1
|
Mi K, Wang X, Ma C, Tan Y, Zhao G, Cao X, Yuan H. NLRX1 attenuates endoplasmic reticulum stress via STING in cardiac hypertrophy. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119852. [PMID: 39357547 DOI: 10.1016/j.bbamcr.2024.119852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/15/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Endoplasmic reticulum stress-induced cell apoptosis is a pivotal mechanism underlying the progression of cardiac hypertrophy. NLRX1, a member of the NOD-like receptor family, modulates various cellular processes, including STING, NF-κB, MAPK pathways, reactive oxygen species production, essential metabolic pathways, autophagy and cell death. Emerging evidence suggests that NLRX1 may offer protection against diverse cardiac diseases. However, the impacts and mechanisms of NLRX1 on endoplasmic reticulum stress in cardiac hypertrophy remains largely unexplored. In our study, we observed that the NLRX1 and phosphorylated STING (p-STING) were highly expressed in both hypertrophic mouse heart and cellular model of cardiac hypertrophy. Whereas over-expression of NLRX1 mitigated the expression levels of p-STING, as well as the endoplasmic reticulum stress markers, including transcription activating factor 4 (ATF4), C/EBP homologous protein (CHOP) and the ratios of phosphorylated PERK to PERK, phosphorylated IRE1 to IRE1 and phosphorylated eIF2α to eIF2α in an Angiotensin II (Ang II)-induced cellular model of cardiac hypertrophy. Importantly, the protective effects of NLRX1 were attenuated upon pretreatment with the STING agonist, DMXAA. Our findings provide the evidence that NLRX1 attenuates the PERK-eIF2α-ATF4-CHOP axis of endoplasmic reticulum stress response via inhibition of p-STING in Ang II-treated cardiomyocytes, thereby ameliorating the development of cardiac hypertrophy.
Collapse
Affiliation(s)
- Keying Mi
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, People's Republic of China; JiNan Key Laboratory of Cardiovascular Disease, Jinan, China
| | - Xiaoyan Wang
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, People's Republic of China; JiNan Key Laboratory of Cardiovascular Disease, Jinan, China
| | - Chao Ma
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, People's Republic of China; JiNan Key Laboratory of Cardiovascular Disease, Jinan, China
| | - Yinghua Tan
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, People's Republic of China; JiNan Key Laboratory of Cardiovascular Disease, Jinan, China
| | - Gang Zhao
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, People's Republic of China; Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, People's Republic of China; JiNan Key Laboratory of Cardiovascular Disease, Jinan, China
| | - Xinran Cao
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, People's Republic of China; Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, People's Republic of China; JiNan Key Laboratory of Cardiovascular Disease, Jinan, China.
| | - Haitao Yuan
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, People's Republic of China; Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, People's Republic of China; JiNan Key Laboratory of Cardiovascular Disease, Jinan, China.
| |
Collapse
|
2
|
Bobek JM, Stuttgen GM, Sahoo D. A comprehensive analysis of the role of native and modified HDL in ER stress in primary macrophages. Front Cardiovasc Med 2024; 11:1448607. [PMID: 39328237 PMCID: PMC11424405 DOI: 10.3389/fcvm.2024.1448607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Introduction Recent findings demonstrate that high density lipoprotein (HDL) function rather than HDL-cholesterol levels themselves may be a better indicator of cardiovascular disease risk. One mechanism by which HDL can become dysfunctional is through oxidative modification by reactive aldehydes. Previous studies from our group demonstrated that HDL modified by reactive aldehydes alters select cardioprotective functions of HDL in macrophages. To identify mechanisms by which dysfunctional HDL contributes to atherosclerosis progression, we designed experiments to test the hypothesis that HDL modified by reactive aldehydes triggers endoplasmic reticulum (ER) stress in primary murine macrophages. Methods and results Peritoneal macrophages were harvested from wild-type C57BL/6J mice and treated with thapsigargin, oxLDL, and/or HDL for up to 48 hours. Immunoblot analysis and semi-quantitative PCR were used to measure expression of BiP, p-eIF2α, ATF6, and XBP1 to assess activation of the unfolded protein response (UPR). Through an extensive set of comprehensive experiments, and contrary to some published studies, our findings led us to three novel discoveries in primary murine macrophages: (i) oxLDL alone was unable to induce ER stress; (ii) co-incubation with oxLDL or HDL in the presence of thapsigargin had an additive effect in which expression of ER stress markers were significantly increased and prolonged as compared to cells treated with thapsigargin alone; and (iii) HDL, in the presence or absence of reactive aldehydes, was unable blunt the ER stress induced by thapsigargin in the presence or absence of oxLDL. Conclusions Our systematic approach to assess the role of native and modified HDL in mediating primary macrophage ER stress led to the discovery that lipoproteins on their own require the presence of thapsigargin to synergistically increase expression of ER stress markers. We further demonstrated that HDL, in the presence or absence of reactive aldehydes, was unable to blunt the ER stress induced by thapsigargin in the presence or absence of oxLDL. Together, our findings suggest the need for more detailed investigations to better understand the role of native and modified lipoproteins in mediating ER stress pathways.
Collapse
Affiliation(s)
- Jordan M. Bobek
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Gage M. Stuttgen
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Daisy Sahoo
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
- Division of Endocrinology & Molecular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
3
|
Liu Y, Xu C, Gu R, Han R, Li Z, Xu X. Endoplasmic reticulum stress in diseases. MedComm (Beijing) 2024; 5:e701. [PMID: 39188936 PMCID: PMC11345536 DOI: 10.1002/mco2.701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024] Open
Abstract
The endoplasmic reticulum (ER) is a key organelle in eukaryotic cells, responsible for a wide range of vital functions, including the modification, folding, and trafficking of proteins, as well as the biosynthesis of lipids and the maintenance of intracellular calcium homeostasis. A variety of factors can disrupt the function of the ER, leading to the aggregation of unfolded and misfolded proteins within its confines and the induction of ER stress. A conserved cascade of signaling events known as the unfolded protein response (UPR) has evolved to relieve the burden within the ER and restore ER homeostasis. However, these processes can culminate in cell death while ER stress is sustained over an extended period and at elevated levels. This review summarizes the potential role of ER stress and the UPR in determining cell fate and function in various diseases, including cardiovascular diseases, neurodegenerative diseases, metabolic diseases, autoimmune diseases, fibrotic diseases, viral infections, and cancer. It also puts forward that the manipulation of this intricate signaling pathway may represent a novel target for drug discovery and innovative therapeutic strategies in the context of human diseases.
Collapse
Affiliation(s)
- Yingying Liu
- Department of Aviation Clinical Medicine, Air Force Medical CenterPLABeijingChina
| | - Chunling Xu
- School of Pharmaceutical SciencesTsinghua UniversityBeijingChina
| | - Renjun Gu
- School of Chinese MedicineNanjing University of Chinese MedicineNanjingChina
- Department of Gastroenterology and HepatologyJinling HospitalMedical School of Nanjing UniversityNanjingChina
| | - Ruiqin Han
- State Key Laboratory of Medical Molecular BiologyDepartment of Biochemistry and Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ziyu Li
- School of Acupuncture and TuinaSchool of Regimen and RehabilitationNanjing University of Chinese MedicineNanjingChina
| | - Xianrong Xu
- Department of Aviation Clinical Medicine, Air Force Medical CenterPLABeijingChina
| |
Collapse
|
4
|
Xue J, Ren H, Zhang Q, Gu J, Xu Q, Sun J, Zhang L, Zhou MS. Puerarin attenuates myocardial ischemic injury and endoplasmic reticulum stress by upregulating the Mzb1 signal pathway. Front Pharmacol 2024; 15:1442831. [PMID: 39206261 PMCID: PMC11350615 DOI: 10.3389/fphar.2024.1442831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Objective This study investigated the role of Mzb1 in puerarin protection against heart injury and dysfunction in acute myocardial infarction (AMI) mice. Methods C57BL/6 mice were pretreated with and without puerarin at doses of 50 mg/kg and 100 mg/kg for 14 days before establishing the AMI model. An AMI model was induced by ligating the left descending anterior coronary artery, and AC16 cardiomyocytes were treated with H2O2 in vitro. Echocardiography was performed to measure cardiac function. DHE staining, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase assay, and DCFH-DA oxidative fluorescence staining were used to determine reactive oxygen species (ROS) production in vivo and in vitro. Bioinformatics analysis was used to predict potential upstream transcription factors of Mzb1. Results Puerarin dose-dependently reduced myocardial infarction area and injury, accompanied by the improvement of cardiac function in AMI mice. AMI mice manifested an increase in myocardial oxidative stress, endoplasmic reticulum (ER) stress, apoptosis, and mitochondrial biogenesis dysfunction, which were inhibited by pretreatment with puerarin. Puerarin also prevented Mzb1 downregulation in the hearts of AMI mice or H2O2-treated AC16 cells. Consistent with the in vivo findings, puerarin inhibited H2O2-induced cardiomyocyte apoptosis, ER stress, and mitochondrial dysfunction, which were attenuated by siRNA Mzb1. Furthermore, the JASPAR website predicted that KLF4 may be a transcription factor for Mzb1. The expression of KLF4 was partially reversed by puerarin in the cardiomyocyte injury model, and KLF4 inhibitor (kenpaullone) inhibited Mzb1 expression and affected its function. Conclusion These results suggest that puerarin can protect against cardiac injury by attenuating oxidative stress and endoplasmic reticulum stress through upregulating the KLF4/Mzb1 pathway and that puerarin may expand our armamentarium for the prevention and treatment of ischemic heart diseases.
Collapse
Affiliation(s)
- Jiaojiao Xue
- Science and Experiment Research Center, Shenyang Medical College, Shenyang, China
- School of Basic Medicine, Shenyang Medical College, Shenyang, China
- Department of Pathology, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Haolin Ren
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qi Zhang
- Science and Experiment Research Center, Shenyang Medical College, Shenyang, China
- School of Basic Medicine, Shenyang Medical College, Shenyang, China
| | - Jing Gu
- Science and Experiment Research Center, Shenyang Medical College, Shenyang, China
- School of Basic Medicine, Shenyang Medical College, Shenyang, China
| | - Qian Xu
- Science and Experiment Research Center, Shenyang Medical College, Shenyang, China
| | - Jiaxi Sun
- Science and Experiment Research Center, Shenyang Medical College, Shenyang, China
- School of Basic Medicine, Shenyang Medical College, Shenyang, China
| | - Lu Zhang
- Science and Experiment Research Center, Shenyang Medical College, Shenyang, China
| | - Ming-Sheng Zhou
- School of Basic Medicine, Shenyang Medical College, Shenyang, China
| |
Collapse
|
5
|
Ma XX, Xie HY, Hou PP, Wang XJ, Zhou W, Wang ZH. Nuclear Factor Erythroid 2-Related Factor 2 is Essential for Low-Normobaric Oxygen Treatment-Mediated Blood-Brain Barrier Protection Following Ischemic Stroke. Mol Neurobiol 2024; 61:2938-2948. [PMID: 37950788 DOI: 10.1007/s12035-023-03767-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/01/2023] [Indexed: 11/13/2023]
Abstract
Cerebral ischemia/reperfusion (I/R) injury increases blood-brain barrier (BBB) permeability, leading to hemorrhagic transformation and brain edema. Normobaric oxygen (NBO) is a routine clinical treatment strategy for this condition. However, its neuroprotective effects remain controversial. This study investigated the effect of different NBO concentrations on I/R injury and explores the involvement of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in the underlying mechanism. A mouse middle cerebral artery occlusion (MCAO) model, and an oxygen and glucose deprivation (OGD) model featuring mouse brain microvascular endothelial cells (ECs) called bEnd.3, were used to investigate the effect of NBO on I/R injury. A reactive oxygen species (ROS) inducer and Nrf2-knockdown by RNA were used to explore whether the Nrf2 pathway mediates the effect of NBO on cerebrovascular ECs. In the early stage of MCAO, 40% O2 NBO exposure significantly improved blood perfusion in the ischemic area and effectively relieved BBB permeability, cerebral edema, cerebral injury, and neurological function after MCAO. In the OGD model, 40% O2 NBO exposure significantly reduced apoptosis, inhibited ROS generation, reduced ER stress, upregulated the expression of tight junction proteins, and stabilized the permeability of ECs. Blocking the Nrf2 pathway nullified the protective effect of 40% O2 NBO on ECs after OGD. Finally, our study confirmed that low concentrations of NBO have a neuroprotective effect on I/R by activating the Nrf2 pathway in ECs.
Collapse
Affiliation(s)
- Xiao-Xiao Ma
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hai-Yi Xie
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pin-Pin Hou
- Central Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Jing Wang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Zhou
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhen-Hong Wang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Wi D, Park CY. 1,25-dihydroxyvitamin D 3 affects thapsigargin-induced endoplasmic reticulum stress in 3T3-L1 adipocytes. Nutr Res Pract 2024; 18:1-18. [PMID: 38352211 PMCID: PMC10861344 DOI: 10.4162/nrp.2024.18.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/01/2023] [Accepted: 12/06/2023] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES Endoplasmic reticulum (ER) stress in adipose tissue causes an inflammatory response and leads to metabolic diseases. However, the association between vitamin D and adipose ER stress remains poorly understood. In this study, we investigated whether 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) alleviates ER stress in adipocytes. MATERIALS/METHODS 3T3-L1 cells were treated with different concentrations (i.e., 10-100 nM) of 1,25(OH)2D3 after or during differentiation (i.e., on day 0-7, 3-7, or 7). They were then incubated with thapsigargin (TG, 500 nM) for an additional 24 h to induce ER stress. Next, we measured the mRNA and protein levels of genes involved in unfold protein response (UPR) and adipogenesis using real-time polymerase chain reaction and western blotting and quantified the secreted protein levels of pro-inflammatory cytokines. Finally, the mRNA levels of UPR pathway genes were measured in adipocytes transfected with siRNA-targeting Vdr. RESULTS Treatment with 1,25(OH)2D3 during various stages of adipocyte differentiation significantly inhibited ER stress induced by TG. In fully differentiated 3T3-L1 adipocytes, 1,25(OH)2D3 treatment suppressed mRNA levels of Ddit3, sXbp1, and Atf4 and decreased the secretion of monocyte chemoattractant protein-1, interleukin-6, and tumor necrosis factor-α. However, downregulation of the mRNA levels of Ddit3, sXbp1, and Atf4 following 1,25(OH)2D3 administration was not observed in Vdr-knockdown adipocytes. In addition, exposure of 3T3-L1 preadipocytes to 1,25(OH)2D3 inhibited transcription of Ddit3, sXbp1, Atf4, Bip, and Atf6 and reduced the p-alpha subunit of translation initiation factor 2 (eIF2α)/eIF2α and p-protein kinase RNA-like ER kinase (PERK)/PERK protein ratios. Furthermore, 1,25(OH)2D3 treatment before adipocyte differentiation reduced adipogenesis and the mRNA levels of adipogenic genes. CONCLUSIONS Our data suggest that 1,25(OH)2D3 prevents TG-induced ER stress and inflammatory responses in mature adipocytes by downregulating UPR signaling via binding with Vdr. In addition, the inhibition of adipogenesis by vitamin D may contribute to the reduction of ER stress in adipocytes.
Collapse
Affiliation(s)
- Dain Wi
- Department of Food & Nutrition, College of Health Science, The University of Suwon, Hwaseong 18323, Korea
| | - Chan Yoon Park
- Department of Food & Nutrition, College of Health Science, The University of Suwon, Hwaseong 18323, Korea
| |
Collapse
|
7
|
Hu L, Gao D, Lv H, Lian L, Wang M, Wang Y, Xie Y, Zhang J. Finding New Targets for the Treatment of Heart Failure: Endoplasmic Reticulum Stress and Autophagy. J Cardiovasc Transl Res 2023; 16:1349-1356. [PMID: 37432587 DOI: 10.1007/s12265-023-10410-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/28/2023] [Indexed: 07/12/2023]
Abstract
Heart failure is a progressive disease with an annual mortality rate of about 10% and is the end-stage stage of various heart diseases, which places a huge socioeconomic burden on the healthcare system. The development of heart failure has received increasing attention as a potential way to improve the treatment of this disease. Many studies have shown that endoplasmic reticulum stress and autophagy play an important role in the occurrence and development of heart failure. With the in-depth study of endoplasmic reticulum stress and autophagy, both are considered promising targets for pharmacological interventions to treat heart failure, but the mechanism of heart failure between the two is not clear. This review will highlight the effects of endoplasmic reticulum stress, autophagy, and their interactions in the development and development of heart failure, thereby helping to provide direction for the future development of targeted therapies for patients with heart failure. CLINICAL RELEVANCE: This study explored the new targets for the treatment of heart failure: endoplasmic reticulum stress and autophagy. Targeted drug therapy for endoplasmic reticulum stress and autophagy is expected to provide a new intervention target for the treatment of heart failure.
Collapse
Affiliation(s)
- Leilei Hu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Dongjie Gao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Hao Lv
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Lu Lian
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Mingyang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yunjiao Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yingyu Xie
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Junping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China.
| |
Collapse
|
8
|
He S, Huang C, Tan N, Zhang J. Oridonin Promotes Apoptosis in Rheumatoid Arthritis Fibroblast-like Synoviocytes Through PERK/eIF2α/CHOP of Endoplasmic Reticulum Stress Pathway. DNA Cell Biol 2023; 42:711-719. [PMID: 37862122 DOI: 10.1089/dna.2023.0244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023] Open
Abstract
Oridonin (ORI), derived from Chinese herbs Rabdosia rubescens, has anti-inflammatory, proapoptotic, anticancer effects. Previous studies have found that ORI induces apoptosis in rheumatoid arthritis fibroblast synovial cells (RA-FLSs), but this mechanism is not clear. We will investigate the apoptosis mechanism of ORI on RA-FLSs. RA-FLSs were treated with various concentrations of ORI (0, 5, 10, 15, 20, 25, and 30 μM) for 24 h. CCK8, LDH, and hochest/PI assay determined the viability, cytotoxicity, and death of ORI on RA-FLSs. The endoplasmic reticulum probe was used to observe structural changes of endoplasmic reticulum in RA-FLSs. RNA expression was detected with RNA sequencing analysis and quantitative real-time PCR. The PERK/eIF2α/CHOP pathway protein of the endoplasmic reticulum was verified with Western Blot. Our results show that ORI induced the apoptosis of RA-FLSs from CCK8, LDH, and Hochest/PI. The endoplasmic reticulum distribution was altered in RA-FLSs after being treated with ORI. Bioinformatics analysis of RNA sequencing data found that 1453 genes were elevated. The PERK/eIF2α/CHOP pathway of the endoplasmic reticulum was regulated from the Gene ontology and KEGG analysis. The results of quantitative real-time PCR and Western blot analysis verified the regulation of PERK/eIF2α/CHOP pathway in RA-FLSs. Our data imply that the endoplasmic reticulum's PERK/eIF2α/CHOP signaling pathway is certainly implicated in the induction of RA-FLS apoptosis by ORI. This study has important implications for the pharmacological effects of ORI and the treatment of RA.
Collapse
Affiliation(s)
- Shoudi He
- The Department of Rheumatology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
- Guangzhou University of Chinese Medicine, Shenzhen, China
- Traditional Chinese Medicine Department of Rheumatism, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Changsheng Huang
- Traditional Chinese Medicine Department of Rheumatism, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Ning Tan
- Traditional Chinese Medicine Department of Rheumatism, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Jianyong Zhang
- The Department of Rheumatology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
9
|
Kubra KT, Barabutis N. Ceapin-A7 potentiates lipopolysaccharide-induced endothelial injury. J Biochem Mol Toxicol 2023; 37:e23460. [PMID: 37431958 PMCID: PMC10782819 DOI: 10.1002/jbt.23460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/14/2023] [Accepted: 07/04/2023] [Indexed: 07/12/2023]
Abstract
Barrier dysfunction is the hallmark of severe lung injury, including acute respiratory distress syndrome. Efficient medical countermeasures to counteract endothelial hyperpermeability do not exist, hence the mortality rates of disorders related to barrier abnormalities are unacceptable high. The unfolded protein response is a highly conserved mechanism, which aims to support the cells against endoplasmic reticulum stress, and ATF6 is a protein sensor that triggers its activation. In the current study, we investigate the effects of ATF6 suppression in LPS-induced endothelial inflammation. Our observations suggest that Ceapin-A7, which is an ATF6 suppressor, potentiates LPS-induced STAT3 and JAK2 activation. Hence ATF6 activation may serve as a new therapeutic possibility toward diseases related to barrier dysfunction.
Collapse
Affiliation(s)
- Khadeja-Tul Kubra
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana 71201, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana 71201, USA
| |
Collapse
|
10
|
Liu X, Li T, Sun J, Wang Z. The Role of Endoplasmic Reticulum Stress in Calcific Aortic Valve Disease. Can J Cardiol 2023; 39:1571-1580. [PMID: 37516250 DOI: 10.1016/j.cjca.2023.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/28/2023] [Accepted: 07/23/2023] [Indexed: 07/31/2023] Open
Abstract
Calcific aortic valve disease (CAVD), which is involved in osteogenic reprogramming of valvular interstitial cells, is the most common form of valve disease. It still lacks effective pharmacologic intervention, as its cellular biological mechanisms remain unclear. Congenital abnormality (bicuspid valve) and older age are considered to be the most powerful risk factors for CAVD. Aortic valve sclerosis (AVS) and calcific aortic stenosis (CAS), 2 subclinical forms of CAVD, represent 2 distinct stages of aortic valve calcification. During the AVS stage, the disease is characterised by endothelial activation/damage, inflammatory response, and lipid infiltration accompanied by microcalcification. The CAS stage is dominated by calcification, resulting in valvular dysfunction and severe obstruction to cardiac outflow, which is life threatening if surgery is not performed in time. Endoplasmic reticulum (ER) stress, a state in which conditions disrupting ER homeostasis cause an accumulation of unfolded and misfolded proteins in the ER lumen, has been shown to promote osteogenic differentiation and aortic valve calcification. Therefore, identifying targets or drugs for suppressing ER stress may be a novel approach for CAVD treatment.
Collapse
Affiliation(s)
- Xiaolin Liu
- Department of Cardiac Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Medicial Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong, China
| | - Ting Li
- School of Life Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, Shandong, China
| | - Jun Sun
- Department of Cardiac Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhengjun Wang
- Department of Cardiac Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
11
|
Men L, Guo J, Cao Y, Huang B, Wang Q, Huo S, Wang M, Peng D, Peng L, Shi W, Li S, Lin L, Lv J. IL-6/gp130/STAT3 signaling contributed to the activation of the PERK arm of the unfolded protein response in response to chronic β-adrenergic stimulation. Free Radic Biol Med 2023; 205:163-174. [PMID: 37307935 DOI: 10.1016/j.freeradbiomed.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
Prolonged activation of the PERK branch of the unfolded protein response (UPR) promotes cardiomyocytes apoptosis in response to chronic β-adrenergic stimulation. STAT3 plays a critical role in β-adrenergic functions in the heart. However, whether STAT3 contributed to β-adrenoceptor-mediated PERK activation and how β-adrenergic signaling activates STAT3 remains unclear. This study aimed to investigate whether STAT3-Y705 phosphorylation contributed to the PERK arm activation in cardiomyocytes and if IL-6/gp130 signaling was involved in the chronic β-AR-stimulation-induced STAT3 and PERK arm activation. We found that the PERK phosphorylation was positively associated with STAT3 activation. Wild-type STAT3 plasmids transfection activated the PERK/eIF2α/ATF4/CHOP pathway in cardiomyocytes while dominant negative Y705F STAT3 plasmids caused no obvious effect on PERK signaling. Stimulation with isoproterenol produced a significant increase in the level of IL-6 in the cardiomyocyte's supernatants, while IL-6 silence inhibited PERK phosphorylation but failed to attenuate STAT3 activation in response to isoproterenol stimulation. Gp130 silence attenuated isoproterenol-induced STAT3 activation and PERK phosphorylation. Inhibiting IL-6/gp130 pathway by bazedoxifene and inhibiting STAT3 by stattic both reversed isoproterenol-induced STAT3-Y705 phosphorylation, ROS production, PERK activation, IRE1α activation, and cardiomyocytes apoptosis in vitro. Bazedoxifene (5 mg/kg/day by oral gavage once a day) exhibited similar effect as carvedilol (10 mg/kg/day by oral gavage once a day) on attenuating chronic isoproterenol (30 mg/kg by abdominal injection once a day, 7 days) induced cardiac systolic dysfunction, cardiac hypertrophy and fibrosis in C57BL/6 mice. Meanwhile, bazedoxifene attenuates isoproterenol-induced STAT3-Y705 phosphorylation, PERK/eIF2α/ATF4/CHOP activation, IRE1α activation, and cardiomyocytes apoptosis to a similar extend as carvedilol in the cardiac tissue of mice. Our results showed that chronic β-adrenoceptor-mediated stimulation activated the STAT3 and PERK arm of the UPR at least partially via IL-6/gp130 pathway. Bazedoxifene has great potential to be used as an alternative to conventional β-blockers to attenuate β-adrenoceptor-mediated maladaptive UPR.
Collapse
Affiliation(s)
- Lintong Men
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junyi Guo
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yu Cao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingyu Huang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengqi Huo
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Moran Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dewei Peng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lulu Peng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Shi
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Lin
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| | - Jiagao Lv
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
12
|
Lin S, Long H, Hou L, Zhang M, Ting J, Lin H, Zheng P, Lei W, Yin K, Zhao G. Crosstalk between endoplasmic reticulum stress and non-coding RNAs in cardiovascular diseases. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1767. [PMID: 36420580 DOI: 10.1002/wrna.1767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 07/20/2023]
Abstract
Cells are exposed to various pathological stimulus within the cardiovascular system that challenge cells to adapt and survive. Several of these pathological stimulus alter the normal function of the endoplasmic reticulum (ER), leading to the accumulation of unfolded and misfolded proteins, thus triggering the unfolded protein response (UPR) to cope with the stress or trigger apoptosis of damaged cells. Downstream components of the UPR regulate transcription and translation reprogramming to ensure selective gene expression in response to pathological stimulus, including the expression of non-coding RNAs (ncRNAs). The ncRNAs play crucial roles in regulating transcription and translation, and their aberrant expression is associated with the development of cardiovascular disease (CVD). Notably, ncRNAs and ER stress can modulate each other and synergistically affect the development of CVD. Therefore, studying the interaction between ER stress and ncRNAs is necessary for effective prevention and treatment of CVD. In this review, we discuss the UPR signaling pathway and ncRNAs followed by the interplay regulation of ER stress and ncRNAs in CVD, which provides further insights into the understanding of the pathogenesis of CVD and therapeutic strategies. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Shuyun Lin
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Haijiao Long
- Xiangya Hospital, Central South University, Changsha, China
| | - Lianjie Hou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Ming Zhang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Jiang Ting
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Haiyue Lin
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Pan Zheng
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Weixing Lei
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Kai Yin
- Guangxi Key Laboratory of Diabetic Systems Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Guojun Zhao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| |
Collapse
|
13
|
Naringenin Alleviates Renal Ischemia Reperfusion Injury by Suppressing ER Stress-Induced Pyroptosis and Apoptosis through Activating Nrf2/HO-1 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5992436. [PMID: 36262286 PMCID: PMC9576412 DOI: 10.1155/2022/5992436] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022]
Abstract
Endoplasmic reticulum (ER) stress, pyroptosis, and apoptosis are critical molecular events in the occurrence and progress of renal ischemia reperfusion (I/R) injury. Naringenin (4′,5,7-trihydroxyflavanone) is one of the most widely consumed flavonoids with powerful antioxidant and anti-inflammatory activities. However, whether naringenin is able to relieve renal I/R injury and corresponding mechanisms have not been fully clarified. This study was aimed at exploring its role and relevant mechanisms in renal I/R injury. The C57Bl/6 mice were randomly assigned to receive administration with naringenin (50 mg/kg/d) or sterile saline (1.0 mL/d) for 3 d by gavage and suffered from renal I/R surgery. One specific ER stress inhibitor, 4-phenylbutyric acid (4-PBA, 100 mg/kg/d), was intraperitoneally administered to validate the regulation of ER stress on pyroptosis and apoptosis. Cultured HK-2 cells went through the process of hypoxia/reoxygenation (H/R) to perform cellular experiments with the incubation of naringenin (200 μM), 4-PBA (5 mM), or brusatol (400 nM). The animal results verified that naringenin obviously relieved renal I/R injury, while it refined renal function and attenuated tissue structural damage. Furthermore, naringenin treatment inhibited I/R-induced ER stress as well as pyroptosis and apoptosis as indicated by decreased levels of specific biomarkers such as GRP78, CHOP, caspase-12, NLRP3, ASC, caspase-11, caspase-4, caspase-1, IL-1β, GSDMD-N, BAX, and cleaved caspase-3 in animals and HK-2 cells. Besides, the upregulated expression of Nrf2 and HO-1 proteins after naringenin treatment suggested that naringenin activated the Nrf2/HO-1 signaling pathway, which was again authenticated by the usage of brusatol (Bru), one unique inhibitor of the Nrf2 pathway. Importantly, the application of 4-PBA showed that renal I/R-generated pyroptosis and apoptosis were able to be regulated by ER stress in vivo and in vitro. In conclusion, naringenin suppressed ER stress by activating Nrf2/HO-1 signaling pathway and further alleviated pyroptosis and apoptosis to protect renal against I/R injury.
Collapse
|
14
|
Sikorski V, Vento A, Kankuri E. Emerging roles of the RNA modifications N6-methyladenosine and adenosine-to-inosine in cardiovascular diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:426-461. [PMID: 35991314 PMCID: PMC9366019 DOI: 10.1016/j.omtn.2022.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cardiovascular diseases lead the mortality and morbidity disease metrics worldwide. A multitude of chemical base modifications in ribonucleic acids (RNAs) have been linked with key events of cardiovascular diseases and metabolic disorders. Named either RNA epigenetics or epitranscriptomics, the post-transcriptional RNA modifications, their regulatory pathways, components, and downstream effects substantially contribute to the ways our genetic code is interpreted. Here we review the accumulated discoveries to date regarding the roles of the two most common epitranscriptomic modifications, N6-methyl-adenosine (m6A) and adenosine-to-inosine (A-to-I) editing, in cardiovascular disease.
Collapse
Affiliation(s)
- Vilbert Sikorski
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Antti Vento
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - IHD-EPITRAN Consortium
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland
| |
Collapse
|
15
|
Zhang H, Weng J, Sun S, Zhou J, Yang Q, Huang X, Sun J, Pan M, Chi J, Guo H. Ononin alleviates endoplasmic reticulum stress in doxorubicin-induced cardiotoxicity by activating SIRT3. Toxicol Appl Pharmacol 2022; 452:116179. [PMID: 35914558 DOI: 10.1016/j.taap.2022.116179] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/20/2022] [Accepted: 07/24/2022] [Indexed: 10/16/2022]
Abstract
Doxorubicin (DOX) is a potent anthracycline antineoplastic drug. However, its dose-dependent cardiotoxicity limits its clinical application. Ononin is a natural isoflavone glycoside that is crucial in modulating apoptosis-related signaling pathways. In this study, we assessed the possible cardioprotective effects of ononin in DOX-induced cardiotoxicity and elucidated the underlying molecular mechanisms. In vitro and in vivo assessments were performed using DOX-treated H9C2 cells and rats, respectively. First, DOX was injected into the tail veins of Wistar rats to induce cardiomyopathy. Next, rats in the DOX + Ononin30 and DOX + Ononin60 groups were intragastrically administered ononin two weeks before DOX treatment. H9C2 cells were treated with vehicle or DOX with or without ononin. Next, 3-TYP was used to determine the relationship between endoplasmic reticulum (ER) stress and sirtuin 3 (SIRT3) expression. Ononin treatment ameliorated DOX-induced myocardial injury as determined by echocardiography. Furthermore, ononin partially restored DOX-induced cardiac dysfunction; the left ventricular ejection fraction (LVEF) and left ventricular systolic fractional shortening (LVFS) increased after pre-treatment with ononin. Further, ononin suppressed DOX-induced ER stress and apoptosis in rat cardiomyocytes and H9C2 cells. The Bax/Bcl-2 ratio and 78-kD glucose-regulated protein (GRP78) and CCAAT enhancer-binding protein (CHOP) expression levels were higher in the DOX-treated group than in the control group but ononin treatment improved these parameters. These effects are associated with SIRT3 activity. Moreover, 3-TYP blocked the ononin-mediated protective effects. Hence, ononin positively affected DOX-induced cardiotoxicity by inhibiting ER stress and apoptosis, possibly mediated by stimulation of the SIRT3 pathway.
Collapse
Affiliation(s)
- Hanlin Zhang
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Jingfan Weng
- Zhejiang university, Hangzhou 310000, Zhejiang, China
| | - Shimin Sun
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Jiedong Zhou
- Medical college of Shaoxing University, Shaoxing 312000, Zhejiang, China
| | - Qi Yang
- Zhejiang Chinese Medical University, Hangzhou 310000, Zhejiang, China
| | | | - Jing Sun
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Miaohong Pan
- Medical college of Shaoxing University, Shaoxing 312000, Zhejiang, China
| | - Jufang Chi
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing 312000, Zhejiang, China
| | - Hangyuan Guo
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China; Medical college of Shaoxing University, Shaoxing 312000, Zhejiang, China.
| |
Collapse
|
16
|
Interplay between Zn2+ Homeostasis and Mitochondrial Functions in Cardiovascular Diseases and Heart Ageing. Int J Mol Sci 2022; 23:ijms23136890. [PMID: 35805904 PMCID: PMC9266371 DOI: 10.3390/ijms23136890] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
Zinc plays an important role in cardiomyocytes, where it exists in bound and histochemically reactive labile Zn2+ forms. Although Zn2+ concentration is under tight control through several Zn2+-transporters, its concentration and intracellular distribution may vary during normal cardiac function and pathological conditions, when the protein levels and efficacy of Zn2+ transporters can lead to zinc re-distribution among organelles in cardiomyocytes. Such dysregulation of cellular Zn2+ homeostasis leads to mitochondrial and ER stresses, and interrupts normal ER/mitochondria cross-talk and mitophagy, which subsequently, result in increased ROS production and dysregulated metabolic function. Besides cardiac structural and functional defects, insufficient Zn2+ supply was associated with heart development abnormalities, induction and progression of cardiovascular diseases, resulting in accelerated cardiac ageing. In the present review, we summarize the recently identified connections between cellular and mitochondrial Zn2+ homeostasis, ER stress and mitophagy in heart development, excitation–contraction coupling, heart failure and ischemia/reperfusion injury. Additionally, we discuss the role of Zn2+ in accelerated heart ageing and ageing-associated rise of mitochondrial ROS and cardiomyocyte dysfunction.
Collapse
|
17
|
Li X, Zhang DQ, Wang X, Zhang Q, Qian L, Song R, Zhao X, Li X. Irisin alleviates high glucose-induced hypertrophy in H9c2 cardiomyoblasts by inhibiting endoplasmic reticulum stress. Peptides 2022; 152:170774. [PMID: 35219808 DOI: 10.1016/j.peptides.2022.170774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND Endoplasmic reticulum stress (ERS) plays an important role in the process of myocardial hypertrophy in diabetic cardiomyopathy (DCM). Irisin, a novel cytokine, has been found to protect against cardiac diastolic dysfunction in DCM. We aimed to investigate the role of irisin in cardiac hypertrophy and to elucidate the underlying mechanisms. METHODS H9c2 cells were induced with 33 mM glucose to construct a cardiac hypertrophy cell model, which was then treated with irisin in the presence or absence of the ERS inducer tunicamycin (TM). The cell surface area was measured by FITC-phalloidin staining. The atrial natriuretic peptide levels were detected by an enzyme-linked immunosorbent assay. Furthermore, the expression of the ERS-related proteins, P-PERK, PERK, IRE1α and GRP78, was detected by western blotting. RESULTS Irisin significantly reduced myocardial hypertrophy and suppressed high glucose (HG)-induced oxidative stress. Meanwhile, the protective effect of irisin on cardiomyoblasts was reversed by the ERS inducer, TM. Additionally, we detected ERS-associated signaling pathway proteins and found that irisin significantly reduced the protein expression levels of GRP78 and p-PERK/PERK. CONCLUSION These results suggest that irisin ameliorates HG-induced cardiac hypertrophy by inhibiting ERS.
Collapse
Affiliation(s)
- Xiujun Li
- School of Clinical Medicine, Chifeng University, Hongshan, Chifeng, Inner Mongolia, China
| | - Da-Qi Zhang
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xiaohui Wang
- Department of Laboratory, Affiliated Hospital of Chifeng University, Chifeng, Inner Mongolia, China
| | - Qin Zhang
- Department of Stomatology, Affiliated Hospital of Chifeng University, Inner Mongolia, China
| | - Liu Qian
- Liu Qian, Department of Pharmacology, College of Basic Medicine, Chifeng University, Inner Mongolia, China
| | - Rongjing Song
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
| | - Xuecheng Zhao
- Department of Emergency Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xiuli Li
- School of Stomatology, Chifeng University, Inner Mongolia, China.
| |
Collapse
|
18
|
Mariángelo JIE, Valverde CA, Vittone L, Said M, Mundiña-Weilenmann C. Pharmacological inhibition of translocon is sufficient to alleviate endoplasmic reticulum stress and improve Ca 2+ handling and contractile recovery of stunned myocardium. Eur J Pharmacol 2022; 914:174665. [PMID: 34861208 DOI: 10.1016/j.ejphar.2021.174665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/13/2021] [Accepted: 11/29/2021] [Indexed: 12/18/2022]
Abstract
INTRODUCTION The function of endoplasmic reticulum (ER), a Ca2+ storage compartment and site of protein folding, is altered by disruption of intracellular homeostasis. Misfolded proteins accumulated in the ER lead to ER stress (ERS), unfolded protein response (UPR) activation and ER Ca2+ loss. Myocardial stunning is a temporary contractile dysfunction, which occurs after brief ischemic periods with minimal or no cell death, being oxidative stress and Ca2+ overload potential underlying mechanisms. Myocardial stunning induces ERS response with negatively impact on the post-ischemic mechanical performance through an unknown mechanism. AIMS In this study, we explored whether ER Ca2+ efflux through the translocon, a major Ca2+ leak channel, contributes to Ca2+ mishandling and the consequent contractile abnormalities of the stunned myocardium. METHODS Mechanical performance, cytosolic Ca2+, UPR markers and oxidative state were evaluated in perfused rat/mouse hearts subjected to a brief ischemia followed by reperfusion (I/R) in absence or presence of the translocon inhibitor, emetine (1 μM), comparing its effects with those of the chaperones TUDCA (30 μM) and 4-PBA (3 mM). RESULTS Emetine treatment precluded the I/R-induced increase in UPR signaling markers and improved the contractile recovery together with a remarkable attenuation in myocardial stiffness when compared to I/R hearts with no drug. This alleviation of I/R-induced mechanical abnormalities was more effective than that obtained with the chemical chaperones, TUDCA and 4-PBA. Moreover, emetine treatment produced a striking improvement in diastolic Ca2+ handling with a partial recovery of the I/R-induced oxidative stress. CONCLUSION Blocking ER Ca2+ store depletion via translocon suppressed ER stress and improved mechanical performance and diastolic Ca2+ handling of stunned myocardium. Modulation of translocon permeability emerges as a therapeutic approach to face dysfunctional consequences of the I/R injury.
Collapse
Affiliation(s)
- Juan Ignacio Elio Mariángelo
- Centro de Investigaciones Cardiovasculares, CCT-CONICET La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Carlos Alfredo Valverde
- Centro de Investigaciones Cardiovasculares, CCT-CONICET La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Leticia Vittone
- Centro de Investigaciones Cardiovasculares, CCT-CONICET La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Matilde Said
- Centro de Investigaciones Cardiovasculares, CCT-CONICET La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Cecilia Mundiña-Weilenmann
- Centro de Investigaciones Cardiovasculares, CCT-CONICET La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina.
| |
Collapse
|
19
|
Wenxin Granules Regulate Endoplasmic Reticulum Stress Unfolded Protein Response and Improve Ventricular Remodeling on Rats with Myocardial Infarction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:7375549. [PMID: 34765006 PMCID: PMC8577921 DOI: 10.1155/2021/7375549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/02/2021] [Accepted: 10/09/2021] [Indexed: 11/17/2022]
Abstract
Background. Arrhythmia after myocardial infarction is the leading cause of death in clinical heart disease. Increasing studies have shown that the response to endoplasmic reticulum (ER) stress (ERS) caused by myocardial infarction is related to prognosis and the development of arrhythmias. The unfolded protein response (UPR) could serve as an important regulatory signaling pathway following myocardial infarction. The traditional Chinese medicine Wenxin Granules improve arrhythmias following myocardial infarction, which may be related to ERS intervention and the activation of the UPR and apoptosis. We aimed to investigate the involvement of Wenxin Granules in the activation of the UPR and apoptosis following myocardial infarction. Left coronary artery ligation was established as a rat model of myocardial infarction. The rats were randomly divided into the model group, low-dose Wenxin Granule group, high-dose Wenxin Granule group, and metoprolol group. Rats with only wire insertion and no ligature were used as the sham group. Small animal ultrasound systems were used to detect changes in heart structure and function, and the electrical stimulation threshold for ventricular fibrillation was detected. The expression of glucose-regulated protein (GRP)78, activating transcription factor (ATF)6, X-box binding protein (XBP)1, protein kinase-like ER kinase (PERK), phosphorylated (p)-PERK, Bax, Bcl2, C/EBP homologous protein (CHOP), caspase 12, caspase 8, and caspase 3 were detected by western blot, and terminal deoxynucleotidyl transferase dUTP Nick end labeling (TUNEL) was used to determine the cardiomyocyte apoptosis index. Compared with the sham group, rats in the model group displayed immediate ST-segment elevation and pathological Q waves after 24 hours. After 2 weeks, the left ventricular (LV) anterior wall thickness (LVAW) became thinner, and the inner diameter (LVID) increased. The end-diastolic LVAW (LVAWd), end-systolic LVAW (LVAWs), ejection fraction (EF), and fractional shortening (FS) were significantly reduced (P < 0.01), whereas the LVIDd, LVIDs, diastolic LV volume (LV Vold), and systolic LV volume (LV Vols) significantly increased (P < 0.01). The ventricular fibrillation threshold decreased significantly (P < 0.01). ERS proteins GRP78, p-PERK, PERK, ATF6, and XBP1 and apoptotic proteins CHOP, Bax, caspase 12, caspase 8, and caspase 3 significantly increased (P < 0.01, P < 0.05), whereas Bcl-2 expression and the Bcl-2/Bax ratio decreased (P < 0.01). Compared with the sham group, LVAWd, LVAWs, FS, and Bcl-2 protein expression were significantly increased in the low-dose Wenxin Granule group (P < 0.01, P < 0.05), and p-PERK and ATF6 decreased (P < 0.01, P < 0.05). Compared with the sham group, LVAWd, LVAWs, EF, FS, and the ventricular fibrillation threshold significantly increased in the high-dose Wenxin Granule and metoprolol groups (P < 0.01, P < 0.05), whereas LVIDs, LV Vols, and ERS proteins were significantly decreased (P < 0.01, P < 0.05). CHOP, Bax, caspase 12, caspase 8, and caspase 3 protein expression decreased in the Wenxin Granule group (P < 0.01, P < 0.05), whereas Bcl-2 and the Bcl-2/Bax ratio increased (P < 0.01, P < 0.05). LVIDd and Bax decreased in the metoprolol group (P < 0.01, P < 0.05), and the Bcl-2/Bax ratio increased (P < 0.05). The cardiomyocyte apoptosis index values for the low- and high-dose Wenxin Granule and metoprolol groups were significantly reduced (P < 0.05). This study suggested that the UPR is an essential mechanism underlying pathological injury after myocardial infarction. Wenxin Granule treatment can improve ventricular remodeling and cardiac function and inhibit arrhythmia by preventing excessive ERS from activating the UPR and apoptosis.
Collapse
|
20
|
An update on the unfolded protein response in brain ischemia: Experimental evidence and therapeutic opportunities. Neurochem Int 2021; 151:105218. [PMID: 34732355 DOI: 10.1016/j.neuint.2021.105218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/25/2021] [Accepted: 10/29/2021] [Indexed: 11/21/2022]
Abstract
After ischemic stroke or cardiac arrest, brain ischemia occurs. Currently, no pharmacologic intervention that targets cellular processes has proven effective in improving neurologic outcome in patients after brain ischemia. Recent experimental research has identified the crucial role of proteostasis in survival and recovery of cells after ischemia. In particular, the unfolded protein response (UPR), a key signaling pathway that safeguards cellular proteostasis, is emerging as a promising therapeutic target for brain ischemia. For some time, the UPR has been known to play a critical role in the pathophysiology of brain ischemia; however, only in the recent years has the field grown substantially, largely due to the extensive use of UPR-specific mouse genetic models and the rapidly expanding availability of pharmacologic tools that target the UPR. In this review, we provide a timely update on the progress in our understanding of the UPR in experimental brain ischemia, and discuss the therapeutic implications of targeting the UPR in ischemic stroke and cardiac arrest.
Collapse
|
21
|
Zhang G, Wang X, Li C, Li Q, An YA, Luo X, Deng Y, Gillette TG, Scherer PE, Wang ZV. Integrated Stress Response Couples Mitochondrial Protein Translation With Oxidative Stress Control. Circulation 2021; 144:1500-1515. [PMID: 34583519 PMCID: PMC8563444 DOI: 10.1161/circulationaha.120.053125] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND The integrated stress response (ISR) is an evolutionarily conserved process to cope with intracellular and extracellular disturbances. Myocardial infarction is a leading cause of death worldwide. Coronary artery reperfusion, the most effective means to mitigate cardiac damage of myocardial infarction, causes additional reperfusion injury. This study aimed to investigate the role of the ISR in myocardial ischemia/reperfusion (I/R). METHODS Cardiac-specific gain- and loss-of-function approaches for the ISR were used in vivo. Myocardial I/R was achieved by ligation of the cardiac left anterior descending artery for 45 minutes followed by reperfusion for different times. Cardiac function was assessed by echocardiography. Cultured H9c2 cells, primary rat cardiomyocytes, and mouse embryonic fibroblasts were used to dissect underlying molecular mechanisms. Tandem mass tag labeling and mass spectrometry was conducted to identify protein targets of the ISR. Pharmacologic means were tested to manipulate the ISR for therapeutic exploration. RESULTS We show that the PERK (PKR-like endoplasmic reticulum resident kinase)/eIF2α (α subunit of eukaryotic initiation factor 2) axis of the ISR is strongly induced by I/R in cardiomyocytes in vitro and in vivo. We further reveal a physiologic role of PERK/eIF2α signaling by showing that acute activation of PERK in the heart confers robust cardioprotection against reperfusion injury. In contrast, cardiac-specific deletion of PERK aggravates cardiac responses to reperfusion. Mechanistically, the ISR directly targets mitochondrial complexes through translational suppression. We identify NDUFAF2 (NADH:ubiquinone oxidoreductase complex assembly factor 2), an assembly factor of mitochondrial complex I, as a selective target of PERK. Overexpression of PERK suppresses the protein expression of NDUFAF2 and PERK inhibition causes an increase of NDUFAF2. Silencing of NDUFAF2 significantly rescues cardiac cell survival from PERK knockdown under I/R. We show that activation of PERK/eIF2α signaling reduces mitochondrial complex-derived reactive oxygen species and improves cardiac cell survival in response to I/R. Moreover, pharmacologic stimulation of the ISR protects the heart against reperfusion damage, even after the restoration of occluded coronary artery, highlighting clinical relevance for myocardial infarction treatment. CONCLUSIONS These results suggest that the ISR improves cell survival and mitigates reperfusion damage by selectively suppressing mitochondrial protein synthesis and reducing oxidative stress in the heart.
Collapse
Affiliation(s)
- Guangyu Zhang
- Division of Cardiology (G.Z., X.W., C.L., Q.L., X.L., T.G.G., Z.V.W.), Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas
| | - Xiaoding Wang
- Division of Cardiology (G.Z., X.W., C.L., Q.L., X.L., T.G.G., Z.V.W.), Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas
| | - Chao Li
- Division of Cardiology (G.Z., X.W., C.L., Q.L., X.L., T.G.G., Z.V.W.), Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas
| | - Qinfeng Li
- Division of Cardiology (G.Z., X.W., C.L., Q.L., X.L., T.G.G., Z.V.W.), Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas
| | - Yu A An
- Touchstone Diabetes Center (Y.A.A., Y.D., P.E.S.), Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas
| | - Xiang Luo
- Division of Cardiology (G.Z., X.W., C.L., Q.L., X.L., T.G.G., Z.V.W.), Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas
| | - Yingfeng Deng
- Touchstone Diabetes Center (Y.A.A., Y.D., P.E.S.), Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas
| | - Thomas G Gillette
- Division of Cardiology (G.Z., X.W., C.L., Q.L., X.L., T.G.G., Z.V.W.), Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas
| | - Philipp E Scherer
- Touchstone Diabetes Center (Y.A.A., Y.D., P.E.S.), Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas
| | - Zhao V Wang
- Division of Cardiology (G.Z., X.W., C.L., Q.L., X.L., T.G.G., Z.V.W.), Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
22
|
Angeloni M, Thievessen I, Engel FB, Magni P, Ferrazzi F. Functional genomics meta-analysis to identify gene set enrichment networks in cardiac hypertrophy. Biol Chem 2021; 402:953-972. [PMID: 33951759 DOI: 10.1515/hsz-2020-0378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/19/2021] [Indexed: 12/28/2022]
Abstract
In order to take advantage of the continuously increasing number of transcriptome studies, it is important to develop strategies that integrate multiple expression datasets addressing the same biological question to allow a robust analysis. Here, we propose a meta-analysis framework that integrates enriched pathways identified through the Gene Set Enrichment Analysis (GSEA) approach and calculates for each meta-pathway an empirical p-value. Validation of our approach on benchmark datasets showed comparable or even better performance than existing methods and an increase in robustness with increasing number of integrated datasets. We then applied the meta-analysis framework to 15 functional genomics datasets of physiological and pathological cardiac hypertrophy. Within these datasets we grouped expression sets measured at time points that represent the same hallmarks of heart tissue remodeling ('aggregated time points') and performed meta-analysis on the expression sets assigned to each aggregated time point. To facilitate biological interpretation, results were visualized as gene set enrichment networks. Here, our meta-analysis framework identified well-known biological mechanisms associated with pathological cardiac hypertrophy (e.g., cardiomyocyte apoptosis, cardiac contractile dysfunction, and alteration in energy metabolism). In addition, results highlighted novel, potentially cardioprotective mechanisms in physiological cardiac hypertrophy involving the down-regulation of immune cell response, which are worth further investigation.
Collapse
Affiliation(s)
- Miriam Angeloni
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Krankenhausstr. 8-10, D-91054 Erlangen, Germany
- Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Krankenhausstr. 8-10, D-91054 Erlangen, Germany
| | - Ingo Thievessen
- Biophysics Group, Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 91, D-91052 Erlangen, Germany
- Muscle Research Center Erlangen (MURCE), D-91052 Erlangen, Germany
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 12, D-91054 Erlangen, Germany
- Muscle Research Center Erlangen (MURCE), D-91052 Erlangen, Germany
| | - Paolo Magni
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, via Ferrata 5, I-27100 Pavia, Italy
| | - Fulvia Ferrazzi
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Krankenhausstr. 8-10, D-91054 Erlangen, Germany
- Muscle Research Center Erlangen (MURCE), D-91052 Erlangen, Germany
| |
Collapse
|
23
|
Wang N, Ma J, Ma Y, Lu L, Ma C, Qin P, Gao E, Zuo M, Yang J, Yang L. Electroacupuncture Pretreatment Mitigates Myocardial Ischemia/Reperfusion Injury via XBP1/GRP78/Akt Pathway. Front Cardiovasc Med 2021; 8:629547. [PMID: 34195232 PMCID: PMC8236521 DOI: 10.3389/fcvm.2021.629547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 04/09/2021] [Indexed: 11/29/2022] Open
Abstract
Myocardial ischemia/reperfusion injury is a common clinical problem and can result in severe cardiac dysfunction. Previous studies have demonstrated the protection of electroacupuncture against myocardial ischemia/reperfusion injury. However, the role of X-box binding protein I (XBP1) signaling pathway in the protection of electroacupuncture was still elusive. Thus, we designed this study and demonstrated that electroacupuncture significantly improved cardiac function during myocardial ischemia/reperfusion injury and reduced cardiac infarct size. Electroacupuncture treatment further inhibited cardiac injury manifested by the decrease of the activities of serum lactate dehydrogenase and creatine kinase-MB. The results also revealed that electroacupuncture elevated the expressions of XBP1, glucose-regulated protein 78 (GRP78), Akt, and Bcl-2 and decreased the Bax and cleaved Caspase 3 expressions. By using the inhibitor of XBP1 in vitro, the results revealed that suppression of XBP1 expression could markedly increase the activities of lactate dehydrogenase and creatine kinase-MB and cell apoptosis, thus exacerbating stimulated ischemia/reperfusion-induced H9c2 cell injury. Compared with stimulated ischemia/reperfusion group, inhibition of XBP1 inhibited the downstream GRP78 and Akt expressions during stimulated ischemia/reperfusion injury. Collectively, our data demonstrated that electroacupuncture treatment activated XBP1/GRP78/Akt signaling to protect hearts from myocardial ischemia/reperfusion injury. These findings revealed the underlying mechanisms of electroacupuncture protection against myocardial ischemia/reperfusion injury and may provide novel therapeutic targets for the clinical treatment of myocardial ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Nisha Wang
- Department of Anesthesiology, Xi'an Children's Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Jipeng Ma
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Yan Ma
- Department of Anaesthesiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing, China
| | - Linhe Lu
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Chao Ma
- Department of Anesthesiology, Xi'an Children's Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Pei Qin
- Department of Anesthesiology, Xi'an Children's Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Erhe Gao
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Mingzhang Zuo
- Department of Anaesthesiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing, China
| | - Jian Yang
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Lifang Yang
- Department of Anesthesiology, Xi'an Children's Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
24
|
Xin J, Ma X, Chen W, Zhou W, Dong H, Wang Z, Ji F. Regulation of blood-brain barrier permeability by Salvinorin A via alleviating endoplasmic reticulum stress in brain endothelial cell after ischemia stroke. Neurochem Int 2021; 149:105093. [PMID: 34097989 DOI: 10.1016/j.neuint.2021.105093] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 05/12/2021] [Accepted: 05/31/2021] [Indexed: 10/21/2022]
Abstract
Inhibition of endoplasmic reticulum (ER) stress reduces blood-brain barrier (BBB) injury caused by ischemia/reperfusion (I/R), with indistinct mechanisms. Salvinorin A (SA) relieves I/R-induced BBB leakage; however, whether it is related to the suppression of ER stress is yet unclear. To address this question, we have used both a rat model of middle cerebral artery occlusion (MCAO) and human brain microvascular endothelial cells (HBMECs) with oxygen-glucose deprivation (OGD). SA was injected by tail vein at the terminal of ischemia; Norbinaltorphimine (NB), a kappa opioid antagonist, was administered 30 min prior to SA; 4-phenylbutyric acid (4-PBA), an ER stress inhibitor, was injected intraperitoneally after the onset of ischemia; adenylate-activated protein kinase (AMPK)-specific small interfering RNAs (siRNAs) were transfected to HBMECs before OGD. The assessment was as follows: infarct volume, brain water gain, Evans blue leakage, and modified neurological severity score (mNSS) after MCAO; HBMECs apoptosis rate and permeability, ER stress-related protein, and reactive oxygen species (ROS) and calcium levels after OGD. The results showed that SA significantly reduced the BBB leakage in vivo; SA relieved the apoptotic rates and ER stress in HBMECs, protected the permeability of HBMECs, and reduced ROS and calcium ion level after OGD. Moreover, the SA function was blocked by NB in vivo and AMPK- siRNAs in vitro. We conclude that SA mitigated BBB damage and HBMEC injury after I/R and alleviated ER stress in endothelial cells via AMPK pathway.
Collapse
Affiliation(s)
- Jihua Xin
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China; Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiaoxiao Ma
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Weiying Chen
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wei Zhou
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Haiping Dong
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zhenhong Wang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Fuhai Ji
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China.
| |
Collapse
|
25
|
Yang Y, Wang P, Zhang C, Huang F, Pang G, Wei C, Lv C, Chhetri G, Jiang T, Liu J, Shen Y, Shen Y. Hepatocyte-derived MANF alleviates hepatic ischaemia-reperfusion injury via regulating endoplasmic reticulum stress-induced apoptosis in mice. Liver Int 2021; 41:623-639. [PMID: 33064897 DOI: 10.1111/liv.14697] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Endoplasmic reticulum (ER) perturbations are novel subcellular effectors involved in the ischaemia-reperfusion injury. As an ER stress-inducible protein, mesencephalic astrocyte-derived neurotrophic factor (MANF) has been proven to be increased during ischaemic brain injury. However, the role of MANF in liver ischaemia reperfusion (I/R) injury has not yet been studied. METHODS To investigate the role of MANF in the process of liver ischaemia-reperfusion, Hepatocyte-specific MANF knockout (MANFhep-/- ) mice and their wild-type (WT) littermates were used in our research. Mice partial (70%) warm hepatic I/R model was established by vascular occlusion. We detected the serum levels of MANF in both liver transplant patients and WT mice before and after liver I/R injury. Recombinant human MANF (rhMANF) was injected into the tail vein before 1 hour occlusion. AST, ALT and Suzuki score were used to evaluate the extent of I/R injury. OGD/R test was performed on primary hepatocytes to simulate IRI in vitro. RNA sequence and RT-PCR were used to detect the cellular signal pathway activation while MANF knockout. RESULTS We found that MANF expression and secretion are dramatically up-regulated during hepatic I/R. Hepatocyte-specific MANF knockout aggravates the I/R injury through the over-activated ER stress. The systemic administration of rhMANF before ischaemia has the potential to ameliorate I/R-triggered UPR and liver injury. Further study showed that MANF deficiency activated ATF4/CHOP and JNK/c-JUN/CHOP pathways, and rhMANF inhibited the activation of the two proapoptotic pathways caused by MANF deletion. CONCLUSION Collectively, our study unravels a previously unknown relationship among MANF, UPR and hepatic I/R injury.
Collapse
Affiliation(s)
- Yi Yang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Biopharmaceutical Institute, Anhui Medical University, Hefei, China
| | - Peng Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Biopharmaceutical Institute, Anhui Medical University, Hefei, China
| | - Chaoyi Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Biopharmaceutical Institute, Anhui Medical University, Hefei, China
| | - Fan Huang
- First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Gaozong Pang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Biopharmaceutical Institute, Anhui Medical University, Hefei, China
| | - Chuansheng Wei
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Biopharmaceutical Institute, Anhui Medical University, Hefei, China
| | - Changming Lv
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Biopharmaceutical Institute, Anhui Medical University, Hefei, China
| | - Goma Chhetri
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Biopharmaceutical Institute, Anhui Medical University, Hefei, China
| | - Tongcui Jiang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Biopharmaceutical Institute, Anhui Medical University, Hefei, China
| | - Jun Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Biopharmaceutical Institute, Anhui Medical University, Hefei, China
| | - Yujun Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Biopharmaceutical Institute, Anhui Medical University, Hefei, China
| | - Yuxian Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Biopharmaceutical Institute, Anhui Medical University, Hefei, China
| |
Collapse
|
26
|
Endoplasmic reticulum stress and unfolded protein response in cardiovascular diseases. Nat Rev Cardiol 2021; 18:499-521. [PMID: 33619348 DOI: 10.1038/s41569-021-00511-w] [Citation(s) in RCA: 312] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases (CVDs), such as ischaemic heart disease, cardiomyopathy, atherosclerosis, hypertension, stroke and heart failure, are among the leading causes of morbidity and mortality worldwide. Although specific CVDs and the associated cardiometabolic abnormalities have distinct pathophysiological and clinical manifestations, they often share common traits, including disruption of proteostasis resulting in accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER). ER proteostasis is governed by the unfolded protein response (UPR), a signalling pathway that adjusts the protein-folding capacity of the cell to sustain the cell's secretory function. When the adaptive UPR fails to preserve ER homeostasis, a maladaptive or terminal UPR is engaged, leading to the disruption of ER integrity and to apoptosis. ER stress functions as a double-edged sword, with long-term ER stress resulting in cellular defects causing disturbed cardiovascular function. In this Review, we discuss the distinct roles of the UPR and ER stress response as both causes and consequences of CVD. We also summarize the latest advances in our understanding of the importance of the UPR and ER stress in the pathogenesis of CVD and discuss potential therapeutic strategies aimed at restoring ER proteostasis in CVDs.
Collapse
|
27
|
Ness H, Ljones K, Pinho M, Høydal M. Acute high-intensity aerobic exercise increases gene expression of calcium-related proteins and activates endoplasmic reticulum stress responses in diabetic hearts. COMPARATIVE EXERCISE PHYSIOLOGY 2021. [DOI: 10.3920/cep200022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Regular aerobic exercise training has a wide range of beneficial cardiac effects, but recent data also show that acute very strenuous aerobic exercise may impose a transient cardiac exhaustion. The aim of this study was to assess the response to acute high-intensity aerobic exercise on properties of mitochondrial respiration, cardiomyocyte contractile function, Ca2+ handling and transcriptional changes for key proteins facilitating Ca2+ handling and endoplasmic reticulum (ER) stress responses in type 2 diabetic mice. Diabetic mice were assigned to either sedentary control or an acute bout of exercise, consisting of a 10×4 minutes high-intensity interval treadmill run. Mitochondrial respiration, contractile and Ca2+ handling properties of cardiomyocytes were analysed 1 hour after completion of exercise. Gene expression levels of key Ca2+ handling and ER stress response proteins were measured in cardiac tissue samples harvested 1 hour and 24 hours after exercise. We found no significant changes in mitochondrial respiration, cardiomyocyte contractile function or Ca2+ handling 1 hour after the acute exercise. However, gene expression of Atp2a2, Slc8a1 and Ryr2, encoding proteins involved in cardiomyocyte Ca2+ handling, were all significantly upregulated 24 hours after the acute exercise bout. Acute exercise also altered gene expression of several key proteins in ER stress response and unfolded protein response, including Grp94, total Xbp1, Gadd34, and Atf6. The present results show that despite no significant alterations in functional properties of cardiomyocyte function, Ca2+ handling or mitochondrial respiration following one bout of high intensity aerobic exercise training, the expression of genes involved in Ca2+ handling and key components in ER stress and the unfolded protein response were changed. These transcriptional changes may constitute important steps in initiating adaptive remodelling to exercise training in type 2 diabetes.
Collapse
Affiliation(s)
- H.O. Ness
- NTNU, Norwegian University of Technology and Science (NTNU), Faculty of Medicine and Health, Department of Circulation and Medical Imaging, Group of Molecular and Cellular Cardiology, Prinsesse Kristinas gate 9, Trondheim, 7489, Norway
| | - K. Ljones
- NTNU, Norwegian University of Technology and Science (NTNU), Faculty of Medicine and Health, Department of Circulation and Medical Imaging, Group of Molecular and Cellular Cardiology, Prinsesse Kristinas gate 9, Trondheim, 7489, Norway
| | - M. Pinho
- NTNU, Norwegian University of Technology and Science (NTNU), Faculty of Medicine and Health, Department of Circulation and Medical Imaging, Group of Molecular and Cellular Cardiology, Prinsesse Kristinas gate 9, Trondheim, 7489, Norway
| | - M.A. Høydal
- NTNU, Norwegian University of Technology and Science (NTNU), Faculty of Medicine and Health, Department of Circulation and Medical Imaging, Group of Molecular and Cellular Cardiology, Prinsesse Kristinas gate 9, Trondheim, 7489, Norway
| |
Collapse
|
28
|
Hu X, Hu C, Liu J, Wu Z, Duan T, Cao Z. 1,25-(OH)2D3 protects pancreatic beta cells against H2O2-induced apoptosis through inhibiting the PERK-ATF4-CHOP pathway. Acta Biochim Biophys Sin (Shanghai) 2021; 53:46-53. [PMID: 33242093 DOI: 10.1093/abbs/gmaa138] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Indexed: 02/07/2023] Open
Abstract
Endoplasmic reticulum (ER) stress plays a critical role in pancreatic β cell destruction which leads to the pathogenesis of type 1 diabetes mellitus (T1DM). Vitamin D (VD) has been reported to reduce the risk of T1DM; however, it remains unknown whether VD affects ER stress in pancreatic β cells. In this study, we investigated the role of the active form of VD, 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3], in ER stress-induced β cell apoptosis and explored its potential mechanism in mouse insulinoma cell line mouse insulinoma 6 (MIN6). The results of cell counting kit-8 (CCK8) and flow cytometric analyses showed that 1,25-(OH)2D3 caused a significant increase in the viability of MIN6 cells injured by H2O2. The protein kinase like ER kinase (PERK) signal pathway, one of the most conserved branches of ER stress, was found to be involved in this process. H2O2 activated the phosphorylation of PERK, upregulated the activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP) expression, and subsequently initiated cell apoptosis, which were significantly reversed by 1,25-(OH)2D3 pretreatment. In addition, GSK2606414, a specific inhibitor of PERK, suppressed PERK phosphorylation and reduced the expressions of ATF4 and CHOP, leading to a significant decrease in β cell apoptosis induced by H2O2. Taken together, the present findings firstly demonstrated that 1,25-(OH)2D3 could prevent MIN6 cells against ER stress-associated apoptosis by inhibiting the PERK-ATF4-CHOP pathway. Therefore, our results suggested that 1,25-(OH)2D3 might serve as a potential therapeutic target for preventing pancreatic β cell destruction in T1DM.
Collapse
Affiliation(s)
- Xiaobo Hu
- The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Department of Biochemistry, Hengyang Medical School, University of South China, Hengyang 421001, China
- Department of Biochemistry, Hengyang Medical School, University of South China, Hengyang 421001, China
- The Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang 421001, China
| | - Cong Hu
- The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Department of Biochemistry, Hengyang Medical School, University of South China, Hengyang 421001, China
- Department of Biochemistry, Hengyang Medical School, University of South China, Hengyang 421001, China
- The Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang 421001, China
| | - Jun Liu
- The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Department of Biochemistry, Hengyang Medical School, University of South China, Hengyang 421001, China
- Department of Biochemistry, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Zhuan Wu
- The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Department of Biochemistry, Hengyang Medical School, University of South China, Hengyang 421001, China
- Department of Biochemistry, Hengyang Medical School, University of South China, Hengyang 421001, China
- The Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang 421001, China
| | - Tingting Duan
- The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Department of Biochemistry, Hengyang Medical School, University of South China, Hengyang 421001, China
- Department of Biochemistry, Hengyang Medical School, University of South China, Hengyang 421001, China
- The Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang 421001, China
| | - Zhaohui Cao
- The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Department of Biochemistry, Hengyang Medical School, University of South China, Hengyang 421001, China
- Department of Biochemistry, Hengyang Medical School, University of South China, Hengyang 421001, China
- The Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang 421001, China
| |
Collapse
|
29
|
Li J, Xie J, Wang YZ, Gan YR, Wei L, Ding GW, Ding YH, Xie DX. Overexpression of lncRNA Dancr inhibits apoptosis and enhances autophagy to protect cardiomyocytes from endoplasmic reticulum stress injury via sponging microRNA-6324. Mol Med Rep 2020; 23:116. [PMID: 33300079 PMCID: PMC7723073 DOI: 10.3892/mmr.2020.11755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/19/2020] [Indexed: 12/17/2022] Open
Abstract
Endoplasmic reticulum stress (ERS) contributes to the pathogenesis of myocardial ischemia/reperfusion injury and myocardial infarction (MI). Long non-coding RNAs (lncRNAs) serve an important role in cardiovascular diseases, and lncRNA discrimination antagonizing non-protein coding RNA (Dancr) alleviates cardiomyocyte damage. microRNA (miR)-6324 was upregulated in MI model rats and was predicted to bind to Dancr. The present study aimed to investigate the role of Dancr in ERS-induced cardiomyocytes and the potential underlying mechanisms. Tunicamycin (Tm) was used to induce ERS. Cell viability, apoptosis and levels of associated proteins, ERS and autophagy in Dancr-overexpression H9C2 cells and miR-6234 mimic-transfected H9C2 cells were assessed using Cell Counting Kit-8, TUNEL staining and western blot assay, respectively. The results suggested that Dancr expression levels and cell viability were downregulated by Tm in a concentration-dependent manner compared with the control group. Tm induced apoptosis, ERS and autophagy, as indicated by an increased ratio of apoptotic cells, increased expression levels of Bax, cleaved (c)-caspase-3/9, glucose-regulated protein 78 kDa (GRP78), phosphorylated (p)-inositol-requiring enzyme-1α (IRE1α), spliced X-box-binding protein 1 (Xbp1s), IRE1α, activating transcription factor (ATF)6, ATF4, Beclin 1 and microtubule associated protein 1 light chain 3α (LC3)II/I, and decreased expression levels of Bcl-2, unspliced Xbp1 (Xbp1u) and p62 in the Tm group compared with the control group. Moreover, the results indicated that compared with the Tm + overexpression (Oe)-negative control (NC) group, the Tm + Oe-Dancr group displayed decreased apoptosis, but enhanced ERS and autophagy to restore cellular homeostasis. Compared with the Tm + Oe-NC group, the Tm + Oe-Dancr group decreased the ratio of apoptotic cells, decreased expression levels of Bax, c-caspase-3/9 and Xbp1u, and increased expression levels of Bcl-2, p-IRE1α, Xbp1s, Beclin 1 and LC3II/I. Dancr overexpression also significantly downregulated miR-6324 expression compared with Oe-NC. The dual-luciferase reporter assay further indicated an interaction between Dancr and miR-6324. In addition, miR-6324 mimic partially reversed the effects of Dancr overexpression on Tm-induced apoptosis, ERS and autophagy. In conclusion, lncRNA Dancr overexpression protected cardiomyocytes against ERS injury via sponging miR-6324, thus inhibiting apoptosis, enhancing autophagy and restoring ER homeostasis.
Collapse
Affiliation(s)
- Jiong Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Jing Xie
- Department of Ultrasonic Diagnosis, The First People's Hospital of Lanzhou, Lanzhou, Gansu 730050, P.R. China
| | - Yan-Zhen Wang
- Gansu Cardiovascular Institute, Lanzhou, Gansu 730050, P.R. China
| | - Yi-Rong Gan
- Gansu Cardiovascular Institute, Lanzhou, Gansu 730050, P.R. China
| | - Ling Wei
- Outpatient Department, The First People's Hospital of Lanzhou, Lanzhou, Gansu 730050, P.R. China
| | - Guan-Waner Ding
- Medical Department, Shijiazhuang People's Medical College, Shijiazhuang, Hebei 050599, P.R. China
| | - Yan-Hong Ding
- Anesthesiology Department, The First People's Hospital of Lanzhou, Lanzhou, Gansu 730050, P.R. China
| | - Ding-Xiong Xie
- Gansu Cardiovascular Institute, Lanzhou, Gansu 730050, P.R. China
| |
Collapse
|
30
|
Ruan Y, Zeng J, Jin Q, Chu M, Ji K, Wang Z, Li L. Endoplasmic reticulum stress serves an important role in cardiac ischemia/reperfusion injury (Review). Exp Ther Med 2020; 20:268. [PMID: 33199993 PMCID: PMC7664614 DOI: 10.3892/etm.2020.9398] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
Although acute myocardial infarction is one of the most common fatal diseases worldwide, the understanding of its underlying pathogenesis continues to develop. Myocardial ischemia/reperfusion (I/R) can restore myocardial oxygen and nutrient supply. However, a large number of studies have demonstrated that recovery of blood perfusion after acute ischemia causes reperfusion injury to the heart. With progress made in the understanding of the underlying mechanisms of myocardial I/R and oxidative stress, a novel area of research that merits greater study has been identified, that of I/R-induced endoplasmic reticulum (ER) stress (ERS). Cardiac I/R can alter the function of the ER, leading to the accumulation of unfolded/misfolded proteins. The resulting ERS then induces the activation of signal transduction pathways, which in turn contribute to the development of I/R injury. The mechanism of I/R injury, and the causal relationship between I/R and ERS are reviewed in the present article.
Collapse
Affiliation(s)
- Yongxue Ruan
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Jingjing Zeng
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Qike Jin
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Maoping Chu
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Kangting Ji
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Zhongyu Wang
- Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Lei Li
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| |
Collapse
|
31
|
Wang Y, Chen Z, Li Y, Ma L, Zou Y, Wang X, Yin C, Pan L, Shen Y, Jia J, Yuan J, Zhang G, Yang C, Ge J, Zou Y, Gong H. Low density lipoprotein receptor related protein 6 (LRP6) protects heart against oxidative stress by the crosstalk of HSF1 and GSK3β. Redox Biol 2020; 37:101699. [PMID: 32905882 PMCID: PMC7486456 DOI: 10.1016/j.redox.2020.101699] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
Low density lipoprotein receptor-related protein 6 (LRP6), a Wnt co-receptor, induces multiple functions in various organs. We recently reported cardiac specific LRP6 deficiency caused cardiac dysfunction in mice. Whether cardiomyocyte-expressed LRP6 protects hearts against ischemic stress is largely unknown. Here, we investigated the effects of cardiac LRP6 in response to ischemic reperfusion (I/R) injury. Tamoxifen inducible cardiac specific LRP6 overexpression mice were generated to build I/R model by occlusion of the left anterior descending (LAD) coronary artery for 40 min and subsequent release of specific time. Cardiac specific LRP6 overexpression significantly ameliorated myocardial I/R injury as characterized by the improved cardiac function, strain pattern and infarct area at 24 h after reperfusion. I/R induced-apoptosis and endoplasmic reticulum (ER) stress were greatly inhibited by LRP6 overexpression in cardiomyocytes. LRP6 overexpression enhanced the expression of heat shock transcription factor-1(HSF1) and heat shock proteins (HSPs), the level of p-glycogen synthase kinase 3β(GSK3β)(S9) and p-AMPK under I/R. HSF1 inhibitor deteriorated the apoptosis and decreased p-GSK3β(S9) level in LRP6 overexpressed -cardiomyocytes treated with H2O2. Si-HSF1 or overexpression of active GSK3β significantly attenuated the increased expression of HSF1 and p-AMPK, and the inhibition of apoptosis and ER stress induced by LRP6 overexpression in H2O2-treated cardiomyocytes. AMPK inhibitor suppressed the increase in p-GSK3β (S9) level but didn't alter HSF1 nucleus expression in LRP6 overexpressed-cardiomyocytes treated with H2O2. Active GSK3β, but not AMPK inhibitor, attenuated the inhibition of ubiquitination of HSF1 induced by LRP6-overexpressed-cardiomyocytes treated with H2O2. LRP6 overexpression increased interaction of HSF1 and GSK3β which may be involved in the reciprocal regulation under oxidative stress. In conclusion, cardiac LRP6 overexpression significantly inhibits cardiomyocyte apoptosis and ameliorates myocardial I/R injury by the crosstalk of HSF1 and GSK3β signaling.
Collapse
Affiliation(s)
- Ying Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Zhidan Chen
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yang Li
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Leilei Ma
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yan Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Xiang Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Chao Yin
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Le Pan
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yi Shen
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Jianguo Jia
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Jie Yuan
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Guoping Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Chunjie Yang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | - Hui Gong
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
32
|
Zhang N, Wang Y, Zhang J, Liu B, Deng X, Xin S, Xu K. N-glycosylation of CREBH improves lipid metabolism and attenuates lipotoxicity in NAFLD by modulating PPARα and SCD-1. FASEB J 2020; 34:15338-15363. [PMID: 32996649 DOI: 10.1096/fj.202000836rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Cyclic adenosine monophosphate (AMP)-responsive element-binding protein H (CREBH), an endoplasmic reticulum-anchored transcription factor essential for lipid metabolism and inflammation in nonalcoholic fatty liver disease (NAFLD), is covalently modified by N-acetylglucosamine. Glycosylation is a ubiquitous type of protein involved in posttranslational modifications, and plays a critical role in various biological processes. However, the mechanism of glycosylated CREBH remains poorly understood in NAFLD. METHODS CREBH glycosylation mutants were obtained by site-mutation methods. After transfection with plasmids, AML-12, LO2, or HepG2 cells were treated with palmitic acid (PA) proteolysis, tunicamycin (Tm), or their combination. Glycosyltransferase V (GnT-V) was used induce hyperglycosylation to further understand the effect of CREBH. In addition, glycosylation mutant mice and hyperglycosylated mice were generated by lentivirus injection to construct two kinds of NAFLD animal models. The expression of NAFLD-related factors was detected to further verify the role of N-linked glycosylation of CREBH in lipid and sterol metabolism, inflammation, and lipotoxicity. RESULTS N-glycosylation enhanced the ability of CREBH to activate transcription and modulated the production of peroxisome proliferator-activated receptor alpha (PPARα) and stearoyl-CoA desaturase-1 (SCD-1) activity by affecting their promoter-driven transcription activity and protein interactions, leading to reduce lipid deposition and attenuate lipotoxicity. Deglycosylation of CREBH induced by Tm could inhibit the proteolysis of CREBH induced by PA. The addition of unglycosylated CREBH to cells upregulates gene and protein expression of lipogenesis, lipotoxicity, and inflammation, and aggravates liver damage by preventing glycosylation in cells, as well as in mouse models of NAFLD. Furthermore, increased N-glycosylation of CREBH, as achieved by overexpressing GnT-V could significantly improve liver lesion caused by unglycosylation of CREBH. CONCLUSION These findings have important implications for the role of CREBH N-glycosylation in proteolytic activation, and they provide the first link between N-glycosylation of CREBH, lipid metabolism, and lipotoxicity processes in the liver by modulating PPARα and SCD-1. These results provide novel insights into the N-glycosylation of CREBH as a therapeutic target for NAFLD.
Collapse
Affiliation(s)
- Ning Zhang
- Division of Gastroenterology, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, China
| | - Yuli Wang
- Division of Oncology, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, China
| | - Junli Zhang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Beibei Liu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoling Deng
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengliang Xin
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Keshu Xu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
33
|
Zeng J, Jin Q, Ruan Y, Sun C, Xu G, Chu M, Ji K, Wu L, Li L. Inhibition of TGFβ-activated protein kinase 1 ameliorates myocardial ischaemia/reperfusion injury via endoplasmic reticulum stress suppression. J Cell Mol Med 2020; 24:6846-6859. [PMID: 32378287 PMCID: PMC7299680 DOI: 10.1111/jcmm.15340] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/09/2020] [Accepted: 04/12/2020] [Indexed: 12/22/2022] Open
Abstract
Transforming growth factor β-activated protein kinase 1 (TAK1) involves in various biological responses and is a key regulator of cell death. However, the role of TAK1 on acute myocardial ischaemia/reperfusion (MI/R) injury is unknown. We observed that TAK1 activation increased significantly after MI/R and hypoxia/reoxygenation (H/R), and we hypothesized that TAK1 has an important role in MI/R injury. Mice (TAK1 inhibiting by 5Z-7-oxozeaenol or silencing by AAV9 vector) were exposed to MI/R injury. Primary cardiomyocytes (TAK1 silencing by siRNA; and overexpressing TAK1 by adenovirus vector) were used to induce H/R injury model in vitro. Inhibition of TAK1 significantly decreased MI/R-induced myocardial infarction area, reduced cell death and improved cardiac function. Mechanistically, TAK1 silencing suppressed MI/R-induced myocardial oxidative stress and attenuated endoplasmic reticulum (ER) stress both in vitro and in vivo. In addition, the inhibition of ROS by NAC partially reversed the damage of TAK1 in vitro. Our study presents the first direct evidence that inhibition of TAK1 mitigated MI/R injury, and TAK1 mediated ROS/ER stress/apoptosis signal pathway is important for the pathogenesis of MI/R injury.
Collapse
Affiliation(s)
- Jingjing Zeng
- Institute of Cardiovascular Development and Translational MedicineThe Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Qike Jin
- Institute of Cardiovascular Development and Translational MedicineThe Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yongxue Ruan
- Institute of Cardiovascular Development and Translational MedicineThe Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Changzheng Sun
- Institute of Cardiovascular Development and Translational MedicineThe Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Guangyu Xu
- Institute of Cardiovascular Development and Translational MedicineThe Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Maoping Chu
- Institute of Cardiovascular Development and Translational MedicineThe Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Kangting Ji
- Institute of Cardiovascular Development and Translational MedicineThe Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Lianpin Wu
- Institute of Cardiovascular Development and Translational MedicineThe Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Lei Li
- Institute of Cardiovascular Development and Translational MedicineThe Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
34
|
Glembotski CC, Arrieta A, Blackwood EA, Stauffer WT. ATF6 as a Nodal Regulator of Proteostasis in the Heart. Front Physiol 2020; 11:267. [PMID: 32322217 PMCID: PMC7156617 DOI: 10.3389/fphys.2020.00267] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/09/2020] [Indexed: 12/15/2022] Open
Abstract
Proteostasis encompasses a homeostatic cellular network in all cells that maintains the integrity of the proteome, which is critical for optimal cellular function. The components of the proteostasis network include protein synthesis, folding, trafficking, and degradation. Cardiac myocytes have a specialized endoplasmic reticulum (ER) called the sarcoplasmic reticulum that is well known for its role in contractile calcium handling. However, less studied is the proteostasis network associated with the ER, which is of particular importance in cardiac myocytes because it ensures the integrity of proteins that are critical for cardiac contraction, e.g., ion channels, as well as proteins necessary for maintaining myocyte viability and interaction with other cell types, e.g., secreted hormones and growth factors. A major aspect of the ER proteostasis network is the ER unfolded protein response (UPR), which is initiated when misfolded proteins in the ER activate a group of three ER transmembrane proteins, one of which is the transcription factor, ATF6. Prior to studies in the heart, ATF6 had been shown in model cell lines to be primarily adaptive, exerting protective effects by inducing genes that encode ER proteins that fortify protein-folding in this organelle, thus establishing the canonical role for ATF6. Subsequent studies in isolated cardiac myocytes and in the myocardium, in vivo, have expanded roles for ATF6 beyond the canonical functions to include the induction of genes that encode proteins outside of the ER that do not have known functions that are obviously related to ER protein-folding. The identification of such non-canonical roles for ATF6, as well as findings that the gene programs induced by ATF6 differ depending on the stimulus, have piqued interest in further research on ATF6 as an adaptive effector in cardiac myocytes, underscoring the therapeutic potential of activating ATF6 in the heart. Moreover, discoveries of small molecule activators of ATF6 that adaptively affect the heart, as well as other organs, in vivo, have expanded the potential for development of ATF6-based therapeutics. This review focuses on the ATF6 arm of the ER UPR and its effects on the proteostasis network in the myocardium.
Collapse
Affiliation(s)
- Christopher C Glembotski
- Department of Biology, College of Sciences, San Diego State University Heart Institute, San Diego State University, San Diego, CA, United States
| | - Adrian Arrieta
- Department of Biology, College of Sciences, San Diego State University Heart Institute, San Diego State University, San Diego, CA, United States
| | - Erik A Blackwood
- Department of Biology, College of Sciences, San Diego State University Heart Institute, San Diego State University, San Diego, CA, United States
| | - Winston T Stauffer
- Department of Biology, College of Sciences, San Diego State University Heart Institute, San Diego State University, San Diego, CA, United States
| |
Collapse
|
35
|
Stoner MW, McTiernan CF, Scott I, Manning JR. Calreticulin expression in human cardiac myocytes induces ER stress-associated apoptosis. Physiol Rep 2020; 8:e14400. [PMID: 32323496 PMCID: PMC7177173 DOI: 10.14814/phy2.14400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
The global burden of heart failure following myocardial ischemia-reperfusion (IR) injury is a growing problem. One pathway that is key to understanding the progression of myocardial infarction and IR injury is the endoplasmic reticulum (ER) stress pathway, which contributes to apoptosis signaling and tissue death. The role of calreticulin in the progression of ER stress remains controversial. We hypothesized that calreticulin induction drives proapoptotic signaling in response to ER stress. We find here that calreticulin is upregulated in human ischemic heart failure cardiac tissue, as well as simulated hypoxia and reoxygenation (H/R) and thapsigargin-mediated ER stress. To test the impact of direct modulation of calreticulin expression on ER stress-induced apoptosis, human cardiac-derived AC16 cells with stable overexpression or silencing of calreticulin were subjected to thapsigargin treatment, and markers of apoptosis were evaluated. It was found that overexpression of calreticulin promotes apoptosis, while a partial knockdown protects against the expression of caspase 12, CHOP, and reduces thapsigargin-driven TUNEL staining. These data shed light on the role that calreticulin plays in apoptosis signaling during ER stress in cardiac cells.
Collapse
Affiliation(s)
- Michael W. Stoner
- Division of CardiologyDepartment of MedicineUniversity of PittsburghPittsburghPAUSA
- Department of MedicineVascular Medicine InstituteUniversity of PittsburghPittsburghPAUSA
- Department of MedicineCenter for Metabolism and Mitochondrial MedicineUniversity of PittsburghPAUSA
| | - Charles F. McTiernan
- Division of CardiologyDepartment of MedicineUniversity of PittsburghPittsburghPAUSA
- Department of MedicineVascular Medicine InstituteUniversity of PittsburghPittsburghPAUSA
- Department of MedicineCenter for Metabolism and Mitochondrial MedicineUniversity of PittsburghPAUSA
| | - Iain Scott
- Division of CardiologyDepartment of MedicineUniversity of PittsburghPittsburghPAUSA
- Department of MedicineVascular Medicine InstituteUniversity of PittsburghPittsburghPAUSA
- Department of MedicineCenter for Metabolism and Mitochondrial MedicineUniversity of PittsburghPAUSA
| | - Janet R. Manning
- Division of CardiologyDepartment of MedicineUniversity of PittsburghPittsburghPAUSA
- Department of MedicineVascular Medicine InstituteUniversity of PittsburghPittsburghPAUSA
- Department of MedicineCenter for Metabolism and Mitochondrial MedicineUniversity of PittsburghPAUSA
| |
Collapse
|
36
|
PERK Overexpression-Mediated Nrf2/HO-1 Pathway Alleviates Hypoxia/Reoxygenation-Induced Injury in Neonatal Murine Cardiomyocytes via Improving Endoplasmic Reticulum Stress. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6458060. [PMID: 32309436 PMCID: PMC7136769 DOI: 10.1155/2020/6458060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/20/2020] [Accepted: 01/27/2020] [Indexed: 12/14/2022]
Abstract
Reperfusion processes following acute myocardial infarction (AMI) have been reported to induce additional cardiomyocyte death, known as ischemia-reperfusion (I/R) injury. Endoplasmic reticulum (ER) stress is reported to be involved in the development of I/R injury. There is evidence that PERK exerts beneficial roles in alleviating ER stress. Here, we investigated whether upregulation of PERK improved cardiomyocytes injury induced by I/R. Specific siRNAs or adenovirus vectors were incubated with isolated neonatal cardiomyocytes (NCMs) to regulate expression levels of target genes including PERK, Nrf2, and HO-1. Afterwards, hypoxia and subsequent reoxygenation (H/R) administration was performed as the in vitro model of I/R injury. MTT assay showed that H/R intervention decreased the viability of cells, yet PERK overexpression increased the cellular proliferative rate. Moreover, the upregulation of Nrf2 or HO-1 elevated the growth rate of cells, while gene silencing of Nrf2 or HO-1 reduced the viability of NCMs treated with PERK-rAAV9. In addition, we observed that the apoptotic index of cells with H/R stimulation was reduced when NCMs were pretreated with PERK-rAAV9, Nrf2-rAAV9, or HO-1-rAAV9. After cells were incubated with Nrf2-siRNA or HO-1-siRNA, the upregulation of PERK had no roles in affecting the apoptosis rate of NCMs damaged by H/R. Then, our findings indicated that there was a level decrease of GRP78, CRT, CHOP, and Caspase-12 in NCMs of the PERK-rAAV9 group compared to that of the H/R group. Both Nrf2 overexpression and HO-1 upregulation reduced the expression of ER stress-related proapoptotic factors, yet the expression suppression of Nrf2 and HO-1 increased levels of GRP78, CRT, CHOP, and Caspase-12 in NCMs treated with PERK-rAAV9. Taken together, our results suggested that the effects of PERK against H/R injury might be attributed to the upregulation of Nrf2/HO-1 cascade, followed by the inhibition of ER stress-related apoptotic pathway.
Collapse
|
37
|
Mariángelo JIE, Román B, Silvestri MA, Salas M, Vittone L, Said M, Mundiña‐Weilenmann C. Chemical chaperones improve the functional recovery of stunned myocardium by attenuating the endoplasmic reticulum stress. Acta Physiol (Oxf) 2020; 228:e13358. [PMID: 31385408 DOI: 10.1111/apha.13358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/26/2022]
Abstract
AIM Myocardial ischaemia/reperfusion (I/R) produces structural and functional alterations depending on the duration of ischaemia. Brief ischaemia followed by reperfusion causes reversible contractile dysfunction (stunned heart) but long-lasting ischaemia followed by reperfusion can result in irreversible injury with cell death. Events during I/R can alter endoplasmic reticulum (ER) function leading to the accumulation of unfolded/misfolded proteins. The resulting ER stress induces activation of several signal transduction pathways, known as unfolded protein response (UPR). Experimental evidence shows that UPR contributes to cell death in irreversible I/R injury; however, there is still uncertainty for its occurrence in the stunned myocardium. This study investigated the ER stress response and its functional impact on the post-ischaemic cardiac performance of the stunned heart. METHODS Perfused rat hearts were subjected to 20 minutes of ischaemia followed by 30 minutes of reperfusion. UPR markers were evaluated by qRT-PCR and western blot. Post-ischaemic mechanical recovery was measured in absence and presence of two chemical chaperones: tauroursodeoxycholic acid (TUDCA) and 4-phenylbutyric acid (4-PBA). RESULTS Analysis of mRNA and protein levels of various ER stress effectors demonstrated that different UPR signalling cascades, involving both pro-survival and pro-apoptotic pathways, are activated. Inhibition of the UPR with chemical chaperones improved the post-ischaemic recovery of cardiac mechanical function without affecting the I/R-induced increase in oxidative stress. CONCLUSION Our results suggest that prevention of ER stress by chemical chaperones could be a therapeutic tool to limit deterioration of the contractile function in clinical settings in which the phenomenon of myocardial stunning is present.
Collapse
Affiliation(s)
- Juan Ignacio Elio Mariángelo
- Centro de Investigaciones Cardiovasculares, CCT‐CONICET La Plata, Facultad de Ciencias Médicas Universidad Nacional de La Plata La Plata Argentina
| | - Bárbara Román
- Centro de Investigaciones Cardiovasculares, CCT‐CONICET La Plata, Facultad de Ciencias Médicas Universidad Nacional de La Plata La Plata Argentina
| | - María Agustina Silvestri
- Centro de Investigaciones Cardiovasculares, CCT‐CONICET La Plata, Facultad de Ciencias Médicas Universidad Nacional de La Plata La Plata Argentina
| | - Margarita Salas
- Centro de Investigaciones Cardiovasculares, CCT‐CONICET La Plata, Facultad de Ciencias Médicas Universidad Nacional de La Plata La Plata Argentina
| | - Leticia Vittone
- Centro de Investigaciones Cardiovasculares, CCT‐CONICET La Plata, Facultad de Ciencias Médicas Universidad Nacional de La Plata La Plata Argentina
| | - Matilde Said
- Centro de Investigaciones Cardiovasculares, CCT‐CONICET La Plata, Facultad de Ciencias Médicas Universidad Nacional de La Plata La Plata Argentina
| | - Cecilia Mundiña‐Weilenmann
- Centro de Investigaciones Cardiovasculares, CCT‐CONICET La Plata, Facultad de Ciencias Médicas Universidad Nacional de La Plata La Plata Argentina
| |
Collapse
|
38
|
Arrieta A, Blackwood EA, Stauffer WT, Glembotski CC. Integrating ER and Mitochondrial Proteostasis in the Healthy and Diseased Heart. Front Cardiovasc Med 2020; 6:193. [PMID: 32010709 PMCID: PMC6974444 DOI: 10.3389/fcvm.2019.00193] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022] Open
Abstract
The integrity of the proteome in cardiac myocytes is critical for robust heart function. Proteome integrity in all cells is managed by protein homeostasis or proteostasis, which encompasses processes that maintain the balance of protein synthesis, folding, and degradation in ways that allow cells to adapt to conditions that present a potential challenge to viability (1). While there are processes in various cellular locations in cardiac myocytes that contribute to proteostasis, those in the cytosol, mitochondria and endoplasmic reticulum (ER) have dominant roles in maintaining cardiac contractile function. Cytosolic proteostasis has been reviewed elsewhere (2, 3); accordingly, this review focuses on proteostasis in the ER and mitochondria, and how they might influence each other and, thus, impact heart function in the settings of cardiac physiology and disease.
Collapse
Affiliation(s)
- Adrian Arrieta
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, CA, United States
| | - Erik A Blackwood
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, CA, United States
| | - Winston T Stauffer
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, CA, United States
| | - Christopher C Glembotski
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, CA, United States
| |
Collapse
|
39
|
Huang J, Wang Q, Bu W, Chen L, Yang Z, Zheng W, Li Y, Li J. Different construction strategies affected on the physiology of Pichia pastoris strains highly expressed lipase by transcriptional analysis of key genes. Bioengineered 2019; 10:150-161. [PMID: 31079540 PMCID: PMC6527059 DOI: 10.1080/21655979.2019.1614422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We demonstrated previously that expression of Rhizomucor miehei lipase (RML) in Pichia pastoris could be significantly increased by addition of gene propeptide, optimized signal peptide codons and manipulation of gene dosage. In this study, effects of various strategies on the protein synthesis and secretion pathways were analyzed. Using nine strains previously constructed, we evaluated cell culture properties, enzymatic activities, and analyzed transcriptional levels of nine genes involved in protein synthesis and secretion pathways by qPCR. We observed that (i) Addition of propeptide decreased lipase folding stress by down-regulated four UPR-related genes. (ii) Signal peptide codons optimization had no effect on host with no change in the nine detected genes. (iii) Folding stress and limited transport capacity produced when rml gene dosage exceed 2. Different limiting factors on lipase expression in strains with different construction strategies were identified. This study provides a theoretical basis for further improving RML by transforming host.
Collapse
Affiliation(s)
- Jinjin Huang
- a Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Sciences , Jiangsu Normal University , Xuzhou , P. R. China.,b State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology , College of Biological Sciences, China Agricultural University , Beijing , P. R. China
| | - Qing Wang
- b State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology , College of Biological Sciences, China Agricultural University , Beijing , P. R. China.,c School of Life Sciences , Beijing University of Chinese Medicine , Beijing , P. R. China
| | - Wei Bu
- a Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Sciences , Jiangsu Normal University , Xuzhou , P. R. China
| | - Lingxiao Chen
- a Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Sciences , Jiangsu Normal University , Xuzhou , P. R. China
| | - Zhen Yang
- b State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology , College of Biological Sciences, China Agricultural University , Beijing , P. R. China
| | - Weifa Zheng
- a Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Sciences , Jiangsu Normal University , Xuzhou , P. R. China
| | - Ying Li
- b State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology , College of Biological Sciences, China Agricultural University , Beijing , P. R. China
| | - Jilun Li
- b State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology , College of Biological Sciences, China Agricultural University , Beijing , P. R. China
| |
Collapse
|
40
|
PRMT1 suppresses ATF4-mediated endoplasmic reticulum response in cardiomyocytes. Cell Death Dis 2019; 10:903. [PMID: 31787756 PMCID: PMC6885520 DOI: 10.1038/s41419-019-2147-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022]
Abstract
Endoplasmic reticulum (ER) stress signaling plays a critical role in the control of cell survival or death. Persistent ER stress activates proapoptotic pathway involving the ATF4/CHOP axis. Although accumulating evidences support its important contribution to cardiovascular diseases, but its mechanism is not well characterized. Here, we demonstrate a critical role for PRMT1 in the control of ER stress in cardiomyocytes. The inhibition of PRMT1 augments tunicamycin (TN)-triggered ER stress response in cardiomyocytes while PRMT1 overexpression attenuates it. Consistently, PRMT1 null hearts show exacerbated ER stress and cell death in response to TN treatment. Interestingly, ATF4 depletion attenuates the ER stress response induced by PRMT1 inhibition. The methylation-deficient mutant of ATF4 with the switch of arginine 239 to lysine exacerbates ER stress accompanied by enhanced levels of proapoptotic cleaved Caspase3 and phosphorylated-γH2AX in response to TN. The mechanistic study shows that PRMT1 modulates the protein stability of ATF4 through methylation. Taken together, our data suggest that ATF4 methylation on arginine 239 by PRMT1 is a novel regulatory mechanism for protection of cardiomyocytes from ER stress-induced cell death.
Collapse
|
41
|
Zhang G, Wang X, Bi X, Li C, Deng Y, Al-Hashimi AA, Luo X, Gillette TG, Austin RC, Wang Y, Wang ZV. GRP78 (Glucose-Regulated Protein of 78 kDa) Promotes Cardiomyocyte Growth Through Activation of GATA4 (GATA-Binding Protein 4). Hypertension 2019; 73:390-398. [PMID: 30580686 DOI: 10.1161/hypertensionaha.118.12084] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The heart manifests hypertrophic growth in response to elevation of afterload pressure. Cardiac myocyte growth involves new protein synthesis and membrane expansion, of which a number of cellular quality control machineries are stimulated to maintain function and homeostasis. The unfolded protein response is potently induced during cardiac hypertrophy to enhance protein-folding capacity and eliminate terminally misfolded proteins. However, whether the unfolded protein response directly regulates cardiac myocyte growth remains to be fully determined. Here, we show that GRP78 (glucose-regulated protein of 78 kDa)-an endoplasmic reticulum-resident chaperone and a critical unfolded protein response regulator-is induced by cardiac hypertrophy. Importantly, overexpression of GRP78 in cardiomyocytes is sufficient to potentiate hypertrophic stimulus-triggered growth. At the in vivo level, TG (transgenic) hearts overexpressing GRP78 mount elevated hypertrophic growth in response to pressure overload. We went further to show that GRP78 increases GATA4 (GATA-binding protein 4) level, which may stimulate Anf (atrial natriuretic factor) expression and promote cardiac hypertrophic growth. Silencing of GATA4 in cultured neonatal rat ventricular myocytes significantly diminishes GRP78-mediated growth response. Our results, therefore, reveal that protein-folding chaperone GRP78 may directly enhance cardiomyocyte growth by stimulating cardiac-specific transcriptional factor GATA4.
Collapse
Affiliation(s)
- Guangyu Zhang
- From the Department of Cardiology, Zhongnan Hospital of Wuhan University, Hubei, China (G.Z., Y.W.).,Division of Cardiology, Department of Internal Medicine (G.Z., X.W., X.B., C.L., X.L., T.G.G., Z.V.W.), University of Texas Southwestern Medical Center, Dallas
| | - Xiaoding Wang
- Division of Cardiology, Department of Internal Medicine (G.Z., X.W., X.B., C.L., X.L., T.G.G., Z.V.W.), University of Texas Southwestern Medical Center, Dallas
| | - Xukun Bi
- Division of Cardiology, Department of Internal Medicine (G.Z., X.W., X.B., C.L., X.L., T.G.G., Z.V.W.), University of Texas Southwestern Medical Center, Dallas.,Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China (X.B.)
| | - Chao Li
- Division of Cardiology, Department of Internal Medicine (G.Z., X.W., X.B., C.L., X.L., T.G.G., Z.V.W.), University of Texas Southwestern Medical Center, Dallas
| | - Yingfeng Deng
- Department of Internal Medicine, Touchstone Diabetes Center (Y.D.), University of Texas Southwestern Medical Center, Dallas
| | - Ali A Al-Hashimi
- Division of Nephrology, Department of Medicine, McMaster University, The Research Institute of St. Joe's Hamilton and Hamilton Center for Kidney Research, ON, Canada (A.A.A.-H., R.C.A.)
| | - Xiang Luo
- Division of Cardiology, Department of Internal Medicine (G.Z., X.W., X.B., C.L., X.L., T.G.G., Z.V.W.), University of Texas Southwestern Medical Center, Dallas
| | - Thomas G Gillette
- Division of Cardiology, Department of Internal Medicine (G.Z., X.W., X.B., C.L., X.L., T.G.G., Z.V.W.), University of Texas Southwestern Medical Center, Dallas
| | - Richard C Austin
- Division of Nephrology, Department of Medicine, McMaster University, The Research Institute of St. Joe's Hamilton and Hamilton Center for Kidney Research, ON, Canada (A.A.A.-H., R.C.A.)
| | - Yanggan Wang
- From the Department of Cardiology, Zhongnan Hospital of Wuhan University, Hubei, China (G.Z., Y.W.).,Medical Research Institute of Wuhan University, Wuhan University, Hubei, China (Y.W.)
| | - Zhao V Wang
- Division of Cardiology, Department of Internal Medicine (G.Z., X.W., X.B., C.L., X.L., T.G.G., Z.V.W.), University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
42
|
Yan B, Wang H, Tan Y, Fu W. microRNAs in Cardiovascular Disease: Small Molecules but Big Roles. Curr Top Med Chem 2019; 19:1918-1947. [PMID: 31393249 DOI: 10.2174/1568026619666190808160241] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/01/2019] [Accepted: 07/25/2019] [Indexed: 01/01/2023]
Abstract
microRNAs (miRNAs) are an evolutionarily conserved class of small single-stranded noncoding RNAs. The aberrant expression of specific miRNAs has been implicated in the development and progression of diverse cardiovascular diseases. For many decades, miRNA therapeutics has flourished, taking advantage of the fact that miRNAs can modulate gene expression and control cellular phenotypes at the posttranscriptional level. Genetic replacement or knockdown of target miRNAs by chemical molecules, referred to as miRNA mimics or inhibitors, has been used to reverse their abnormal expression as well as their adverse biological effects in vitro and in vivo in an effort to fully implement the therapeutic potential of miRNA-targeting treatment. However, the limitations of the chemical structure and delivery systems are hindering progress towards clinical translation. Here, we focus on the regulatory mechanisms and therapeutic trials of several representative miRNAs in the context of specific cardiovascular diseases; from this basic perspective, we evaluate chemical modifications and delivery vectors of miRNA-based chemical molecules and consider the underlying challenges of miRNA therapeutics as well as the clinical perspectives on their applications.
Collapse
Affiliation(s)
- Bingqian Yan
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Huijing Wang
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yao Tan
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wei Fu
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| |
Collapse
|
43
|
Hu J, Wu Q, Wang Z, Hong J, Chen R, Li B, Hu Z, Hu X, Zhang M. Inhibition of CACNA1H attenuates doxorubicin-induced acute cardiotoxicity by affecting endoplasmic reticulum stress. Biomed Pharmacother 2019; 120:109475. [PMID: 31580970 DOI: 10.1016/j.biopha.2019.109475] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Doxorubicin (DOX) is an anticancer drug that has been widely used in the clinic. However, recently its application has been limited due to the cardiotoxic effects it has caused. Severe cardiotoxicity of DOX causes cardiac hypertrophy that may lead to heart failure. It has previously been demonstrated that CACNA1H is re-expressed in hypertrophic cardiomyocytes. In this study, we aimed to investigate the role of CACNA1H in DOX-induced acute cardiotoxicity, and to investigate its possible underlying mechanisms of action involved. METHODS Firstly, DOX-induced cardiac injury and changes in the expression of CACNA1H were evaluated. We explored the role of endoplasmic reticulum (ER) stress and apoptosis in mice that underwent DOX-induced cardiac injury. Next, to explore the role of CACNA1H in this process, we evaluated the changes in DOX-induced cardiac injury and ER stress after treatment with the CACNA1H specific inhibitor ABT-639. Next, we used ER stress inhibitor UR906 to verify the role of ER stress in DOX induced cardiotoxicity in H9C2 cells. RESULTS DOX-treatment caused acute heart injury, leading to a decrease in cardiac function in mice, an increase in apoptosis of cardiac myocytes, and a significant increase in the expression level of CACNA1H in heart tissue. Next, mice were treated with CACNA1H inhibitor ABT-639 and we demonstrated that it partly protects myocardial function and reduces myocardial cell apoptosis. In addition, our data indicated that CACNA1H may play a role in alleviating DOX-induced cardiotoxicity by reducing the severity of ER stress because the use of ABT-639 significantly changed ER stress-related proteins, including p-PERK, PERK, CHOP, GRP78, ATF6, and ATF4. Furthermore, we found that the use of ER stress inhibitor UR906 in H9C2 cells significantly alleviated the increased expression of ER stress related proteins and apoptosis related proteins caused by DOX, and meanwhile reduced the degree of intracellular oxidative stress and intracellular calcium ion concentration. CONCLUSION CACNA1H inhibitors significantly alleviated DOX-induced cardiotoxicity and apoptosis induced by ER stress.
Collapse
Affiliation(s)
- Junxia Hu
- Department of Cardiothoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan 430000, Hubei Province, People's Republic of China; Central Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan 430000, Hubei Province, People's Republic of China
| | - Qi Wu
- Department of Cardiothoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan 430000, Hubei Province, People's Republic of China; Central Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan 430000, Hubei Province, People's Republic of China
| | - Zhiwei Wang
- Department of Cardiothoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan 430000, Hubei Province, People's Republic of China.
| | - Junmou Hong
- Department of Cardiothoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan 430000, Hubei Province, People's Republic of China; Central Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan 430000, Hubei Province, People's Republic of China
| | - Ruoshi Chen
- Department of Cardiothoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan 430000, Hubei Province, People's Republic of China; Central Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan 430000, Hubei Province, People's Republic of China
| | - Bowen Li
- Department of Cardiothoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan 430000, Hubei Province, People's Republic of China; Central Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan 430000, Hubei Province, People's Republic of China
| | - Zhipeng Hu
- Department of Cardiothoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan 430000, Hubei Province, People's Republic of China
| | - Xiaoping Hu
- Department of Cardiothoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan 430000, Hubei Province, People's Republic of China
| | - Min Zhang
- Department of Cardiothoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan 430000, Hubei Province, People's Republic of China
| |
Collapse
|
44
|
Yu L, Yang G, Zhang X, Wang P, Weng X, Yang Y, Li Z, Fang M, Xu Y, Sun A, Ge J. Megakaryocytic Leukemia 1 Bridges Epigenetic Activation of NADPH Oxidase in Macrophages to Cardiac Ischemia-Reperfusion Injury. Circulation 2019; 138:2820-2836. [PMID: 30018168 DOI: 10.1161/circulationaha.118.035377] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Excessive accumulation of reactive oxygen species (ROS), catalyzed by the NADPH oxidases (NOX), is involved in the pathogenesis of ischemia-reperfusion (IR) injury. The underlying epigenetic mechanism remains elusive. METHODS We evaluated the potential role of megakaryocytic leukemia 1 (MKL1), as a bridge linking epigenetic activation of NOX to ROS production and cardiac ischemia-reperfusion injury. RESULTS Following IR injury, MKL1-deficient (knockout) mice exhibited smaller myocardial infarction along with improved heart function compared with wild-type littermates. Similarly, pharmaceutical inhibition of MKL1 with CCG-1423 also attenuated myocardial infarction and improved heart function in mice. Amelioration of IR injury as a result of MKL1 deletion or inhibition was accompanied by reduced ROS in vivo and in vitro. In response to IR, MKL1 levels were specifically elevated in macrophages, but not in cardiomyocytes, in the heart. Of note, macrophage-specific deletion (MϕcKO), instead of cardiomyocyte-restricted ablation (CMcKO), of MKL1 in mice led to similar improvements of infarct size, heart function, and myocardial ROS generation. Reporter assay and chromatin immunoprecipitation assay revealed that MKL1 directly bound to the promoters of NOX genes to activate NOX transcription. Mechanistically, MKL1 recruited the histone acetyltransferase MOF (male absent on the first) to modify the chromatin structure surrounding the NOX promoters. Knockdown of MOF in macrophages blocked hypoxia/reoxygenation-induced NOX transactivation and ROS accumulation. Of importance, pharmaceutical inhibition of MOF with MG149 significantly downregulated NOX1/NOX4 expression, dampened ROS production, and normalized myocardial function in mice exposed to IR injury. Finally, administration of a specific NOX1/4 inhibitor GKT137831 dampened ROS generation and rescued heart function after IR in mice. CONCLUSIONS Our data delineate an MKL1-MOF-NOX axis in macrophages that contributes to IR injury, and as such we have provided novel therapeutic targets in the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Liming Yu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, China (L.Y., G.Y., X.Z., Z.L., M.F., Y.X.)
| | - Guang Yang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, China (L.Y., G.Y., X.Z., Z.L., M.F., Y.X.)
| | - Xinjian Zhang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, China (L.Y., G.Y., X.Z., Z.L., M.F., Y.X.)
| | - Peng Wang
- Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital (P.W., X.W., A.S., J.G.), Fudan University, Shanghai, China.,Institute of Biomedical Sciences (P.W., X.W., A.S., J.G.), Fudan University, Shanghai, China
| | - Xinyu Weng
- Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital (P.W., X.W., A.S., J.G.), Fudan University, Shanghai, China.,Institute of Biomedical Sciences (P.W., X.W., A.S., J.G.), Fudan University, Shanghai, China
| | - Yuyu Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (Y.Y.)
| | - Zilong Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, China (L.Y., G.Y., X.Z., Z.L., M.F., Y.X.).,Institute of Biomedical Research, Liaocheng University, Liaocheng, China (Z.L., Y.X.)
| | - Mingming Fang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, China (L.Y., G.Y., X.Z., Z.L., M.F., Y.X.)
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, China (L.Y., G.Y., X.Z., Z.L., M.F., Y.X.).,Institute of Biomedical Research, Liaocheng University, Liaocheng, China (Z.L., Y.X.)
| | - Aijun Sun
- Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital (P.W., X.W., A.S., J.G.), Fudan University, Shanghai, China.,Institute of Biomedical Sciences (P.W., X.W., A.S., J.G.), Fudan University, Shanghai, China
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital (P.W., X.W., A.S., J.G.), Fudan University, Shanghai, China.,Institute of Biomedical Sciences (P.W., X.W., A.S., J.G.), Fudan University, Shanghai, China
| |
Collapse
|
45
|
Affiliation(s)
- Diem H Tran
- 1 Division of Cardiology Department of Internal Medicine University of Texas Southwestern Medical Center Dallas TX
| | - Zhao V Wang
- 1 Division of Cardiology Department of Internal Medicine University of Texas Southwestern Medical Center Dallas TX
| |
Collapse
|
46
|
ZYZ-803 Mitigates Endoplasmic Reticulum Stress-Related Necroptosis after Acute Myocardial Infarction through Downregulating the RIP3-CaMKII Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6173685. [PMID: 31281585 PMCID: PMC6589311 DOI: 10.1155/2019/6173685] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/10/2019] [Accepted: 04/02/2019] [Indexed: 02/06/2023]
Abstract
Acute myocardial infarction (AMI) is a leading cause of morbidity and mortality worldwide, and both cardiac necroptosis and endoplasmic reticulum stress (ERS) have been involved in the pathophysiology of AMI. ZYZ-803 is a hybrid molecule of a dual donor for gasotransmitters H2S and NO. The aim of the present study is to investigate the antinecroptosis role and potential mechanisms of ZYZ-803 in the setting of ERS during AMI injury. In vivo, ZYZ-803 preserves cardiac function and reduces infarct size significantly after 24-hour left coronary artery ligation through revising H2S and NO imbalance. In addition, ZYZ-803 relieves ERS and necroptosis in an AMI heart. In vitro, ZYZ-803 ameliorates ERS-related necroptosis induced by tunicamycin, and such effect has been depending on the receptor-interacting protein 3- (RIP3-) Ca2+-calmodulin-dependent protein kinase (CaMKII) signaling pathway. These findings have identified a novel antinecroptosis potential of ZYZ-803, providing a valuable candidate for cardioprotection in acute myocardial ischemia.
Collapse
|
47
|
Glembotski CC, Rosarda JD, Wiseman RL. Proteostasis and Beyond: ATF6 in Ischemic Disease. Trends Mol Med 2019; 25:538-550. [PMID: 31078432 DOI: 10.1016/j.molmed.2019.03.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/16/2019] [Accepted: 03/25/2019] [Indexed: 12/28/2022]
Abstract
Endoplasmic reticulum (ER) stress is a pathological hallmark of numerous ischemic diseases, including stroke and myocardial infarction (MI). In these diseases, ER stress leads to activation of the unfolded protein response (UPR) and subsequent adaptation of cellular physiology in ways that dictate cellular fate following ischemia. Recent evidence highlights a protective role for the activating transcription factor 6 (ATF6) arm of the UPR in mitigating adverse outcomes associated with ischemia/reperfusion (I/R) injury in multiple disease models. This suggests ATF6 as a potential therapeutic target for intervening in diverse ischemia-related disorders. Here, we discuss the evidence demonstrating the importance of ATF6 signaling in protecting different tissues against ischemic damage and discuss preclinical results focused on defining the potential for pharmacologically targeting ATF6 to intervene in such diseases.
Collapse
Affiliation(s)
- Christopher C Glembotski
- San Diego State University Heart Institute and the Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Jessica D Rosarda
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - R Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
48
|
Wang F, Pulinilkunnil T, Flibotte S, Nislow C, Vlodavsky I, Hussein B, Rodrigues B. Heparanase protects the heart against chemical or ischemia/reperfusion injury. J Mol Cell Cardiol 2019; 131:29-40. [PMID: 31004678 DOI: 10.1016/j.yjmcc.2019.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/14/2019] [Accepted: 04/10/2019] [Indexed: 12/14/2022]
Abstract
Although cancer cells use heparanase for tumor metastasis, favourable effects of heparanase have been reported in the management of Alzheimer's disease and diabetes. Indeed, we previously established a protective function for heparanase in the acutely diabetic heart, where it conferred cardiomyocyte resistance to oxidative stress and apoptosis by provoking changes in gene expression. In this study, we tested if overexpression of heparanase can protect the heart against chemically induced or ischemia/reperfusion (I/R) injury. Transcriptomic analysis of Hep-tg hearts reveal that 240 genes related to the stress response, immune response, cell death, and development were altered in a pro-survival direction encompassing genes promoting the unfolded protein response (UPR) and autophagy, as well as those protecting against oxidative stress. The observed UPR activation was adaptive and not apoptotic, was mediated by activation of ATF6α, and when combined with mTOR inhibition, induced autophagy. Subjecting wild type (WT) mice to increasing concentrations of the ER stress inducer thapsigargin evoked a transition from adaptive to apoptotic UPR, an effect that was attenuated in Hep-tg mouse hearts. Consistent with these observations, when exposed to I/R, the infarct size and markers of apoptosis were significantly lower in the Hep-tg heart compared to WT. Finally, UPR and autophagy inhibitors reduced the protective effects of heparanase overexpression during I/R. Our data suggest that the mechanisms that underlie the role of heparanase in promoting cell survival could be uniquely beneficial to the heart by providing protection against cellular stresses, and could be useful for exploitation as a therapeutic target for the treatment of heart disease.
Collapse
Affiliation(s)
- Fulong Wang
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Thomas Pulinilkunnil
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, 100 Tucker Park Road, Saint John, NB E2L 4L5, Canada
| | | | - Corey Nislow
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Bahira Hussein
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
49
|
Naringenin Attenuates Myocardial Ischemia-Reperfusion Injury via cGMP-PKGI α Signaling and In Vivo and In Vitro Studies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7670854. [PMID: 30728891 PMCID: PMC6341255 DOI: 10.1155/2019/7670854] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/26/2018] [Indexed: 12/27/2022]
Abstract
Endoplasmic reticulum (ER) stress and oxidative stress contribute greatly to myocardial ischemia-reperfusion (MI/R) injury. Naringenin, a flavonoid derived from the citrus genus, exerts cardioprotective effects. However, the effects of naringenin on ER stress as well as oxidative stress under MI/R condition and the detailed mechanisms remain poorly defined. This study investigated the protective effect of naringenin on MI/R-injured heart with a focus on cyclic guanosine monophosphate- (cGMP-) dependent protein kinase (PKG) signaling. Sprague-Dawley rats were treated with naringenin (50 mg/kg/d) and subjected to MI/R surgery with or without KT5823 (2 mg/kg, a selective inhibitor of PKG) cotreatment. Cellular experiment was conducted on H9c2 cardiomyoblasts subjected to simulated ischemia-reperfusion treatment. Before the treatment, the cells were incubated with naringenin (80 μmol/L). PKGIα siRNA was employed to inhibit PKG signaling. Our in vivo and in vitro data showed that naringenin effectively improved heart function while it attenuated myocardial apoptosis and infarction. Furthermore, pretreatment with naringenin suppressed MI/R-induced oxidative stress as well as ER stress as evidenced by decreased superoxide generation, myocardial MDA level, gp91phox expression, and phosphorylation of PERK, IRE1α, and EIF2α as well as reduced ATF6 and CHOP. Importantly, naringenin significantly activated myocardial cGMP-PKGIα signaling while inhibition of PKG signaling with KT5823 (in vivo) or siRNA (in vitro) not only abolished these actions but also blunted naringenin's inhibitory effects against oxidative stress and ER stress. In summary, our study demonstrates that naringenin treatment protects against MI/R injury by reducing oxidative stress and ER stress via cGMP-PKGIα signaling. Its cardioprotective effect deserves further clinical study.
Collapse
|
50
|
Zhang G, Wang X, Gillette TG, Deng Y, Wang ZV. Unfolded Protein Response as a Therapeutic Target in Cardiovascular Disease. Curr Top Med Chem 2019; 19:1902-1917. [PMID: 31109279 PMCID: PMC7024549 DOI: 10.2174/1568026619666190521093049] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 04/09/2019] [Accepted: 05/02/2019] [Indexed: 12/15/2022]
Abstract
Cardiovascular disease is the leading cause of death worldwide. Despite overwhelming socioeconomic impact and mounting clinical needs, our understanding of the underlying pathophysiology remains incomplete. Multiple forms of cardiovascular disease involve an acute or chronic disturbance in cardiac myocytes, which may lead to potent activation of the Unfolded Protein Response (UPR), a cellular adaptive reaction to accommodate protein-folding stress. Accumulation of unfolded or misfolded proteins in the Endoplasmic Reticulum (ER) elicits three signaling branches of the UPR, which otherwise remain quiescent. This ER stress response then transiently suppresses global protein translation, augments production of protein-folding chaperones, and enhances ER-associated protein degradation, with an aim to restore cellular homeostasis. Ample evidence has established that the UPR is strongly induced in heart disease. Recently, the mechanisms of action and multiple pharmacological means to favorably modulate the UPR are emerging to curb the initiation and progression of cardiovascular disease. Here, we review the current understanding of the UPR in cardiovascular disease and discuss existing therapeutic explorations and future directions.
Collapse
Affiliation(s)
- Guangyu Zhang
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Xiaoding Wang
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Thomas G. Gillette
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Yingfeng Deng
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Zhao V. Wang
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|