1
|
Parichatikanond W, Duangrat R, Kurose H, Mangmool S. Regulation of β-Adrenergic Receptors in the Heart: A Review on Emerging Therapeutic Strategies for Heart Failure. Cells 2024; 13:1674. [PMID: 39451192 PMCID: PMC11506672 DOI: 10.3390/cells13201674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/24/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
The prolonged overstimulation of β-adrenergic receptors (β-ARs), a member of the G protein-coupled receptor (GPCR) family, causes abnormalities in the density and functionality of the receptor and contributes to cardiac dysfunctions, leading to the development and progression of heart diseases, especially heart failure (HF). Despite recent advancements in HF therapy, mortality and morbidity rates continue to be high. Treatment with β-AR antagonists (β-blockers) has improved clinical outcomes and reduced overall hospitalization and mortality rates. However, several barriers in the management of HF remain, providing opportunities to develop new strategies that focus on the functions and signal transduction of β-ARs involved in the pathogenesis of HF. As β-AR can signal through multiple pathways influenced by different receptor subtypes, expression levels, and signaling components such as G proteins, G protein-coupled receptor kinases (GRKs), β-arrestins, and downstream effectors, it presents a complex mechanism that could be targeted in HF management. In this narrative review, we focus on the regulation of β-ARs at the receptor, G protein, and effector loci, as well as their signal transductions in the physiology and pathophysiology of the heart. The discovery of potential ligands for β-AR that activate cardioprotective pathways while limiting off-target signaling is promising for the treatment of HF. However, applying findings from preclinical animal models to human patients faces several challenges, including species differences, the genetic variability of β-ARs, and the complexity and heterogeneity of humans. In this review, we also summarize recent updates and future research on the regulation of β-ARs in the molecular basis of HF and highlight potential therapeutic strategies for HF.
Collapse
Affiliation(s)
| | - Ratchanee Duangrat
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | - Hitoshi Kurose
- Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan;
- Pharmacology for Life Sciences, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Supachoke Mangmool
- Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
2
|
Bode C, Preissl S, Hein L, Lother A. Catecholamine treatment induces reversible heart injury and cardiomyocyte gene expression. Intensive Care Med Exp 2024; 12:48. [PMID: 38733526 PMCID: PMC11088585 DOI: 10.1186/s40635-024-00632-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Catecholamines are commonly used as therapeutic drugs in intensive care medicine to maintain sufficient organ perfusion during shock. However, excessive or sustained adrenergic activation drives detrimental cardiac remodeling and may lead to heart failure. Whether catecholamine treatment in absence of heart failure causes persistent cardiac injury, is uncertain. In this experimental study, we assessed the course of cardiac remodeling and recovery during and after prolonged catecholamine treatment and investigated the molecular mechanisms involved. RESULTS C57BL/6N wild-type mice were assigned to 14 days catecholamine treatment with isoprenaline and phenylephrine (IsoPE), treatment with IsoPE and subsequent recovery, or healthy control groups. IsoPE improved left ventricular contractility but caused substantial cardiac fibrosis and hypertrophy. However, after discontinuation of catecholamine treatment, these alterations were largely reversible. To uncover the molecular mechanisms involved, we performed RNA sequencing from isolated cardiomyocyte nuclei. IsoPE treatment resulted in a transient upregulation of genes related to extracellular matrix formation and transforming growth factor signaling. While components of adrenergic receptor signaling were downregulated during catecholamine treatment, we observed an upregulation of endothelin-1 and its receptors in cardiomyocytes, indicating crosstalk between both signaling pathways. To follow this finding, we treated mice with endothelin-1. Compared to IsoPE, treatment with endothelin-1 induced minor but longer lasting changes in cardiomyocyte gene expression. DNA methylation-guided analysis of enhancer regions identified immediate early transcription factors such as AP-1 family members Jun and Fos as key drivers of pathological gene expression following catecholamine treatment. CONCLUSIONS The results from this study show that prolonged catecholamine exposure induces adverse cardiac remodeling and gene expression before the onset of left ventricular dysfunction which has implications for clinical practice. The observed changes depend on the type of stimulus and are largely reversible after discontinuation of catecholamine treatment. Crosstalk with endothelin signaling and the downstream transcription factors identified in this study provide new opportunities for more targeted therapeutic approaches that may help to separate desired from undesired effects of catecholamine treatment.
Collapse
Affiliation(s)
- Christine Bode
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sebastian Preissl
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lutz Hein
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Achim Lother
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Interdisciplinary Medical Intensive Care, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
3
|
Xiang H, Huang J, Song A, Liu F, Xiong J, Zhang C. GRK5 promoted renal fibrosis via HDAC5/Smad3 signaling pathway. FASEB J 2024; 38:e23422. [PMID: 38206179 DOI: 10.1096/fj.202301595rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/11/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
Renal fibrosis is a common pathological feature of chronic kidney diseases (CKD), poses a significant burden in the aging population, and is a major cause of end-stage renal disease (ESRD). In this study, we investigated the role of G protein-coupled receptor kinases (GRKs) 5 in the pathogenesis of renal fibrosis. GRK5 is a serine/threonine kinase that regulates G protein-coupled receptor (GPCR) signaling. GRK5 has been shown to play a role in various diseases including cardiac disorders and cancer. However, the role of GRK5 in renal fibrosis remains largely unknown. Our finding revealed that GRK5 was significantly overexpressed in renal fibrosis. Specifically, GRK5 was transferred into the nucleus via its nuclear localization sequence to regulate histone deacetylases (HDAC) 5 expression under renal fibrosis. GRK5 acted as an upstream regulator of HDAC5/Smad3 signaling pathway. HDAC5 regulated and prevented the transcriptional activity of myocyte enhancer factor 2A (MEF2A) to repress the transcription of Smad7 which leading to the activation of Smad3. These findings first revealed that GRK5 may be a potential therapeutic target for the treatment of renal fibrosis. Inhibition of GRK5 activity may be a promising strategy to attenuate the progression of renal fibrosis.
Collapse
Affiliation(s)
- Huiling Xiang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Huang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anni Song
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Liu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Xiong
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Green JR, Mahalingaiah PKS, Gopalakrishnan SM, Liguori MJ, Mittelstadt SW, Blomme EAG, Van Vleet TR. Off-target pharmacological activity at various kinases: Potential functional and pathological side effects. J Pharmacol Toxicol Methods 2023; 123:107468. [PMID: 37553032 DOI: 10.1016/j.vascn.2023.107468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/16/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
In drug discovery, during the lead optimization and candidate characterization stages, novel small molecules are frequently evaluated in a battery of in vitro pharmacology assays to identify potential unintended, off-target interactions with various receptors, transporters, ion channels, and enzymes, including kinases. Furthermore, these screening panels may also provide utility at later stages of development to provide a mechanistic understanding of unexpected safety findings. Here, we present a compendium of the most likely functional and pathological outcomes associated with interaction(s) to a panel of 95 kinases based on an extensive curation of the scientific literature. This panel of kinases was designed by AbbVie based on safety-related data extracted from the literature, as well as from over 20 years of institutional knowledge generated from discovery efforts. For each kinase, the scientific literature was reviewed using online databases and the most often reported functional and pathological effects were summarized. This work should serve as a practical guide for small molecule drug discovery scientists and clinical investigators to predict and/or interpret adverse effects related to pharmacological interactions with these kinases.
Collapse
Affiliation(s)
- Jonathon R Green
- Departments of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States.
| | | | - Sujatha M Gopalakrishnan
- Drug Discovery Science and Technology, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| | - Michael J Liguori
- Departments of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| | - Scott W Mittelstadt
- Departments of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| | - Eric A G Blomme
- Departments of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| | - Terry R Van Vleet
- Departments of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| |
Collapse
|
5
|
Sasaki S, Nian C, Xu EE, Pasula DJ, Winata H, Grover S, Luciani DS, Lynn FC. Type 2 diabetes susceptibility gene GRK5 regulates physiological pancreatic β-cell proliferation via phosphorylation of HDAC5. iScience 2023; 26:107311. [PMID: 37520700 PMCID: PMC10382860 DOI: 10.1016/j.isci.2023.107311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/24/2023] [Accepted: 07/04/2023] [Indexed: 08/01/2023] Open
Abstract
Restoring functional β cell mass is a potential therapy for those with diabetes. However, the pathways regulating β cell mass are not fully understood. Previously, we demonstrated that Sox4 is required for β cell proliferation during prediabetes. Here, we report that Sox4 regulates β cell mass through modulating expression of the type 2 diabetes (T2D) susceptibility gene GRK5. β cell-specific Grk5 knockout mice showed impaired glucose tolerance with reduced β cell mass, which was accompanied by upregulation of cell cycle inhibitor gene Cdkn1a. Furthermore, we found that Grk5 may drive β cell proliferation through a pathway that includes phosphorylation of HDAC5 and subsequent transcription of immediate-early genes (IEGs) such as Nr4a1, Fosb, Junb, Arc, Egr1, and Srf. Together, these studies suggest GRK5 is linked to T2D through regulation of β cell growth and that it may be a target to preserve β cells during the development of T2D.
Collapse
Affiliation(s)
- Shugo Sasaki
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Surgery, The University of British Columbia, Vancouver, BC, Canada
| | - Cuilan Nian
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Surgery, The University of British Columbia, Vancouver, BC, Canada
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Eric E. Xu
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Daniel J. Pasula
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Surgery, The University of British Columbia, Vancouver, BC, Canada
| | - Helena Winata
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Surgery, The University of British Columbia, Vancouver, BC, Canada
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Sanya Grover
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Dan S. Luciani
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Surgery, The University of British Columbia, Vancouver, BC, Canada
| | - Francis C. Lynn
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Surgery, The University of British Columbia, Vancouver, BC, Canada
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
Zhang Y, Zhang J, Wang J, Chen H, Ouyang L, Wang Y. Targeting GRK2 and GRK5 for treating chronic degenerative diseases: Advances and future perspectives. Eur J Med Chem 2022; 243:114668. [DOI: 10.1016/j.ejmech.2022.114668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022]
|
7
|
Jiang H, Galtes D, Wang J, Rockman HA. G protein-coupled receptor signaling: transducers and effectors. Am J Physiol Cell Physiol 2022; 323:C731-C748. [PMID: 35816644 PMCID: PMC9448338 DOI: 10.1152/ajpcell.00210.2022] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/27/2022] [Accepted: 07/10/2022] [Indexed: 01/14/2023]
Abstract
G protein-coupled receptors (GPCRs) are of considerable interest due to their importance in a wide range of physiological functions and in a large number of Food and Drug Administration (FDA)-approved drugs as therapeutic entities. With continued study of their function and mechanism of action, there is a greater understanding of how effector molecules interact with a receptor to initiate downstream effector signaling. This review aims to explore the signaling pathways, dynamic structures, and physiological relevance in the cardiovascular system of the three most important GPCR signaling effectors: heterotrimeric G proteins, GPCR kinases (GRKs), and β-arrestins. We will first summarize their prominent roles in GPCR pharmacology before transitioning into less well-explored areas. As new technologies are developed and applied to studying GPCR structure and their downstream effectors, there is increasing appreciation for the elegance of the regulatory mechanisms that mediate intracellular signaling and function.
Collapse
Affiliation(s)
- Haoran Jiang
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Daniella Galtes
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Jialu Wang
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Howard A Rockman
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
8
|
Nguyen T, Wei Y, Nakada Y, Zhou Y, Zhang J. Cardiomyocyte Cell-Cycle Regulation in Neonatal Large Mammals: Single Nucleus RNA-Sequencing Data Analysis via an Artificial-Intelligence–Based Pipeline. Front Bioeng Biotechnol 2022; 10:914450. [PMID: 35860330 PMCID: PMC9289371 DOI: 10.3389/fbioe.2022.914450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/18/2022] [Indexed: 11/20/2022] Open
Abstract
Adult mammalian cardiomyocytes have very limited capacity to proliferate and repair the myocardial infarction. However, when apical resection (AR) was performed in pig hearts on postnatal day (P) 1 (ARP1) and acute myocardial infarction (MI) was induced on P28 (MIP28), the animals recovered with no evidence of myocardial scarring or decline in contractile performance. Furthermore, the repair process appeared to be driven by cardiomyocyte proliferation, but the regulatory molecules that govern the ARP1-induced enhancement of myocardial recovery remain unclear. Single-nucleus RNA sequencing (snRNA-seq) data collected from fetal pig hearts and the hearts of pigs that underwent ARP1, MIP28, both ARP1 and MI, or neither myocardial injury were evaluated via autoencoder, cluster analysis, sparse learning, and semisupervised learning. Ten clusters of cardiomyocytes (CM1–CM10) were identified across all experimental groups and time points. CM1 was only observed in ARP1 hearts on P28 and was enriched for the expression of T-box transcription factors 5 and 20 (TBX5 and TBX20, respectively), Erb-B2 receptor tyrosine kinase 4 (ERBB4), and G Protein-Coupled Receptor Kinase 5 (GRK5), as well as genes associated with the proliferation and growth of cardiac muscle. CM1 cardiomyocytes also highly expressed genes for glycolysis while lowly expressed genes for adrenergic signaling, which suggested that CM1 were immature cardiomyocytes. Thus, we have identified a cluster of cardiomyocytes, CM1, in neonatal pig hearts that appeared to be generated in response to AR injury on P1 and may have been primed for activation of CM cell-cycle activation and proliferation by the upregulation of TBX5, TBX20, ERBB4, and GRK5.
Collapse
Affiliation(s)
- Thanh Nguyen
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yuhua Wei
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yuji Nakada
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yang Zhou
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianyi Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
- Cardiovascular Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- *Correspondence: Jianyi Zhang,
| |
Collapse
|
9
|
Downes K, Zhao X, Gleadall NS, McKinney H, Kempster C, Batista J, Thomas PL, Cooper M, Michael JV, Kreuzhuber R, Wedderburn K, Waller K, Varney B, Verdier H, Kriek N, Ashford SE, Stirrups KE, Dunster JL, McKenzie SE, Ouwehand WH, Gibbins JM, Yang J, Astle WJ, Ma P. G protein-coupled receptor kinase 5 regulates thrombin signaling in platelets via PAR-1. Blood Adv 2022; 6:2319-2330. [PMID: 34581777 PMCID: PMC9006276 DOI: 10.1182/bloodadvances.2021005453] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/12/2021] [Indexed: 11/22/2022] Open
Abstract
The interindividual variation in the functional response of platelets to activation by agonists is heritable. Genome-wide association studies (GWASs) of quantitative measures of platelet function have identified fewer than 20 distinctly associated variants, some with unknown mechanisms. Here, we report GWASs of pathway-specific functional responses to agonism by adenosine 5'-diphosphate, a glycoprotein VI-specific collagen mimetic, and thrombin receptor-agonist peptides, each specific to 1 of the G protein-coupled receptors PAR-1 and PAR-4, in subsets of 1562 individuals. We identified an association (P = 2.75 × 10-40) between a common intronic variant, rs10886430, in the G protein-coupled receptor kinase 5 gene (GRK5) and the sensitivity of platelets to activate through PAR-1. The variant resides in a megakaryocyte-specific enhancer that is bound by the transcription factors GATA1 and MEIS1. The minor allele (G) is associated with fewer GRK5 transcripts in platelets and the greater sensitivity of platelets to activate through PAR-1. We show that thrombin-mediated activation of human platelets causes binding of GRK5 to PAR-1 and that deletion of the mouse homolog Grk5 enhances thrombin-induced platelet activation sensitivity and increases platelet accumulation at the site of vascular injury. This corroborates evidence that the human G allele of rs10886430 is associated with a greater risk for cardiovascular disease. In summary, by combining the results of pathway-specific GWASs and expression quantitative trait locus studies in humans with the results from platelet function studies in Grk5-/- mice, we obtain evidence that GRK5 regulates the human platelet response to thrombin via the PAR-1 pathway.
Collapse
Affiliation(s)
- Kate Downes
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
- East Genomic Laboratory Hub, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Xuefei Zhao
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Nicholas S. Gleadall
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Harriet McKinney
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Carly Kempster
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Joana Batista
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Patrick L. Thomas
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Matthew Cooper
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - James V. Michael
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Roman Kreuzhuber
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- European Molecular Biology Laboratory European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Katherine Wedderburn
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Kathryn Waller
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Bianca Varney
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Hippolyte Verdier
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Neline Kriek
- School of Biological Sciences, University of Reading, Reading, Berkshire, United Kingdom
| | - Sofie E. Ashford
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Institute for Health Research BioResource, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Kathleen E. Stirrups
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Institute for Health Research BioResource, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Joanne L. Dunster
- School of Biological Sciences, University of Reading, Reading, Berkshire, United Kingdom
| | - Steven E. McKenzie
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Willem H. Ouwehand
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Jonathan M. Gibbins
- School of Biological Sciences, University of Reading, Reading, Berkshire, United Kingdom
| | - Jing Yang
- Bristol Myers Squibb, Princeton, NJ; and
| | - William J. Astle
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Peisong Ma
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
10
|
Location-specific and Kinase-Independent GRK5 Function in Heart. JACC Basic Transl Sci 2022; 7:381-383. [PMID: 35540094 PMCID: PMC9079850 DOI: 10.1016/j.jacbts.2022.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
de Lucia C, Grisanti LA, Borghetti G, Piedepalumbo M, Ibetti J, Lucchese AM, Barr EW, Roy R, Okyere AD, Murphy HC, Gao E, Rengo G, Houser SR, Tilley DG, Koch WJ. G protein-coupled receptor kinase 5 (GRK5) contributes to impaired cardiac function and immune cell recruitment in post-ischemic heart failure. Cardiovasc Res 2022; 118:169-183. [PMID: 33560342 PMCID: PMC8752360 DOI: 10.1093/cvr/cvab044] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/15/2020] [Accepted: 02/05/2021] [Indexed: 12/25/2022] Open
Abstract
AIMS Myocardial infarction (MI) is the most common cause of heart failure (HF) worldwide. G protein-coupled receptor kinase 5 (GRK5) is upregulated in failing human myocardium and promotes maladaptive cardiac hypertrophy in animal models. However, the role of GRK5 in ischemic heart disease is still unknown. In this study, we evaluated whether myocardial GRK5 plays a critical role post-MI in mice and included the examination of specific cardiac immune and inflammatory responses. METHODS AND RESULTS Cardiomyocyte-specific GRK5 overexpressing transgenic mice (TgGRK5) and non-transgenic littermate control (NLC) mice as well as cardiomyocyte-specific GRK5 knockout mice (GRK5cKO) and wild type (WT) were subjected to MI and, functional as well as structural changes together with outcomes were studied. TgGRK5 post-MI mice showed decreased cardiac function, augmented left ventricular dimension and decreased survival rate compared to NLC post-MI mice. Cardiac hypertrophy and fibrosis as well as fetal gene expression were increased post-MI in TgGRK5 compared to NLC mice. In TgGRK5 mice, GRK5 elevation produced immuno-regulators that contributed to the elevated and long-lasting leukocyte recruitment into the injured heart and ultimately to chronic cardiac inflammation. We found an increased presence of pro-inflammatory neutrophils and macrophages as well as neutrophils, macrophages and T-lymphocytes at 4-days and 8-weeks respectively post-MI in TgGRK5 hearts. Conversely, GRK5cKO mice were protected from ischemic injury and showed reduced early immune cell recruitment (predominantly monocytes) to the heart, improved contractility and reduced mortality compared to WT post-MI mice. Interestingly, cardiomyocyte-specific GRK2 transgenic mice did not share the same phenotype of TgGRK5 mice and did not have increased cardiac leukocyte migration and cytokine or chemokine production post-MI. CONCLUSIONS Our study shows that myocyte GRK5 has a crucial and GRK-selective role on the regulation of leucocyte infiltration into the heart, cardiac function and survival in a murine model of post-ischemic HF, supporting GRK5 inhibition as a therapeutic target for HF.
Collapse
Affiliation(s)
- Claudio de Lucia
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Laurel A Grisanti
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Giulia Borghetti
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Michela Piedepalumbo
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Jessica Ibetti
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Anna Maria Lucchese
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Eric W Barr
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Rajika Roy
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Ama Dedo Okyere
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Haley Christine Murphy
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Erhe Gao
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, Division of Geriatrics, Federico II University, Via S. Pansini, 5, Naples, Italy
- Laboratory of neurovegetative system pathophysiology, Istituti Clinici Scientifici ICS Maugeri, IRCCS Istituto Scientifico di Telese Terme, Benevento, Italy
| | - Steven R Houser
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Douglas G Tilley
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Walter J Koch
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
12
|
Suo WZ. GRK5 Deficiency Causes Mild Cognitive Impairment due to Alzheimer's Disease. J Alzheimers Dis 2021; 85:1399-1410. [PMID: 34958040 DOI: 10.3233/jad-215379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Prevention of Alzheimer's disease (AD) is a high priority mission while searching for a disease modifying therapy for AD, a devastating major public health crisis. Clinical observations have identified a prodromal stage of AD for which the patients have mild cognitive impairment (MCI) though do not yet meet AD diagnostic criteria. As an identifiable transitional stage before the onset of AD, MCI should become the high priority target for AD prevention, assuming successful prevention of MCI and/or its conversion to AD also prevents the subsequent AD. By pulling this string, one demonstrated cause of amnestic MCI appears to be the deficiency of G protein-coupled receptor-5 (GRK5). The most compelling evidence is that GRK5 knockout (GRK5KO) mice naturally develop into aMCI during aging. Moreover, GRK5 deficiency was reported to occur during prodromal stage of AD in CRND8 transgenic mice. When a GRK5KO mouse was crossbred with Tg2576 Swedish amyloid precursor protein transgenic mouse, the resulted double transgenic GAP mice displayed exaggerated behavioral and pathological changes across the spectrum of AD pathogenesis. Therefore, the GRK5 deficiency possesses unique features and advantage to serve as a prophylactic therapeutic target for MCI due to AD.
Collapse
Affiliation(s)
- William Z Suo
- Laboratory for Alzheimer's Disease & Aging Research, VA Medical Center, Kansas City, MO, USA.,Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA.,Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA.,The University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA
| |
Collapse
|
13
|
Polymorphic Variants in the GRK5 Gene Promoter Are Associated With Diastolic Dysfunction in Coronary Artery Bypass Graft Surgery Patients. Anesth Analg 2021; 134:858-868. [PMID: 34871184 DOI: 10.1213/ane.0000000000005809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND The G-protein-coupled receptor kinase 5 (GRK5) is a mediator of cardiovascular homeostasis and participates in inflammation and cardiac fibrosis, both being involved in the development of diastolic dysfunction (DD). While mechanisms of transcriptional regulation of the GRK5 promoter are unclear, we tested the hypotheses, that (1) GRK5 expression varies depending on functional single nucleotide polymorphisms (SNPs) in the GRK5 promoter and (2) this is associated with DD in patients undergoing coronary artery bypass graft (CABG) surgery. METHODS We amplified and sequenced the GRK5 promoter followed by cloning, reporter assays, and electrophoretic mobility shift assays (EMSA). GRK5 messenger ribonucleic acid (mRNA) expression was determined in right atrial tissue sampled from 50 patients undergoing CABG surgery. In another prospective study, GRK5 genotypes were associated with determinants of diastolic function using transesophageal echocardiography in 255 patients with CABG with normal systolic left ventricular (LV) function. Specifically, we measured ejection fraction (EF), transmitral Doppler early filling velocity (E), tissue Doppler early diastolic lateral mitral annular velocity (E' lateral), and calculated E/E', E' norm and the difference of E' lateral and E' norm to account for age-related changes in diastolic function. RESULTS We identified 6 SNPs creating 3 novel haplotypes with the greatest promoter activation in haplotype tagging (ht) SNP T(-678)C T-allele constructs (P < .001). EMSAs showed allele-specific transcription factor binding proving functional activity. GRK5 mRNA expression was greatest in TT genotypes (TT: 131 fg/µg [95% CI, 108-154]; CT: 109 [95% confidence interval {CI}, 93-124]; CC: 83 [95% CI, 54-112]; P = .012). Moreover, GRK5 genotypes were significantly associated with determinants of diastolic function. Grading of DD revealed more grade 3 patients in TT compared to CT and CC genotypes (58% vs 38% vs 4%; P = .023). E´ lateral was lowest in TT genotypes (P = .007) and corresponding E/E' measurements showed 1.27-fold increased values in TT versus CC genotypes (P = .01), respectively. While E' norm values were not different between genotypes (P = .182), the difference between E' lateral and E' norm was significantly higher in TT genotypes compared to CC and CT genotypes (-1.2 [interquartile range {IQR}, 2.7], -0.5 [IQR, 3.4], and -0.4 [IQR, 4.2; P = .035], respectively). CONCLUSIONS A functional GRK5 SNP results in allele-dependent differences in GRK5 promoter activity and mRNA expression. This is associated with altered echocardiographic determinants of diastolic function. Thus, SNPs in the GRK5 promoter are associated with altered perioperative diastolic cardiac function. In the future, preoperative testing for these and other SNPs might allow to initiate more specific diagnostic and perioperative pathways to benefit patients at risk.
Collapse
|
14
|
Górska AA, Sandmann C, Riechert E, Hofmann C, Malovrh E, Varma E, Kmietczyk V, Ölschläger J, Jürgensen L, Kamuf-Schenk V, Stroh C, Furkel J, Konstandin MH, Sticht C, Boileau E, Dieterich C, Frey N, Katus HA, Doroudgar S, Völkers M. Muscle-specific Cand2 is translationally upregulated by mTORC1 and promotes adverse cardiac remodeling. EMBO Rep 2021; 22:e52170. [PMID: 34605609 PMCID: PMC8647021 DOI: 10.15252/embr.202052170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 08/26/2021] [Accepted: 09/10/2021] [Indexed: 12/13/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) promotes pathological remodeling in the heart by activating ribosomal biogenesis and mRNA translation. Inhibition of mTOR in cardiomyocytes is protective; however, a detailed role of mTOR in translational regulation of specific mRNA networks in the diseased heart is unknown. We performed cardiomyocyte genome-wide sequencing to define mTOR-dependent gene expression control at the level of mRNA translation. We identify the muscle-specific protein Cullin-associated NEDD8-dissociated protein 2 (Cand2) as a translationally upregulated gene, dependent on the activity of mTOR. Deletion of Cand2 protects the myocardium against pathological remodeling. Mechanistically, we show that Cand2 links mTOR signaling to pathological cell growth by increasing Grk5 protein expression. Our data suggest that cell-type-specific targeting of mTOR might have therapeutic value against pathological cardiac remodeling.
Collapse
Affiliation(s)
- Agnieszka A Górska
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site, Heidelberg/Mannheim, Germany
| | - Clara Sandmann
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site, Heidelberg/Mannheim, Germany
| | - Eva Riechert
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site, Heidelberg/Mannheim, Germany
| | - Christoph Hofmann
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site, Heidelberg/Mannheim, Germany
| | - Ellen Malovrh
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site, Heidelberg/Mannheim, Germany
| | - Eshita Varma
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site, Heidelberg/Mannheim, Germany
| | - Vivien Kmietczyk
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site, Heidelberg/Mannheim, Germany
| | - Julie Ölschläger
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site, Heidelberg/Mannheim, Germany
| | - Lonny Jürgensen
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site, Heidelberg/Mannheim, Germany
| | - Verena Kamuf-Schenk
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site, Heidelberg/Mannheim, Germany
| | - Claudia Stroh
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site, Heidelberg/Mannheim, Germany
| | - Jennifer Furkel
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site, Heidelberg/Mannheim, Germany
| | - Mathias H Konstandin
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site, Heidelberg/Mannheim, Germany
| | - Carsten Sticht
- Medical Research Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Etienne Boileau
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site, Heidelberg/Mannheim, Germany.,Section of Bioinformatics and Systems Cardiology, Department of Cardiology, Angiology, and Pneumology and Klaus Tschira Institute for Integrative Computational Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Christoph Dieterich
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site, Heidelberg/Mannheim, Germany.,Section of Bioinformatics and Systems Cardiology, Department of Cardiology, Angiology, and Pneumology and Klaus Tschira Institute for Integrative Computational Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Norbert Frey
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site, Heidelberg/Mannheim, Germany
| | - Hugo A Katus
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site, Heidelberg/Mannheim, Germany
| | - Shirin Doroudgar
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site, Heidelberg/Mannheim, Germany
| | - Mirko Völkers
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site, Heidelberg/Mannheim, Germany
| |
Collapse
|
15
|
Adzika GK, Hou H, Adekunle AO, Rizvi R, Adzraku SY, Li K, Deng QM, Mprah R, Ndzie Noah ML, Adu-Amankwaah J, Machuki JO, Shang W, Ma T, Koda S, Ma X, Sun H. Amlexanox and Forskolin Prevents Isoproterenol-Induced Cardiomyopathy by Subduing Cardiomyocyte Hypertrophy and Maladaptive Inflammatory Responses. Front Cell Dev Biol 2021; 9:719351. [PMID: 34631707 PMCID: PMC8497899 DOI: 10.3389/fcell.2021.719351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
Chronic catecholamine stress (CCS) induces the occurrence of cardiomyopathy-pathological cardiac hypertrophy (PCH), which is characterized by left ventricular systolic dysfunction (LVSD). Recently, mounting evidence has implicated myocardial inflammation in the exacerbation of pathological cardiac remodeling. However, there are currently no well-defined treatment interventions or regimes targeted at both the attenuation of maladaptive myocardial hypertrophy and inflammation during CCS to prevent PCH. G protein-coupled receptor kinase 5 (GRK5) and adenylyl cyclases (ACs)-cAMP mediates both cardiac and inflammatory responses. Also, GRK5 and ACs are implicated in stress-induced LVSD. Herein, we aimed at preventing PCH during CCS via modulating adaptive cardiac and inflammatory responses by inhibiting GRK5 and/or stimulating ACs. Isoproterenol-induced cardiomyopathy (ICM) was modeled using 0.5 mg/100 g/day isoproterenol injections for 40 days. Alterations in cardiac and inflammatory responses were assessed from the myocardia. Similarities in the immunogenicity of cardiac troponin I (cTnI) and lipopolysaccharide under CCS were assessed, and Amlexanox (35 μM/ml) and/or Forskolin (10 μM/ml) were then employed in vitro to modulate adaptive inflammatory responses by inhibiting GRK5 or activating ACs-cAMP, respectively. Subsequently, Amlexanox (2.5 mg/100 g/day) and/or Forskolin (0.5 mg/100 g/day) were then translated into in vivo during CCS to modulate adaptive cardiac and inflammatory responses. The effects of Amlexanox and Forskolin on regulating myocardial systolic functions and inflammatory responses during CCS were ascertained afterward. PCH mice had excessive myocardial hypertrophy, fibrosis, and aggravated LVSD, which were accompanied by massive CD68+ inflammatory cell infiltrations. In vitro, Forskolin-AC/cAMP was effective than Amlexanox-GRK5 at downregulating proinflammatory responses during stress; nonetheless, Amlexanox and Forskolin combination demonstrated the most efficacy in modulating adaptive inflammatory responses. Individually, the translated Amlexanox and Forskolin treatment interventions were ineffective at subduing the pathological remodeling and sustaining cardiac function during CCS. However, their combination was potent at preventing LVSD during CCS by attenuating maladaptive myocardial hypertrophy, fibrosis, and inflammatory responses. The treatment intervention attained its potency mainly via Forskolin-ACs/cAMP-mediated modulation of cardiac and inflammatory responses, coupled with Amlexanox inhibition of GRK5 mediated maladaptive cascades. Taken together, our findings highlight the Amlexanox and Forskolin combination as a potential therapeutic intervention for preventing the occurrence of pathological cardiac hypertrophy during chronic stress.
Collapse
Affiliation(s)
| | - Hongjian Hou
- Department of Physiology, Xuzhou Medical University, Xuzhou, China.,The College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | | | | | - Seyram Yao Adzraku
- Key Laboratory of Bone Marrow Stem Cell, Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Kexue Li
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Qi-Ming Deng
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Department of Cardiology, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Richard Mprah
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | | | | | | | - Wenkang Shang
- Faculty of Biology, Institute of Biochemistry and Molecular Biology, ZBMZ, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | - Tongtong Ma
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Stephane Koda
- Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Xianluo Ma
- Internal Medicine-Cardiovascular Department, People's Hospital of Jiawang District, Xuzhou, China
| | - Hong Sun
- Department of Physiology, Xuzhou Medical University, Xuzhou, China.,Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
16
|
Lemoine KA, Fassas JM, Ohannesian SH, Purcell NH. On the PHLPPside: Emerging roles of PHLPP phosphatases in the heart. Cell Signal 2021; 86:110097. [PMID: 34320369 PMCID: PMC8403656 DOI: 10.1016/j.cellsig.2021.110097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
PH domain leucine-rich repeat protein phosphatase (PHLPP) is a family of enzymes made up of two isoforms (PHLPP1 and PHLPP2), whose actions modulate intracellular activity via the dephosphorylation of specific serine/threonine (Ser/Thr) residues on proteins such as Akt. Recent data generated in our lab, supported by findings from others, implicates the divergent roles of PHLPP1 and PHLPP2 in maintaining cellular homeostasis since dysregulation of these enzymes has been linked to various pathological states including cardiovascular disease, diabetes, ischemia/reperfusion injury, musculoskeletal disease, and cancer. Therefore, development of therapies to modulate specific isoforms of PHLPP could prove to be therapeutically beneficial in several diseases especially those targeting the cardiovascular system. This review is intended to provide a comprehensive summary of current literature detailing the role of the PHLPP isoforms in the development and progression of heart disease.
Collapse
Affiliation(s)
- Kellie A Lemoine
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92039, USA
| | - Julianna M Fassas
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92039, USA
| | - Shirag H Ohannesian
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92039, USA
| | - Nicole H Purcell
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92039, USA; Cardiovascular Molecular Signaling, Huntington Medical Research Institutes, Pasadena, CA 91105, USA.
| |
Collapse
|
17
|
Wang Z, Zhang M, Xu Y, Gu Y, Song Y, Jiang T. Identification of Independent and Communal Differentially Expressed Genes as Well as Potential Therapeutic Targets in Ischemic Heart Failure and Non-Ischemic Heart Failure. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:683-693. [PMID: 34163213 PMCID: PMC8214211 DOI: 10.2147/pgpm.s313621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/25/2021] [Indexed: 11/23/2022]
Abstract
Background Heart failure (HF) is a rapidly growing public health problem, and its two main etiological types are non-ischemic heart failure (NIHF) and ischemic heart failure (IHF). However, the independent and common mechanisms of NIHF and IHF have not been fully elucidated. Here, bioinformatic analysis was used to characterize the difference and independent pathways for IHF and NIHF, and more importantly, to unearth the common potential markers and therapeutic targets in IHF and NIHF. Methods Two data sets with accession numbers GSE26887 and GSE84796 were downloaded from the Gene Expression Omnibus (GEO) database. After identifying the independent and communal DEGs of NIHF and IHF, a functional annotation, protein-protein interaction (PPI) network analysis, co-expression and drug-gene interaction prediction analysis, and mRNA-miRNA regulatory network analysis were performed for DEGs. Results We found 1146 independent DEGs (DEGs2) of NIHF mainly enriched in transcription-related and 2595 independent DEGs (DEGs3) of IHF mainly enriched in immune-related. Moreover, 185 communal DEGs (DEGs1) were found between NIHF and IHF, including 93 upregulated genes and 92 downregulated genes. Pathway enrichment analysis results showed that GPCR pathways and biological processes are closely related to the occurrence of HF. In addition, three hub genes were identified from PPI network, including CCL5, C5 and TLR3. Conclusion The identification of DEGs and hub genes in this study contributes to a novel perception for potential functional mechanisms and biomarkers or therapeutic targets in NIHF and IHF.
Collapse
Affiliation(s)
- Zuoxiang Wang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China.,Department of Medicine, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Mingyang Zhang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China.,Department of Medicine, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Yinan Xu
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China.,Department of Medicine, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Yiyu Gu
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China.,Department of Medicine, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Yumeng Song
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China.,Department of Medicine, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Tingbo Jiang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| |
Collapse
|
18
|
GRK2 mediates β-arrestin interactions with 5-HT 2 receptors for JC polyomavirus endocytosis. J Virol 2021; 95:JVI.02139-20. [PMID: 33441347 PMCID: PMC8092707 DOI: 10.1128/jvi.02139-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
JC polyomavirus (JCPyV) infects the majority of the population, establishing a lifelong, asymptomatic infection in the kidney of healthy individuals. People that become severely immunocompromised may experience JCPyV reactivation, which can cause progressive multifocal leukoencephalopathy (PML), a neurodegenerative disease. Due to a lack of therapeutic options, PML results in fatality or significant debilitation among affected individuals. Cellular internalization of JCPyV is mediated by serotonin 5-hydroxytryptamine subfamily 2 receptors (5-HT2Rs) via clathrin-mediated endocytosis. The JCPyV entry process requires the clathrin-scaffolding proteins β-arrestin, adaptor protein 2 (AP2), and dynamin. Further, a β-arrestin interacting domain, the Ala-Ser-Lys (ASK) motif, within the C-terminus of 5-HT2AR is important for JCPyV internalization and infection. Interestingly, 5-HT2R subtypes A, B, and C equally support JCPyV entry and infection, and all subtypes contain an ASK motif, suggesting a conserved mechanism for viral entry. However, the role of the 5-HT2R ASK motifs and the activation of β-arrestin-associated proteins during internalization has not been fully elucidated. Through mutagenesis, the ASK motifs within 5-HT2BR and 5-HT2CR were identified as critical for JCPyV internalization and infectivity. Further, utilizing biochemical pulldown techniques, mutagenesis of the ASK motifs in 5-HT2BR and 5-HT2CR resulted in reduced β-arrestin binding. Utilizing small-molecule chemical inhibitors and RNA interference, G-protein receptor kinase 2 (GRK2) was determined to be required for JCPyV internalization and infection by mediating interactions between β-arrestin and the ASK motif of 5-HT2Rs. These findings demonstrate that GRK2 and β-arrestin interactions with 5-HT2Rs are critical for JCPyV entry by clathrin-mediated endocytosis and resultant infection.IMPORTANCE As intracellular parasites, viruses require a host cell to replicate and cause disease. Therefore, virus-host interactions contribute to viral pathogenesis. JC polyomavirus (JCPyV) infects most of the population, establishing a lifelong asymptomatic infection within the kidney. Under conditions of severe immunosuppression JCPyV may spread to the central nervous system, causing the fatal demyelinating disease progressive multifocal leukoencephalopathy (PML). Individuals living with HIV or undergoing immunomodulatory therapies are at risk for developing PML. The mechanisms of how JCPyV uses specific receptors on the surface of host cells to initiate internalization and infection is a poorly understood process. We have further identified cellular proteins involved in JCPyV internalization and infection and elucidated their specific interactions that are responsible for activation of receptors. Collectively, these findings illuminate how viruses usurp cellular receptors during infection, contributing to current development efforts for therapeutic options for the treatment or prevention of PML.
Collapse
|
19
|
Targeting GRK5 for Treating Chronic Degenerative Diseases. Int J Mol Sci 2021; 22:ijms22041920. [PMID: 33671974 PMCID: PMC7919044 DOI: 10.3390/ijms22041920] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/27/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest family of cell-surface receptors and they are responsible for the transduction of extracellular signals, regulating almost all aspects of mammalian physiology. These receptors are specifically regulated by a family of serine/threonine kinases, called GPCR kinases (GRKs). Given the biological role of GPCRs, it is not surprising that GRKs are also involved in several pathophysiological processes. Particular importance is emerging for GRK5, which is a multifunctional protein, expressed in different cell types, and it has been found located in single or multiple subcellular compartments. For instance, when anchored to the plasma membrane, GRK5 exerts its canonical function, regulating GPCRs. However, under certain conditions (e.g., pro-hypertrophic stimuli), GRK5 translocates to the nucleus of cells where it can interact with non-GPCR-related proteins as well as DNA itself to promote “non-canonical” signaling, including gene transcription. Importantly, due to these actions, several studies have demonstrated that GRK5 has a pivotal role in the pathogenesis of chronic-degenerative disorders. This is true in the cardiac cells, tumor cells, and neurons. For this reason, in this review article, we will inform the readers of the most recent evidence that supports the importance of targeting GRK5 to prevent the development or progression of cancer, cardiovascular, and neurological diseases.
Collapse
|
20
|
GRKs and Epac1 Interaction in Cardiac Remodeling and Heart Failure. Cells 2021; 10:cells10010154. [PMID: 33466800 PMCID: PMC7830799 DOI: 10.3390/cells10010154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 12/25/2022] Open
Abstract
β-adrenergic receptors (β-ARs) play a major role in the physiological regulation of cardiac function through signaling routes tightly controlled by G protein-coupled receptor kinases (GRKs). Although the acute stimulation of β-ARs and the subsequent production of cyclic AMP (cAMP) have beneficial effects on cardiac function, chronic stimulation of β-ARs as observed under sympathetic overdrive promotes the development of pathological cardiac remodeling and heart failure (HF), a leading cause of mortality worldwide. This is accompanied by an alteration in cAMP compartmentalization and the activation of the exchange protein directly activated by cAMP 1 (Epac1) signaling. Among downstream signals of β-ARs, compelling evidence indicates that GRK2, GRK5, and Epac1 represent attractive therapeutic targets for cardiac disease. Here, we summarize the pathophysiological roles of GRK2, GRK5, and Epac1 in the heart. We focus on their signalosome and describe how under pathological settings, these proteins can cross-talk and are part of scaffolded nodal signaling systems that contribute to a decreased cardiac function and HF development.
Collapse
|
21
|
Nitric Oxide and S-Nitrosylation in Cardiac Regulation: G Protein-Coupled Receptor Kinase-2 and β-Arrestins as Targets. Int J Mol Sci 2021; 22:ijms22020521. [PMID: 33430208 PMCID: PMC7825736 DOI: 10.3390/ijms22020521] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/24/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022] Open
Abstract
Cardiac diseases including heart failure (HF), are the leading cause of morbidity and mortality globally. Among the prominent characteristics of HF is the loss of β-adrenoceptor (AR)-mediated inotropic reserve. This is primarily due to the derangements in myocardial regulatory signaling proteins, G protein-coupled receptor (GPCR) kinases (GRKs) and β-arrestins (β-Arr) that modulate β-AR signal termination via receptor desensitization and downregulation. GRK2 and β-Arr2 activities are elevated in the heart after injury/stress and participate in HF through receptor inactivation. These GPCR regulators are modulated profoundly by nitric oxide (NO) produced by NO synthase (NOS) enzymes through S-nitrosylation due to receptor-coupled NO generation. S-nitrosylation, which is NO-mediated modification of protein cysteine residues to generate an S-nitrosothiol (SNO), mediates many effects of NO independently from its canonical guanylyl cyclase/cGMP/protein kinase G signaling. Herein, we review the knowledge on the NO system in the heart and S-nitrosylation-dependent modifications of myocardial GPCR signaling components GRKs and β-Arrs.
Collapse
|
22
|
Lee JH, Seo HW, Ryu JY, Lim CJ, Yi KY, Oh KS, Lee BH. KR-39038, a Novel GRK5 Inhibitor, Attenuates Cardiac Hypertrophy and Improves Cardiac Function in Heart Failure. Biomol Ther (Seoul) 2020; 28:482-489. [PMID: 32856617 PMCID: PMC7457178 DOI: 10.4062/biomolther.2020.129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 07/30/2020] [Accepted: 08/05/2020] [Indexed: 12/24/2022] Open
Abstract
G protein-coupled receptor kinase 5 (GRK5) has been considered as a potential target for the treatment of heart failure as it has been reported to be an important regulator of pathological cardiac hypertrophy. To discover novel scaffolds that selectively inhibit GRK5, we have identified a novel small molecule inhibitor of GRK5, KR-39038 [7-((3-((4-((3-aminopropyl)amino)butyl)amino)propyl)amino)-2-(2-chlorophenyl)-6-fluoroquinazolin-4(3H)-one]. KR-39038 exhibited potent inhibitory activity (IC50 value=0.02 µM) against GRK5 and significantly inhibited angiotensin II-induced cellular hypertrophy and HDAC5 phosphorylation in neonatal cardiomyocytes. In the pressure overload-induced cardiac hypertrophy mouse model, the daily oral administration of KR-39038 (30 mg/kg) for 14 days showed a 43% reduction in the left ventricular weight. Besides, KR-39038 treatment (10 and 30 mg/kg/day, p.o.) showed significant preservation of cardiac function and attenuation of myocardial remodeling in a rat model of chronic heart failure following coronary artery ligation. These results suggest that potent GRK5 inhibitor could effectively attenuate both cardiac hypertrophy and dysfunction in experimental heart failure, and KR-39038 may be useful as an effective GRK5 inhibitor for pharmaceutical applications.
Collapse
Affiliation(s)
- Jeong Hyun Lee
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Ho Won Seo
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Jae Yong Ryu
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Chae Jo Lim
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea.,Department of Medicinal and Pharmaceutical Chemistry, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Kyu Yang Yi
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea.,Department of Medicinal and Pharmaceutical Chemistry, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Kwang-Seok Oh
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea.,Department of Medicinal and Pharmaceutical Chemistry, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Byung Ho Lee
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea.,Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
23
|
Rukavina Mikusic NL, Silva MG, Pineda AM, Gironacci MM. Angiotensin Receptors Heterodimerization and Trafficking: How Much Do They Influence Their Biological Function? Front Pharmacol 2020; 11:1179. [PMID: 32848782 PMCID: PMC7417933 DOI: 10.3389/fphar.2020.01179] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/20/2020] [Indexed: 01/03/2023] Open
Abstract
G-protein–coupled receptors (GPCRs) are targets for around one third of currently approved and clinical prescribed drugs and represent the largest and most structurally diverse family of transmembrane signaling proteins, with almost 1000 members identified in the human genome. Upon agonist stimulation, GPCRs are internalized and trafficked inside the cell: they may be targeted to different organelles, recycled back to the plasma membrane or be degraded. Once inside the cell, the receptors may initiate other signaling pathways leading to different biological responses. GPCRs’ biological function may also be influenced by interaction with other receptors. Thus, the ultimate cellular response may depend not only on the activation of the receptor from the cell membrane, but also from receptor trafficking and/or the interaction with other receptors. This review is focused on angiotensin receptors and how their biological function is influenced by trafficking and interaction with others receptors.
Collapse
Affiliation(s)
- Natalia L Rukavina Mikusic
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina
| | - Mauro G Silva
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina
| | - Angélica M Pineda
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina
| | - Mariela M Gironacci
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina
| |
Collapse
|
24
|
Rodriguez BA, Bhan A, Beswick A, Elwood PC, Niiranen TJ, Salomaa V, Trégouët DA, Morange PE, Civelek M, Ben-Shlomo Y, Schlaeger T, Chen MH, Johnson AD, Johnson AD. A Platelet Function Modulator of Thrombin Activation Is Causally Linked to Cardiovascular Disease and Affects PAR4 Receptor Signaling. Am J Hum Genet 2020; 107:211-221. [PMID: 32649856 DOI: 10.1016/j.ajhg.2020.06.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/03/2020] [Indexed: 12/17/2022] Open
Abstract
Dual antiplatelet therapy reduces ischemic events in cardiovascular disease, but it increases bleeding risk. Thrombin receptors PAR1 and PAR4 are drug targets, but the role of thrombin in platelet aggregation remains largely unexplored in large populations. We performed a genome-wide association study (GWAS) of platelet aggregation in response to full-length thrombin, followed by clinical association analyses, Mendelian randomization, and functional characterization including iPSC-derived megakaryocyte and platelet experiments. We identified a single sentinel variant in the GRK5 locus (rs10886430-G, p = 3.0 × 10-42) associated with increased thrombin-induced platelet aggregation (β = 0.70, SE = 0.05). We show that disruption of platelet GRK5 expression by rs10886430-G is associated with enhanced platelet reactivity. The proposed mechanism of a GATA1-driven megakaryocyte enhancer is confirmed in allele-specific experiments. Utilizing further data, we demonstrate that the allelic effect is highly platelet- and thrombin-specific and not likely due to effects on thrombin levels. The variant is associated with increased risk of cardiovascular disease outcomes in UK BioBank, most strongly with pulmonary embolism. The variant associates with increased risk of stroke in the MEGASTROKE, UK BioBank, and FinnGen studies. Mendelian randomization analyses in independent samples support a causal role for rs10886430-G in increasing risk for stroke, pulmonary embolism, and venous thromboembolism through its effect on thrombin-induced platelet reactivity. We demonstrate that G protein-coupled receptor kinase 5 (GRK5) promotes platelet activation specifically via PAR4 receptor signaling. GRK5 inhibitors in development for the treatment of heart failure and cancer could have platelet off-target deleterious effects. Common variants in GRK5 may modify clinical outcomes with PAR4 inhibitors, and upregulation of GRK5 activity or signaling in platelets may have therapeutic benefits.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Andrew D Johnson
- National Heart, Lung, and Blood Institute, Division of Intramural Research, Population Sciences Branch, The Framingham Heart Study, Framingham, MA 01702, USA.
| |
Collapse
|
25
|
Chen X, Zhao X, Cooper M, Ma P. The Roles of GRKs in Hemostasis and Thrombosis. Int J Mol Sci 2020; 21:ijms21155345. [PMID: 32731360 PMCID: PMC7432802 DOI: 10.3390/ijms21155345] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022] Open
Abstract
Along with cancer, cardiovascular and cerebrovascular diseases remain by far the most common causes of death. Heart attacks and strokes are diseases in which platelets play a role, through activation on ruptured plaques and subsequent thrombus formation. Most platelet agonists activate platelets via G protein-coupled receptors (GPCRs), which make these receptors ideal targets for many antiplatelet drugs. However, little is known about the mechanisms that provide feedback regulation on GPCRs to limit platelet activation. Emerging evidence from our group and others strongly suggests that GPCR kinases (GRKs) are critical negative regulators during platelet activation and thrombus formation. In this review, we will summarize recent findings on the role of GRKs in platelet biology and how one specific GRK, GRK6, regulates the hemostatic response to vascular injury. Furthermore, we will discuss the potential role of GRKs in thrombotic disorders, such as thrombotic events in COVID-19 patients. Studies on the function of GRKs during platelet activation and thrombus formation have just recently begun, and a better understanding of the role of GRKs in hemostasis and thrombosis will provide a fruitful avenue for understanding the hemostatic response to injury. It may also lead to new therapeutic options for the treatment of thrombotic and cardiovascular disorders.
Collapse
Affiliation(s)
- Xi Chen
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (X.C.); (X.Z.); (M.C.)
| | - Xuefei Zhao
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (X.C.); (X.Z.); (M.C.)
- Cyrus Tang Hematology Center, Soochow University, Suzhou 215123, China
| | - Matthew Cooper
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (X.C.); (X.Z.); (M.C.)
| | - Peisong Ma
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (X.C.); (X.Z.); (M.C.)
- Correspondence: ; Tel.: +1-215-955-3966
| |
Collapse
|
26
|
Boccella N, Paolillo R, Perrino C. Epac1 inhibition as a novel cardioprotective strategy: lights and shadows on GRK5 canonical and non-canonical functions. Cardiovasc Res 2020; 115:1684-1686. [PMID: 31304966 DOI: 10.1093/cvr/cvz188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Nicola Boccella
- Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples, Italy
| | - Roberta Paolillo
- Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples, Italy
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples, Italy
| |
Collapse
|
27
|
Laudette M, Coluccia A, Sainte-Marie Y, Solari A, Fazal L, Sicard P, Silvestri R, Mialet-Perez J, Pons S, Ghaleh B, Blondeau JP, Lezoualc'h F. Identification of a pharmacological inhibitor of Epac1 that protects the heart against acute and chronic models of cardiac stress. Cardiovasc Res 2020; 115:1766-1777. [PMID: 30873562 DOI: 10.1093/cvr/cvz076] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/24/2018] [Accepted: 03/13/2019] [Indexed: 12/16/2022] Open
Abstract
AIMS Recent studies reported that cAMP-binding protein Epac1-deficient mice were protected against various forms of cardiac stress, suggesting that pharmacological inhibition of Epac1 could be beneficial for the treatment of cardiac diseases. To test this assumption, we characterized an Epac1-selective inhibitory compound and investigated its potential cardioprotective properties. METHODS AND RESULTS We used the Epac1-BRET (bioluminescence resonance energy transfer) for searching for non-cyclic nucleotide Epac1 modulators. A thieno[2,3-b]pyridine derivative, designated as AM-001 was identified as a non-competitive inhibitor of Epac1. AM-001 has no antagonist effect on Epac2 or protein kinase A activity. This small molecule prevents the activation of the Epac1 downstream effector Rap1 in cultured cells, in response to the Epac1 preferential agonist, 8-CPT-AM. In addition, we found that AM-001 inhibited Epac1-dependent deleterious effects such as cardiomyocyte hypertrophy and death. Importantly, AM-001-mediated inhibition of Epac1 reduces infarct size after mouse myocardial ischaemia/reperfusion injury. Finally, AM-001 attenuates cardiac hypertrophy, inflammation and fibrosis, and improves cardiac function during chronic β-adrenergic receptor activation with isoprenaline (ISO) in mice. At the molecular level, ISO increased Epac1-G protein-coupled receptor kinase 5 (GRK5) interaction and induced GRK5 nuclear import and histone deacetylase type 5 (HDAC5) nuclear export to promote the activity of the prohypertrophic transcription factor, myocyte enhancer factor 2 (MEF2). Inversely, AM-001 prevented the non-canonical action of GRK5 on HDAC5 cytoplasmic shuttle to down-regulate MEF2 transcriptional activity. CONCLUSION Our study represents a 'proof-of-concept' for the therapeutic effectiveness of inhibiting Epac1 activity in cardiac disease using small-molecule pharmacotherapy.
Collapse
Affiliation(s)
- Marion Laudette
- INSERM UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, 1 avenue Jean Pouhlès, Toulouse, France.,Université de Toulouse-Paul Sabatier, Toulouse, France
| | - Antonio Coluccia
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Laboratory Affiliated to Instituto Pasteur Italia-Fondazione Cenci Bolognetti, Roma, Italy
| | - Yannis Sainte-Marie
- INSERM UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, 1 avenue Jean Pouhlès, Toulouse, France.,Université de Toulouse-Paul Sabatier, Toulouse, France
| | - Andrea Solari
- INSERM UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, 1 avenue Jean Pouhlès, Toulouse, France.,Université de Toulouse-Paul Sabatier, Toulouse, France
| | - Loubina Fazal
- INSERM UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, 1 avenue Jean Pouhlès, Toulouse, France.,Université de Toulouse-Paul Sabatier, Toulouse, France
| | - Pierre Sicard
- INSERM, CNRS, Université de Montpellier, PHYMEDEXP, IPAM, Montpellier, France
| | - Romano Silvestri
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Laboratory Affiliated to Instituto Pasteur Italia-Fondazione Cenci Bolognetti, Roma, Italy
| | - Jeanne Mialet-Perez
- INSERM UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, 1 avenue Jean Pouhlès, Toulouse, France.,Université de Toulouse-Paul Sabatier, Toulouse, France
| | | | - Bijan Ghaleh
- INSERM, U955, Equipe 03, F-94000 Créteil, France
| | - Jean-Paul Blondeau
- Université Paris-Sud, Faculté de Pharmacie, Châtenay-Malabry Cedex, France
| | - Frank Lezoualc'h
- INSERM UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, 1 avenue Jean Pouhlès, Toulouse, France.,Université de Toulouse-Paul Sabatier, Toulouse, France
| |
Collapse
|
28
|
Rowlands RA, Cato MC, Waldschmidt HV, Bouley RA, Chen Q, Avramova L, Larsen SD, Tesmer JJG, White AD. Structure-Based Design of Selective, Covalent G Protein-Coupled Receptor Kinase 5 Inhibitors. ACS Med Chem Lett 2019; 10:1628-1634. [PMID: 31857838 DOI: 10.1021/acsmedchemlett.9b00365] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022] Open
Abstract
The ability of G protein-coupled receptor (GPCR) kinases (GRKs) to regulate desensitization of GPCRs has made GRK2 and GRK5 attractive targets for treating heart failure and other diseases such as cancer. Although advances have been made toward developing inhibitors that are selective for GRK2, there have been far fewer reports of GRK5 selective compounds. Herein, we describe the development of GRK5 subfamily selective inhibitors, 5 and 16d that covalently interact with a nonconserved cysteine (Cys474) unique to this subfamily. Compounds 5 and 16d feature a highly amenable pyrrolopyrimidine scaffold that affords high nanomolar to low micromolar activity that can be easily modified with Michael acceptors with various reactivities and geometries. Our work thereby establishes a new pathway toward further development of subfamily selective GRK inhibitors and establishes Cys474 as a new and useful covalent handle in GRK5 drug discovery.
Collapse
Affiliation(s)
- Rachel A. Rowlands
- University of Michigan, Vahlteich Medicinal Chemistry Core, College of Pharmacy, 428 Church Street, Ann Arbor, Michigan 48109, United States
| | - M. Claire Cato
- University of Michigan, Life Sciences Institute, Departments of Pharmacology and Biological Chemistry, 210 Washtenaw Avenue, Ann Arbor, Michigan 48109, United States
| | - Helen V. Waldschmidt
- University of Michigan, Vahlteich Medicinal Chemistry Core, College of Pharmacy, 428 Church Street, Ann Arbor, Michigan 48109, United States
| | - Renee A. Bouley
- University of Michigan, Life Sciences Institute, Departments of Pharmacology and Biological Chemistry, 210 Washtenaw Avenue, Ann Arbor, Michigan 48109, United States
| | - Qiuyan Chen
- Purdue University, Departments of Biological Sciences and Medicinal Chemistry and Molecular Pharmacology, 915 W State Street, West Lafayette, Indiana 47907, United States
| | - Larisa Avramova
- Purdue University, Departments of Biological Sciences and Medicinal Chemistry and Molecular Pharmacology, 915 W State Street, West Lafayette, Indiana 47907, United States
| | - Scott D. Larsen
- University of Michigan, Vahlteich Medicinal Chemistry Core, College of Pharmacy, 428 Church Street, Ann Arbor, Michigan 48109, United States
| | - John J. G. Tesmer
- Purdue University, Departments of Biological Sciences and Medicinal Chemistry and Molecular Pharmacology, 915 W State Street, West Lafayette, Indiana 47907, United States
| | - Andrew D. White
- University of Michigan, Vahlteich Medicinal Chemistry Core, College of Pharmacy, 428 Church Street, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
29
|
Aung N, Vargas JD, Yang C, Cabrera CP, Warren HR, Fung K, Tzanis E, Barnes MR, Rotter JI, Taylor KD, Manichaikul AW, Lima JA, Bluemke DA, Piechnik SK, Neubauer S, Munroe PB, Petersen SE. Genome-Wide Analysis of Left Ventricular Image-Derived Phenotypes Identifies Fourteen Loci Associated With Cardiac Morphogenesis and Heart Failure Development. Circulation 2019; 140:1318-1330. [PMID: 31554410 PMCID: PMC6791514 DOI: 10.1161/circulationaha.119.041161] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The genetic basis of left ventricular (LV) image-derived phenotypes, which play a vital role in the diagnosis, management, and risk stratification of cardiovascular diseases, is unclear at present. METHODS The LV parameters were measured from the cardiovascular magnetic resonance studies of the UK Biobank. Genotyping was done using Affymetrix arrays, augmented by imputation. We performed genome-wide association studies of 6 LV traits-LV end-diastolic volume, LV end-systolic volume, LV stroke volume, LV ejection fraction, LV mass, and LV mass to end-diastolic volume ratio. The replication analysis was performed in the MESA study (Multi-Ethnic Study of Atherosclerosis). We identified the candidate genes at genome-wide significant loci based on the evidence from extensive bioinformatic analyses. Polygenic risk scores were constructed from the summary statistics of LV genome-wide association studies to predict the heart failure events. RESULTS The study comprised 16 923 European UK Biobank participants (mean age 62.5 years; 45.8% men) without prevalent myocardial infarction or heart failure. We discovered 14 genome-wide significant loci (3 loci each for LV end-diastolic volume, LV end-systolic volume, and LV mass to end-diastolic volume ratio; 4 loci for LV ejection fraction, and 1 locus for LV mass) at a stringent P<1×10-8. Three loci were replicated at Bonferroni significance and 7 loci at nominal significance (P<0.05 with concordant direction of effect) in the MESA study (n=4383). Follow-up bioinformatic analyses identified 28 candidate genes that were enriched in the cardiac developmental pathways and regulation of the LV contractile mechanism. Eight genes (TTN, BAG3, GRK5, HSPB7, MTSS1, ALPK3, NMB, and MMP11) supported by at least 2 independent lines of in silico evidence were implicated in the cardiac morphogenesis and heart failure development. The polygenic risk scores of LV phenotypes were predictive of heart failure in a holdout UK Biobank sample of 3106 cases and 224 134 controls (odds ratio 1.41, 95% CI 1.26 - 1.58, for the top quintile versus the bottom quintile of the LV end-systolic volume risk score). CONCLUSIONS We report 14 genetic loci and indicate several candidate genes that not only enhance our understanding of the genetic architecture of prognostically important LV phenotypes but also shed light on potential novel therapeutic targets for LV remodeling.
Collapse
Affiliation(s)
- Nay Aung
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (N.A., H.R.W., K.F., P.B.M., S.E.P.), Queen Mary University of London, United Kingdom
- National Institute for Health Research, Barts Cardiovascular Biomedical Research Centre (N.A., H.R.W., K.F., P.B.M., S.E.P.), Queen Mary University of London, United Kingdom
- Barts Heart Centre, St Bartholomew’s Hospital, Barts Health National Health Service Trust, West Smithfield, London, United Kingdom (N.A., K.F., S.E.P.)
| | - Jose D. Vargas
- Medstar Heart and Vascular Institute, Medstar Georgetown University Hospital, Washington, DC (J.D.V.)
| | - Chaojie Yang
- Center for Public Health Genomics, University of Virginia, Charlottesville (C.Y., A.W.M.)
| | - Claudia P. Cabrera
- Centre for Translational Bioinformatics (C.P.C., E.T., M.R.B.), Queen Mary University of London, United Kingdom
| | - Helen R. Warren
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (N.A., H.R.W., K.F., P.B.M., S.E.P.), Queen Mary University of London, United Kingdom
- National Institute for Health Research, Barts Cardiovascular Biomedical Research Centre (N.A., H.R.W., K.F., P.B.M., S.E.P.), Queen Mary University of London, United Kingdom
| | - Kenneth Fung
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (N.A., H.R.W., K.F., P.B.M., S.E.P.), Queen Mary University of London, United Kingdom
- National Institute for Health Research, Barts Cardiovascular Biomedical Research Centre (N.A., H.R.W., K.F., P.B.M., S.E.P.), Queen Mary University of London, United Kingdom
- Barts Heart Centre, St Bartholomew’s Hospital, Barts Health National Health Service Trust, West Smithfield, London, United Kingdom (N.A., K.F., S.E.P.)
| | - Evan Tzanis
- Centre for Translational Bioinformatics (C.P.C., E.T., M.R.B.), Queen Mary University of London, United Kingdom
| | - Michael R. Barnes
- Centre for Translational Bioinformatics (C.P.C., E.T., M.R.B.), Queen Mary University of London, United Kingdom
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Division of Genomics Outcomes, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-University of California, Los Angeles, Medical Center, Torrance, CA (J.I.R., K.D.T.)
| | - Kent D. Taylor
- The Institute for Translational Genomics and Population Sciences, Division of Genomics Outcomes, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-University of California, Los Angeles, Medical Center, Torrance, CA (J.I.R., K.D.T.)
| | - Ani W. Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville (C.Y., A.W.M.)
| | - Joao A.C. Lima
- Division of Cardiology, Johns Hopkins University, Baltimore, MD (J.AC.L.)
| | - David A. Bluemke
- Department of Radiology, University of Wisconsin, Madison (D.A.B.)
| | - Stefan K. Piechnik
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, United Kingdom (S.K.P., S.N.)
| | - Stefan Neubauer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, United Kingdom (S.K.P., S.N.)
| | - Patricia B. Munroe
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (N.A., H.R.W., K.F., P.B.M., S.E.P.), Queen Mary University of London, United Kingdom
- National Institute for Health Research, Barts Cardiovascular Biomedical Research Centre (N.A., H.R.W., K.F., P.B.M., S.E.P.), Queen Mary University of London, United Kingdom
| | - Steffen E. Petersen
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (N.A., H.R.W., K.F., P.B.M., S.E.P.), Queen Mary University of London, United Kingdom
- National Institute for Health Research, Barts Cardiovascular Biomedical Research Centre (N.A., H.R.W., K.F., P.B.M., S.E.P.), Queen Mary University of London, United Kingdom
- Barts Heart Centre, St Bartholomew’s Hospital, Barts Health National Health Service Trust, West Smithfield, London, United Kingdom (N.A., K.F., S.E.P.)
| |
Collapse
|
30
|
Precision Medicine for Heart Failure: Back to the Future. J Am Coll Cardiol 2019; 73:1185-1188. [PMID: 30871702 DOI: 10.1016/j.jacc.2019.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/16/2018] [Accepted: 01/01/2019] [Indexed: 11/21/2022]
|
31
|
Gurevich VV, Gurevich EV. GPCR Signaling Regulation: The Role of GRKs and Arrestins. Front Pharmacol 2019; 10:125. [PMID: 30837883 PMCID: PMC6389790 DOI: 10.3389/fphar.2019.00125] [Citation(s) in RCA: 363] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/31/2019] [Indexed: 12/13/2022] Open
Abstract
Every animal species expresses hundreds of different G protein-coupled receptors (GPCRs) that respond to a wide variety of external stimuli. GPCRs-driven signaling pathways are involved in pretty much every physiological function and in many pathologies. Therefore, GPCRs are targeted by about a third of clinically used drugs. The signaling of most GPCRs via G proteins is terminated by the phosphorylation of active receptor by specific kinases (GPCR kinases, or GRKs) and subsequent binding of arrestin proteins, that selectively recognize active phosphorylated receptors. In addition, GRKs and arrestins play a role in multiple signaling pathways in the cell, both GPCR-initiated and receptor-independent. Here we focus on the mechanisms of GRK- and arrestin-mediated regulation of GPCR signaling, which includes homologous desensitization and redirection of signaling to additional pathways by bound arrestins.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
32
|
Goswami S. G protein-coupled receptor signaling in cardiovascular system: Specificity versus diversity. JOURNAL OF THE PRACTICE OF CARDIOVASCULAR SCIENCES 2019. [DOI: 10.4103/jpcs.jpcs_37_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
33
|
Grisanti LA, Schumacher SM, Tilley DG, Koch WJ. Designer Approaches for G Protein-Coupled Receptor Modulation for Cardiovascular Disease. JACC Basic Transl Sci 2018; 3:550-562. [PMID: 30175279 PMCID: PMC6115700 DOI: 10.1016/j.jacbts.2017.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 12/14/2017] [Indexed: 12/17/2022]
Abstract
The new horizon for cardiac therapy may lie beneath the surface, with the downstream mediators of G protein–coupled receptor (GPCR) activity. Targeted approaches have shown that receptor activation may be biased toward signaling through G proteins or through GPCR kinases (GRKs) and β-arrestins, with divergent functional outcomes. In addition to these canonical roles, numerous noncanonical activities of GRKs and β-arrestins have been demonstrated to modulate GPCR signaling at all levels of receptor activation and regulation. Further, research continues to identify novel GRK/effector and β-arrestin/effector complexes with distinct impacts on cardiac function in the normal heart and the diseased heart. Coupled with the identification of once orphan receptors and endogenous ligands with beneficial cardiovascular effects, this expands the repertoire of GPCR targets. Together, this research highlights the potential for focused therapeutic activation of beneficial pathways, with simultaneous exclusion or inhibition of detrimental signaling, and represents a new wave of therapeutic development.
Collapse
Key Words
- AR, adrenergic receptor
- AT1R, angiotensin II type 1A receptor
- CRF, corticotropin-releasing factor
- EGFR, epidermal growth factor receptor
- ERK1/2, extracellular signal-regulated kinase
- G protein–coupled receptor kinases
- G protein–coupled receptors
- GPCR, G protein–coupled receptor
- GRK, G protein–coupled receptor kinase
- HF, heart failure
- ICL, intracellular loop
- PI3K, phosphoinositide 3-kinase
- SERCA2a, sarco(endo)plasmic reticulum Ca2+-ATPase
- SII, [Sar(1), Ile (4), Ile(8)]-angiotensin II
- biased ligands
Collapse
Affiliation(s)
- Laurel A Grisanti
- Center for Translational Medicine and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania.,Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Sarah M Schumacher
- Center for Translational Medicine and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania.,Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Douglas G Tilley
- Center for Translational Medicine and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Walter J Koch
- Center for Translational Medicine and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
34
|
Abstract
Pharmacogenetics is an emerging area of medicine, and more work is needed to fully integrate it into a clinical setting for the benefit of patients. Genetic markers can influence the action of many drugs, including those that prevent and treat cardiovascular conditions. Genotyping is not yet commonplace, but guidelines are being put in place to help practitioners determine the effect a genetic marker may have on certain drugs. With advancements in genetic technology and falling costs, genotyping could be available to all patients via a simple saliva test. This would be a cost-effective way for practitioners to determine the most effective treatment for individuals, reducing "trial and error," adverse effects, and rehospitalization rates and increasing patient compliance. Cardiovascular diseases are the leading causes of death worldwide, so using the most effective medication to treat or prevent them is of utmost importance in reducing incidence and mortality.
Collapse
|
35
|
Abstract
G protein-coupled receptor kinases (GRKs) are classically known for their role in regulating the activity of the largest known class of membrane receptors, which influence diverse biological processes in every cell type in the human body. As researchers have tried to uncover how this family of kinases, containing only 7 members, achieves selective and coordinated control of receptors, they have uncovered a growing number of noncanonical activities for these kinases. These activities include phosphorylation of nonreceptor targets and kinase-independent molecular interactions. In particular, GRK2, GRK3, and GRK5 are the predominant members expressed in the heart. Their canonical and noncanonical actions within cardiac and other tissues have significant implications for cardiovascular function in healthy animals and for the development and progression of disease. This review summarizes what is currently known regarding the activity of these kinases, and particularly the role of GRK2 and GRK5 in the molecular alterations that occur during heart failure. This review further highlights areas of GRK regulation that remain poorly understood and how they may represent novel targets for therapeutic development.
Collapse
|
36
|
Yeh ST, Zambrano CM, Koch WJ, Purcell NH. PH domain leucine-rich repeat protein phosphatase 2 (PHLPP2) regulates G-protein-coupled receptor kinase 5 (GRK5)-induced cardiac hypertrophy in vitro. J Biol Chem 2018; 293:8056-8064. [PMID: 29628444 DOI: 10.1074/jbc.m117.809913] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/30/2018] [Indexed: 12/20/2022] Open
Abstract
PH domain leucine-rich repeat protein phosphatase (PHLPP) is a serine/threonine phosphatase that has been shown to regulate cell growth and survival through dephosphorylation of several members of the AGC family of kinases. G-protein-coupled receptor kinase 5 (GRK5) is an AGC kinase that regulates phenylephrine (PE)-induced cardiac hypertrophy through its noncanonical function of directly targeting proteins to the nucleus to regulate transcription. Here we investigated the possibility that the PHLPP2 isoform can regulate GRK5-induced cardiomyocyte hypertrophy in neonatal rat ventricular myocytes (NRVMs). We show that removal of PHLPP2 by siRNA induces hypertrophic growth of NRVMs as measured by cell size changes at baseline, potentiated PE-induced cell size changes, and re-expression of fetal genes atrial natriuretic factor and brain natriuretic peptide. Endogenous GRK5 and PHLPP2 were found to interact in NRVMs, and PE-induced nuclear accumulation of GRK5 was enhanced upon down-regulation of PHLPP2. Conversely, overexpression of PHLPP2 blocked PE-induced hypertrophic growth, re-expression of fetal genes, and nuclear accumulation of GRK5, which depended on its phosphatase activity. Finally, using siRNA against GRK5, we found that GRK5 was necessary for the hypertrophic response induced by PHLPP2 knockdown. Our findings demonstrate for the first time a novel regulation of GRK5 by the phosphatase PHLPP2, which modulates hypertrophic growth. Understanding the signaling pathways affected by PHLPP2 has potential for new therapeutic targets in the treatment of cardiac hypertrophy and failure.
Collapse
Affiliation(s)
- Szu-Tsen Yeh
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, California 92093
| | - Cristina M Zambrano
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, California 92093
| | - Walter J Koch
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Nicole H Purcell
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, California 92093.
| |
Collapse
|
37
|
GRK5 functions as an oncogenic factor in non-small-cell lung cancer. Cell Death Dis 2018; 9:295. [PMID: 29463786 PMCID: PMC5833409 DOI: 10.1038/s41419-018-0299-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/04/2018] [Indexed: 01/22/2023]
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide, and non-small-cell lung cancer (NSCLC) accounts for about 80% of all cases, which is the major subgroup of lung cancer. G protein-coupled receptor kinase 5 (GRK5) has been demonstrated to play pivotal roles in both development and progression of several pathological conditions including cancer. Here, we found that GRK5 expression was significantly increased in 539 NSCLC cancerous tissues than that in 99 normal non-cancerous tissues by immunohistochemistry analysis; we also showed intensive higher positive staining percentage in female and adenocarcinoma (ADC) NSCLC patients than that in male and squamous cell carcinoma (SCC) patients, respectively. In addition, GRK5 high expression NSCLC patients had a worse overall survival rate than the low expression patients. We provided evidence showing that both the mRNA and protein expression levels of GRK5 were increased in NSCLC cancerous cell lines (GLC-82, SPC-A-1, H520, H838, H358, A549, and H1299) comparing with that in normal human bronchial epithelium cell line (BEAS-2B), and identified many GRK5 mutations in NSCLC cancerous tissues. In addition, we found that depletion of GRK5 inhibited NSCLC cancerous cell proliferation, migration in vitro, and xenograft tumor formation in vivo. Furthermore, GRK5 knockdown promoted cell cycle arrest at G2/M phase and induced cellular apoptosis. In summary, our data reveal an oncogenic role of GRK5 in NSCLC progression, indicating that GRK5 could be used as a new therapeutic target in future.
Collapse
|
38
|
Seo SK, Kim N, Lee JH, Kim SM, Lee SY, Bae JW, Hwang KK, Kim DW, Koch WJ, Cho MC. β-arrestin2 Affects Cardiac Progenitor Cell Survival through Cell Mobility and Tube Formation in Severe Hypoxia. Korean Circ J 2018; 48:296-309. [PMID: 29625512 PMCID: PMC5889979 DOI: 10.4070/kcj.2017.0119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 01/03/2018] [Accepted: 01/17/2018] [Indexed: 11/15/2022] Open
Abstract
Background and Objectives β-arrestin2 (β-arr2) basically regulates multiple signaling pathways in mammalian cells by desensitization and internalization of G-protein coupled receptors (GPCRs). We investigated impacts of β-arr2 on survival, mobility, and tube formation of cardiac progenitor cells (CPCs) obtained from wild-type (WT) mouse (CPC-WT), and β-arr2 knock-out (KO) mouse (CPC-KO) cultured in presence or absence of serum and oxygen as non-canonical roles in GPCR system. Methods CPCs were cultured in Dulbecco's Modified Eagle Medium/Nutrient Mixture F-12 -based media containing fetal bovine serum and growth factors. Survival of 2 types of CPCs in hypoxia and/or serum deprivation was measured by fluorescence-activated cell sorting. Wound healing ability, and tube formation ability on Matrigel of 2 kinds of CPCs were compared in normoxic and hypoxic cultures. Protein expression related to survival and mobility were measured with the Western blot for each culture conditions. Results CPC-KO showed significantly worse mobility in the wound healing assay and in tube formation on Matrigel especially in hypoxic culture than did the CPC-WT. Also, CPC-KO showed significantly higher apoptosis fraction in both normoxic and hypoxic cultures than did the CPC-WT. Expression of proteins associated with cell survival and mobility, e.g., protein kinase B (Akt), β-catenin, and glycogen synthase kinase-3β (GSK-3β) was significantly worse in CPC-KO. Conclusions The CPC-KO had significantly worse cell mobility, tube formation ability, and survival than the CPC-WT, especially in the hypoxic cultures. Apparently, β-arr2 is important on CPC survival by means of mobility and tube formation in myocardial ischemia.
Collapse
Affiliation(s)
- Seul Ki Seo
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Nari Kim
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Ju Hee Lee
- Chungbuk Regional Cardiocerebrovascular Center, Chungbuk National University Hospital, Cheongju, Korea
| | - Sang Min Kim
- Chungbuk Regional Cardiocerebrovascular Center, Chungbuk National University Hospital, Cheongju, Korea
| | - Sang Yeub Lee
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Korea.,Chungbuk Regional Cardiocerebrovascular Center, Chungbuk National University Hospital, Cheongju, Korea
| | - Jang Whan Bae
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Korea. .,Chungbuk Regional Cardiocerebrovascular Center, Chungbuk National University Hospital, Cheongju, Korea
| | - Kyung Kuk Hwang
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Korea.,Chungbuk Regional Cardiocerebrovascular Center, Chungbuk National University Hospital, Cheongju, Korea
| | - Dong Woon Kim
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Korea.,Chungbuk Regional Cardiocerebrovascular Center, Chungbuk National University Hospital, Cheongju, Korea
| | - Walter J Koch
- Center for Translational Medicine, Department of Pharmacology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Myeong Chan Cho
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Korea.,Chungbuk Regional Cardiocerebrovascular Center, Chungbuk National University Hospital, Cheongju, Korea
| |
Collapse
|
39
|
Zheng C, Lo CY, Meng Z, Li Z, Zhong M, Zhang P, Lu J, Yang Z, Yan F, Zhang Y, Huang Y, Yao X. Gastrodin Inhibits Store-Operated Ca 2+ Entry and Alleviates Cardiac Hypertrophy. Front Pharmacol 2017; 8:222. [PMID: 28487655 PMCID: PMC5404510 DOI: 10.3389/fphar.2017.00222] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/10/2017] [Indexed: 11/13/2022] Open
Abstract
Cardiac hypertrophy is a major risk factor for heart failure, which are among the leading causes of human death. Gastrodin is a small molecule that has been used clinically to treat neurological and vascular diseases for many years without safety issues. In the present study, we examined protective effect of gastrodin against cardiac hypertrophy and explored the underlying mechanism. Phenylephrine and angiotensin II were used to induce cardiac hypertrophy in a mouse model and a cultured cardiomyocyte model. Gastrodin was found to alleviate the cardiac hypertrophy in both models. Mechanistically, gastrodin attenuated the store-operated Ca2+ entry (SOCE) by reducing the expression of STIM1 and Orai1, two key proteins in SOCE, in animal models as well as in cultured cardiomyocyte model. Furthermore, suppressing SOCE by RO2959, Orai1-siRNAs or STIM1-siRNAs markedly attenuated the phenylephrine-induced hypertrophy in cultured cardiomyocyte model. Together, these results showed that gastrodin inhibited cardiac hypertrophy and it also reduced the SOCE via its action on the expression of STIM1 and Orai1. Furthermore, suppression of SOCE could reduce the phenylephrine-induced cardiomyocyte hypertrophy, suggesting that SOCE-STIM1-Orai1 is located upstream of hypertrophy.
Collapse
Affiliation(s)
- Changbo Zheng
- Li Ka Shing Institute of Health Sciences and School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong KongHong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong KongShenzhen, China
| | - Chun-Yin Lo
- Li Ka Shing Institute of Health Sciences and School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong KongHong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong KongShenzhen, China
| | - Zhaoyue Meng
- Li Ka Shing Institute of Health Sciences and School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong KongHong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong KongShenzhen, China.,School of Life Sciences, The Chinese University of Hong KongHong Kong, China
| | - Zhichao Li
- Li Ka Shing Institute of Health Sciences and School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong KongHong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong KongShenzhen, China
| | - Mingkui Zhong
- Li Ka Shing Institute of Health Sciences and School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong KongHong Kong, China
| | - Peng Zhang
- Li Ka Shing Institute of Health Sciences and School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong KongHong Kong, China
| | - Jun Lu
- Li Ka Shing Institute of Health Sciences and School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong KongHong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong KongShenzhen, China
| | - Zhaoxiang Yang
- Institute for Drug Research and Development, Kunming Pharmaceutical CorporationKunming, China
| | - Fuman Yan
- Li Ka Shing Institute of Health Sciences and School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong KongHong Kong, China
| | - Yunting Zhang
- Li Ka Shing Institute of Health Sciences and School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong KongHong Kong, China
| | - Yu Huang
- Li Ka Shing Institute of Health Sciences and School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong KongHong Kong, China
| | - Xiaoqiang Yao
- Li Ka Shing Institute of Health Sciences and School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong KongHong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong KongShenzhen, China
| |
Collapse
|
40
|
Park CH, Lee JH, Lee MY, Lee JH, Lee BH, Oh KS. A novel role of G protein-coupled receptor kinase 5 in urotensin II-stimulated cellular hypertrophy in H9c2 UT cells. Mol Cell Biochem 2016; 422:151-160. [PMID: 27613164 DOI: 10.1007/s11010-016-2814-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/29/2016] [Indexed: 12/26/2022]
Abstract
Urotensin II (UII) is a neural hormone that induces cardiac hypertrophy and may be involved in the pathogenesis of cardiac remodeling and heart failure. Hypertrophy has been linked to histone deacetylase 5 (HDAC5) phosphorylation and nuclear factor κB (NF-κB) translocation, both of which are predominantly mediated by G protein-coupled receptor kinase 5 (GRK5). In the present study, we found that UII rapidly and strongly stimulated nuclear export of HDAC5 and nuclear import of NF-κB in H9c2 cells overexpressing the urotensin II receptor (H9c2UT). Hence, we hypothesized that GRK5 and its signaling pathway may play a role in UII-mediated cellular hypertrophy. H9c2UT cells were transduced with a GRK5 small hairpin RNA interference recombinant lentivirus, resulting in the down-regulation of GRK5. Under UII stimulation, reduced levels of GRK5 in H9c2UT cells led to suppression of UII-mediated HDAC5 phosphorylation and activation of the NF-κB signaling pathway. In contrast, UII-mediated activations of ERK1/2 and GSK3α/β were not affected by down-regulation of GRK5. In a cellular hypertrophy assay, down-regulation of GRK5 significantly suppressed UII-mediated hypertrophy of H9c2UT cells. Furthermore, UII-mediated cellular hypertrophy was inhibited by amlexanox, a selective GRK5 inhibitor, in H9c2UT cells and neonatal cardiomyocytes. Our results suggest that GRK5 may be involved in a UII-mediated hypertrophic response via activation of NF-κB and HDAC5 at least in part by ERK1/2 and GSK3α/β-independent pathways.
Collapse
Affiliation(s)
- Cheon Ho Park
- Center for Drug Discovery Technology, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Ju Hee Lee
- Center for Drug Discovery Technology, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Mi Young Lee
- Center for Drug Discovery Technology, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Jeong Hyun Lee
- Center for Drug Discovery Technology, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Byung Ho Lee
- Center for Drug Discovery Technology, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea. .,Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, Republic of Korea.
| | - Kwang-Seok Oh
- Center for Drug Discovery Technology, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea. .,Department of Medicinal and Pharmaceutical Chemistry, University of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
41
|
Hullmann J, Traynham CJ, Coleman RC, Koch WJ. The expanding GRK interactome: Implications in cardiovascular disease and potential for therapeutic development. Pharmacol Res 2016; 110:52-64. [PMID: 27180008 DOI: 10.1016/j.phrs.2016.05.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 12/11/2022]
Abstract
Heart failure (HF) is a global epidemic with the highest degree of mortality and morbidity of any disease presently studied. G protein-coupled receptors (GPCRs) are prominent regulators of cardiovascular function. Activated GPCRs are "turned off" by GPCR kinases (GRKs) in a process known as "desensitization". GRKs 2 and 5 are highly expressed in the heart, and known to be upregulated in HF. Over the last 20 years, both GRK2 and GRK5 have been demonstrated to be critical mediators of the molecular alterations that occur in the failing heart. In the present review, we will highlight recent findings that further characterize "non-canonical" GRK signaling observed in HF. Further, we will also present potential therapeutic strategies (i.e. small molecule inhibition, microRNAs, gene therapy) that may have potential in combating the deleterious effects of GRKs in HF.
Collapse
Affiliation(s)
| | - Christopher J Traynham
- Center for Translational Medicine, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, United States
| | - Ryan C Coleman
- Center for Translational Medicine, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, United States
| | - Walter J Koch
- Center for Translational Medicine, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, United States.
| |
Collapse
|