE's role in normal heart physiology remains poorly understood. We therefore analyzed heart-specific SOCE function in Drosophila, a powerful animal model of cardiac physiology. We show that heart-specific suppression of Stim and Orai in larvae and adults resulted in reduced contractility consistent with dilated cardiomyopathy. Myofibers were also highly disorganized in Stim and Orai RNAi hearts, reflecting possible decompensation or upregulated stress signaling. Furthermore, we show that reduced heart function due to SOCE suppression adversely affected animal viability, as heart specific Stim and Orai RNAi animals exhibited significant delays in post-embryonic development and adults died earlier than controls. Collectively, our results demonstrate that SOCE is essential for physiological heart function, and establish Drosophila as an important model for understanding the role of SOCE in cardiac pathophysiology.
Collapse
Affiliation(s)
- Courtney E Petersen
- Graduate Program in Molecular and Cellular Biology, Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA
| | - Matthew J Wolf
- Division of Cardiovascular Medicine, Department of Medicine, The University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Jeremy T Smyth
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA
| |
Collapse
|
40
|
Gilbert G, Demydenko K, Dries E, Puertas RD, Jin X, Sipido K, Roderick HL. Calcium Signaling in Cardiomyocyte Function. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035428. [PMID: 31308143 DOI: 10.1101/cshperspect.a035428] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Rhythmic increases in intracellular Ca2+ concentration underlie the contractile function of the heart. These heart muscle-wide changes in intracellular Ca2+ are induced and coordinated by electrical depolarization of the cardiomyocyte sarcolemma by the action potential. Originating at the sinoatrial node, conduction of this electrical signal throughout the heart ensures synchronization of individual myocytes into an effective cardiac pump. Ca2+ signaling pathways also regulate gene expression and cardiomyocyte growth during development and in pathology. These fundamental roles of Ca2+ in the heart are illustrated by the prevalence of altered Ca2+ homeostasis in cardiovascular diseases. Indeed, heart failure (an inability of the heart to support hemodynamic needs), rhythmic disturbances, and inappropriate cardiac growth all share an involvement of altered Ca2+ handling. The prevalence of these pathologies, contributing to a third of all deaths in the developed world as well as to substantial morbidity makes understanding the mechanisms of Ca2+ handling and dysregulation in cardiomyocytes of great importance.
Collapse
Affiliation(s)
- Guillaume Gilbert
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - Kateryna Demydenko
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - Eef Dries
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - Rosa Doñate Puertas
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - Xin Jin
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - Karin Sipido
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - H Llewelyn Roderick
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| |
Collapse
|
41
|
TRPC Channels in Cardiac Plasticity. Cells 2020; 9:cells9020454. [PMID: 32079284 PMCID: PMC7072762 DOI: 10.3390/cells9020454] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 01/21/2023] Open
Abstract
The heart flexibly changes its structure in response to changing environments and oxygen/nutrition demands of the body. Increased and decreased mechanical loading induces hypertrophy and atrophy of cardiomyocytes, respectively. In physiological conditions, these structural changes of the heart are reversible. However, chronic stresses such as hypertension or cancer cachexia cause irreversible remodeling of the heart, leading to heart failure. Accumulating evidence indicates that calcium dyshomeostasis and aberrant reactive oxygen species production cause pathological heart remodeling. Canonical transient receptor potential (TRPC) is a nonselective cation channel subfamily whose multimodal activation or modulation of channel activity play important roles in a plethora of cellular physiology. Roles of TRPC channels in cardiac physiology have been reported in pathological cardiac remodeling. In this review, we summarize recent findings regarding the importance of TRPC channels in flexible cardiac remodeling (i.e., cardiac plasticity) in response to environmental stresses and discuss questions that should be addressed in the near future.
Collapse
|
42
|
Eisner DA, Caldwell JL, Trafford AW, Hutchings DC. The Control of Diastolic Calcium in the Heart: Basic Mechanisms and Functional Implications. Circ Res 2020; 126:395-412. [PMID: 31999537 PMCID: PMC7004450 DOI: 10.1161/circresaha.119.315891] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Normal cardiac function requires that intracellular Ca2+ concentration be reduced to low levels in diastole so that the ventricle can relax and refill with blood. Heart failure is often associated with impaired cardiac relaxation. Little, however, is known about how diastolic intracellular Ca2+ concentration is regulated. This article first discusses the reasons for this ignorance before reviewing the basic mechanisms that control diastolic intracellular Ca2+ concentration. It then considers how the control of systolic and diastolic intracellular Ca2+ concentration is intimately connected. Finally, it discusses the changes that occur in heart failure and how these may result in heart failure with preserved versus reduced ejection fraction.
Collapse
Affiliation(s)
- David A Eisner
- From the Unit of Cardiac Physiology, Division of Cardiovascular Sciences, University of Manchester, United Kingdom
| | - Jessica L Caldwell
- From the Unit of Cardiac Physiology, Division of Cardiovascular Sciences, University of Manchester, United Kingdom
| | - Andrew W Trafford
- From the Unit of Cardiac Physiology, Division of Cardiovascular Sciences, University of Manchester, United Kingdom
| | - David C Hutchings
- From the Unit of Cardiac Physiology, Division of Cardiovascular Sciences, University of Manchester, United Kingdom
| |
Collapse
|
43
|
Bartoli F, Bailey MA, Rode B, Mateo P, Antigny F, Bedouet K, Gerbaud P, Gosain R, Plante J, Norman K, Gomez S, Lefebvre F, Rucker-Martin C, Ainscough JFX, Kearney MT, Bruns AF, Shi J, Appleby HL, Young RS, Shawer HM, Debant M, Gomez AM, Beech DJ, Foster R, Benitah JP, Sabourin J. Orai1 Channel Inhibition Preserves Left Ventricular Systolic Function and Normal Ca 2+ Handling After Pressure Overload. Circulation 2020; 141:199-216. [PMID: 31906693 PMCID: PMC6970549 DOI: 10.1161/circulationaha.118.038891] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Orai1 is a critical ion channel subunit, best recognized as a mediator of store-operated Ca2+ entry (SOCE) in nonexcitable cells. SOCE has recently emerged as a key contributor of cardiac hypertrophy and heart failure but the relevance of Orai1 is still unclear. METHODS To test the role of these Orai1 channels in the cardiac pathophysiology, a transgenic mouse was generated with cardiomyocyte-specific expression of an ion pore-disruptive Orai1R91W mutant (C-dnO1). Synthetic chemistry and channel screening strategies were used to develop 4-(2,5-dimethoxyphenyl)-N-[(pyridin-4-yl)methyl]aniline (hereafter referred to as JPIII), a small-molecule Orai1 channel inhibitor suitable for in vivo delivery. RESULTS Adult mice subjected to transverse aortic constriction (TAC) developed cardiac hypertrophy and reduced ventricular function associated with increased Orai1 expression and Orai1-dependent SOCE (assessed by Mn2+ influx). C-dnO1 mice displayed normal cardiac electromechanical function and cellular excitation-contraction coupling despite reduced Orai1-dependent SOCE. Five weeks after TAC, C-dnO1 mice were protected from systolic dysfunction (assessed by preserved left ventricular fractional shortening and ejection fraction) even if increased cardiac mass and prohypertrophic markers induction were observed. This is correlated with a protection from TAC-induced cellular Ca2+ signaling alterations (increased SOCE, decreased [Ca2+]i transients amplitude and decay rate, lower SR Ca2+ load and depressed cellular contractility) and SERCA2a downregulation in ventricular cardiomyocytes from C-dnO1 mice, associated with blunted Pyk2 signaling. There was also less fibrosis in heart sections from C-dnO1 mice after TAC. Moreover, 3 weeks treatment with JPIII following 5 weeks of TAC confirmed the translational relevance of an Orai1 inhibition strategy during hypertrophic insult. CONCLUSIONS The findings suggest a key role of cardiac Orai1 channels and the potential for Orai1 channel inhibitors as inotropic therapies for maintaining contractility reserve after hypertrophic stress.
Collapse
Affiliation(s)
- Fiona Bartoli
- Inserm, UMR-S 1180, Signalisation et Physiopathologie Cardiovasculaire, Université Paris-Saclay, Châtenay-Malabry, France (F.B., P.M., K.B., P.G., S.G., F.L., A.-M.G., J.P.B., J. Sabourin)
| | - Marc A Bailey
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom (M.A.B., B.R., J.F.X.A., M.T.K., A.-F.B., J. Shi, H.L.A., R.S.Y., H.M.S., M.D., D.J.B.)
| | - Baptiste Rode
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom (M.A.B., B.R., J.F.X.A., M.T.K., A.-F.B., J. Shi, H.L.A., R.S.Y., H.M.S., M.D., D.J.B.)
| | - Philippe Mateo
- Inserm, UMR-S 1180, Signalisation et Physiopathologie Cardiovasculaire, Université Paris-Saclay, Châtenay-Malabry, France (F.B., P.M., K.B., P.G., S.G., F.L., A.-M.G., J.P.B., J. Sabourin)
| | - Fabrice Antigny
- Inserm, UMR-S 999, Université Paris-Saclay, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France (F.A., C.R.M.)
| | - Kaveen Bedouet
- Inserm, UMR-S 1180, Signalisation et Physiopathologie Cardiovasculaire, Université Paris-Saclay, Châtenay-Malabry, France (F.B., P.M., K.B., P.G., S.G., F.L., A.-M.G., J.P.B., J. Sabourin)
| | - Pascale Gerbaud
- Inserm, UMR-S 1180, Signalisation et Physiopathologie Cardiovasculaire, Université Paris-Saclay, Châtenay-Malabry, France (F.B., P.M., K.B., P.G., S.G., F.L., A.-M.G., J.P.B., J. Sabourin)
| | - Rajendra Gosain
- School of Chemistry, University of Leeds, United Kingdom (R.G., J.P., K.N., R.F.)
| | - Jeffrey Plante
- School of Chemistry, University of Leeds, United Kingdom (R.G., J.P., K.N., R.F.)
| | - Katherine Norman
- School of Chemistry, University of Leeds, United Kingdom (R.G., J.P., K.N., R.F.)
| | - Susana Gomez
- Inserm, UMR-S 1180, Signalisation et Physiopathologie Cardiovasculaire, Université Paris-Saclay, Châtenay-Malabry, France (F.B., P.M., K.B., P.G., S.G., F.L., A.-M.G., J.P.B., J. Sabourin)
| | - Florence Lefebvre
- Inserm, UMR-S 1180, Signalisation et Physiopathologie Cardiovasculaire, Université Paris-Saclay, Châtenay-Malabry, France (F.B., P.M., K.B., P.G., S.G., F.L., A.-M.G., J.P.B., J. Sabourin)
| | - Catherine Rucker-Martin
- Inserm, UMR-S 999, Université Paris-Saclay, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France (F.A., C.R.M.)
| | - Justin F X Ainscough
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom (M.A.B., B.R., J.F.X.A., M.T.K., A.-F.B., J. Shi, H.L.A., R.S.Y., H.M.S., M.D., D.J.B.)
| | - Mark T Kearney
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom (M.A.B., B.R., J.F.X.A., M.T.K., A.-F.B., J. Shi, H.L.A., R.S.Y., H.M.S., M.D., D.J.B.)
| | - Alexander-Francisco Bruns
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom (M.A.B., B.R., J.F.X.A., M.T.K., A.-F.B., J. Shi, H.L.A., R.S.Y., H.M.S., M.D., D.J.B.)
| | - Jian Shi
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom (M.A.B., B.R., J.F.X.A., M.T.K., A.-F.B., J. Shi, H.L.A., R.S.Y., H.M.S., M.D., D.J.B.)
| | - Hollie L Appleby
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom (M.A.B., B.R., J.F.X.A., M.T.K., A.-F.B., J. Shi, H.L.A., R.S.Y., H.M.S., M.D., D.J.B.)
| | - Richard S Young
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom (M.A.B., B.R., J.F.X.A., M.T.K., A.-F.B., J. Shi, H.L.A., R.S.Y., H.M.S., M.D., D.J.B.)
| | - Heba M Shawer
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom (M.A.B., B.R., J.F.X.A., M.T.K., A.-F.B., J. Shi, H.L.A., R.S.Y., H.M.S., M.D., D.J.B.)
| | - Marjolaine Debant
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom (M.A.B., B.R., J.F.X.A., M.T.K., A.-F.B., J. Shi, H.L.A., R.S.Y., H.M.S., M.D., D.J.B.)
| | - Ana-Maria Gomez
- Inserm, UMR-S 1180, Signalisation et Physiopathologie Cardiovasculaire, Université Paris-Saclay, Châtenay-Malabry, France (F.B., P.M., K.B., P.G., S.G., F.L., A.-M.G., J.P.B., J. Sabourin)
| | - David J Beech
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom (M.A.B., B.R., J.F.X.A., M.T.K., A.-F.B., J. Shi, H.L.A., R.S.Y., H.M.S., M.D., D.J.B.)
| | - Richard Foster
- School of Chemistry, University of Leeds, United Kingdom (R.G., J.P., K.N., R.F.)
| | - Jean-Pierre Benitah
- Inserm, UMR-S 1180, Signalisation et Physiopathologie Cardiovasculaire, Université Paris-Saclay, Châtenay-Malabry, France (F.B., P.M., K.B., P.G., S.G., F.L., A.-M.G., J.P.B., J. Sabourin)
| | - Jessica Sabourin
- Inserm, UMR-S 1180, Signalisation et Physiopathologie Cardiovasculaire, Université Paris-Saclay, Châtenay-Malabry, France (F.B., P.M., K.B., P.G., S.G., F.L., A.-M.G., J.P.B., J. Sabourin)
| |
Collapse
|
44
|
Sampieri R, Fuentes E, Carrillo ED, Hernández A, García MC, Sánchez JA. Pharmacological Preconditioning Using Diazoxide Regulates Store-Operated Ca 2 + Channels in Adult Rat Cardiomyocytes. Front Physiol 2020; 10:1589. [PMID: 32009985 PMCID: PMC6972595 DOI: 10.3389/fphys.2019.01589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/19/2019] [Indexed: 01/31/2023] Open
Abstract
Voltage-dependent Ca2+ channels and store-operated Ca2+ channels (SOCs) are the major routes of Ca2+ entry into mammalian cells. Previously, we reported that pharmacological preconditioning (PPC) leads to a decrease in the amplitude of L-type calcium channel current in the heart. In this study, we examined PPC-associated changes in SOC function. We measured adult cardiomyocyte membrane currents using the whole-cell patch-clamp technique, and we evaluated reactive oxygen species (ROS) production and intracellular Ca2+ levels in cardiomyocytes using fluorescent probes. Diazoxide (Dzx) and thapsigargin (Tg) were used to induce PPC and to deplete internal stores of Ca2+, respectively. Ca2+ store depletion generated inward currents with strong rectification, which were suppressed by the SOC blocker GSK-7975-A. These currents were completely abolished by PPC, an effect that could be countered with 5-hydroxydecanoate (5-HD; a selective mitochondrial ATP-sensitive K+ channel blocker), an intracellular mitochondrial energizing solution, or Ni2+ [a blocker of sodium-calcium exchanger (NCX)]. Buffering of ROS and intracellular Ca2+ also prevented PPC effects on SOC currents. Refilling of intracellular stores was largely suppressed by PPC, as determined by measuring intracellular Ca2+ with a fluorescent Ca2+ indicator. These results indicate that influx of Ca2+ through SOCs is inhibited by their ROS and Ca2+-dependent inactivation during PPC and that NCX is a likely source of PPC-inactivating Ca2+. We further showed that NCX associates with Orai1. Down-regulation of SOCs by PPC may play a role in cardioprotection following ischemia-reperfusion.
Collapse
Affiliation(s)
- Raúl Sampieri
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Eridani Fuentes
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Elba D Carrillo
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Ascención Hernández
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - María C García
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Jorge A Sánchez
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| |
Collapse
|
45
|
Avila-Medina J, Mayoral-González I, Galeano-Otero I, Redondo PC, Rosado JA, Smani T. Pathophysiological Significance of Store-Operated Calcium Entry in Cardiovascular and Skeletal Muscle Disorders and Angiogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:489-504. [PMID: 31646522 DOI: 10.1007/978-3-030-12457-1_19] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Store-Operated Ca2+ Entry (SOCE) is an important Ca2+ influx pathway expressed by several excitable and non-excitable cell types. SOCE is recognized as relevant signaling pathway not only for physiological process, but also for its involvement in different pathologies. In fact, independent studies demonstrated the implication of essential protein regulating SOCE, such as STIM, Orai and TRPCs, in different pathogenesis and cell disorders, including cardiovascular disease, muscular dystrophies and angiogenesis. Compelling evidence showed that dysregulation in the function and/or expression of isoforms of STIM, Orai or TRPC play pivotal roles in cardiac hypertrophy and heart failure, vascular remodeling and hypertension, skeletal myopathies, and angiogenesis. In this chapter, we summarized the current knowledge concerning the mechanisms underlying abnormal SOCE and its involvement in some diseases, as well as, we discussed the significance of STIM, Orai and TRPC isoforms as possible therapeutic targets for the treatment of angiogenesis, cardiovascular and skeletal muscle diseases.
Collapse
Affiliation(s)
- Javier Avila-Medina
- Department of Medical Physiology and Biophysics, University of Seville, Sevilla, Spain
- Institute of Biomedicine of Seville (IBiS), University Hospital of Virgen del Rocío/CSIC/University of Seville, Sevilla, Spain
| | - Isabel Mayoral-González
- Department of Medical Physiology and Biophysics, University of Seville, Sevilla, Spain
- Institute of Biomedicine of Seville (IBiS), University Hospital of Virgen del Rocío/CSIC/University of Seville, Sevilla, Spain
- Department of Surgery, University of Seville, Sevilla, Spain
| | - Isabel Galeano-Otero
- Department of Medical Physiology and Biophysics, University of Seville, Sevilla, Spain
- Institute of Biomedicine of Seville (IBiS), University Hospital of Virgen del Rocío/CSIC/University of Seville, Sevilla, Spain
| | - Pedro C Redondo
- Department of Physiology, Cell Physiology Research Group and Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain
| | - Juan A Rosado
- Department of Physiology, Cell Physiology Research Group and Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain
| | - Tarik Smani
- Department of Medical Physiology and Biophysics, University of Seville, Sevilla, Spain.
- Institute of Biomedicine of Seville (IBiS), University Hospital of Virgen del Rocío/CSIC/University of Seville, Sevilla, Spain.
- CIBERCV, Madrid, Spain.
| |
Collapse
|
46
|
Tran QK. Reciprocality Between Estrogen Biology and Calcium Signaling in the Cardiovascular System. Front Endocrinol (Lausanne) 2020; 11:568203. [PMID: 33133016 PMCID: PMC7550652 DOI: 10.3389/fendo.2020.568203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/19/2020] [Indexed: 12/30/2022] Open
Abstract
17β-Estradiol (E2) is the main estrogenic hormone in the body and exerts many cardiovascular protective effects. Via three receptors known to date, including estrogen receptors α (ERα) and β (ERβ) and the G protein-coupled estrogen receptor 1 (GPER, aka GPR30), E2 regulates numerous calcium-dependent activities in cardiovascular tissues. Nevertheless, effects of E2 and its receptors on components of the calcium signaling machinery (CSM), the underlying mechanisms, and the linked functional impact are only beginning to be elucidated. A picture is emerging of the reciprocality between estrogen biology and Ca2+ signaling. Therein, E2 and GPER, via both E2-dependent and E2-independent actions, moderate Ca2+-dependent activities; in turn, ERα and GPER are regulated by Ca2+ at the receptor level and downstream signaling via a feedforward loop. This article reviews current understanding of the effects of E2 and its receptors on the cardiovascular CSM and vice versa with a focus on mechanisms and combined functional impact. An overview of the main CSM components in cardiovascular tissues will be first provided, followed by a brief review of estrogen receptors and their Ca2+-dependent regulation. The effects of estrogenic agonists to stimulate acute Ca2+ signals will then be reviewed. Subsequently, E2-dependent and E2-independent effects of GPER on components of the Ca2+ signals triggered by other stimuli will be discussed. Finally, a case study will illustrate how the many mechanisms are coordinated to moderate Ca2+-dependent activities in the cardiovascular system.
Collapse
|
47
|
Specific Upregulation of TRPC1 and TRPC5 Channels by Mineralocorticoid Pathway in Adult Rat Ventricular Cardiomyocytes. Cells 2019; 9:cells9010047. [PMID: 31878108 PMCID: PMC7017140 DOI: 10.3390/cells9010047] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/18/2019] [Accepted: 12/22/2019] [Indexed: 02/06/2023] Open
Abstract
Whereas cardiac TRPC (transient receptor potential canonical) channels and the associated store-operated Ca2+ entry (SOCE) are abnormally elevated during cardiac hypertrophy and heart failure, the mechanism of this upregulation is not fully elucidated but might be related to the activation of the mineralocorticoid pathway. Using a combination of biochemical, Ca2+ imaging, and electrophysiological techniques, we determined the effect of 24-h aldosterone treatment on the TRPCs/Orai-dependent SOCE in adult rat ventricular cardiomyocytes (ARVMs). The 24-h aldosterone treatment (from 100 nM to 1 µM) enhanced depletion-induced Ca2+ entry in ARVMs, as assessed by a faster reduction of Fura-2 fluorescence decay upon the addition of Mn2+ and increased Fluo-4/AM fluorescence following Ca2+ store depletion. These effects were prevented by co-treatment with a specific mineralocorticoid receptor (MR) antagonist, RU-28318, and they are associated with the enhanced depletion-induced N-[4-[3,5-Bis(trifluoromethyl)-1H-pyrazol-1-yl]phenyl]-4-methyl-1,2,3-thiadiazole-5-carboxamide (BTP2)-sensitive macroscopic current recorded by patch-clamp experiments. Molecular screening by qRT-PCR and Western blot showed a specific upregulation of TRPC1, TRPC5, and STIM1 expression at the messenger RNA (mRNA) and protein levels upon 24-h aldosterone treatment of ARVMs, corroborated by immunostaining. Our study provides evidence that the mineralocorticoid pathway specifically promotes TRPC1/TRPC5-mediated SOCE in adult rat cardiomyocytes.
Collapse
|
48
|
Xu H, Cheng J, Wang X, Liu H, Wang S, Wu J, Xu B, Chen A, He F. Resveratrol pretreatment alleviates myocardial ischemia/reperfusion injury by inhibiting STIM1-mediated intracellular calcium accumulation. J Physiol Biochem 2019; 75:607-618. [DOI: 10.1007/s13105-019-00704-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 09/02/2019] [Indexed: 12/13/2022]
|
49
|
Cacheux M, Strauss B, Raad N, Ilkan Z, Hu J, Benard L, Feske S, Hulot JS, Akar FG. Cardiomyocyte-Specific STIM1 (Stromal Interaction Molecule 1) Depletion in the Adult Heart Promotes the Development of Arrhythmogenic Discordant Alternans. Circ Arrhythm Electrophysiol 2019; 12:e007382. [PMID: 31726860 PMCID: PMC6867678 DOI: 10.1161/circep.119.007382] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND STIM1 (stromal interaction molecule 1) is a calcium (Ca2+) sensor that regulates cardiac hypertrophy by triggering store-operated Ca2+ entry. Because STIM1 binding to phospholamban increases sarcoplasmic reticulum Ca2+ load independent of store-operated Ca2+ entry, we hypothesized that it controls electrophysiological function and arrhythmias in the adult heart. METHODS Inducible myocyte-restricted STIM1-KD (STIM1 knockdown) was achieved in adult mice using an αMHC (α-myosin heavy chain)-MerCreMer system. Mechanical and electrophysiological properties were examined using echocardiography in vivo and optical action potential (AP) mapping ex vivo in tamoxifen-induced STIM1flox/flox-Cretg/- (STIM1-KD) and littermate controls for STIM1flox/flox (referred to as STIM1-Ctl) and for Cretg/- without STIM deletion (referred to as Cre-Ctl). RESULTS STIM1-KD mice (N=23) exhibited poor survival compared with STIM1-Ctl (N=22) and Cre-Ctl (N=11) with >50% mortality after only 8-days of cardiomyocyte-restricted STIM1-KD. STIM1-KD but not STIM1-Ctl or Cre-Ctl hearts exhibited a proclivity for arrhythmic behavior, ranging from frequent ectopy to pacing-induced ventricular tachycardia/ventricular fibrillation (VT/VF). Examination of the electrophysiological substrate revealed decreased conduction velocity and increased AP duration (APD) heterogeneity in STIM1-KD. These features, however, were comparable in VT/VF(+) and VT/VF(-) hearts. We also uncovered a marked increase in the magnitude of APD alternans during rapid pacing, and the emergence of a spatially discordant alternans profile in STIM1-KD hearts. Unlike conduction velocity slowing and APD heterogeneity, the magnitude of APD alternans was greater (by 80%, P<0.05) in VT/VF(+) versus VT/VF(-) STIM1-KD hearts. Detailed phase mapping during the initial beats of VT/VF identified one or more rotors that were localized along the nodal line separating out-of-phase alternans regions. CONCLUSIONS In an adult murine model with inducible and myocyte-specific STIM1 depletion, we demonstrate for the first time the regulation of spatially discordant alternans by STIM1. Early mortality in STIM1-KD mice is likely related to enhanced susceptibility to VT/VF secondary to discordant APD alternans.
Collapse
Affiliation(s)
- Marine Cacheux
- Cardiovascular Research Center, Division of Cardiology, Icahn School of Medicine at Mount Sinai (M.C., B.S., N.R., Z.I., J.H., L.B., J.-S.H., F.G.A.)
| | - Benjamin Strauss
- Cardiovascular Research Center, Division of Cardiology, Icahn School of Medicine at Mount Sinai (M.C., B.S., N.R., Z.I., J.H., L.B., J.-S.H., F.G.A.)
| | - Nour Raad
- Cardiovascular Research Center, Division of Cardiology, Icahn School of Medicine at Mount Sinai (M.C., B.S., N.R., Z.I., J.H., L.B., J.-S.H., F.G.A.)
| | - Zeki Ilkan
- Cardiovascular Research Center, Division of Cardiology, Icahn School of Medicine at Mount Sinai (M.C., B.S., N.R., Z.I., J.H., L.B., J.-S.H., F.G.A.)
| | - Jun Hu
- Cardiovascular Research Center, Division of Cardiology, Icahn School of Medicine at Mount Sinai (M.C., B.S., N.R., Z.I., J.H., L.B., J.-S.H., F.G.A.)
| | - Ludovic Benard
- Cardiovascular Research Center, Division of Cardiology, Icahn School of Medicine at Mount Sinai (M.C., B.S., N.R., Z.I., J.H., L.B., J.-S.H., F.G.A.)
| | - Stefan Feske
- Department of Pathology, New York University School of Medicine (S.F.)
| | - Jean-Sebastien Hulot
- Cardiovascular Research Center, Division of Cardiology, Icahn School of Medicine at Mount Sinai (M.C., B.S., N.R., Z.I., J.H., L.B., J.-S.H., F.G.A.)
| | - Fadi G Akar
- Cardiovascular Research Center, Division of Cardiology, Icahn School of Medicine at Mount Sinai (M.C., B.S., N.R., Z.I., J.H., L.B., J.-S.H., F.G.A.)
| |
Collapse
|
50
|
Feng J, Armillei MK, Yu AS, Liang BT, Runnels LW, Yue L. Ca 2+ Signaling in Cardiac Fibroblasts and Fibrosis-Associated Heart Diseases. J Cardiovasc Dev Dis 2019; 6:E34. [PMID: 31547577 PMCID: PMC6956282 DOI: 10.3390/jcdd6040034] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 12/13/2022] Open
Abstract
Cardiac fibrosis is the excessive deposition of extracellular matrix proteins by cardiac fibroblasts and myofibroblasts, and is a hallmark feature of most heart diseases, including arrhythmia, hypertrophy, and heart failure. This maladaptive process occurs in response to a variety of stimuli, including myocardial injury, inflammation, and mechanical overload. There are multiple signaling pathways and various cell types that influence the fibrogenesis cascade. Fibroblasts and myofibroblasts are central effectors. Although it is clear that Ca2+ signaling plays a vital role in this pathological process, what contributes to Ca2+ signaling in fibroblasts and myofibroblasts is still not wholly understood, chiefly because of the large and diverse number of receptors, transporters, and ion channels that influence intracellular Ca2+ signaling. Intracellular Ca2+ signals are generated by Ca2+ release from intracellular Ca2+ stores and by Ca2+ entry through a multitude of Ca2+-permeable ion channels in the plasma membrane. Over the past decade, the transient receptor potential (TRP) channels have emerged as one of the most important families of ion channels mediating Ca2+ signaling in cardiac fibroblasts. TRP channels are a superfamily of non-voltage-gated, Ca2+-permeable non-selective cation channels. Their ability to respond to various stimulating cues makes TRP channels effective sensors of the many different pathophysiological events that stimulate cardiac fibrogenesis. This review focuses on the mechanisms of Ca2+ signaling in fibroblast differentiation and fibrosis-associated heart diseases and will highlight recent advances in the understanding of the roles that TRP and other Ca2+-permeable channels play in cardiac fibrosis.
Collapse
Affiliation(s)
- Jianlin Feng
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Maria K Armillei
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Albert S Yu
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Bruce T Liang
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Loren W Runnels
- Department of Pharmacology, Rutgers, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | - Lixia Yue
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA.
| |
Collapse
|