1
|
Namazi M, Eftekhar SP, Mosaed R, Shiralizadeh Dini S, Hazrati E. Pulmonary Hypertension and Right Ventricle: A Pathophysiological Insight. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2024; 18:11795468241274744. [PMID: 39257563 PMCID: PMC11384539 DOI: 10.1177/11795468241274744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/21/2024] [Indexed: 09/12/2024]
Abstract
Background Pulmonary hypertension (PH) is a pulmonary vascular disease characterized by elevated pulmonary vascular pressure. Long-term PH, irrespective of its etiology, leads to increased right ventricular (RV) pressure, RV hypertrophy, and ultimately, RV failure. Main body Research indicates that RV failure secondary to hypertrophy remains the primary cause of mortality in pulmonary arterial hypertension (PAH). However, the impact of PH on RV structure and function under increased overload remains incompletely understood. Several mechanisms have been proposed, including extracellular remodeling, RV hypertrophy, metabolic disturbances, inflammation, apoptosis, autophagy, endothelial-to-mesenchymal transition, neurohormonal dysregulation, capillary rarefaction, and ischemia. Conclusions Studies have demonstrated the significant role of oxidative stress in the development of RV failure. Understanding the interplay among these mechanisms is crucial for the prevention and management of RV failure in patients with PH.
Collapse
Affiliation(s)
- Mehrshad Namazi
- Trauma and Surgery Research Center, AJA University of Medical Sciences, Tehran, Iran
- Clinical Biomechanics and Ergonomics Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Seyed Parsa Eftekhar
- Trauma and Surgery Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Reza Mosaed
- Trauma and Surgery Research Center, AJA University of Medical Sciences, Tehran, Iran
| | | | - Ebrahim Hazrati
- Trauma and Surgery Research Center, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Xu S, Xu C, Xu J, Zhang K, Zhang H. Macrophage Heterogeneity and Its Impact on Myocardial Ischemia-Reperfusion Injury: An Integrative Review. J Inflamm Res 2023; 16:5971-5987. [PMID: 38088942 PMCID: PMC10712254 DOI: 10.2147/jir.s436560] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/30/2023] [Indexed: 10/21/2024] Open
Abstract
The coronary reperfusion following acute myocardial infarction can paradoxically trigger myocardial ischemia-reperfusion (IR) injury. This complex phenomenon involves the intricate interplay of different subsets of macrophages. These macrophages are crucial players in the post-infarction inflammatory response and subsequent myocardial anti-inflammatory repair. However, their diverse functions can lead to both beneficial and detrimental effects. On one hand, these macrophages play a crucial role in orchestrating the inflammatory response, aiding in the clearance of cellular debris and initiating tissue repair mechanisms. On the other hand, their excessive infiltration and activation can contribute to the perpetuation of the inflammatory cascade, leading to additional myocardial injury and adverse cardiac remodeling. Multiple mechanisms contribute to the IR injury mediated by macrophages, including oxidative stress, apoptosis, and autophagy. These processes further exacerbate the damage to the already vulnerable myocardial tissue. To address this delicate balance, therapeutic strategies aiming to target and modulate macrophage polarization and function are being explored. By fine-tuning the immune inflammatory response, such interventions hold promise in mitigating post-infarction myocardial injury and fostering a more favorable environment for myocardial healing and recovery. Through advancements in this area of research, potential anti-inflammatory interventions may pave the way for improved clinical outcomes and better management of patients after acute myocardial infarction.
Collapse
Affiliation(s)
- Shuwan Xu
- Cardiovascular Department, the Eighth Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, People’s Republic of China
- Department of Cardiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Cong Xu
- Cardiovascular Department, the Eighth Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, People’s Republic of China
| | - Jiahua Xu
- Cardiovascular Department, the Eighth Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, People’s Republic of China
| | - Kun Zhang
- Department of Cardiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Huanji Zhang
- Cardiovascular Department, the Eighth Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
3
|
Li J, Xin Y, Wang Z, Li J, Li W, Li H. The role of cardiac resident macrophage in cardiac aging. Aging Cell 2023; 22:e14008. [PMID: 37817547 PMCID: PMC10726886 DOI: 10.1111/acel.14008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/12/2023] Open
Abstract
Advancements in longevity research have provided insights into the impact of cardiac aging on the structural and functional aspects of the heart. Notable changes include the gradual remodeling of the myocardium, the occurrence of left ventricular hypertrophy, and the decline in both systolic and diastolic functions. Macrophages, a type of immune cell, play a pivotal role in innate immunity by serving as vigilant agents against pathogens, facilitating wound healing, and orchestrating the development of targeted acquired immune responses. Distinct subsets of macrophages are present within the cardiac tissue and demonstrate varied functions in response to myocardial injury. The differentiation of cardiac macrophages according to their developmental origin has proven to be a valuable strategy in identifying reparative macrophage populations, which originate from embryonic cells and reside within the tissue, as well as inflammatory macrophages, which are derived from monocytes and recruited to the heart. These subsets of macrophages possess unique characteristics and perform distinct functions. This review aims to summarize the current understanding of the roles and phenotypes of cardiac macrophages in various conditions, including the steady state, aging, and other pathological conditions. Additionally, it will highlight areas that require further investigation to expand our knowledge in this field.
Collapse
Affiliation(s)
- Jiayu Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Yanguo Xin
- Department of Cardiology, Cardiovascular Center, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Zhaojia Wang
- Department of Cardiology, Cardiovascular Center, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Jingye Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Weiping Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Hongwei Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
- Beijing Key Laboratory of Metabolic Disorder Related Cardiovascular DiseaseBeijingChina
| |
Collapse
|
4
|
Jian Y, Zhou X, Shan W, Chen C, Ge W, Cui J, Yi W, Sun Y. Crosstalk between macrophages and cardiac cells after myocardial infarction. Cell Commun Signal 2023; 21:109. [PMID: 37170235 PMCID: PMC10173491 DOI: 10.1186/s12964-023-01105-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/18/2023] [Indexed: 05/13/2023] Open
Abstract
Cardiovascular diseases, such as myocardial infarction (MI), are a leading cause of death worldwide. Acute MI (AMI) inflicts massive injury to the coronary microcirculation, causing large-scale cardiomyocyte death due to ischemia and hypoxia. Inflammatory cells such as monocytes and macrophages migrate to the damaged area to clear away dead cells post-MI. Macrophages are pleiotropic cells of the innate immune system, which play an essential role in the initial inflammatory response that occurs following MI, inducing subsequent damage and facilitating recovery. Besides their recognized role within the immune response, macrophages participate in crosstalk with other cells (including cardiomyocytes, fibroblasts, immune cells, and vascular endothelial cells) to coordinate post-MI processes within cardiac tissue. Macrophage-secreted exosomes have recently attracted increasing attention, which has led to a more elaborate understanding of macrophage function. Currently, the functional roles of macrophages in the microenvironment of the infarcted heart, particularly with regard to their interaction with surrounding cells, remain unclear. Understanding the specific mechanisms that mediate this crosstalk is essential in treating MI. In this review, we discuss the origin of macrophages, changes in their distribution post-MI, phenotypic and functional plasticity, as well as the specific signaling pathways involved, with a focus on the crosstalk with other cells in the heart. Thus, we provide a new perspective on the treatment of MI. Further in-depth research is required to elucidate the mechanisms underlying crosstalk between macrophages and other cells within cardiac tissue for the identification of potential therapeutic targets. Video Abstract.
Collapse
Affiliation(s)
- Yuhong Jian
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiao Zhou
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenju Shan
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Cheng Chen
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wei Ge
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jun Cui
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| | - Yang Sun
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
5
|
T-Cell Mineralocorticoid Receptor Deficiency Attenuates Pathologic Ventricular Remodelling After Myocardial Infarction. Can J Cardiol 2023; 39:593-604. [PMID: 36669686 DOI: 10.1016/j.cjca.2023.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/27/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Mineralocorticoid receptor (MR) antagonists have been widely used to treat heart failure (HF). Studies have shown that MR in T cells plays important roles in hypertension and myocardial hypertrophy. However, the function of T-cell MR in myocardial infarction (MI) has not been elucidated. METHODS In this study, we used T-cell MR knockout (TMRKO) mouse to investigate the effects of T-cell MR deficiency on MI and to explore the underlying mechanisms. Echocardiography and tissue staining were used to assess cardiac function, fibrosis, and myocardial apoptosis after MI. Flow cytometry and quantitative real-time polymerase chain reaction (qRT-PCR) were used to detect immune cell infiltration and inflammation. RESULTS T-cell MR deficiency significantly improved cardiac function, promoted myocardial repair, and inhibited myocardial apoptosis, fibrosis, and inflammation after MI. Luminex assays revealed that TMRKO mice had significantly lower levels of interferon-gamma (IFN-γ) and interleukin-6 (IL-6) in serum and infarcted myocardium than littermate control mice. In cultured splenic T cells, MR deficiency suppressed IL-6 expression, whereas MR overexpression enhanced IL-6 expression. Chromatin immunoprecipitation (ChIP) assay demonstrated that MR bound to the MR response element on the promoter of IL-6 gene. Finally, T-cell MR deficiency significantly suppressed accumulation of macrophages in infarcted myocardium and differentiation of proinflammatory macrophages, thereby alleviating the consequences of MI. CONCLUSIONS T-cell MR deficiency improved pathologic ventricular remodelling after MI, likely through inhibition of accumulation and differentiation of proinflammatory macrophages. At the molecular level, MR may work through IFN-γ and IL-6 in T cells to exert functions in MI.
Collapse
|
6
|
Ling S, You Z, Li Y, Zhang J, Zhao S, He Y, Chen X. The role of γδ T17 cells in cardiovascular disease. J Leukoc Biol 2022; 112:1649-1661. [PMID: 36073777 DOI: 10.1002/jlb.3mr0822-761rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/23/2022] [Accepted: 08/03/2022] [Indexed: 01/04/2023] Open
Abstract
Due to the ability of γδ T cells to bridge adaptive and innate immunity, γδ T cells can respond to a variety of molecular cues and acquire the ability to induce a variety of cytokines such as IL-17 family, IFN-γ, IL-4, and IL-10. IL-17+ γδ T cells (γδ T17 cells) populations have recently received considerable interest as they are the major early source of IL-17A in many immune response models. However, the exact mechanism of γδ T17 cells is still poorly understood, especially in the context of cardiovascular disease (CVD). CVD is the leading cause of death in the world, and it tends to be younger. Here, we offer a review of the cardiovascular inflammatory and immune functions of γδ T17 cells in order to understand their role in CVD, which may be the key to developing new clinical applications.
Collapse
Affiliation(s)
- Shaoxue Ling
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Zonghao You
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Yang Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Jian Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Shuwu Zhao
- School of Intergrative Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Yongzhi He
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Xi Chen
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| |
Collapse
|
7
|
Scavello F, Piacentini L, Castiglione S, Zeni F, Macrì F, Casaburo M, Vinci MC, Colombo GI, Raucci A. Effects of RAGE Deletion on the Cardiac Transcriptome during Aging. Int J Mol Sci 2022; 23:ijms231911130. [PMID: 36232442 PMCID: PMC9569842 DOI: 10.3390/ijms231911130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/25/2022] Open
Abstract
Cardiac aging is characterized by increased cardiomyocyte hypertrophy, myocardial stiffness, and fibrosis, which enhance cardiovascular risk. The receptor for advanced glycation end-products (RAGE) is involved in several age-related diseases. RAGE knockout (Rage−/−) mice show an acceleration of cardiac dimension changes and interstitial fibrosis with aging. This study identifies the age-associated cardiac gene expression signature induced by RAGE deletion. We analyzed the left ventricle transcriptome of 2.5-(Young), 12-(Middle age, MA), and 21-(Old) months-old female Rage−/− and C57BL/6N (WT) mice. By comparing Young, MA, and Old Rage−/− versus age-matched WT mice, we identified 122, 192, and 12 differently expressed genes, respectively. Functional inference analysis showed that RAGE deletion is associated with: (i) down-regulation of genes involved in antigen processing and presentation of exogenous antigen, adaptive immune response, and cellular responses to interferon beta and gamma in Young animals; (ii) up-regulation of genes related to fatty acid oxidation, cardiac structure remodeling and cellular response to hypoxia in MA mice; (iii) up-regulation of few genes belonging to complement activation and triglyceride biosynthetic process in Old animals. Our findings show that the age-dependent cardiac phenotype of Rage−/− mice is associated with alterations of genes related to adaptive immunity and cardiac stress pathways.
Collapse
Affiliation(s)
- Francesco Scavello
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Luca Piacentini
- Bioinformatics and Artificial Intelligence Facility, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Stefania Castiglione
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Filippo Zeni
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Federica Macrì
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Manuel Casaburo
- Animal Facility, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Maria Cristina Vinci
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Gualtiero I. Colombo
- Unit of Immunology and Functional Genomics, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
- Correspondence: (G.I.C.); (A.R.); Tel.: +39-025-800-2464 (G.I.C.); +39-025-800-2802 (A.R.); Fax: +39-025-800-2342 (G.I.C. & A.R.)
| | - Angela Raucci
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
- Animal Facility, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
- Correspondence: (G.I.C.); (A.R.); Tel.: +39-025-800-2464 (G.I.C.); +39-025-800-2802 (A.R.); Fax: +39-025-800-2342 (G.I.C. & A.R.)
| |
Collapse
|
8
|
Weiß E, Ramos GC, Delgobo M. Myocardial-Treg Crosstalk: How to Tame a Wolf. Front Immunol 2022; 13:914033. [PMID: 35693830 PMCID: PMC9176752 DOI: 10.3389/fimmu.2022.914033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
The immune system plays a vital role in maintaining tissue integrity and organismal homeostasis. The sudden stress caused by myocardial infarction (MI) poses a significant challenge for the immune system: it must quickly substitute dead myocardial with fibrotic tissue while controlling overt inflammatory responses. In this review, we will discuss the central role of myocardial regulatory T-cells (Tregs) in orchestrating tissue repair processes and controlling local inflammation in the context of MI. We herein compile recent advances enabled by the use of transgenic mouse models with defined cardiac antigen specificity, explore whole-heart imaging techniques, outline clinical studies and summarize deep-phenotyping conducted by independent labs using single-cell transcriptomics and T-cell repertoire analysis. Furthermore, we point to multiple mechanisms and cell types targeted by Tregs in the infarcted heart, ranging from pro-fibrotic responses in mesenchymal cells to local immune modulation in myeloid and lymphoid lineages. We also discuss how both cardiac-specific and polyclonal Tregs participate in MI repair. In addition, we consider intriguing novel evidence on how the myocardial milieu takes control of potentially auto-aggressive local immune reactions by shaping myosin-specific T-cell development towards a regulatory phenotype. Finally, we examine the potential use of Treg manipulating drugs in the clinic after MI.
Collapse
Affiliation(s)
- Emil Weiß
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
- Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Gustavo Campos Ramos
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
- Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Murilo Delgobo
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
- Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
9
|
Liao S, Luo J, Kadier T, Ding K, Chen R, Meng Q. Mitochondrial DNA Release Contributes to Intestinal Ischemia/Reperfusion Injury. Front Pharmacol 2022; 13:854994. [PMID: 35370747 PMCID: PMC8966724 DOI: 10.3389/fphar.2022.854994] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/02/2022] [Indexed: 12/12/2022] Open
Abstract
Mitochondria release many damage-associated molecular patterns (DAMPs) when cells are damaged or stressed, with mitochondrial DNA (mtDNA) being. MtDNA activates innate immune responses and induces inflammation through the TLR-9, NLRP3 inflammasome, and cGAS-STING signaling pathways. Released inflammatory factors cause damage to intestinal barrier function. Many bacteria and endotoxins migrate to the circulatory system and lymphatic system, leading to systemic inflammatory response syndrome (SIRS) and even damaging the function of multiple organs throughout the body. This process may ultimately lead to multiple organ dysfunction syndrome (MODS). Recent studies have shown that various factors, such as the release of mtDNA and the massive infiltration of inflammatory factors, can cause intestinal ischemia/reperfusion (I/R) injury. This destroys intestinal barrier function, induces an inflammatory storm, leads to SIRS, increases the vulnerability of organs, and develops into MODS. Mitophagy eliminates dysfunctional mitochondria to maintain cellular homeostasis. This review discusses mtDNA release during the pathogenesis of intestinal I/R and summarizes methods for the prevention or treatment of intestinal I/R. We also discuss the effects of inflammation and increased intestinal barrier permeability on drugs.
Collapse
Affiliation(s)
- Shishi Liao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jie Luo
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tulanisa Kadier
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ke Ding
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Rong Chen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Anesthesiology, East Hospital, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qingtao Meng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Anesthesiology, East Hospital, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Neumann J, Bödicker K, Buchwalow IB, Schmidbaur C, Ramos G, Frantz S, Hofmann U, Gergs U. Effects of acute ischemia and hypoxia in young and adult calsequestrin (CSQ2) knock-out and wild-type mice. Mol Cell Biochem 2022; 477:1789-1801. [PMID: 35312907 PMCID: PMC9068673 DOI: 10.1007/s11010-022-04407-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 03/03/2022] [Indexed: 11/26/2022]
Abstract
Calsequestrin (CSQ2) is the main Ca2+-binding protein in the sarcoplasmic reticulum of the mammalian heart. In order to understand the function of calsequestrin better, we compared two age groups (young: 4-5 months of age versus adult: 18 months of age) of CSQ2 knock-out mice (CSQ2(-/-)) and littermate wild-type mice (CSQ2(+/+)). Using echocardiography, in adult mice, the basal left ventricular ejection fraction and the spontaneous beating rate were lower in CSQ2(-/-) compared to CSQ2(+/+). The increase in ejection fraction by β-adrenergic stimulation (intraperitoneal injection of isoproterenol) was lower in adult CSQ2(-/-) versus adult CSQ2(+/+). After hypoxia in vitro (isolated atrial preparations) by gassing the organ bath buffer with 95% N2, force of contraction in electrically driven left atria increased to lower values in young CSQ2(-/-) than in young CSQ2(+/+). In addition, after global ischemia and reperfusion (buffer-perfused hearts according to Langendorff; 20-min ischemia and 15-min reperfusion), the rate of tension development was higher in young CSQ2(-/-) compared to young CSQ2(+/+). Finally, we evaluated signs of inflammation (immune cells, autoantibodies, and fibrosis). However, whereas no immunological alterations were found between all investigated groups, pronounced fibrosis was found in the ventricles of adult CSQ2(-/-) compared to all other groups. We suggest that in young mice, CSQ2 is important for cardiac performance especially in isolated cardiac preparations under conditions of impaired oxygen supply, but with differences between atrium and ventricle. Lack of CSQ2 leads age dependently to fibrosis and depressed cardiac performance in echocardiographic studies.
Collapse
Affiliation(s)
- Joachim Neumann
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06097 Halle, Germany
- Institut für Pharmakologie und Toxikologie, Martin-Luther-Universität Halle-Wittenberg, Medizinische Fakultät, Magdeburger Str. 4, 06112 Halle, Germany
| | - Konrad Bödicker
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06097 Halle, Germany
| | | | - Constanze Schmidbaur
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06097 Halle, Germany
| | - Gustavo Ramos
- Department of Internal Medicine and Comprehensive Heart Failure Center, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Stefan Frantz
- Department of Internal Medicine and Comprehensive Heart Failure Center, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Ulrich Hofmann
- Department of Internal Medicine and Comprehensive Heart Failure Center, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Ulrich Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06097 Halle, Germany
| |
Collapse
|
11
|
Siamwala JH, Zhao A, Barthel H, Pagano FS, Gilbert RJ, Rounds S. Adaptive and innate immune mechanisms in cardiac fibrosis complicating pulmonary arterial hypertension. Physiol Rep 2020; 8:e14532. [PMID: 32786064 PMCID: PMC7422804 DOI: 10.14814/phy2.14532] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/24/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a syndrome diagnosed by increased mean pulmonary artery (PA) pressure and resistance and normal pulmonary capillary wedge pressure. PAH is characterized pathologically by distal pulmonary artery remodeling, increased pulmonary vascular resistance, and plexiform lesions (PLs). Right ventricular fibrosis and hypertrophy, leading to right ventricular failure, are the main determinants of mortality in PAH. Recent work suggests that right ventricular fibrosis results from resident cardiac fibroblast activation and conversion to myofibroblasts, leading to replacement of contractile cardiomyocytes with nondistensible tissue incapable of conductivity or contractility. However, the origins, triggers, and consequences of myofibroblast expansion and its pathophysiological relationship with PAH are unclear. Recent advances indicate that signals generated by adaptive and innate immune cells may play a role in right ventricular fibrosis and remodeling. This review summarizes recent insights into the mechanisms by which adaptive and innate immune signals participate in the transition of cardiac fibroblasts to activated myofibroblasts and highlights the existing gaps of knowledge as relates to the development of right ventricular fibrosis.
Collapse
Affiliation(s)
- Jamila H. Siamwala
- Department of Molecular PharmacologyPhysiology and BiotechnologyBrown UniversityProvidenceRIUSA
- Warren Alpert Medical School of Brown UniversityProvidence VA Medical CenterProvidenceRIUSA
| | - Alexander Zhao
- Department of Molecular PharmacologyPhysiology and BiotechnologyBrown UniversityProvidenceRIUSA
| | - Haley Barthel
- Department of Molecular PharmacologyPhysiology and BiotechnologyBrown UniversityProvidenceRIUSA
| | - Francesco S. Pagano
- Department of Molecular PharmacologyPhysiology and BiotechnologyBrown UniversityProvidenceRIUSA
| | - Richard J. Gilbert
- Ocean State Research InstituteProvidence VA Medical CenterProvidenceRIUSA
| | - Sharon Rounds
- Warren Alpert Medical School of Brown UniversityProvidence VA Medical CenterProvidenceRIUSA
- Department of MedicineDivision of PulmonaryCritical Care and SleepWarren Alpert Medical School of Brown UniversityProvidenceRIUSA
| |
Collapse
|
12
|
Yang D, Liu HQ, Liu FY, Tang N, Guo Z, Ma SQ, An P, Wang MY, Wu HM, Yang Z, Fan D, Tang QZ. The Roles of Noncardiomyocytes in Cardiac Remodeling. Int J Biol Sci 2020; 16:2414-2429. [PMID: 32760209 PMCID: PMC7378633 DOI: 10.7150/ijbs.47180] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/16/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiac remodeling is a common characteristic of almost all forms of heart disease, including cardiac infarction, valvular diseases, hypertension, arrhythmia, dilated cardiomyopathy and other conditions. It is not merely a simple outcome induced by an increase in the workload of cardiomyocytes (CMs). The remodeling process is accompanied by abnormalities of cardiac structure as well as disturbance of cardiac function, and emerging evidence suggests that a wide range of cells in the heart participate in the initiation and development of cardiac remodeling. Other than CMs, there are numerous noncardiomyocytes (non-CMs) that regulate the process of cardiac remodeling, such as cardiac fibroblasts and immune cells (including macrophages, lymphocytes, neutrophils, and mast cells). In this review, we summarize recent knowledge regarding the definition and significant effects of various non-CMs in the pathogenesis of cardiac remodeling, with a particular emphasis on the involved signaling mechanisms. In addition, we discuss the properties of non-CMs, which serve as targets of many cardiovascular drugs that reduce adverse cardiac remodeling.
Collapse
Affiliation(s)
- Dan Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Han-Qing Liu
- Department of Thyroid and Breast, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
| | - Fang-Yuan Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Nan Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Zhen Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Shu-Qing Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Peng An
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Ming-Yu Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Hai-Ming Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Zheng Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Di Fan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| |
Collapse
|
13
|
Zhang M, Zhang S. T Cells in Fibrosis and Fibrotic Diseases. Front Immunol 2020; 11:1142. [PMID: 32676074 PMCID: PMC7333347 DOI: 10.3389/fimmu.2020.01142] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/11/2020] [Indexed: 01/08/2023] Open
Abstract
Fibrosis is the extensive deposition of fibrous connective tissue, and it is characterized by the accumulation of collagen and other extracellular matrix (ECM) components. Fibrosis is essential for wound healing and tissue repair in response to a variety of triggers, which include infection, inflammation, autoimmune disorder, degenerative disease, tumor, and injury. Fibrotic remodeling in various diseases, such as liver cirrhosis, pulmonary fibrosis, renal interstitial fibrosis, myocardial infarction, systemic sclerosis (SSc), and graft-versus-host disease (GVHD), can impair organ function, causing high morbidity and mortality. Both innate and adaptive immunity are involved in fibrogenesis. Although the roles of macrophages in fibrogenesis have been studied for many years, the underlying mechanisms concerning the manner in which T cells regulate fibrosis are not completely understood. The T cell receptor (TCR) engages the antigen and shapes the repertoire of antigen-specific T cells. Based on the divergent expression of surface molecules and cell functions, T cells are subdivided into natural killer T (NKT) cells, γδ T cells, CD8+ cytotoxic T lymphocytes (CTL), regulatory T (Treg) cells, T follicular regulatory (Tfr) cells, and T helper cells, including Th1, Th2, Th9, Th17, Th22, and T follicular helper (Tfh) cells. In this review, we summarize the pro-fibrotic or anti-fibrotic roles and distinct mechanisms of different T cell subsets. On reviewing the literature, we conclude that the T cell regulations are commonly disease-specific and tissue-specific. Finally, we provide perspectives on microbiota, viral infection, and metabolism, and discuss the current advancements of technologies for identifying novel targets and developing immunotherapies for intervention in fibrosis and fibrotic diseases.
Collapse
Affiliation(s)
- Mengjuan Zhang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Song Zhang
- College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
14
|
Konhilas JP, Sanchez JN, Regan JA, Constantopoulos E, Lopez-Pier M, Cannon DK, Skaria R, McKee LA, Chen H, Lipovka Y, Pollow D, Brooks HL. Using 4-vinylcyclohexene diepoxide as a model of menopause for cardiovascular disease. Am J Physiol Heart Circ Physiol 2020; 318:H1461-H1473. [PMID: 32383991 PMCID: PMC7311698 DOI: 10.1152/ajpheart.00555.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is a sharp rise in cardiovascular disease (CVD) risk and progression with the onset of menopause. The 4-vinylcyclohexene diepoxide (VCD) model of menopause recapitulates the natural, physiological transition through perimenopause to menopause. We hypothesized that menopausal female mice were more susceptible to CVD than pre- or perimenopausal females. Female mice were treated with VCD or vehicle for 20 consecutive days. Premenopausal, perimenopausal, and menopausal mice were administered angiotensin II (ANG II) or subjected to ischemia-reperfusion (I/R). Menopausal females were more susceptible to pathological ANG II-induced cardiac remodeling and cardiac injury from a myocardial infarction (MI), while perimenopausal, like premenopausal, females remained protected. Specifically, ANG II significantly elevated diastolic (130.9 ± 6.0 vs. 114.7 ± 6.2 mmHg) and systolic (156.9 ± 4.8 vs. 141.7 ± 5.0 mmHg) blood pressure and normalized cardiac mass (15.9 ± 1.0 vs. 7.7 ± 1.5%) to a greater extent in menopausal females compared with controls, whereas perimenopausal females demonstrated a similar elevation of diastolic (93.7 ± 2.9 vs. 100.5 ± 4.1 mmHg) and systolic (155.9 ± 7.3 vs. 152.3 ± 6.5 mmHg) blood pressure and normalized cardiac mass (8.3 ± 2.1 vs. 7.5 ± 1.4%) compared with controls. Similarly, menopausal females demonstrated a threefold increase in fibrosis measured by Picrosirus red staining. Finally, hearts of menopausal females (41 ± 5%) showed larger infarct sizes following I/R injury than perimenopausal (18.0 ± 5.6%) and premenopausal (16.2 ± 3.3, 20.1 ± 4.8%) groups. Using the VCD model of menopause, we provide evidence that menopausal females were more susceptible to pathological cardiac remodeling. We suggest that the VCD model of menopause may be critical to better elucidate cellular and molecular mechanisms underlying the transition to CVD susceptibility in menopausal women.NEW & NOTEWORTHY Before menopause, women are protected against cardiovascular disease (CVD) compared with age-matched men; this protection is gradually lost after menopause. We present the first evidence that demonstrates menopausal females are more susceptible to pathological cardiac remodeling while perimenopausal and cycling females are not. The VCD model permits appropriate examination of how increased susceptibility to the pathological process of cardiac remodeling accelerates from pre- to perimenopause to menopause.
Collapse
Affiliation(s)
- John P Konhilas
- Department of Physiology, University of Arizona, Tucson, Arizona.,Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona
| | - Jessica N Sanchez
- Department of Physiology, University of Arizona, Tucson, Arizona.,Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona
| | - Jessica A Regan
- Department of Physiology, University of Arizona, Tucson, Arizona.,Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona
| | - Eleni Constantopoulos
- Department of Physiology, University of Arizona, Tucson, Arizona.,Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona
| | - Marissa Lopez-Pier
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona
| | | | - Rinku Skaria
- Department of Physiology, University of Arizona, Tucson, Arizona
| | - Laurel A McKee
- Department of Physiology, University of Arizona, Tucson, Arizona.,Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona
| | - Hao Chen
- Department of Physiology, University of Arizona, Tucson, Arizona.,Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona
| | - Yulia Lipovka
- Department of Physiology, University of Arizona, Tucson, Arizona.,Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona
| | - Dennis Pollow
- Department of Physiology, University of Arizona, Tucson, Arizona
| | - Heddwen L Brooks
- Department of Physiology, University of Arizona, Tucson, Arizona
| |
Collapse
|
15
|
Gladow N, Hollmann C, Ramos G, Frantz S, Kerkau T, Beyersdorf N, Hofmann U. Treatment of mice with a ligand binding blocking anti-CD28 monoclonal antibody improves healing after myocardial infarction. PLoS One 2020; 15:e0227734. [PMID: 32298302 PMCID: PMC7161974 DOI: 10.1371/journal.pone.0227734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/29/2019] [Indexed: 01/07/2023] Open
Abstract
Both conventional and regulatory CD4+ T-cells rely on costimulatory signals mediated by cell surface receptors including CD28 for full activation. We showed previously that stimulation of CD4+ Foxp3+ regulatory T-cells by superagonistic anti-CD28 monoclonal antibodies (mAb) improves myocardial healing after experimental myocardial infarction (MI). However, the effect of ligand binding blocking anti-CD28 monoclonal antibodies has not yet been tested in this context. We hypothesize that ligand blocking anti-CD28 mAb treatment might favorably impact on healing after MI by limiting the activation of conventional CD4+ T-cells. Therefore, we studied the therapeutic effect of the recently characterized mAb E18 which blocks ligand binding to CD28 in a mouse permanent coronary ligation model. E18 or an irrelevant control mAb was applied once on day two after myocardial infarction to wildtype mice. Echocardiography was performed on day 7 after MI. E18 treatment improved the survival and reduced the incidence of left ventricular ruptures after experimental myocardial infarction. Accordingly, although we found no difference in infarct size, there was significantly less left ventricular dilation after E18 treatment in surviving animals as determined by echocardiography at day 7 after MI. In sham operated control mice neither antibody had an impact on body weight, survival, and echocardiographic parameters. Mechanistically, compared to control immunoglobulin, E18 treatment reduced the number of CD4+ T-cells and monocytes/macrophages within the infarct and periinfarct zone on day 5. This was accompanied by an upregulation of arginase which is a marker for alternatively differentiated macrophages. The data indicate that CD28-dependent costimulation of CD4+ T-cells impairs myocardial healing and anti-CD28 antibody treatment constitutes a potentially clinically translatable approach to improve the outcome early after MI.
Collapse
Affiliation(s)
- Nadine Gladow
- Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
- * E-mail:
| | - Claudia Hollmann
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Gustavo Ramos
- Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Stefan Frantz
- Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Thomas Kerkau
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Niklas Beyersdorf
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Ulrich Hofmann
- Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
16
|
Understanding the mechanisms that determine extracellular matrix remodeling in the infarcted myocardium. Biochem Soc Trans 2020; 47:1679-1687. [PMID: 31724697 DOI: 10.1042/bst20190113] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 02/06/2023]
Abstract
Myocardial Infarction (MI) initiates a series of wound healing events that begins with up-regulation of an inflammatory response and culminates in scar formation. The extracellular matrix (ECM) is intricately involved in all stages from initial break down of existing ECM to synthesis of new ECM to form the scar. This review will summarize our current knowledge on the processes involved in ECM remodeling after MI and identify the gaps that still need to be filled.
Collapse
|
17
|
Rieckmann M, Delgobo M, Gaal C, Büchner L, Steinau P, Reshef D, Gil-Cruz C, Horst ENT, Kircher M, Reiter T, Heinze KG, Niessen HW, Krijnen PA, van der Laan AM, Piek JJ, Koch C, Wester HJ, Lapa C, Bauer WR, Ludewig B, Friedman N, Frantz S, Hofmann U, Ramos GC. Myocardial infarction triggers cardioprotective antigen-specific T helper cell responses. J Clin Invest 2019; 129:4922-4936. [PMID: 31408441 DOI: 10.1172/jci123859] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
T cell autoreactivity is a hallmark of autoimmune diseases but can also benefit self-maintenance and foster tissue repair. Herein, we investigated whether heart-specific T cells exert salutary or detrimental effects in the context of myocardial infarction (MI), the leading cause of death worldwide. After screening more than 150 class-II-restricted epitopes, we found that myosin heavy chain alpha (MYHCA) was a dominant cardiac antigen triggering post-MI CD4+ T cell activation in mice. Transferred MYHCA614-629-specific CD4+ T (TCR-M) cells selectively accumulated in the myocardium and mediastinal lymph nodes (med-LN) of infarcted mice, acquired a Treg phenotype with a distinct pro-healing gene expression profile, and mediated cardioprotection. Myocardial Treg cells were also detected in autopsies from patients who suffered a MI. Noninvasive PET/CT imaging using a CXCR4 radioligand revealed enlarged med-LNs with increased cellularity in MI-patients. Notably, the med-LN alterations observed in MI patients correlated with the infarct size and cardiac function. Taken together, the results obtained in our study provide evidence showing that MI-context induces pro-healing T cell autoimmunity in mice and confirms the existence of an analogous heart/med-LN/T cell axis in MI patients.
Collapse
Affiliation(s)
- Max Rieckmann
- Department of Internal Medicine III, University Clinic Halle, Halle, Germany
| | - Murilo Delgobo
- Department of Internal Medicine I, and.,Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Chiara Gaal
- Department of Internal Medicine I, and.,Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Lotte Büchner
- Department of Internal Medicine I, and.,Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Philipp Steinau
- Department of Internal Medicine III, University Clinic Halle, Halle, Germany
| | - Dan Reshef
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Cristina Gil-Cruz
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Ellis N Ter Horst
- Heart Center, Amsterdam UMC, location AMC, Amsterdam, Netherlands.,Department of Pathology and Cardiac Surgery, Amsterdam UMC, location VUmc, Amsterdam, Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, Netherlands.,Netherlands Heart Institute, Utrecht, Netherlands
| | - Malte Kircher
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Theresa Reiter
- Department of Internal Medicine I, and.,Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Katrin G Heinze
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Hans Wm Niessen
- Department of Pathology and Cardiac Surgery, Amsterdam UMC, location VUmc, Amsterdam, Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, Netherlands
| | - Paul Aj Krijnen
- Department of Pathology and Cardiac Surgery, Amsterdam UMC, location VUmc, Amsterdam, Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, Netherlands
| | | | - Jan J Piek
- Heart Center, Amsterdam UMC, location AMC, Amsterdam, Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, Netherlands
| | - Charlotte Koch
- Department of Internal Medicine III, University Clinic Halle, Halle, Germany
| | - Hans-Jürgen Wester
- Pharmaceutical Radiochemistry, Technical University Munich, Munich, Germany
| | - Constantin Lapa
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Wolfgang R Bauer
- Department of Internal Medicine I, and.,Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Nir Friedman
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Stefan Frantz
- Department of Internal Medicine III, University Clinic Halle, Halle, Germany.,Department of Internal Medicine I, and.,Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Ulrich Hofmann
- Department of Internal Medicine III, University Clinic Halle, Halle, Germany.,Department of Internal Medicine I, and.,Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Gustavo Campos Ramos
- Department of Internal Medicine III, University Clinic Halle, Halle, Germany.,Department of Internal Medicine I, and.,Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
18
|
Psarras S, Beis D, Nikouli S, Tsikitis M, Capetanaki Y. Three in a Box: Understanding Cardiomyocyte, Fibroblast, and Innate Immune Cell Interactions to Orchestrate Cardiac Repair Processes. Front Cardiovasc Med 2019; 6:32. [PMID: 31001541 PMCID: PMC6454035 DOI: 10.3389/fcvm.2019.00032] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/11/2019] [Indexed: 12/11/2022] Open
Abstract
Following an insult by both intrinsic and extrinsic pathways, complex cellular, and molecular interactions determine a successful recovery or inadequate repair of damaged tissue. The efficiency of this process is particularly important in the heart, an organ characterized by very limited regenerative and repair capacity in higher adult vertebrates. Cardiac insult is characteristically associated with fibrosis and heart failure, as a result of cardiomyocyte death, myocardial degeneration, and adverse remodeling. Recent evidence implies that resident non-cardiomyocytes, fibroblasts but also macrophages -pillars of the innate immunity- form part of the inflammatory response and decisively affect the repair process following a cardiac insult. Multiple studies in model organisms (mouse, zebrafish) of various developmental stages (adult and neonatal) combined with genetically engineered cell plasticity and differentiation intervention protocols -mainly targeting cardiac fibroblasts or progenitor cells-reveal particular roles of resident and recruited innate immune cells and their secretome in the coordination of cardiac repair. The interplay of innate immune cells with cardiac fibroblasts and cardiomyocytes is emerging as a crucial platform to help our understanding and, importantly, to allow the development of effective interventions sufficient to minimize cardiac damage and dysfunction after injury.
Collapse
Affiliation(s)
- Stelios Psarras
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Dimitris Beis
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Sofia Nikouli
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Mary Tsikitis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Yassemi Capetanaki
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
19
|
Specific Cell (Re-)Programming: Approaches and Perspectives. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 163:71-115. [PMID: 29071403 DOI: 10.1007/10_2017_27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Many disorders are manifested by dysfunction of key cell types or their disturbed integration in complex organs. Thereby, adult organ systems often bear restricted self-renewal potential and are incapable of achieving functional regeneration. This underlies the need for novel strategies in the field of cell (re-)programming-based regenerative medicine as well as for drug development in vitro. The regenerative field has been hampered by restricted availability of adult stem cells and the potentially hazardous features of pluripotent embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). Moreover, ethical concerns and legal restrictions regarding the generation and use of ESCs still exist. The establishment of direct reprogramming protocols for various therapeutically valuable somatic cell types has overcome some of these limitations. Meanwhile, new perspectives for safe and efficient generation of different specified somatic cell types have emerged from numerous approaches relying on exogenous expression of lineage-specific transcription factors, coding and noncoding RNAs, and chemical compounds.It should be of highest priority to develop protocols for the production of mature and physiologically functional cells with properties ideally matching those of their endogenous counterparts. Their availability can bring together basic research, drug screening, safety testing, and ultimately clinical trials. Here, we highlight the remarkable successes in cellular (re-)programming, which have greatly advanced the field of regenerative medicine in recent years. In particular, we review recent progress on the generation of cardiomyocyte subtypes, with a focus on cardiac pacemaker cells. Graphical Abstract.
Collapse
|
20
|
Frangogiannis NG. Cardiac fibrosis: Cell biological mechanisms, molecular pathways and therapeutic opportunities. Mol Aspects Med 2018; 65:70-99. [PMID: 30056242 DOI: 10.1016/j.mam.2018.07.001] [Citation(s) in RCA: 555] [Impact Index Per Article: 79.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 07/23/2018] [Indexed: 12/13/2022]
Abstract
Cardiac fibrosis is a common pathophysiologic companion of most myocardial diseases, and is associated with systolic and diastolic dysfunction, arrhythmogenesis, and adverse outcome. Because the adult mammalian heart has negligible regenerative capacity, death of a large number of cardiomyocytes results in reparative fibrosis, a process that is critical for preservation of the structural integrity of the infarcted ventricle. On the other hand, pathophysiologic stimuli, such as pressure overload, volume overload, metabolic dysfunction, and aging may cause interstitial and perivascular fibrosis in the absence of infarction. Activated myofibroblasts are the main effector cells in cardiac fibrosis; their expansion following myocardial injury is primarily driven through activation of resident interstitial cell populations. Several other cell types, including cardiomyocytes, endothelial cells, pericytes, macrophages, lymphocytes and mast cells may contribute to the fibrotic process, by producing proteases that participate in matrix metabolism, by secreting fibrogenic mediators and matricellular proteins, or by exerting contact-dependent actions on fibroblast phenotype. The mechanisms of induction of fibrogenic signals are dependent on the type of primary myocardial injury. Activation of neurohumoral pathways stimulates fibroblasts both directly, and through effects on immune cell populations. Cytokines and growth factors, such as Tumor Necrosis Factor-α, Interleukin (IL)-1, IL-10, chemokines, members of the Transforming Growth Factor-β family, IL-11, and Platelet-Derived Growth Factors are secreted in the cardiac interstitium and play distinct roles in activating specific aspects of the fibrotic response. Secreted fibrogenic mediators and matricellular proteins bind to cell surface receptors in fibroblasts, such as cytokine receptors, integrins, syndecans and CD44, and transduce intracellular signaling cascades that regulate genes involved in synthesis, processing and metabolism of the extracellular matrix. Endogenous pathways involved in negative regulation of fibrosis are critical for cardiac repair and may protect the myocardium from excessive fibrogenic responses. Due to the reparative nature of many forms of cardiac fibrosis, targeting fibrotic remodeling following myocardial injury poses major challenges. Development of effective therapies will require careful dissection of the cell biological mechanisms, study of the functional consequences of fibrotic changes on the myocardium, and identification of heart failure patient subsets with overactive fibrotic responses.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer G46B, Bronx, NY, 10461, USA.
| |
Collapse
|
21
|
Shao PP, Liu CJ, Xu Q, Zhang B, Li SH, Wu Y, Sun Z, Cheng LF. Eplerenone Reverses Cardiac Fibrosis via the Suppression of Tregs by Inhibition of Kv1.3 Channel. Front Physiol 2018; 9:899. [PMID: 30057554 PMCID: PMC6053534 DOI: 10.3389/fphys.2018.00899] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/21/2018] [Indexed: 12/20/2022] Open
Abstract
Background: Fibroblast proliferation is a critical feature during heart failure development. Previous studies reported regulatory T-lymphocytes (Tregs)’ protective role against myocardial fibrosis. However, notably, Tregs also secrete fibrogenic cytokine TGF-β when activated. This study aimed to clarify the intriguing link between Tregs and fibrosis, the role of Tregs Kv1.3 potassium channel (regulating T-lymphocytes activation) in the fibrosis process, and how selective aldosterone receptor antagonist Eplerenone affects Tregs and fibrosis through its action on Kv1.3 channel. Methods and Results: After co-incubation with Tregs, cardiac fibroblast proliferation (CCK-8 assay) and levels of collagen I, III, and Matrix metalloproteinase2 (ELISA) significantly elevated. Cell viability assays, Kv1.3 channel mRNA (RT-qPCR), and protein expression (In-Cell Western Blotting) revealed Tregs were activated/proliferated when co-cultured with fibroblasts. Treg intracellular TGF-β level increased by 5.8-fold, far more than that of intracellular IL-10, extracellular TGF-β and IL-10 (ELISA). And 30 μM eplerenone suppressed Tregs proliferation by 82.77% and furthermore, suppressed intracellular TGF-β level to a significantly greater extent than that of intracellular IL-10, extracellular TGF-β and IL-10. Moreover, the Kv1.3 current (whole-cell patch clamp) of Tregs in congestive heart failure patients and rats (induced by coronary artery ligation and exhaustive exercise) elevated by >4-fold than that of healthy volunteers and control rats, whereas 30 μM eplerenone suppressed the current by >60% in control Tregs. In addition, docking calculations (AutoDock software 4.0 suite) showed eplerenone has higher H-bond energy with Kv1.3 channel than other selective blockers. Conclusion: Immuno-regulation in the late stage of CHF activates Tregs proliferation via the upregulation of Kv1.3 channels, which promotes cardiac fibrosis by primarily secreting TGF-β. Taken together, eplerenone’s high affinity to Kv1.3 channel enables it to antagonize the Kv1.3 channels directly to suppress Tregs proliferation, which in turn may play an immuno-regulatory role during CHF.
Collapse
Affiliation(s)
- Pei-Pei Shao
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Ürümqi, China
| | - Chang-Jiang Liu
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Ürümqi, China
| | - Qi Xu
- Department of Immunology, School of Pre-clinical Medicine, Xinjiang Medical University, Ürümqi, China
| | - Bo Zhang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi, China
| | - Shao-Hua Li
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Ürümqi, China
| | - Yang Wu
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Ürümqi, China
| | - Zhan Sun
- Center of Functional Experiment, School of Pre-clinical Medicine, Xinjiang Medical University, Ürümqi, China
| | - Lu-Feng Cheng
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Ürümqi, China
| |
Collapse
|
22
|
Chen XM, Zhang T, Qiu D, Feng JY, Jin ZY, Luo Q, Wang XY, Wu XL. Gene expression pattern of TCR repertoire and alteration expression of IL-17A gene of γδ T cells in patients with acute myocardial infarction. J Transl Med 2018; 16:189. [PMID: 29976209 PMCID: PMC6034230 DOI: 10.1186/s12967-018-1567-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/03/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND γδ T cells are associated with the pathogenesis of coronary atherosclerotic heart disease, but the relationship between the development of acute myocardial infarction (AMI) and γδ T cells is not clear. So we attempt to investigate the expression pattern and clonality of T cell receptor (TCR) repertoire of γδ T cells in AMI patients, analyze the expression levels of regulatory genes Foxp3 and IL-17A, and characterize the correlation between γδ T cells and the pathogenesis of AMI. METHODS 25 patients diagnosed with ST-segment-elevation AMI were enrolled and 14 healthy individuals were recruited as the controls. RT-PCR and GeneScan were used to analyze the complementarity-determining region 3 sizes of TCR γδ repertoire genes in sorted γδ T cells from peripheral blood mononuclear cells (PBMCs). RQ-PCR was used to detect the gene expression levels of Foxp3, IL-17A and TCR Vγ subfamilies in sorted γδ T cells. All the patients were followed up for recordings of clinical endpoints. RESULTS The mRNA gene expression levels of TCR Vγ1, Vγ2, and Vγ3 subfamilies in AMI patients were significantly higher than those in healthy controls. The expression pattern was Vγ1 > Vγ2 > Vγ3 in AMI patients, while Vγ1 > Vγ3 > Vγ2 in healthy controls. The significantly restricted expression of TCR Vδ subfamilies were also found in AMI patients. The expression frequencies of TCR Vδ7 and TCR Vδ6 in AMI patients were significantly lower than those in healthy controls. The high clonal expansion frequencies of the TCR Vδ8, Vδ4 and Vδ3 were determined in AMI patients. High expression of Foxp3 gene was found in AMI PBMCs, while high expression of IL-17A was found in AMI γδ+ cells. CONCLUSIONS Restrictive expression of TCR γδ repertoire and alteration expression of IL-17A gene are the important characteristics of γδ T cells in AMI patients, which might be related to the immune response and clinical outcome. γδ T cells might play a key role in the pathological progress of AMI and associated with the IL-17A mediated pathway.
Collapse
Affiliation(s)
- Xiao-Ming Chen
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| | - Tao Zhang
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Dan Qiu
- Institute of Hematology, Jinan University, Guangzhou, 510632, China
| | - Jian-Yi Feng
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Zhen-Yi Jin
- Institute of Hematology, Jinan University, Guangzhou, 510632, China
| | - Qiang Luo
- Institute of Hematology, Jinan University, Guangzhou, 510632, China
| | - Xin-Yu Wang
- Institute of Hematology, Jinan University, Guangzhou, 510632, China. .,Peking University Institute of Hematology, Peking University People's Hospital, Beijing, 100044, China.
| | - Xiu-Li Wu
- Institute of Hematology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
23
|
Abstract
Previous studies have suggested the involvement of CD4 + T lymphocytes in cardiac remodelling. T-bet can direct Th1 lineage commitment. This study aimed to investigate the functional significance of T-bet in cardiac remodelling induced by pressure overload using T-bet global knockout rats. Increased T-bet levels were observed in rodent and human hypertrophied hearts. T-bet deficiency resulted in a less severe hypertrophic phenotype in rats. CD4 + T-lymphocyte reconstitution in T-bet-/- rats resulted in aggravated cardiac remodelling. T-cell homing molecule expression and cytokine secretion were altered in T-bet-deficient rat hearts. Administration of exogenous interferon-γ (IFN-γ) offset T-bet deficiency-mediated cardioprotection. Cardiomyocytes cultured in T-bet-/- CD4 + T-cell-conditioned media showed a reduced hypertrophic response after hypertrophic stimuli, which was abolished by an IFN-γ-neutralizing antibody. Taken together, our findings show that T-bet deficiency attenuates pressure overload-induced cardiac remodelling in rats. Specifically, targeting T-bet in T cells may be of great importance for the treatment of pathological cardiac remodelling and heart failure.
Collapse
|
24
|
Chen B, Frangogiannis NG. Immune cells in repair of the infarcted myocardium. Microcirculation 2018; 24. [PMID: 27542099 DOI: 10.1111/micc.12305] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/17/2016] [Indexed: 12/14/2022]
Abstract
The immune system plays a critical role in both repair and remodeling of the infarcted myocardium. Danger signals released by dying cardiomyocytes mobilize, recruit, and activate immune cells, triggering an inflammatory reaction. CXC chemokines containing the ELR motif attract neutrophils, while CC chemokines mediate recruitment of mononuclear cell subpopulations, contributing to clearance of the infarct from dead cells and matrix debris. Immune cell subsets also participate in suppression and containment of the postinfarction inflammatory response by secreting anti-inflammatory mediators, such as IL-10 and TGF-β. As proinflammatory signaling is suppressed, macrophage subpopulations, mast cells and lymphocytes, activate fibrogenic and angiogenic responses, contributing to scar formation. In the viable remodeling myocardium, chronic activation of immune cells may promote fibrosis and hypertrophy. This review discusses the role of immune cells in repair and remodeling of the infarcted myocardium. Understanding the role of immune cells in myocardial infarction is critical for the development of therapeutic strategies aimed at protecting the infarcted heart from adverse remodeling. Moreover, modulation of immune cell phenotype may be required in order to achieve the visionary goal of myocardial regeneration.
Collapse
Affiliation(s)
- Bijun Chen
- Department of Medicine (Cardiology), The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY
| | - Nikolaos G Frangogiannis
- Department of Medicine (Cardiology), The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
25
|
Hasham MG, Baxan N, Stuckey DJ, Branca J, Perkins B, Dent O, Duffy T, Hameed TS, Stella SE, Bellahcene M, Schneider MD, Harding SE, Rosenthal N, Sattler S. Systemic autoimmunity induced by the TLR7/8 agonist Resiquimod causes myocarditis and dilated cardiomyopathy in a new mouse model of autoimmune heart disease. Dis Model Mech 2017; 10:259-270. [PMID: 28250051 PMCID: PMC5374321 DOI: 10.1242/dmm.027409] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 01/18/2017] [Indexed: 12/21/2022] Open
Abstract
Systemic autoimmune diseases such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) show significant heart involvement and cardiovascular morbidity, which can be due to systemically increased levels of inflammation or direct autoreactivity targeting cardiac tissue. Despite high clinical relevance, cardiac damage secondary to systemic autoimmunity lacks inducible rodent models. Here, we characterise immune-mediated cardiac tissue damage in a new model of SLE induced by topical application of the Toll-like receptor 7/8 (TLR7/8) agonist Resiquimod. We observe a cardiac phenotype reminiscent of autoimmune-mediated dilated cardiomyopathy, and identify auto-antibodies as major contributors to cardiac tissue damage. Resiquimod-induced heart disease is a highly relevant mouse model for mechanistic and therapeutic studies aiming to protect the heart during autoimmunity. Summary: A novel mouse model of autoimmune-mediated heart damage to study the underlying mechanisms and test therapeutic options for systemic autoimmunity.
Collapse
Affiliation(s)
- Muneer G Hasham
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Nicoleta Baxan
- Biological Imaging Centre, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Daniel J Stuckey
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London WC1E 6DD, UK
| | - Jane Branca
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Bryant Perkins
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Oliver Dent
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Ted Duffy
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Tolani S Hameed
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Sarah E Stella
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Mohammed Bellahcene
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Michael D Schneider
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Sian E Harding
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Nadia Rosenthal
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA.,National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Susanne Sattler
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| |
Collapse
|
26
|
Pathophysiology and therapeutic potential of cardiac fibrosis. Inflamm Regen 2017; 37:13. [PMID: 29259712 PMCID: PMC5725925 DOI: 10.1186/s41232-017-0046-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 03/28/2017] [Indexed: 12/24/2022] Open
Abstract
Inflammatory and fibrotic responses to myocardial damage are essential for cardiac repair; however, these responses often result in extensive fibrotic remodeling with impaired systolic function. Recent reports have suggested that such acute phase responses provide a favorable environment for endogenous cardiac regeneration, which is mainly driven by the division of pre-existing cardiomyocytes (CMs). Existing CMs in mammals can re-acquire proliferative activity after substantial cardiac damage, and elements other than CMs in the physiological and/or pathological environment, such as hypoxia, angiogenesis, and the polarity of infiltrating macrophages, have been reported to regulate replication. Cardiac fibroblasts comprise the largest cell population in terms of cell number in the myocardium, and they play crucial roles in the proliferation and protection of CMs. The in vivo direct reprogramming of functional CMs has been investigated in cardiac regeneration. Currently, growth factors, transcription factors, microRNAs, and small molecules promoting the regeneration and protection of these CMs have also been actively researched. Here, we summarize and discuss current studies on the relationship between cardiac inflammation and fibrosis, and cardiac regeneration and protection, which would be useful for the development of therapeutic strategies to treat and prevent advanced heart failure.
Collapse
|
27
|
The role of GILZ in modulation of adaptive immunity in a murine model of myocardial infarction. Exp Mol Pathol 2017; 102:408-414. [DOI: 10.1016/j.yexmp.2017.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/08/2017] [Indexed: 11/22/2022]
|
28
|
Ramos GC, van den Berg A, Nunes-Silva V, Weirather J, Peters L, Burkard M, Friedrich M, Pinnecker J, Abeßer M, Heinze KG, Schuh K, Beyersdorf N, Kerkau T, Demengeot J, Frantz S, Hofmann U. Myocardial aging as a T-cell-mediated phenomenon. Proc Natl Acad Sci U S A 2017; 114:E2420-E2429. [PMID: 28255084 PMCID: PMC5373357 DOI: 10.1073/pnas.1621047114] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In recent years, the myocardium has been rediscovered under the lenses of immunology, and lymphocytes have been implicated in the pathogenesis of cardiomyopathies with different etiologies. Aging is an important risk factor for heart diseases, and it also has impact on the immune system. Thus, we sought to determine whether immunological activity would influence myocardial structure and function in elderly mice. Morphological, functional, and molecular analyses revealed that the age-related myocardial impairment occurs in parallel with shifts in the composition of tissue-resident leukocytes and with an accumulation of activated CD4+ Foxp3- (forkhead box P3) IFN-γ+ T cells in the heart-draining lymph nodes. A comprehensive characterization of different aged immune-deficient mouse strains revealed that T cells significantly contribute to age-related myocardial inflammation and functional decline. Upon adoptive cell transfer, the T cells isolated from the mediastinal lymph node (med-LN) of aged animals exhibited increased cardiotropism, compared with cells purified from young donors or from other irrelevant sites. Nevertheless, these cells caused rather mild effects on cardiac functionality, indicating that myocardial aging might stem from a combination of intrinsic and extrinsic (immunological) factors. Taken together, the data herein presented indicate that heart-directed immune responses may spontaneously arise in the elderly, even in the absence of a clear tissue damage or concomitant infection. These observations might shed new light on the emerging role of T cells in myocardial diseases, which primarily affect the elderly population.
Collapse
Affiliation(s)
- Gustavo Campos Ramos
- Department of Internal Medicine III, University Clinic Halle, D-06120 Halle, Germany;
- Comprehensive Heart Failure Center, University Clinic Wuerzburg, D-97078 Wuerzburg, Germany
| | - Anne van den Berg
- Comprehensive Heart Failure Center, University Clinic Wuerzburg, D-97078 Wuerzburg, Germany
| | | | - Johannes Weirather
- Comprehensive Heart Failure Center, University Clinic Wuerzburg, D-97078 Wuerzburg, Germany
| | - Laura Peters
- Comprehensive Heart Failure Center, University Clinic Wuerzburg, D-97078 Wuerzburg, Germany
| | - Matthias Burkard
- Comprehensive Heart Failure Center, University Clinic Wuerzburg, D-97078 Wuerzburg, Germany
| | - Mike Friedrich
- Rudolf Virchow Center for Experimental Biomedicine, University of Wuerzburg, D-97080 Wuerzburg, Germany
| | - Jürgen Pinnecker
- Rudolf Virchow Center for Experimental Biomedicine, University of Wuerzburg, D-97080 Wuerzburg, Germany
| | - Marco Abeßer
- Institute of Physiology I, University of Wuerzburg, D-97070 Wuerzburg, Germany
| | - Katrin G Heinze
- Rudolf Virchow Center for Experimental Biomedicine, University of Wuerzburg, D-97080 Wuerzburg, Germany
| | - Kai Schuh
- Institute of Physiology I, University of Wuerzburg, D-97070 Wuerzburg, Germany
| | - Niklas Beyersdorf
- Institute for Virology and Immunobiology, University of Wuerzburg, D-97078 Wuerzburg, Germany
| | - Thomas Kerkau
- Institute for Virology and Immunobiology, University of Wuerzburg, D-97078 Wuerzburg, Germany
| | | | - Stefan Frantz
- Department of Internal Medicine III, University Clinic Halle, D-06120 Halle, Germany
- Comprehensive Heart Failure Center, University Clinic Wuerzburg, D-97078 Wuerzburg, Germany
| | - Ulrich Hofmann
- Department of Internal Medicine III, University Clinic Halle, D-06120 Halle, Germany
- Comprehensive Heart Failure Center, University Clinic Wuerzburg, D-97078 Wuerzburg, Germany
| |
Collapse
|
29
|
Abstract
Ischemic disorders, such as myocardial infarction, stroke, and peripheral vascular disease, are the most common causes of debilitating disease and death in westernized cultures. The extent of tissue injury relates directly to the extent of blood flow reduction and to the length of the ischemic period, which influence the levels to which cellular ATP and intracellular pH are reduced. By impairing ATPase-dependent ion transport, ischemia causes intracellular and mitochondrial calcium levels to increase (calcium overload). Cell volume regulatory mechanisms are also disrupted by the lack of ATP, which can induce lysis of organelle and plasma membranes. Reperfusion, although required to salvage oxygen-starved tissues, produces paradoxical tissue responses that fuel the production of reactive oxygen species (oxygen paradox), sequestration of proinflammatory immunocytes in ischemic tissues, endoplasmic reticulum stress, and development of postischemic capillary no-reflow, which amplify tissue injury. These pathologic events culminate in opening of mitochondrial permeability transition pores as a common end-effector of ischemia/reperfusion (I/R)-induced cell lysis and death. Emerging concepts include the influence of the intestinal microbiome, fetal programming, epigenetic changes, and microparticles in the pathogenesis of I/R. The overall goal of this review is to describe these and other mechanisms that contribute to I/R injury. Because so many different deleterious events participate in I/R, it is clear that therapeutic approaches will be effective only when multiple pathologic processes are targeted. In addition, the translational significance of I/R research will be enhanced by much wider use of animal models that incorporate the complicating effects of risk factors for cardiovascular disease. © 2017 American Physiological Society. Compr Physiol 7:113-170, 2017.
Collapse
Affiliation(s)
- Theodore Kalogeris
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Christopher P. Baines
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
- Department of Biomedical Sciences, University of Missouri College of Veterinary Medicine, Columbia, Missouri, USA
| | - Maike Krenz
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Ronald J. Korthuis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
30
|
Abstract
OBJECTIVE Recent studies have shown that activation of the immune system, inflammatory cell infiltration, and activation of inflammatory mediators play an important role in the development of heart failure. The purpose of this study was to investigate whether cardiac function can be improved by regulating the balance of lymphocyte subsets and cytokines. METHODS Ninety-six patients with chronic heart failure (CHF) who were older than 60 years were randomly divided into two groups: CHF testing group (CHFT) received regular therapy and thymopentin (2 mg thymopentin per day, 15th as a course, three courses in total). CHF control group (CHFC) received regular therapy. Forty-five healthy individuals older than 60 years were used as normal controls. The ejection fraction of left ventricle (LVEF), inner diameter of left ventricular end-diastole (LVEDD), inner diameter of left ventricular end-systole (LVESD), plasma high sensitive C-reactive protein (hsCRP), plasma brain natriuretic peptide (BNP), 6-min walking distance (6MWT), Minnesota Living with Heart Failure Questionnaire (MLHFQ) assessment, lymphocyte subsets, and inflammatory cytokines were tested. RESULTS The levels of LVEF, 6MWT, CD 3+, CD4+T cells, natural killer cells, CD4+/CD8+ and IL-10 in CHFT were increased (p<0.01) compared with CHFC, while BNP, hsCRP, MLHFQ, CD8+, TNF-α, IL-1ß, and TNF-α/IL-10 ratio in CHFT were decreased (p<0.01). LVEDD and LVESD were decreased, even though there was no significant difference between the two CHF groups. CONCLUSION These data suggest that immune modulation therapy improve cardiac function and regulate cytokines and lymphocyte subsets in older patients with CHF.
Collapse
|
31
|
|