1
|
Yang D, Jian Z, Tang C, Chen Z, Zhou Z, Zheng L, Peng X. Zebrafish Congenital Heart Disease Models: Opportunities and Challenges. Int J Mol Sci 2024; 25:5943. [PMID: 38892128 PMCID: PMC11172925 DOI: 10.3390/ijms25115943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Congenital heart defects (CHDs) are common human birth defects. Genetic mutations potentially cause the exhibition of various pathological phenotypes associated with CHDs, occurring alone or as part of certain syndromes. Zebrafish, a model organism with a strong molecular conservation similar to humans, is commonly used in studies on cardiovascular diseases owing to its advantageous features, such as a similarity to human electrophysiology, transparent embryos and larvae for observation, and suitability for forward and reverse genetics technology, to create various economical and easily controlled zebrafish CHD models. In this review, we outline the pros and cons of zebrafish CHD models created by genetic mutations associated with single defects and syndromes and the underlying pathogenic mechanism of CHDs discovered in these models. The challenges of zebrafish CHD models generated through gene editing are also discussed, since the cardiac phenotypes resulting from a single-candidate pathological gene mutation in zebrafish might not mirror the corresponding human phenotypes. The comprehensive review of these zebrafish CHD models will facilitate the understanding of the pathogenic mechanisms of CHDs and offer new opportunities for their treatments and intervention strategies.
Collapse
|
2
|
Castillo-Casas JM, Caño-Carrillo S, Sánchez-Fernández C, Franco D, Lozano-Velasco E. Comparative Analysis of Heart Regeneration: Searching for the Key to Heal the Heart-Part II: Molecular Mechanisms of Cardiac Regeneration. J Cardiovasc Dev Dis 2023; 10:357. [PMID: 37754786 PMCID: PMC10531542 DOI: 10.3390/jcdd10090357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide, among which ischemic heart disease is the most representative. Myocardial infarction results from occlusion of a coronary artery, which leads to an insufficient blood supply to the myocardium. As it is well known, the massive loss of cardiomyocytes cannot be solved due the limited regenerative ability of the adult mammalian hearts. In contrast, some lower vertebrate species can regenerate the heart after an injury; their study has disclosed some of the involved cell types, molecular mechanisms and signaling pathways during the regenerative process. In this 'two parts' review, we discuss the current state-of-the-art of the main response to achieve heart regeneration, where several processes are involved and essential for cardiac regeneration.
Collapse
Affiliation(s)
- Juan Manuel Castillo-Casas
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
| | - Sheila Caño-Carrillo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
| | - Cristina Sánchez-Fernández
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
- Medina Foundation, 18007 Granada, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
- Medina Foundation, 18007 Granada, Spain
| | - Estefanía Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
- Medina Foundation, 18007 Granada, Spain
| |
Collapse
|
3
|
Bak ST, Harvald EB, Ellman DG, Mathiesen SB, Chen T, Fang S, Andersen KS, Fenger CD, Burton M, Thomassen M, Andersen DC. Ploidy-stratified single cardiomyocyte transcriptomics map Zinc Finger E-Box Binding Homeobox 1 to underly cardiomyocyte proliferation before birth. Basic Res Cardiol 2023; 118:8. [PMID: 36862248 PMCID: PMC9981540 DOI: 10.1007/s00395-023-00979-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/31/2022] [Accepted: 01/21/2023] [Indexed: 03/03/2023]
Abstract
Whereas cardiomyocytes (CMs) in the fetal heart divide, postnatal CMs fail to undergo karyokinesis and/or cytokinesis and therefore become polyploid or binucleated, a key process in terminal CM differentiation. This switch from a diploid proliferative CM to a terminally differentiated polyploid CM remains an enigma and seems an obstacle for heart regeneration. Here, we set out to identify the transcriptional landscape of CMs around birth using single cell RNA sequencing (scRNA-seq) to predict transcription factors (TFs) involved in CM proliferation and terminal differentiation. To this end, we established an approach combining fluorescence activated cell sorting (FACS) with scRNA-seq of fixed CMs from developing (E16.5, P1, and P5) mouse hearts, and generated high-resolution single-cell transcriptomic maps of in vivo diploid and tetraploid CMs, increasing the CM resolution. We identified TF-networks regulating the G2/M phases of developing CMs around birth. ZEB1 (Zinc Finger E-Box Binding Homeobox 1), a hereto unknown TF in CM cell cycling, was found to regulate the highest number of cell cycle genes in cycling CMs at E16.5 but was downregulated around birth. CM ZEB1-knockdown reduced proliferation of E16.5 CMs, while ZEB1 overexpression at P0 after birth resulted in CM endoreplication. These data thus provide a ploidy stratified transcriptomic map of developing CMs and bring new insight to CM proliferation and endoreplication identifying ZEB1 as a key player in these processes.
Collapse
Affiliation(s)
- Sara Thornby Bak
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
- Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Eva Bang Harvald
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
- Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Ditte Gry Ellman
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
- Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Sabrina Bech Mathiesen
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
- Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Ting Chen
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
- Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Shu Fang
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
- Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Kristian Skriver Andersen
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
- Clinical Institute, University of Southern Denmark, Odense, Denmark
| | | | - Mark Burton
- Clinical Institute, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Mads Thomassen
- Clinical Institute, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Ditte Caroline Andersen
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark.
- Clinical Institute, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
4
|
Bowley G, Kugler E, Wilkinson R, Lawrie A, van Eeden F, Chico TJA, Evans PC, Noël ES, Serbanovic-Canic J. Zebrafish as a tractable model of human cardiovascular disease. Br J Pharmacol 2022; 179:900-917. [PMID: 33788282 DOI: 10.1111/bph.15473] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 12/17/2022] Open
Abstract
Mammalian models including non-human primates, pigs and rodents have been used extensively to study the mechanisms of cardiovascular disease. However, there is an increasing desire for alternative model systems that provide excellent scientific value while replacing or reducing the use of mammals. Here, we review the use of zebrafish, Danio rerio, to study cardiovascular development and disease. The anatomy and physiology of zebrafish and mammalian cardiovascular systems are compared, and we describe the use of zebrafish models in studying the mechanisms of cardiac (e.g. congenital heart defects, cardiomyopathy, conduction disorders and regeneration) and vascular (endothelial dysfunction and atherosclerosis, lipid metabolism, vascular ageing, neurovascular physiology and stroke) pathologies. We also review the use of zebrafish for studying pharmacological responses to cardiovascular drugs and describe several features of zebrafish that make them a compelling model for in vivo screening of compounds for the treatment cardiovascular disease. LINKED ARTICLES: This article is part of a themed issue on Preclinical Models for Cardiovascular disease research (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.5/issuetoc.
Collapse
Affiliation(s)
- George Bowley
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
| | - Elizabeth Kugler
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
- Institute of Ophthalmology, Faculty of Brain Sciences, University College London, London, UK
| | - Rob Wilkinson
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Allan Lawrie
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Freek van Eeden
- Bateson Centre, University of Sheffield, Sheffield, UK
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Tim J A Chico
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
| | - Paul C Evans
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
| | - Emily S Noël
- Bateson Centre, University of Sheffield, Sheffield, UK
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Jovana Serbanovic-Canic
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
| |
Collapse
|
5
|
Costa A, Cushman S, Haubner BJ, Derda AA, Thum T, Bär C. Neonatal injury models: integral tools to decipher the molecular basis of cardiac regeneration. Basic Res Cardiol 2022; 117:26. [PMID: 35503383 PMCID: PMC9064850 DOI: 10.1007/s00395-022-00931-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 01/31/2023]
Abstract
Myocardial injury often leads to heart failure due to the loss and insufficient regeneration of resident cardiomyocytes. The low regenerative potential of the mammalian heart is one of the main drivers of heart failure progression, especially after myocardial infarction accompanied by large contractile muscle loss. Preclinical therapies for cardiac regeneration are promising, but clinically still missing. Mammalian models represent an excellent translational in vivo platform to test drugs and treatments for the promotion of cardiac regeneration. Particularly, short-lived mice offer the possibility to monitor the outcome of such treatments throughout the life span. Importantly, there is a short period of time in newborn mice in which the heart retains full regenerative capacity after cardiac injury, which potentially also holds true for the neonatal human heart. Thus, in vivo neonatal mouse models of cardiac injury are crucial to gain insights into the molecular mechanisms underlying the cardiac regenerative processes and to devise novel therapeutic strategies for the treatment of diseased adult hearts. Here, we provide an overview of the established injury models to study cardiac regeneration. We summarize pioneering studies that demonstrate the potential of using neonatal cardiac injury models to identify factors that may stimulate heart regeneration by inducing endogenous cardiomyocyte proliferation in the adult heart. To conclude, we briefly summarize studies in large animal models and the insights gained in humans, which may pave the way toward the development of novel approaches in regenerative medicine.
Collapse
Affiliation(s)
- Alessia Costa
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany ,REBIRTH-Centre for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Sarah Cushman
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Bernhard J. Haubner
- Department of Internal Medicine III (Cardiology and Angiology), Innsbruck Medical University, Innsbruck, Austria ,Department of Cardiology, University Heart Center, University Hospital Zurich, Zürich, Switzerland
| | - Anselm A. Derda
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany ,Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany ,REBIRTH-Centre for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany ,Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany ,REBIRTH-Centre for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany ,Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| |
Collapse
|
6
|
Bo B, Li S, Zhou K, Wei J. The Regulatory Role of Oxygen Metabolism in Exercise-Induced Cardiomyocyte Regeneration. Front Cell Dev Biol 2021; 9:664527. [PMID: 33937268 PMCID: PMC8083961 DOI: 10.3389/fcell.2021.664527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/29/2021] [Indexed: 11/16/2022] Open
Abstract
During heart failure, the heart is unable to regenerate lost or damaged cardiomyocytes and is therefore unable to generate adequate cardiac output. Previous research has demonstrated that cardiac regeneration can be promoted by a hypoxia-related oxygen metabolic mechanism. Numerous studies have indicated that exercise plays a regulatory role in the activation of regeneration capacity in both healthy and injured adult cardiomyocytes. However, the role of oxygen metabolism in regulating exercise-induced cardiomyocyte regeneration is unclear. This review focuses on the alteration of the oxygen environment and metabolism in the myocardium induced by exercise, including the effects of mild hypoxia, changes in energy metabolism, enhanced elimination of reactive oxygen species, augmentation of antioxidative capacity, and regulation of the oxygen-related metabolic and molecular pathway in the heart. Deciphering the regulatory role of oxygen metabolism and related factors during and after exercise in cardiomyocyte regeneration will provide biological insight into endogenous cardiac repair mechanisms. Furthermore, this work provides strong evidence for exercise as a cost-effective intervention to improve cardiomyocyte regeneration and restore cardiac function in this patient population.
Collapse
Affiliation(s)
- Bing Bo
- Kinesiology Department, School of Physical Education, Henan University, Kaifeng, China.,Sports Reform and Development Research Center, School of Physical Education, Henan University, Kaifeng, China
| | - Shuangshuang Li
- Kinesiology Department, School of Physical Education, Henan University, Kaifeng, China
| | - Ke Zhou
- Kinesiology Department, School of Physical Education, Henan University, Kaifeng, China.,Sports Reform and Development Research Center, School of Physical Education, Henan University, Kaifeng, China
| | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
7
|
Zheng L, Du J, Wang Z, Zhou Q, Zhu X, Xiong JW. Molecular regulation of myocardial proliferation and regeneration. CELL REGENERATION (LONDON, ENGLAND) 2021; 10:13. [PMID: 33821373 PMCID: PMC8021683 DOI: 10.1186/s13619-021-00075-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/04/2021] [Indexed: 12/21/2022]
Abstract
Heart regeneration is a fascinating and complex biological process. Decades of intensive studies have revealed a sophisticated molecular network regulating cardiac regeneration in the zebrafish and neonatal mouse heart. Here, we review both the classical and recent literature on the molecular and cellular mechanisms underlying heart regeneration, with a particular focus on how injury triggers the cell-cycle re-entry of quiescent cardiomyocytes to replenish their massive loss after myocardial infarction or ventricular resection. We highlight several important signaling pathways for cardiomyocyte proliferation and propose a working model of how these injury-induced signals promote cardiomyocyte proliferation. Thus, this concise review provides up-to-date research progresses on heart regeneration for investigators in the field of regeneration biology.
Collapse
Affiliation(s)
- Lixia Zheng
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871, China
| | - Jianyong Du
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871, China
| | - Zihao Wang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871, China
| | - Qinchao Zhou
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871, China
| | - Xiaojun Zhu
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871, China.
| | - Jing-Wei Xiong
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871, China
| |
Collapse
|
8
|
Santos F, Correia M, Nóbrega-Pereira S, Bernardes de Jesus B. Age-Related Pathways in Cardiac Regeneration: A Role for lncRNAs? Front Physiol 2021; 11:583191. [PMID: 33551829 PMCID: PMC7855957 DOI: 10.3389/fphys.2020.583191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Aging imposes a barrier for tissue regeneration. In the heart, aging leads to a severe rearrangement of the cardiac structure and function and to a subsequent increased risk of heart failure. An intricate network of distinct pathways contributes to age-related alterations during healthy heart aging and account for a higher susceptibility of heart disease. Our understanding of the systemic aging process has already led to the design of anti-aging strategies or to the adoption of protective interventions. Nevertheless, our understanding of the molecular determinants operating during cardiac aging or repair remains limited. Here, we will summarize the molecular and physiological alterations that occur during aging of the heart, highlighting the potential role for long non-coding RNAs (lncRNAs) as novel and valuable targets in cardiac regeneration/repair.
Collapse
Affiliation(s)
- Francisco Santos
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
| | - Magda Correia
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
| | - Sandrina Nóbrega-Pereira
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisboa, Portugal
| | - Bruno Bernardes de Jesus
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
9
|
Cauterization as a Simple Method for Regeneration Studies in the Zebrafish Heart. J Cardiovasc Dev Dis 2020; 7:jcdd7040041. [PMID: 33022937 PMCID: PMC7711552 DOI: 10.3390/jcdd7040041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/05/2020] [Accepted: 09/10/2020] [Indexed: 12/21/2022] Open
Abstract
In the last two decades, the zebrafish has emerged as an important model species for heart regeneration studies. Various approaches to model loss of cardiac myocytes and myocardial infarction in the zebrafish have been devised, and have included resection, genetic ablation, and cryoinjury. However, to date, the response of the zebrafish ventricle to cautery injury has not been reported. Here, we describe a simple and reproducible method using cautery injury via a modified nichrome inoculating needle as a probe to model myocardial infarction in the zebrafish ventricle. Using light and electron microscopy, we show that cardiac cautery injury is attended by significant inflammatory cell infiltration, accumulation of collagen in the injured area, and the reconstitution of the ventricular myocardium. Additionally, we document the ablation of cardiac nerve fibers, and report that the re-innervation of the injured zebrafish ventricle is protracted, compared to other repair processes that accompany the regeneration of the cauterized ventricle. Taken together, our study demonstrates that cautery injury is a simple and effective means for generating necrotic tissue and eliciting a remodeling and regenerative response in the zebrafish heart. This approach may serve as an important tool in the methods toolbox for regeneration studies in the zebrafish.
Collapse
|
10
|
Cai W, Tan J, Yan J, Zhang L, Cai X, Wang H, Liu F, Ye M, Cai CL. Limited Regeneration Potential with Minimal Epicardial Progenitor Conversions in the Neonatal Mouse Heart after Injury. Cell Rep 2020; 28:190-201.e3. [PMID: 31269439 PMCID: PMC6837841 DOI: 10.1016/j.celrep.2019.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 02/19/2019] [Accepted: 05/30/2019] [Indexed: 02/06/2023] Open
Abstract
The regeneration capacity of neonatal mouse heart is controversial. In addition, whether epicardial cells provide a progenitor pool for de novo heart regeneration is incompletely defined. Following apical resection of the neonatal mouse heart, we observed limited regeneration potential. Fate-mapping of Tbx18MerCreMer mice revealed that newly formed coronary vessels and a limited number of cardiomyocytes were derived from the T-box transcription factor 18 (Tbx18) lineage. However, further lineage tracing with SM-MHCCreERT2 and Nfactc1Cre mice revealed that the new smooth muscle and endothelial cells are in fact derivatives of pre-existing coronary vessels. Our data show that neonatal mouse heart can regenerate but that its potential is limited. Moreover, although epicardial cells are multipotent during embryogenesis, their contribution to heart repair through “stem” or “progenitor” cell conversion is minimal after birth. These observations suggest that early embryonic heart development and postnatal heart regeneration are distinct biological processes. Multipotency of epicardial cells is significantly decreased after birth. The regeneration potential of the newborn mouse heart is controversial, and whether epicardial cells provide progenitors for coronary vascular regeneration is unclear. Cai et al. demonstrate a limited regeneration capacity of the neonatal heart upon injury. Epicardial cells do not convert into functional cardiac cells, including coronary vessels, during repair.
Collapse
Affiliation(s)
- Weibin Cai
- Department of Developmental and Regenerative Biology, The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Department of Biochemistry, Guangdong Engineering & Technology Research Center for Disease-Model Animals, Zhongshan Medical School, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China.
| | - Jing Tan
- Department of Biochemistry, Guangdong Engineering & Technology Research Center for Disease-Model Animals, Zhongshan Medical School, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Jianyun Yan
- Department of Developmental and Regenerative Biology, The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Lu Zhang
- Department of Developmental and Regenerative Biology, The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut Street, Indianapolis, Indiana 46202, USA
| | - Xiaoqiang Cai
- Department of Developmental and Regenerative Biology, The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Haiping Wang
- Department of Biochemistry, Guangdong Engineering & Technology Research Center for Disease-Model Animals, Zhongshan Medical School, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Fang Liu
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Maoqing Ye
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Chen-Leng Cai
- Department of Developmental and Regenerative Biology, The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut Street, Indianapolis, Indiana 46202, USA.
| |
Collapse
|
11
|
Ye L, Wang S, Xiao Y, Jiang C, Huang Y, Chen H, Zhang H, Zhang H, Liu J, Xu Z, Hong H. Pressure Overload Greatly Promotes Neonatal Right Ventricular Cardiomyocyte Proliferation: A New Model for the Study of Heart Regeneration. J Am Heart Assoc 2020; 9:e015574. [PMID: 32475201 PMCID: PMC7429015 DOI: 10.1161/jaha.119.015574] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Current mammalian models for heart regeneration research are limited to neonatal apex amputation and myocardial infarction, both of which are controversial. RNAseq has demonstrated a very limited set of differentially expressed genes between sham and operated hearts in myocardial infarction models. Here, we investigated in rats whether pressure overload in the right ventricle, a common phenomenon in children with congenital heart disease, could be used as a better animal model for heart regeneration studies when considering cardiomyocyte proliferation as the most important index. Methods and Results In the rat model, pressure overload was induced by pulmonary artery banding on postnatal day 1 and confirmed by echocardiography and hemodynamic measurements at postnatal day 7. RNA sequencing analyses of purified right ventricular cardiomyocytes at postnatal day 7 from pulmonary artery banding and sham-operated rats revealed that there were 5469 differentially expressed genes between these 2 groups. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analysis showed that these genes mainly mediated mitosis and cell division. Cell proliferation assays indicated a continuous overproliferation of cardiomyocytes in the right ventricle after pulmonary artery banding, in particular for the first 3 postnatal days. We also validated the model using samples from overloaded right ventricles of human patients. There was an approximately 2-fold increase of Ki67/pHH3/aurora B-positive cardiomyocytes in human-overloaded right ventricles compared with nonoverloaded right ventricles. Other features of this animal model included cardiomyocyte hypotrophy with no fibrosis. Conclusions Pressure overload profoundly promotes cardiomyocyte proliferation in the neonatal stage in both rats and human beings. This activates a regeneration-specific gene program and may offer an alternative animal model for heart regeneration research.
Collapse
Affiliation(s)
- Lincai Ye
- Department of Thoracic and Cardiovascular Surgery Shanghai Children's Medical Center Shanghai Jiaotong University School of Medicine Shanghai China.,Institute of Pediatric Translational Medicine Shanghai Children's Medical Center Shanghai Jiaotong University School of Medicine Shanghai China.,Shanghai Institute for Pediatric Congenital Heart Disease Shanghai Children's Medical Center Shanghai Jiaotong University School of Medicine Shanghai China
| | - Shoubao Wang
- Department of Thoracic and Cardiovascular Surgery Shanghai Children's Medical Center Shanghai Jiaotong University School of Medicine Shanghai China.,Department of Plastic and Reconstructive Surgery Shanghai Ninth People's Hospital Shanghai Jiaotong University School of Medicine Shanghai China
| | - Yingying Xiao
- Department of Thoracic and Cardiovascular Surgery Shanghai Children's Medical Center Shanghai Jiaotong University School of Medicine Shanghai China
| | - Chuan Jiang
- Department of Thoracic and Cardiovascular Surgery Shanghai Children's Medical Center Shanghai Jiaotong University School of Medicine Shanghai China.,Institute of Pediatric Translational Medicine Shanghai Children's Medical Center Shanghai Jiaotong University School of Medicine Shanghai China.,Shanghai Institute for Pediatric Congenital Heart Disease Shanghai Children's Medical Center Shanghai Jiaotong University School of Medicine Shanghai China
| | - Yanhui Huang
- Department of Anesthesiology Shanghai Children's Medical Center Shanghai Jiaotong University School of Medicine Shanghai China
| | - Huiwen Chen
- Department of Thoracic and Cardiovascular Surgery Shanghai Children's Medical Center Shanghai Jiaotong University School of Medicine Shanghai China
| | - Haibo Zhang
- Department of Thoracic and Cardiovascular Surgery Shanghai Children's Medical Center Shanghai Jiaotong University School of Medicine Shanghai China
| | - Hao Zhang
- Department of Thoracic and Cardiovascular Surgery Shanghai Children's Medical Center Shanghai Jiaotong University School of Medicine Shanghai China.,Shanghai Institute for Pediatric Congenital Heart Disease Shanghai Children's Medical Center Shanghai Jiaotong University School of Medicine Shanghai China
| | - Jinfen Liu
- Department of Thoracic and Cardiovascular Surgery Shanghai Children's Medical Center Shanghai Jiaotong University School of Medicine Shanghai China
| | - Zhuoming Xu
- Department of Thoracic and Cardiovascular Surgery Shanghai Children's Medical Center Shanghai Jiaotong University School of Medicine Shanghai China
| | - Haifa Hong
- Institute of Pediatric Translational Medicine Shanghai Children's Medical Center Shanghai Jiaotong University School of Medicine Shanghai China
| |
Collapse
|
12
|
Li Y, Feng J, Li Y, Hu S, Nie Y. Achieving stable myocardial regeneration after apical resection in neonatal mice. J Cell Mol Med 2020; 24:6500-6504. [PMID: 32343038 PMCID: PMC7294131 DOI: 10.1111/jcmm.15223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/01/2020] [Accepted: 03/13/2020] [Indexed: 12/16/2022] Open
Abstract
The neonatal heart completely regenerates after apical resection (AR), providing a desirable research model to study the mechanism of cardiac regeneration and cardiomyocyte proliferation. However, AR-induced neonatal heart regenerative phenomenon is controversial due to the variation of operative details in different laboratories. Here, we provide an optimized AR operation procedure with stable regeneration and high survival rate by achieving heart exposure, normalizing myocardium cut-offs, and reducing operation duration. We also established a whole-heart-slice approach to estimate the myocardial regeneration after the AR operation, which ensures no false-negative/positive results. The combination of the optimized AR operation and the whole-heart-slice analysis provides a stable system to study neonatal heart regeneration and cardiomyocyte proliferation in situ.
Collapse
Affiliation(s)
- Yandong Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Feng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Li
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Shengshou Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Nie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
13
|
Shen H, Gan P, Wang K, Darehzereshki A, Wang K, Kumar SR, Lien CL, Patterson M, Tao G, Sucov HM. Mononuclear diploid cardiomyocytes support neonatal mouse heart regeneration in response to paracrine IGF2 signaling. eLife 2020; 9:53071. [PMID: 32167474 PMCID: PMC7105374 DOI: 10.7554/elife.53071] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/12/2020] [Indexed: 01/04/2023] Open
Abstract
Injury to the newborn mouse heart is efficiently regenerated, but this capacity is lost by one week after birth. We found that IGF2, an important mitogen in heart development, is required for neonatal heart regeneration. IGF2 originates from the endocardium/endothelium and is transduced in cardiomyocytes by the insulin receptor. Following injury on postnatal day 1, absence of IGF2 abolished injury-induced cell cycle entry during the early part of the first postnatal week. Consequently, regeneration failed despite the later presence of additional cell cycle-inducing activities 7 days following injury. Most cardiomyocytes transition from mononuclear diploid to polyploid during the first postnatal week. Regeneration was rescued in Igf2-deficient neonates in three different contexts that elevate the percentage of mononuclear diploid cardiomyocytes beyond postnatal day 7. Thus, IGF2 is a paracrine-acting mitogen for heart regeneration during the early postnatal period, and IGF2-deficiency unmasks the dependence of this process on proliferation-competent mononuclear diploid cardiomyocytes.
Collapse
Affiliation(s)
- Hua Shen
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Keck School of Medicine, Los Angeles, United States
| | - Peiheng Gan
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Keck School of Medicine, Los Angeles, United States.,Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, United States.,Department of Medicine Division of Cardiology, Medical University of South Carolina, Charleston, United States
| | - Kristy Wang
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, United States
| | - Ali Darehzereshki
- Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, United States
| | - Kai Wang
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - S Ram Kumar
- Department of Surgery, University of Southern California Keck School of Medicine, Los Angeles, United States
| | - Ching-Ling Lien
- Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, United States
| | - Michaela Patterson
- Department of Cell Biology, Neurobiology and Anatomy, and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, United States
| | - Ge Tao
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, United States
| | - Henry M Sucov
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, United States.,Department of Medicine Division of Cardiology, Medical University of South Carolina, Charleston, United States
| |
Collapse
|
14
|
Cardiac Regeneration and Repair: From Mechanisms to Therapeutic Strategies. CONCEPTS AND APPLICATIONS OF STEM CELL BIOLOGY 2020. [DOI: 10.1007/978-3-030-43939-2_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Gunadasa-Rohling M, Masters M, Maguire ML, Smart SC, Schneider JE, Riley PR. Magnetic Resonance Imaging of the Regenerating Neonatal Mouse Heart. Circulation 2019; 138:2439-2441. [PMID: 30571586 DOI: 10.1161/circulationaha.118.036086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Mala Gunadasa-Rohling
- Department of Physiology, Anatomy and Genetics, British Heart Foundation, Oxbridge Centre of Regenerative Medicine, University of Oxford, UK (M.G.-R., M.M., J.E.S., P.R.R.)
| | - Megan Masters
- Department of Physiology, Anatomy and Genetics, British Heart Foundation, Oxbridge Centre of Regenerative Medicine, University of Oxford, UK (M.G.-R., M.M., J.E.S., P.R.R.)
| | - Mahon L Maguire
- British Heart Foundation, Experimental Magnetic Resonance Unit, Wellcome Trust Centre for Human Genetics, Roosevelt Dr, Oxford, UK (M.L.M., J.E.S.).,RDM Cardiovascular Medicine, John Radcliffe Hospital, Headley Way, Headington, Oxford UK (M.L.M., J.E.S.)
| | - Sean C Smart
- Department of Oncology, Cancer Research UK, Medical Research Council, Oxford Institute for Radiation Oncology, University of Oxford, UK (S.C.S.)
| | - Jürgen E Schneider
- Department of Physiology, Anatomy and Genetics, British Heart Foundation, Oxbridge Centre of Regenerative Medicine, University of Oxford, UK (M.G.-R., M.M., J.E.S., P.R.R.).,British Heart Foundation, Experimental Magnetic Resonance Unit, Wellcome Trust Centre for Human Genetics, Roosevelt Dr, Oxford, UK (M.L.M., J.E.S.).,RDM Cardiovascular Medicine, John Radcliffe Hospital, Headley Way, Headington, Oxford UK (M.L.M., J.E.S.).,Division of Biomedical Imaging, Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, Clarendon Way, University of Leeds, UK (J.E.S.)
| | - Paul R Riley
- Department of Physiology, Anatomy and Genetics, British Heart Foundation, Oxbridge Centre of Regenerative Medicine, University of Oxford, UK (M.G.-R., M.M., J.E.S., P.R.R.)
| |
Collapse
|
16
|
Abstract
Heart failure is a major cause of death worldwide owing to the inability of the adult human heart to regenerate after a heart attack. However, many vertebrate species are capable of complete cardiac regeneration following injury. In this Review, we discuss the various model organisms of cardiac regeneration, and outline what they have taught us thus far about the cellular and molecular responses essential for optimal cardiac repair. We compare across different species, highlighting evolutionarily conserved mechanisms of regeneration and demonstrating the importance of developmental gene expression programmes, plasticity of the heart and the pathophysiological environment for the regenerative response. Additionally, we discuss how the findings from these studies have led to improvements in cardiac repair in preclinical models such as adult mice and pigs, and discuss the potential to translate these findings into therapeutic approaches for human patients following myocardial infarction.
Collapse
Affiliation(s)
- Eleanor L Price
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Joaquim M Vieira
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Paul R Riley
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| |
Collapse
|
17
|
Garcia-Puig A, Mosquera JL, Jiménez-Delgado S, García-Pastor C, Jorba I, Navajas D, Canals F, Raya A. Proteomics Analysis of Extracellular Matrix Remodeling During Zebrafish Heart Regeneration. Mol Cell Proteomics 2019; 18:1745-1755. [PMID: 31221719 PMCID: PMC6731076 DOI: 10.1074/mcp.ra118.001193] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 06/03/2019] [Indexed: 12/13/2022] Open
Abstract
Adult zebrafish, in contrast to mammals, are able to regenerate their hearts in response to injury or experimental amputation. Our understanding of the cellular and molecular bases that underlie this process, although fragmentary, has increased significantly over the last years. However, the role of the extracellular matrix (ECM) during zebrafish heart regeneration has been comparatively rarely explored. Here, we set out to characterize the ECM protein composition in adult zebrafish hearts, and whether it changed during the regenerative response. For this purpose, we first established a decellularization protocol of adult zebrafish ventricles that significantly enriched the yield of ECM proteins. We then performed proteomic analyses of decellularized control hearts and at different times of regeneration. Our results show a dynamic change in ECM protein composition, most evident at the earliest (7 days postamputation) time point analyzed. Regeneration associated with sharp increases in specific ECM proteins, and with an overall decrease in collagens and cytoskeletal proteins. We finally tested by atomic force microscopy that the changes in ECM composition translated to decreased ECM stiffness. Our cumulative results identify changes in the protein composition and mechanical properties of the zebrafish heart ECM during regeneration.
Collapse
Affiliation(s)
- Anna Garcia-Puig
- ‡Center of Regenerative Medicine in Barcelona (CMRB), 3rd Floor Hospital Duran i Reynals, Avinguda de la Gran Via 199-203, 08908 Hospitalet de Llobregat (Barcelona), Spain; §Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08908 Hospitalet de Llobregat (Barcelona), Spain
| | - Jose Luis Mosquera
- ¶Bioinformatics Unit, Institut d'Investigació Biomèdica de Bellvitge IDIBELL), 3rd Floor Hospital Duran i Reynals, Avinguda de la Gran Via 199-203, 08908 Hospitalet de Llobregat (Barcelona), Spain
| | - Senda Jiménez-Delgado
- ‡Center of Regenerative Medicine in Barcelona (CMRB), 3rd Floor Hospital Duran i Reynals, Avinguda de la Gran Via 199-203, 08908 Hospitalet de Llobregat (Barcelona), Spain
| | - Cristina García-Pastor
- ‡Center of Regenerative Medicine in Barcelona (CMRB), 3rd Floor Hospital Duran i Reynals, Avinguda de la Gran Via 199-203, 08908 Hospitalet de Llobregat (Barcelona), Spain
| | - Ignasi Jorba
- ‖Institute for Bioengineering of Catalonia (IBEC), Barcelona Science Park, Baldiri Reixac 15-21, 08028 Barcelona, Spain; **Unit of Biophysics and Bioengineering, Department of Physiological Sciences I, School of Medicine, University of Barcelona, Casanova 143, 08036 Barcelona, Spain; ‡‡Center for Networked Biomedical Research on Respiratory Diseases (CIBERES), 08036 Barcelona, Spain
| | - Daniel Navajas
- ‖Institute for Bioengineering of Catalonia (IBEC), Barcelona Science Park, Baldiri Reixac 15-21, 08028 Barcelona, Spain; **Unit of Biophysics and Bioengineering, Department of Physiological Sciences I, School of Medicine, University of Barcelona, Casanova 143, 08036 Barcelona, Spain; ‡‡Center for Networked Biomedical Research on Respiratory Diseases (CIBERES), 08036 Barcelona, Spain
| | - Francesc Canals
- §§Proteomics group, Vall d'Hebron Institut of Oncology (VHIO), Cellex center, Natzaret 115-117, 08035 Barcelona, Spain
| | - Angel Raya
- ‡Center of Regenerative Medicine in Barcelona (CMRB), 3rd Floor Hospital Duran i Reynals, Avinguda de la Gran Via 199-203, 08908 Hospitalet de Llobregat (Barcelona), Spain; §Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08908 Hospitalet de Llobregat (Barcelona), Spain; ¶¶Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain.
| |
Collapse
|
18
|
Broughton KM, Sussman MA. Adult Cardiomyocyte Cell Cycle Detour: Off-ramp to Quiescent Destinations. Trends Endocrinol Metab 2019; 30:557-567. [PMID: 31262545 PMCID: PMC6703820 DOI: 10.1016/j.tem.2019.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/24/2019] [Accepted: 05/30/2019] [Indexed: 02/06/2023]
Abstract
Ability to promote completion of mitotic cycling of adult mammalian cardiomyocytes remains an intractable and vexing challenge, despite being one of the most sought after 'holy grails' of cardiovascular research. While some of the struggle is attributable to adult cardiomyocytes themselves that are notoriously post-mitotic, another contributory factor rests with difficulty in definitive tracking of adult cardiomyocyte cell cycle and lack of rigorous measures to track proliferation in situ. This review summarizes past, present, and future directions to promote adult mammalian cardiomyocyte cell cycle progression, proliferation, and renewal. Establishing relationship(s) between cardiomyocyte cell cycle progression and cellular biological properties is sorely needed to understand the mechanistic basis for cardiomyocyte cell cycle withdrawal to enhance cardiomyocyte cell cycle progression and mitosis.
Collapse
Affiliation(s)
- Kathleen M Broughton
- San Diego State University, Department of Biology and Integrated Regenerative Research Institute, San Diego, CA 92182, USA
| | - Mark A Sussman
- San Diego State University, Department of Biology and Integrated Regenerative Research Institute, San Diego, CA 92182, USA.
| |
Collapse
|
19
|
Abstract
BACKGROUND The adult mammalian heart is incapable of meaningful functional recovery after injury, and thus promoting heart regeneration is 1 of the most important therapeutic targets in cardiovascular medicine. In contrast to the adult mammalian heart, the neonatal mammalian heart is capable of regeneration after various types of injury. Since the first report in 2011, a number of groups have reported their findings on neonatal heart regeneration. The current review provides a comprehensive analysis of heart regeneration studies in neonatal mammals conducted to date, outlines lessons learned, and poses unanswered questions. METHODS We performed a PubMed search using the keywords "neonatal" and "heart" and "regeneration." In addition, we assessed all publications that cited the first neonatal heart regeneration reports: Porrello et al, Science, Feb 2011 for apical resection injury; Porrello et al, PNAS, Dec 2012 for coronary ligation injury; and Mahmoud et al, Nature Methods, Jan 2014 for surgical methodology. Publications were examined for surgical models used, timing of surgery, and postinjury assessment including anatomic, histological, and functional assessment, as well as conclusions drawn. RESULTS We found 30 publications that performed neonatal apical resection, 19 publications that performed neonatal myocardial infarction by coronary artery ligation, and 6 publications that performed cryoinjury using liquid nitrogen-cooled metal probes. Both apical resection and ischemic infarction injury in neonatal mice result in a robust regenerative response, mediated by cardiomyocyte proliferation. On the other hand, several reports have demonstrated that cryoinjury is associated with incomplete heart regeneration in neonatal mice. Not surprisingly, several studies suggest that injury size, as well as surgical and histological techniques, can strongly influence the observed regenerative response and final conclusions. Studies have utilized these neonatal cardiac injury models to identify factors that either inhibit or stimulate heart regeneration. CONCLUSIONS Overall, there is consensus that both apical resection and coronary ligation injuries during the first 2 days of life result in heart regeneration in neonatal mammals, whereas cryoinjury was not associated with a similar regenerative response. This regenerative response is mediated by proliferation of preexisting cardiomyocytes, and is modifiable by injury size and surgical technique, as well as metabolic, immunologic, genetic, and environmental factors.
Collapse
Affiliation(s)
- Nicholas T Lam
- Department of Internal Medicine, Division of Cardiology (N.T.L and H.A.S.)
| | - Hesham A Sadek
- Department of Internal Medicine, Division of Cardiology (N.T.L and H.A.S.).,Hamon Center for Regenerative Science and Medicine (H.A.S.), University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
20
|
Notari M, Ventura-Rubio A, Bedford-Guaus SJ, Jorba I, Mulero L, Navajas D, Martí M, Raya Á. The local microenvironment limits the regenerative potential of the mouse neonatal heart. SCIENCE ADVANCES 2018; 4:eaao5553. [PMID: 29732402 PMCID: PMC5931766 DOI: 10.1126/sciadv.aao5553] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 03/20/2018] [Indexed: 05/03/2023]
Abstract
Neonatal mice have been shown to regenerate their hearts during a transient window of time of approximately 1 week after birth. However, experimental evidence for this phenomenon is not undisputed, because several laboratories have been unable to detect neonatal heart regeneration. We first confirmed that 1-day-old neonatal mice are indeed able to mount a robust regenerative response after heart amputation. We then found that this regenerative ability sharply declines within 48 hours, with hearts of 2-day-old mice responding to amputation with fibrosis, rather than regeneration. By comparing the global transcriptomes of 1- and 2-day-old mouse hearts, we found that most differentially expressed transcripts encode extracellular matrix components and structural constituents of the cytoskeleton. These results suggest that the stiffness of the local microenvironment, rather than cardiac cell-autonomous mechanisms, crucially determines the ability or inability of the heart to regenerate. Testing this hypothesis by pharmacologically decreasing the stiffness of the extracellular matrix in 3-day-old mice, we found that decreased matrix stiffness rescued the ability of mice to regenerate heart tissue after apical resection. Together, our results identify an unexpectedly restricted time window of regenerative competence in the mouse neonatal heart and open new avenues for promoting cardiac regeneration by local modification of the extracellular matrix stiffness.
Collapse
Affiliation(s)
- Mario Notari
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, 3rd Floor, Av. Gran Via 199-203, 08098 Hospitalet de Llobregat, Barcelona, Spain
- Corresponding author. (Á.R.); (M.N.)
| | - Antoni Ventura-Rubio
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, 3rd Floor, Av. Gran Via 199-203, 08098 Hospitalet de Llobregat, Barcelona, Spain
| | - Sylvia J. Bedford-Guaus
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, 3rd Floor, Av. Gran Via 199-203, 08098 Hospitalet de Llobregat, Barcelona, Spain
- Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Ignasi Jorba
- Institute for Bioengineering of Catalonia, 08028 Barcelona, Spain
- School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Center for Networked Biomedical Research on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Lola Mulero
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, 3rd Floor, Av. Gran Via 199-203, 08098 Hospitalet de Llobregat, Barcelona, Spain
| | - Daniel Navajas
- Institute for Bioengineering of Catalonia, 08028 Barcelona, Spain
- School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Center for Networked Biomedical Research on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Mercè Martí
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, 3rd Floor, Av. Gran Via 199-203, 08098 Hospitalet de Llobregat, Barcelona, Spain
- Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Ángel Raya
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, 3rd Floor, Av. Gran Via 199-203, 08098 Hospitalet de Llobregat, Barcelona, Spain
- Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
- Corresponding author. (Á.R.); (M.N.)
| |
Collapse
|
21
|
Sampaio-Pinto V, Rodrigues SC, Laundos TL, Silva ED, Vasques-Nóvoa F, Silva AC, Cerqueira RJ, Resende TP, Pianca N, Leite-Moreira A, D'Uva G, Thorsteinsdóttir S, Pinto-do-Ó P, Nascimento DS. Neonatal Apex Resection Triggers Cardiomyocyte Proliferation, Neovascularization and Functional Recovery Despite Local Fibrosis. Stem Cell Reports 2018; 10:860-874. [PMID: 29503089 PMCID: PMC5918841 DOI: 10.1016/j.stemcr.2018.01.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 01/08/2023] Open
Abstract
So far, opposing outcomes have been reported following neonatal apex resection in mice, questioning the validity of this injury model to investigate regenerative mechanisms. We performed a systematic evaluation, up to 180 days after surgery, of the pathophysiological events activated upon apex resection. In response to cardiac injury, we observed increased cardiomyocyte proliferation in remote and apex regions, neovascularization, and local fibrosis. In adulthood, resected hearts remain consistently shorter and display permanent fibrotic tissue deposition in the center of the resection plane, indicating limited apex regrowth. However, thickening of the left ventricle wall, explained by an upsurge in cardiomyocyte proliferation during the initial response to injury, compensated cardiomyocyte loss and supported normal systolic function. Thus, apex resection triggers both regenerative and reparative mechanisms, endorsing this injury model for studies aimed at promoting cardiomyocyte proliferation and/or downplaying fibrosis. Apex resection triggers fibrosis, neovascularization, and cardiomyocyte proliferation Permanent fibrotic deposition is confined to the apex Injured hearts display morphometric alterations but regain functional competence Cardiomyocyte proliferation is sufficient to compensate tissue loss by resection
Collapse
Affiliation(s)
- Vasco Sampaio-Pinto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Sílvia C Rodrigues
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Tiago L Laundos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Elsa D Silva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Francisco Vasques-Nóvoa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Departamento de Fisiologia e Cirurgia Cardiotorácica, Faculdade de Medicina da Universidade do Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Ana C Silva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; Gladstone Institutes, University of California San Francisco, San Francisco 94158, USA
| | - Rui J Cerqueira
- Departamento de Fisiologia e Cirurgia Cardiotorácica, Faculdade de Medicina da Universidade do Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Tatiana P Resende
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Nicola Pianca
- Scientific and Technological Pole, IRCCS MultiMedica, 20138 Milan, Italy
| | - Adelino Leite-Moreira
- Departamento de Fisiologia e Cirurgia Cardiotorácica, Faculdade de Medicina da Universidade do Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Gabriele D'Uva
- Scientific and Technological Pole, IRCCS MultiMedica, 20138 Milan, Italy
| | - Sólveig Thorsteinsdóttir
- Departamento de Biologia Animal, cE3c - Centro de Ecologia, Evolução e Alterações Ambientais, Faculdade de Ciências, Universidade de Lisboa, Campo Grande 1749-016, Lisboa, Portugal
| | - Perpétua Pinto-do-Ó
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Diana S Nascimento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.
| |
Collapse
|
22
|
Hesse M, Welz A, Fleischmann BK. Heart regeneration and the cardiomyocyte cell cycle. Pflugers Arch 2017; 470:241-248. [PMID: 28849267 PMCID: PMC5780532 DOI: 10.1007/s00424-017-2061-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/18/2017] [Accepted: 08/21/2017] [Indexed: 01/14/2023]
Abstract
Cardiovascular disease and in particular, heart failure are still main causes of death; therefore, novel therapeutic approaches are urgently needed. Loss of contractile substrate in the heart and limited regenerative capacity of cardiomyocytes are mainly responsible for the poor cardiovascular outcome. This is related to the postmitotic state of differentiated cardiomyocytes, which is partly due to their polyploid nature caused by cell cycle variants. As such, the cardiomyocyte cell cycle is a key player, and its manipulation could be a promising strategy for enhancing the plasticity of the heart by inducing cardiomyocyte proliferation. This review focuses on the cardiac cell cycle and its variants during postnatal growth, the different regenerative responses of the heart in dependance of the developmental stage and on manipulations of the cell cycle. Because a therapeutic goal is to induce authentic cell division in cardiomyocytes, recent experimental approaches following this strategy are also discussed.
Collapse
Affiliation(s)
- Michael Hesse
- Institute of Physiology I, Life & Brain Center, University of Bonn, Sigmund-Freud-Strasse 25, 53105, Bonn, Germany. .,Department of Cardiac Surgery, Medical Faculty, University of Bonn, Sigmund-Freud-Strasse 25, 53105, Bonn, Germany.
| | - Armin Welz
- Department of Cardiac Surgery, Medical Faculty, University of Bonn, Sigmund-Freud-Strasse 25, 53105, Bonn, Germany
| | - Bernd K Fleischmann
- Institute of Physiology I, Life & Brain Center, University of Bonn, Sigmund-Freud-Strasse 25, 53105, Bonn, Germany. .,Pharma Center Bonn, University of Bonn, Sigmund-Freud-Strasse 25, 53105, Bonn, Germany.
| |
Collapse
|
23
|
Cardiac injury of the newborn mammalian heart accelerates cardiomyocyte terminal differentiation. Sci Rep 2017; 7:8362. [PMID: 28827644 PMCID: PMC5567176 DOI: 10.1038/s41598-017-08947-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 07/17/2017] [Indexed: 11/21/2022] Open
Abstract
After birth cardiomyocytes undergo terminal differentiation, characterized by binucleation and centrosome disassembly, rendering the heart unable to regenerate. Yet, it has been suggested that newborn mammals regenerate their hearts after apical resection by cardiomyocyte proliferation. Thus, we tested the hypothesis that apical resection either inhibits, delays, or reverses cardiomyocyte centrosome disassembly and binucleation. Our data show that apical resection rather transiently accelerates centrosome disassembly as well as the rate of binucleation. Consistent with the nearly 2-fold increased rate of binucleation there was a nearly 2-fold increase in the number of cardiomyocytes in mitosis indicating that the majority of injury-induced cardiomyocyte cell cycle activity results in binucleation, not proliferation. Concurrently, cardiomyocytes undergoing cytokinesis from embryonic hearts exhibited midbody formation consistent with successful abscission, whereas those from 3 day-old cardiomyocytes after apical resection exhibited midbody formation consistent with abscission failure. Lastly, injured hearts failed to fully regenerate as evidenced by persistent scarring and reduced wall motion. Collectively, these data suggest that should a regenerative program exist in the newborn mammalian heart, it is quickly curtailed by developmental mechanisms that render cardiomyocytes post-mitotic.
Collapse
|
24
|
Marshall L, Vivien C, Girardot F, Péricard L, Demeneix BA, Coen L, Chai N. Persistent fibrosis, hypertrophy and sarcomere disorganisation after endoscopy-guided heart resection in adult Xenopus. PLoS One 2017; 12:e0173418. [PMID: 28278282 PMCID: PMC5344503 DOI: 10.1371/journal.pone.0173418] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/15/2017] [Indexed: 12/30/2022] Open
Abstract
Models of cardiac repair are needed to understand mechanisms underlying failure to regenerate in human cardiac tissue. Such studies are currently dominated by the use of zebrafish and mice. Remarkably, it is between these two evolutionary separated species that the adult cardiac regenerative capacity is thought to be lost, but causes of this difference remain largely unknown. Amphibians, evolutionary positioned between these two models, are of particular interest to help fill this lack of knowledge. We thus developed an endoscopy-based resection method to explore the consequences of cardiac injury in adult Xenopus laevis. This method allowed in situ live heart observation, standardised tissue amputation size and reproducibility. During the first week following amputation, gene expression of cell proliferation markers remained unchanged, whereas those relating to sarcomere organisation decreased and markers of inflammation, fibrosis and hypertrophy increased. One-month post-amputation, fibrosis and hypertrophy were evident at the injury site, persisting through 11 months. Moreover, cardiomyocyte sarcomere organisation deteriorated early following amputation, and was not completely recovered as far as 11 months later. We conclude that the adult Xenopus heart is unable to regenerate, displaying cellular and molecular marks of scarring. Our work suggests that, contrary to urodeles and teleosts, with the exception of medaka, adult anurans share a cardiac injury outcome similar to adult mammals. This observation is at odds with current hypotheses that link loss of cardiac regenerative capacity with acquisition of homeothermy.
Collapse
Affiliation(s)
- Lindsey Marshall
- Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, UMR CNRS 7221, Muséum National d'Histoire Naturelle, Sorbonne Université, Paris, France
| | - Céline Vivien
- Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, UMR CNRS 7221, Muséum National d'Histoire Naturelle, Sorbonne Université, Paris, France
| | - Fabrice Girardot
- Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, UMR CNRS 7221, Muséum National d'Histoire Naturelle, Sorbonne Université, Paris, France
| | - Louise Péricard
- Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, UMR CNRS 7221, Muséum National d'Histoire Naturelle, Sorbonne Université, Paris, France
| | - Barbara A. Demeneix
- Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, UMR CNRS 7221, Muséum National d'Histoire Naturelle, Sorbonne Université, Paris, France
| | - Laurent Coen
- Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, UMR CNRS 7221, Muséum National d'Histoire Naturelle, Sorbonne Université, Paris, France
| | - Norin Chai
- Ménagerie du Jardin des Plantes, Muséum National d’Histoire Naturelle, Paris, France
| |
Collapse
|
25
|
A reproducible protocol for neonatal ischemic injury and cardiac regeneration in neonatal mice. Basic Res Cardiol 2016; 111:64. [PMID: 27665606 PMCID: PMC5035663 DOI: 10.1007/s00395-016-0580-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 09/09/2016] [Indexed: 01/12/2023]
Abstract
Cardiac regeneration is one of the prime visions in cardiovascular research. The mouse neonatal apical resection and left anterior descending artery (LAD) ligation model introduced novel in vivo mammalian assays to study cardiac regeneration. However, recent reports and editorials discussed and critically questioned the value and technical reproducibility of the mouse neonatal myocardial infarction approach, making it paramount to develop and use a reproducible model system. We established a mouse neonatal myocardial infarction model by visually confirmed ligation of the LAD using microsurgery. TdT-mediated dUTP nick-end labeling (TUNEL) proved reproducible massive myocardial infarctions in a defined region of the apex and anterior wall of neonatal and 7-day-old mice. Whereas hearts ligated on postnatal day 7 displayed chronic injury, cardiac samples ligated immediately after birth always showed complete structural regeneration after long-term follow-up. Cardiac regeneration was observed in all mouse stains (C57BL/6J, ICR, and mixed background C57BL/6JxSv129) tested so far. We present a detailed in vivo protocol to study complex mechanisms of complete cardiac repair following ischemic cardiac damage. Neonatal LAD ligation surgery is feasible, and results in reproducible myocardial infarctions 24 h after ligation, and no structural myocardial defects are detectable following long-term follow-up. We encourage the cardiovascular community to use our protocol and teaching video to answer key scientific questions in the field of cardiac regeneration.
Collapse
|