1
|
Kumar A, Yap KCH, BharathwajChetty B, Lyu J, Hegde M, Abbas M, Alqahtani MS, Khadlikar S, Zarrabi A, Khosravi A, Kumar AP, Kunnumakkara AB. Regulating the regulators: long non-coding RNAs as autophagic controllers in chronic disease management. J Biomed Sci 2024; 31:105. [PMID: 39716252 DOI: 10.1186/s12929-024-01092-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/23/2024] [Indexed: 12/25/2024] Open
Abstract
The increasing prevalence of chronic diseases and their associated morbidities demands a deeper understanding of underlying mechanism and causative factors, with the hope of developing novel therapeutic strategies. Autophagy, a conserved biological process, involves the degradation of damaged organelles or protein aggregates to maintain cellular homeostasis. Disruption of this crucial process leads to increased genomic instability, accumulation of reactive oxygen species (ROS), decreased mitochondrial functions, and suppression of ubiquitination, leading to overall decline in quality of intracellular components. Such deregulation has been implicated in a wide range of pathological conditions such as cancer, cardiovascular, inflammatory, and neurological disorders. This review explores the role of long non-coding RNAs (lncRNAs) as modulators of transcriptional and post-transcriptional gene expression, regulating diverse physiological process like proliferation, development, immunity, and metabolism. Moreover, lncRNAs are known to sequester autophagy related microRNAs by functioning as competing endogenous RNAs (ceRNAs), thereby regulating this vital process. In the present review, we delineate the multitiered regulation of lncRNAs in the autophagic dysfunction of various pathological diseases. Moreover, by highlighting recent findings on the modulation of lncRNAs in different stages of autophagy, and the emerging clinical landscape that recognizes lncRNAs in disease diagnosis and therapy, this review highlights the potential of lncRNAs as biomarkers and therapeutic targets in clinical settings of different stages of autophagic process by regulating ATG and its target genes. This focus on lncRNAs could lead to breakthroughs in personalized medicine, offering new avenues for diagnosis and treatment of complex diseases.
Collapse
Affiliation(s)
- Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Kenneth Chun-Hong Yap
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Juncheng Lyu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, 61421, Abha, Saudi Arabia
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, 61421, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, UK
| | - Soham Khadlikar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering & Natural Sciences, Istinye University, 34396, Istanbul, Türkiye
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, 320315, Taiwan
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, 34959, Istanbul, Türkiye
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India.
| |
Collapse
|
2
|
Duan Q, Yang W, Zhu X, Feng Z, Song J, Xu X, Kong M, Mao J, Shen J, Deng Y, Tao R, Xu H, Chen W, Li W, Dong A, Han J. Deptor protects against myocardial ischemia-reperfusion injury by regulating the mTOR signaling and autophagy. Cell Death Discov 2024; 10:508. [PMID: 39702468 DOI: 10.1038/s41420-024-02263-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/29/2023] [Accepted: 12/05/2024] [Indexed: 12/21/2024] Open
Abstract
Deptor knockout mice were constructed by crossing Deptor Floxp3 mice with myh6 Cre mice, establishing a myocardial ischemia-reperfusion (I/R) model. Deptor knockout mice exhibited significantly increased myocardial infarction size and increased myocardial apoptosis in vivo. ELISA analysis indicated that the expression of CK-MB, LDH, and CtnT/I was significantly higher in the Deptor knockout mice. Deptor siRNA significantly reduced cell activity and increased myocardial apoptosis after I/R-induced in vitro. Deptor siRNA also significantly up-regulated the expression of p-mTOR, p-4EBP1, and p62, and down-regulated the expression of LC3 after I/R induction. Immunofluorescence indicated that LC3 dual fluorescence was weakened by Deptor knockout, and was enhanced after transfection with Deptor-overexpression plasmids. Treatment with OSI027, a co-inhibitor of mTORC1 and mTORC2, in either Deptor knockout mice or Deptor knockout H9C2 cells, resulted in a significant reduction in infarction size and apoptotic cardiomyocytes. ELISA analysis also showed that the expression of CK-MB, LDH, and CtnT/I were significantly down-regulated by treatment with OSI027. CCK-8 cell viability indicated that cell viability was enhanced, and the number of apoptotic cells was decreased in vitro following treatment with OSI027. These results revealed that OSI027 exerts a protective effect on myocardial ischemia/reperfusion injury in both an in vivo and in an in vitro model of I/R. These findings demonstrate that Deptor protects against I/R-induced myocardial injury by inhibiting the mTOR pathway and by increasing autophagy.
Collapse
Affiliation(s)
- Qunjun Duan
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weijun Yang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xian Zhu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhanzeng Feng
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiangwei Song
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaobin Xu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Minjian Kong
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiayan Mao
- Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jian Shen
- Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yuqin Deng
- Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Rujia Tao
- Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hongfei Xu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Chen
- Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Weidong Li
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Aiqiang Dong
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Jie Han
- Department of Cardiology and Atrial Fibrillation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Ling H, Wang XC, Liu ZY, Mao S, Yang JJ, Sha JM, Tao H. Noncoding RNA network crosstalk in organ fibrosis. Cell Signal 2024; 124:111430. [PMID: 39312989 DOI: 10.1016/j.cellsig.2024.111430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 09/25/2024]
Abstract
Fibrosis is a process involving excessive accumulation of extracellular matrix components, the severity of which interferes with the function of the organ in question. With the advances in RNA sequencing and in-depth molecular studies, a large number of current studies have pointed out the irreplaceable role of non-coding RNAs (ncRNAs) in the pathophysiological development of organ fibrosis. Here, by summarizing the results of a large number of studies on the interactions between ncRNAs, some studies have found that long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), among others, are able to act as sponges or decoy decoys for microRNAs (miRNAs), act as competing endogenous RNAs (ceRNAs) to regulate the expression of miRNAs, and subsequently act on different mRNA targets, playing a role in the development of fibrosis in a wide variety of organs, including the heart, liver, kidneys, and spleen. parenchymal organs, including heart, liver, kidney, and spleen, play important roles in the development of fibrosis. These findings elucidate the intricate involvement of the lncRNA/circRNA-miRNA-mRNA axis in the pathophysiological processes underpinning organ fibrosis, thereby enhancing our comprehension of the onset and progression of this condition. Furthermore, they introduce novel potential therapeutic targets within the realm of ncRNA-based therapeutics, offering avenues for the development of innovative drugs aimed at mitigating or reversing the effects of organ fibrosis.
Collapse
Affiliation(s)
- Hui Ling
- Department of Thoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Xian-Chen Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Zhi-Yan Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Sui Mao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Jing-Jing Yang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Ji-Ming Sha
- Department of Thoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| |
Collapse
|
4
|
Date S, Bhatt LK. Targeting high-mobility-group-box-1-mediated inflammation: a promising therapeutic approach for myocardial infarction. Inflammopharmacology 2024:10.1007/s10787-024-01586-w. [PMID: 39487941 DOI: 10.1007/s10787-024-01586-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/11/2024] [Indexed: 11/04/2024]
Abstract
Myocardial ischemia, resulting from coronary artery blockage, precipitates cardiac arrhythmias, myocardial structural changes, and heart failure. The pathophysiology of MI is mainly based on inflammation and cell death, which are essential in aggravating myocardial ischemia and reperfusion injury. Emerging research highlights the functionality of high mobility group box-1, a non-histone nucleoprotein functioning as a chromosomal stabilizer and inflammatory mediator. HMGB1's release into the extracellular compartment during ischemia acts as damage-associated molecular pattern, triggering immune reaction by pattern recognition receptors and exacerbating tissue inflammation. Its involvement in signaling pathways like PI3K/Akt, TLR4/NF-κB, and RAGE/HMGB1 underscores its significance in promoting angiogenesis, apoptosis, and reducing inflammation, which is crucial for MI treatment strategies. This review highlights the complex function of HMGB1 in the pathogenesis of myocardial infarction by summarizing novel findings on the protein in ischemic situations. Understanding the mechanisms underlying HMGB1 could widen the way to specific treatments that minimize the severity of MI and enhance patient outcomes.
Collapse
Affiliation(s)
- Shrutika Date
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India.
| |
Collapse
|
5
|
Xiang Y, Hui S, Nie H, Guo C. LncRNA ZFAS1/miR-186-5p axis is involved in oxidative stress inhibition of myocardial ischemia-reperfusion injury by targeting BTG2. Expert Rev Clin Immunol 2024:1-12. [PMID: 39365123 DOI: 10.1080/1744666x.2024.2411999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024]
Abstract
OBJECTIVE To probe the involvement of long noncoding RNA zinc finger antisense 1 (ZFAS1)/microRNA (miR)-186-5p axis in inhibiting oxidative stress in myocardial ischemia-reperfusion injury (MIRI) by targeting B-cell translocation gene 2 (BTG2). METHODS The MIRI mice model was established by ligating the left anterior descending branch of the left coronary artery in C57BL/6 mice. The in vitro MIRI model was constructed by hypoxia and reoxygenation of HL-1 cardiomyocytes. Cardiomyocyte apoptosis and the extent of myocardial injury in mice were detected. The apoptosis rates, malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities in HL-1 cells were assessed. The relationship among ZFAS1, miR-186-5p, and BTG2 was verified. RESULTS High ZFAS1 and BTG2 levels and low miR-186-5p levels were demonstrated in I/R-injured myocardial tissues and in H/R-treated cardiomyocytes. Interference with ZFAS1 or elevation of miR-186-5p inhibited apoptosis and oxidative stress in H/R model cardiomyocytes and I/R-injured myocardial tissues. Overexpressing BTG2 impaired the ameliorative effects of miR-186-5p on MIRI. ZFAS1 negatively regulated miR-186-5p expression by acting as a molecular sponge. miR-186-5p targeted to regulate BTG2 negatively. CONCLUSION Interfering with ZFAS1 can upregulate miR-186-5p and thus inhibit BTG2 expression, thereby ameliorating MIRI.
Collapse
Affiliation(s)
- Yi Xiang
- Department of Cardiology, Hunan Provincial People's Hospital (The First Hospital Affiliated with Hunan Normal University), Changsha, Hunan, China
| | - Shan Hui
- Department of Geriatrics, Hunan Provincial People's Hospital (The First Hospital Affiliated with Hunan Normal University), Changsha, Hunan, China
| | - Hao Nie
- Department of Geriatrics, Hunan Provincial People's Hospital (The First Hospital Affiliated with Hunan Normal University), Changsha, Hunan, China
| | - Chun Guo
- Pediatric Laboratory, Hunan Provincial People's Hospital (The First Hospital Affiliated with Hunan Normal University), Changsha, Hunan, China
| |
Collapse
|
6
|
Zhu M, Yuan Z, Wen C, Wei X. DEX Inhibits H/R-induced Cardiomyocyte Ferroptosis by the miR-141-3p/lncRNA TUG1 Axis. Thorac Cardiovasc Surg 2024. [PMID: 38889747 DOI: 10.1055/s-0044-1787691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
BACKGROUND Ferroptosis is emerging as a critical pathway in ischemia/reperfusion (I/R) injury, contributing to compromised cardiac function and predisposing individuals to sepsis and myocardial failure. The study investigates the underlying mechanism of dexmedetomidine (DEX) in hypoxia/reoxygenation (H/R)-induced ferroptosis in cardiomyocytes, aiming to identify novel targets for myocardial I/R injury treatment. METHODS H9C2 cells were subjected to H/R and treated with varying concentrations of DEX. Additionally, H9C2 cells were transfected with miR-141-3p inhibitor followed by H/R treatment. Levels of miR-141-3p, long noncoding RNA (lncRNA) taurine upregulated 1 (TUG1), Fe2+, glutathione (GSH), and malondialdehyde were assessed. Reactive oxygen species (ROS) generation was measured via fluorescent labeling. Expression of ferroptosis-related proteins glutathione peroxidase 4 (GPX4) and acyl-CoA synthetase long-chain family member 4 (ACSL4) was determined using Western blot. The interaction between miR-141-3p and lncRNA TUG1 was evaluated through RNA pull-down assay and dual-luciferase reporter gene assays. The stability of lncRNA TUG1 was assessed using actinomycin D. RESULTS DEX ameliorated H/R-induced cardiomyocyte injury and elevated miR-141-3p expression in cardiomyocytes. DEX treatment increased cell viability, Fe2+, and ROS levels while decreasing ACSL4 protein expression. Furthermore, DEX upregulated GSH and GPX4 protein levels. miR-141-3p targeted lncRNA TUG1, reducing its stability and overall expression. Inhibition of miR-141-3p or overexpression of lncRNA TUG1 partially reversed the inhibitory effect of DEX on H/R-induced ferroptosis in cardiomyocytes. CONCLUSION DEX mitigated H/R-induced ferroptosis in cardiomyocytes by upregulating miR-141-3p expression and downregulating lncRNA TUG1 expression, unveiling a potential therapeutic strategy for myocardial I/R injury.
Collapse
Affiliation(s)
- Mei Zhu
- Department of Anesthesiology, Taizhou People's Hospital Affiliated to Nanjing Medical University, Taizhou, People's Republic of China
| | - Zhiguo Yuan
- Department of Anesthesiology, Taizhou People's Hospital Affiliated to Nanjing Medical University, Taizhou, People's Republic of China
| | - Chuanyun Wen
- Department of Anesthesiology, Taizhou People's Hospital Affiliated to Nanjing Medical University, Taizhou, People's Republic of China
| | - Xiaojia Wei
- Department of Anesthesiology, Taizhou People's Hospital Affiliated to Nanjing Medical University, Taizhou, People's Republic of China
| |
Collapse
|
7
|
Han Z, Zhang L, Ma M, Keshavarzi M. Effects of MicroRNAs and Long Non-coding RNAs on Beneficial Action of Exercise on Cognition in Degenerative Diseases: A Review. Mol Neurobiol 2024:10.1007/s12035-024-04292-4. [PMID: 38869810 DOI: 10.1007/s12035-024-04292-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
Recent research has exposed a growing body of proof underscoring the importance of microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) in maintaining the physical composition of neurons and influencing cognitive functioning in both standard and atypical circumstances. Extensive research has been conducted on the possible application of miRNAs and lncRNAs as biomarkers for various diseases, with a particular focus on brain disorders, as they possess remarkable durability in cell-free surroundings and can endure repeated freezing and thawing processes. It is intriguing to note that miRNAs and lncRNAs have the ability to function through paracrine mechanisms, thereby playing a role in communication between different organs. Recent research has proposed that the improvement of cognitive abilities through physical exercise in mentally healthy individuals is a valuable method for uncovering potential connections between miRNAs, or microRNAs, and lncRNAs, and human cognitive function. The process of cross-correlating data from disease models and patients with existing data will be crucial in identifying essential miRNAs and lncRNAs, which can potentially act as biomarkers or drug targets in the treatment of cognitive disorders. By combining this method with additional research in animal models, we can determine the function of these molecules and their potential impact on therapy. This article discusses the latest research about the primary miRNAs, lncRNAs, and their exosomes that are affected by physical activity in terms of human cognitive function.
Collapse
Affiliation(s)
- Zhen Han
- Department of Physical Education, Zhejiang International Studies University, Hangzhou, 310023, Zhejiang, China
| | - Lei Zhang
- Institute of Physical Education and Sports, Capital University Of Physical Education And Sports, Beijing, 100191, China.
| | - Minhang Ma
- Department of Physical Education, Zhejiang International Studies University, Hangzhou, 310023, Zhejiang, China
| | - Maryam Keshavarzi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Li Y, Zhang W, Cai Y, Yang D. Ginsenoside Rb2 Inhibits the Pyroptosis in Myocardial Ischemia Progression Through Regulating the SIRT1 Mediated Deacetylation of ASC. Biochem Genet 2024:10.1007/s10528-024-10846-x. [PMID: 38831231 DOI: 10.1007/s10528-024-10846-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 05/21/2024] [Indexed: 06/05/2024]
Abstract
Myocardial ischemic (MI) injury is a common cardiovascular disease, and the potential therapeutic effects of ginsenoside Rb2 (Rb2) have been lately the focus of interest. Therefore, this study aimed to investigate the effects of Rb2 on pyroptosis of cardiomyocytes in MI progression. An in vitro MI model was developed by subjecting rat's cardiomyocytes (H9c2) to hypoxia/reoxygenation (H/R). The cell viability was determined by CCK-8 assay, while cell death was analyzed by propidium iodide staining. Similarly, pyroptosis-related protein levels and acetylation levels of apoptosis-associated speck-like protein containing a CARD (ASC) were detected by western blotting, and the relationship between Sirtuin 1 (SIRT1) and ASC was confirmed by co-immunoprecipitation (Co-IP) assay. Moreover, hematoxylin-eosin (H&E) and triphenyl tetrazolium chloride staining were used to study pathological structure and infarct size. It was found that post-Rb2 treatment significantly increased the cell viability and decreased the cell death and lactic dehydrogenase release, while the increased gasdermin D-N, NOD-like receptor thermal protein domain-associated protein 3, ASC, and cleaved-caspase-1 protein levels were significantly decreased in H/R-stimulated H9c2 cells. Moreover, the acetylation levels of H92c cells were decreased post-Rb2 treatment via increasing SIRT1 levels, while knocking down SIRT1, translated into an increase in ASC acetylation levels, leading to the increase in ASC protein stability and expressions. Additionally, the Rb2 effects on pyroptosis in H/R-stimulated H92c cells were reversed by overexpressing ASC, while reduced myocardial tissue damage was observed in MI rats following in vivo Rb2 treatment. Rb2 treatment inhibited pyroptosis in MI progression by decreasing the ASC levels. Mechanistically, Rb2 treatment increased the SIRT1 levels, further increasing the acetylation levels of ASC and decreasing the protein stability of ASC.
Collapse
Affiliation(s)
- Yuning Li
- Department of Pharmacy, The 921, Hospital of Joint Logistic Support Force of PLA, No.1 Hongshan Bridge, Changsha, 410003, China.
| | - Wenhua Zhang
- Department of Pediatrics, The 3, Hospital of Changsha, Changsha, China
| | - Yamin Cai
- Department of Pharmacy, The 921, Hospital of Joint Logistic Support Force of PLA, No.1 Hongshan Bridge, Changsha, 410003, China
| | - Dong Yang
- Clinical Laboratory, The 921, Hospital of Joint Logistic Support Force of PLA, Changsha, China
| |
Collapse
|
9
|
Li Y, Zhao K, Hu Y, Yang F, Li P, Liu Y. MicroRNA-142-3p alleviated high salt-induced cardiac fibrosis via downregulating optineurin-mediated mitophagy. iScience 2024; 27:109764. [PMID: 38726368 PMCID: PMC11079474 DOI: 10.1016/j.isci.2024.109764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/23/2023] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
High salt can induce cardiac damage. The aim of this present study was to explore the effect and the mechanism of microRNA (miR)-142-3p on the cardiac fibrosis induced by high salt. Rats received high salt diet to induce cardiac fibrosis in vivo, and neonatal rat cardiac fibroblasts (NRCF) treated with sodium chloride (NaCl) to induce fibrosis in vitro. The fibrosis and mitochondrial autophagy levels were increased the heart and NRCF treated with NaCl, which were alleviated by miR-142-3p upregulation. The fibrosis and mitochondrial autophagy levels were elevated in NRCF after treating with miR-142-3p antagomiR. Optineurin (OPTN) expression was increased in the mitochondria of NRCF induced by NaCl, which was attenuated by miR-142-3p agomiR. OPTN downregulation inhibited the increases of fibrosis and mitochondrial autophagy levels induced by NaCl in NRCF. These results miR-142-3p could alleviate high salt-induced cardiac fibrosis via downregulation of OPTN to reduce mitophagy.
Collapse
Affiliation(s)
- Yong Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Cardiology, The People’s Hospital of Qijiang District, Qijiang, Chongqin, China
| | - Kun Zhao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yifang Hu
- Department of Information, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fengze Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Peng Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yun Liu
- Department of Information, The First Affiliated Hospital, Nanjing Medical University, No.300 Guang Zhou Road, Nanjing, Jiangsu 210029, China
- Department of Medical Informatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
10
|
Sun Y, Chu S, Wang R, Xia R, Sun M, Gao Z, Xia Z, Zhang Y, Dong S, Wang T. Non-coding RNAs modulate pyroptosis in myocardial ischemia-reperfusion injury: A comprehensive review. Int J Biol Macromol 2024; 257:128558. [PMID: 38048927 DOI: 10.1016/j.ijbiomac.2023.128558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/17/2023] [Accepted: 11/30/2023] [Indexed: 12/06/2023]
Abstract
Reperfusion therapy is the most effective treatment for acute myocardial infarction. However, reperfusion itself can also cause cardiomyocytes damage. Pyroptosis has been shown to be an important mode of myocardial cell death during ischemia-reperfusion. Non-coding RNAs (ncRNAs) play critical roles in regulating pyroptosis. The regulation of pyroptosis by microRNAs, long ncRNAs, and circular RNAs may represent a new mechanism of myocardial ischemia-reperfusion injury. This review summarizes the currently known regulatory roles of ncRNAs in myocardial ischemia-reperfusion injury and interactions between ncRNAs. Potential therapeutic strategies using ncRNA modulation are also discussed.
Collapse
Affiliation(s)
- Yi Sun
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Shujuan Chu
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Rong Wang
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Rui Xia
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Meng Sun
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Zhixiong Gao
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yan Zhang
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Siwei Dong
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China.
| | - Tingting Wang
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China.
| |
Collapse
|
11
|
Sandau US, Wiedrick JT, McFarland TJ, Galasko DR, Fanning Z, Quinn JF, Saugstad JA. Analysis of the longitudinal stability of human plasma miRNAs and implications for disease biomarkers. Sci Rep 2024; 14:2148. [PMID: 38272952 PMCID: PMC10810819 DOI: 10.1038/s41598-024-52681-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
There is great interest in developing clinical biomarker assays that can aid in non-invasive diagnosis and/or monitoring of human diseases, such as cancer, cardiovascular disease, and neurological diseases. Yet little is known about the longitudinal stability of miRNAs in human plasma. Here we assessed the intraindividual longitudinal stability of miRNAs in plasma from healthy human adults, and the impact of common factors (e.g., hemolysis, age) that may confound miRNA data. We collected blood by venipuncture biweekly over a 3-month period from 22 research participants who had fasted overnight, isolated total RNA, then performed miRNA qPCR. Filtering and normalization of the qPCR data revealed amplification of 134 miRNAs, 74 of which had high test-retest reliability and low percentage level drift, meaning they were stable in an individual over the 3-month time period. We also determined that, of nuisance factors, hemolysis and tobacco use have the greatest impact on miRNA levels and variance. These findings support that many miRNAs show intraindividual longitudinal stability in plasma from healthy human adults, including some reported as candidate biomarkers for Alzheimer's disease.
Collapse
Affiliation(s)
- Ursula S Sandau
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Jack T Wiedrick
- Biostatistics and Design Program, Oregon Health and Science University, Portland, OR, USA
| | - Trevor J McFarland
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Douglas R Galasko
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Zoe Fanning
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| | - Joseph F Quinn
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| | - Julie A Saugstad
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
12
|
Mohammed OA, Alghamdi M, Alfaifi J, Alamri MMS, Al-Shahrani AM, Alharthi MH, Alshahrani AM, Alhalafi AH, Adam MIE, Bahashwan E, Jarallah AlQahtani AA, BinAfif WF, Abdel-Reheim MA, Abdel Mageed SS, Doghish AS. The emerging role of miRNAs in myocardial infarction: From molecular signatures to therapeutic targets. Pathol Res Pract 2024; 253:155087. [PMID: 38183820 DOI: 10.1016/j.prp.2023.155087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 12/28/2023] [Accepted: 12/30/2023] [Indexed: 01/08/2024]
Abstract
Globally, myocardial infarction (MI) and other cardiovascular illnesses have long been considered the top killers. Heart failure and mortality are the results of myocardial apoptosis, cardiomyocyte fibrosis, and cardiomyocyte hypertrophy, all of which are caused by MI. MicroRNAs (miRNAs) play a crucial regulatory function in the progression and advancement of heart disease following an MI. By consolidating the existing data on miRNAs, our aim is to gain a more comprehensive understanding of their role in the pathological progression of myocardial injury after MI and to identify potential crucial target pathways. Also included are the primary treatment modalities and their most recent developments. miRNAs have the ability to regulate both normal and pathological activity, including the key signaling pathways. As a result, they may exert medicinal benefits. This review presents a comprehensive analysis of the role of miRNAs in MI with a specific emphasis on their impact on the regeneration of cardiomyocytes and other forms of cell death, such as apoptosis, necrosis, and autophagy. Furthermore, the targets of pro- and anti-MI miRNAs are comparatively elucidated.
Collapse
Affiliation(s)
- Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| | - Mushabab Alghamdi
- Department of Internal Medicine, Division of Rheumatology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Jaber Alfaifi
- Department of Child Health, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohannad Mohammad S Alamri
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Abdullah M Al-Shahrani
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Muffarah Hamid Alharthi
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Abdullah M Alshahrani
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Abdullah Hassan Alhalafi
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Masoud I E Adam
- Department of Medical Education and Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Emad Bahashwan
- Department of Internal Medicine, Division of Dermatology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - AbdulElah Al Jarallah AlQahtani
- Department of Internal Medicine, Division of Dermatology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Waad Fuad BinAfif
- Department of Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
13
|
Shi L, Li H, Sun L, Tian C, Li H. Alleviation of Angiotensin II-Induced Vascular Endothelial Cell Injury Through Long Non-coding RNA TUG1 Inhibition. Comb Chem High Throughput Screen 2024; 27:1523-1532. [PMID: 37818575 DOI: 10.2174/0113862073265220231004071645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/28/2023] [Accepted: 08/18/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND Hypertension damages endothelial cells, causing vascular remodelling. It is caused by Ang II-induced endothelial cell (EC) destruction. The long noncoding RNA (lncRNAs) are emerging regulators of endothelium homeostasis. Injured endothelium expresses lncRNA taurine-upregulated gene 1 (TUG1), which may mediate endothelial cell damage, proliferation, apoptosis, and autophagy and contribute to cardiovascular disease. However, uncertainty surrounds the function of lncRNA TUG1, on arterial endothelium cell damage. OBJECTIVE This research aimed to investigate the role and mechanism of lncRNA TUG1 in vascular endothelial cell injury. METHOD A microarray analysis of lncRNA human gene expression was used to identify differentially expressed lncRNAs in human umbilical vein endothelial cell (HUVEC) cultures. The viability, apoptosis, and migration of Ang II-treated HUVECs were then evaluated. In order to investigate the role of lncRNA TUG1 in hypertension, qRT-PCR, western blotting, and RNA-FISH were used to examine the expression of TUG1 in SHR mice. RESULTS Ang II-activated HUVECs and SHR rats' abdominal aortas highly express the lncRNA TUG1. LncRNA TUG1 knockdown in HUVECs could increase cell viability, reduce apoptosis, and produce inflammatory factors. In SHR rat abdominal aortas, lncRNA TUG1 knockdown promoted proliferation and inhibited apoptosis. HE spotting showed that lncRNA TUG1 knockdown improved SHR rats' abdominal aorta shape. lncRNA TUG1 knockdown promotes miR-9- 5p, which inhibits CXCR4 following transcription. The lncRNA TUG1/miR-9-5p/CXCR4 axis and vascular cell injury were also examined. MiR-9-5p silencing or CXCR4 overexpression lowered cell survival, apoptosis, and lncRNA TUG1-induced IL-6 and NO expression. CONCLUSION lncRNA TUG1 suppression could reduce Ang II-induced endothelial cell damage by regulating and targeting miR-9-5p to limit CXCR4 expression and open new vascular disease research pathways.
Collapse
Affiliation(s)
- Lin Shi
- Department of Internal Medicine-Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, No. 16369 Jing Shi Road, Li Xi District, Jinan, Shandong, 250014, China
| | - Hui Li
- Department of Emergency Internal Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, No. 16369 Jing Shi Road, Li Xi District, Jinan, Shandong, 250014, China
| | - Lingzhi Sun
- Department of Internal Medicine-Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, No. 16369 Jing Shi Road, Li Xi District, Jinan, Shandong, 250014, China
| | - Caijun Tian
- Department of Internal Medicine-Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, No. 16369 Jing Shi Road, Li Xi District, Jinan, Shandong, 250014, China
| | - Haitao Li
- Department of Internal Medicine-Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, No. 16369 Jing Shi Road, Li Xi District, Jinan, Shandong, 250014, China
| |
Collapse
|
14
|
Huang W, Paul D, Calin GA, Bayraktar R. miR-142: A Master Regulator in Hematological Malignancies and Therapeutic Opportunities. Cells 2023; 13:84. [PMID: 38201290 PMCID: PMC10778542 DOI: 10.3390/cells13010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/29/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
MicroRNAs (miRNAs) are a type of non-coding RNA whose dysregulation is frequently associated with the onset and progression of human cancers. miR-142, an ultra-conserved miRNA with both active -3p and -5p mature strands and wide-ranging physiological targets, has been the subject of countless studies over the years. Due to its preferential expression in hematopoietic cells, miR-142 has been found to be associated with numerous types of lymphomas and leukemias. This review elucidates the multifaceted role of miR-142 in human physiology, its influence on hematopoiesis and hematopoietic cells, and its intriguing involvement in exosome-mediated miR-142 transport. Moreover, we offer a comprehensive exploration of the genetic and molecular landscape of the miR-142 genomic locus, highlighting its mutations and dysregulation within hematological malignancies. Finally, we discuss potential avenues for harnessing the therapeutic potential of miR-142 in the context of hematological malignancies.
Collapse
Affiliation(s)
- Wilson Huang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (W.H.); (G.A.C.)
| | - Doru Paul
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
| | - George A. Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (W.H.); (G.A.C.)
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Recep Bayraktar
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
15
|
Haybar H, Sadati NS, Purrahman D, Mahmoudian-Sani MR, Saki N. lncRNA TUG1 as potential novel biomarker for prognosis of cardiovascular diseases. Epigenomics 2023; 15:1273-1290. [PMID: 38088089 DOI: 10.2217/epi-2023-0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
Globally, cardiovascular diseases (CVDs) are among the leading causes of death. In light of the high prevalence and mortality of CVDs, it is imperative to understand the molecules involved in CVD pathogenesis and the signaling pathways that they initiate. This may facilitate the development of more precise and expedient diagnostic techniques, the identification of more effective prognostic molecules and the identification of potential therapeutic targets. Numerous studies have examined the role of lncRNAs, such as TUG1, in CVD pathogenesis in recent years. According to this review article, TUG1 can be considered a biomarker for predicting the prognosis of CVD.
Collapse
Affiliation(s)
- Habib Haybar
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Narjes Sadat Sadati
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Daryush Purrahman
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Reza Mahmoudian-Sani
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
16
|
Landry J, Shows K, Jagdeesh A, Shah A, Pokhriyal M, Yakovlev V. Regulatory miRNAs in cancer cell recovery from therapy exposure and its implications as a novel therapeutic strategy for preventing disease recurrence. Enzymes 2023; 53:113-196. [PMID: 37748835 DOI: 10.1016/bs.enz.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The desired outcome of cancer therapies is the eradication of disease. This can be achieved when therapy exposure leads to therapy-induced cancer cell death as the dominant outcome. Theoretically, a permanent therapy-induced growth arrest could also contribute to a complete response, which has the potential to lead to remission. However, preclinical models have shown that therapy-induced growth arrest is not always durable, as recovering cancer cell populations can contribute to the recurrence of cancer. Significant research efforts have been expended to develop strategies focusing on the prevention of recurrence. Recovery of cells from therapy exposure can occur as a result of several cell stress adaptations. These include cytoprotective autophagy, cellular quiescence, a reversable form of senescence, and the suppression of apoptosis and necroptosis. It is well documented that microRNAs regulate the response of cancer cells to anti-cancer therapies, making targeting microRNAs therapeutically a viable strategy to sensitization and the prevention of recovery. We propose that the use of microRNA-targeting therapies in prolonged sequence, that is, a significant period after initial therapy exposure, could reduce toxicity from the standard combination strategy, and could exploit new epigenetic states essential for cancer cells to recover from therapy exposure. In a step toward supporting this strategy, we survey the available scientific literature to identify microRNAs which could be targeted in sequence to eliminate residual cancer cell populations that were arrested as a result of therapy exposure. It is our hope that by successfully identifying microRNAs which could be targeted in sequence we can prevent disease recurrence.
Collapse
Affiliation(s)
- Joseph Landry
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.
| | - Kathryn Shows
- Department of Biology, Virginia State University, Petersburg, VA, United States
| | - Akash Jagdeesh
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Aashka Shah
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Mihir Pokhriyal
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Vasily Yakovlev
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
17
|
Elsakka EGE, Abulsoud AI, El-Mahdy HA, Ismail A, Elballal MS, Mageed SSA, Khidr EG, Mohammed OA, Sarhan OM, Elkhawaga SY, El-Husseiny AA, Abdelmaksoud NM, El-Demerdash AA, Shahin RK, Midan HM, Elrebehy MA, Doghish AA, Doghish AS. miRNAs orchestration of cardiovascular diseases - Particular emphasis on diagnosis, and progression. Pathol Res Pract 2023; 248:154613. [PMID: 37327567 DOI: 10.1016/j.prp.2023.154613] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
MicroRNAs (miRNAs; miRs) are small non-coding ribonucleic acids sequences vital in regulating gene expression. They are significant in many biological and pathological processes and are even detectable in various body fluids such as serum, plasma, and urine. Research has demonstrated that the irregularity of miRNA in multiplying cardiac cells is linked to developmental deformities in the heart's structure. It has also shown that miRNAs are crucial in diagnosing and progressing several cardiovascular diseases (CVDs). The review covers the function of miRNAs in the pathophysiology of CVD. Additionally, the review provides an overview of the potential role of miRNAs as disease-specific diagnostic and prognostic biomarkers for human CVD, as well as their biological implications in CVD.
Collapse
Affiliation(s)
- Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, Faculty of Medicine, Bisha University, Bisha 61922, Saudi Arabia; Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Omnia M Sarhan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829 Cairo, Egypt
| | | | - Aya A El-Demerdash
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Reem K Shahin
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ayman A Doghish
- Department of Cardiovascular & Thoracic Surgery, Ain-Shams University Hospital, Faculty of Medicine, Cairo, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| |
Collapse
|
18
|
Zhang Z, Qin S, Wang Y, Liang H, Wang R, Li F. L-ascorbic acid could ameliorate the damage of myocardial microvascular endothelial cell caused by hypoxia-reoxygenation via targeting HMGB1. J Bioenerg Biomembr 2023; 55:115-122. [PMID: 37036607 DOI: 10.1007/s10863-023-09962-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023]
Abstract
In this study, we intend to explore the potential function of l-ascorbic acid in hypoxia-reoxygenation (H/R)-induced damage of CMECs and its related molecular mechanism. With different concentrations of l-ascorbic acid treatment, the proliferation, migration, inflammation and autophagy of cardiac microvascular endothelial cells (CMECs) were determined by several biological experiments. Si-HMGB1 transfection was used to reduce HMGB1 expression and to detect the function of HMGB1 in H/R-induced damage of CMECs. Under H/R condition, the proliferation and migration abilities of CMECs were reduced, and the inflammation and autophagy of CMECs were increased. Whereas, after l-ascorbic acid treatment, the reduction in the proliferation and migration of CMECs, as well as the increase in the inflammation and autophagy of CMECs induced by H/R were reversely altered. HMGB1 was confirmed as a specific target of l-ascorbic acid, and si-HMGB1 treatment strengthened the beneficial effect of l-ascorbic acid on H/R-induced damage of CMECs, followed by further reduction in the proliferation and migration abilities of CMECs, as well as the increase in the inflammation and autophagy of CMECs. Few studies have reported the function of l-ascorbic acid in myocardial ischemia on CMECs, but our experimental data showed that l-ascorbic acid treatment could ameliorate the H/R-induced damage of CMECs by regulating HMGB1 expression.
Collapse
Affiliation(s)
- Zhanshuai Zhang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Hebei North University, No. 12 Changqing Road, Zhangjiakou, 075000, P. R. China.
| | - Shaoqiang Qin
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Hebei North University, No. 12 Changqing Road, Zhangjiakou, 075000, P. R. China
| | - Yaling Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Hebei North University, No. 12 Changqing Road, Zhangjiakou, 075000, P. R. China
| | - Huiqing Liang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Hebei North University, No. 12 Changqing Road, Zhangjiakou, 075000, P. R. China
| | - Rui Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Hebei North University, No. 12 Changqing Road, Zhangjiakou, 075000, P. R. China
| | - Fangjiang Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Hebei North University, No. 12 Changqing Road, Zhangjiakou, 075000, P. R. China
| |
Collapse
|
19
|
Nandi S, Mondal A, Ghosh A, Mukherjee S, Das C. Lnc-ing epigenetic mechanisms with autophagy and cancer drug resistance. Adv Cancer Res 2023; 160:133-203. [PMID: 37704287 DOI: 10.1016/bs.acr.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Long noncoding RNAs (lncRNAs) comprise a diverse class of RNA molecules that regulate various physiological processes and have been reported to be involved in several human pathologies ranging from neurodegenerative disease to cancer. Therapeutic resistance is a major hurdle for cancer treatment. Over the past decade, several studies has emerged on the role of lncRNAs in cancer drug resistance and many trials have been conducted employing them. LncRNAs also regulate different cell death pathways thereby maintaining a fine balance of cell survival and death. Autophagy is a complex cell-killing mechanism that has both cytoprotective and cytotoxic roles. Similarly, autophagy can lead to the induction of both chemosensitization and chemoresistance in cancer cells upon therapeutic intervention. Recently the role of lncRNAs in the regulation of autophagy has also surfaced. Thus, lncRNAs can be used in cancer therapeutics to alleviate the challenges of chemoresistance by targeting the autophagosomal axis. In this chapter, we discuss about the role of lncRNAs in autophagy-mediated cancer drug resistance and its implication in targeted cancer therapy.
Collapse
Affiliation(s)
- Sandhik Nandi
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India
| | - Atanu Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India
| | - Aritra Ghosh
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Indian Institute of Science Education and Research, Kolkata, India
| | - Shravanti Mukherjee
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
20
|
Wang K, Lin Y, Shen H, Yu S, Xu J. LncRNA TUG1 Exacerbates Myocardial Fibrosis in Diabetic Cardiomyopathy by Modulating the microRNA-145a-5p/Cfl2 Axis. J Cardiovasc Pharmacol 2023; 81:192-202. [PMID: 36450139 DOI: 10.1097/fjc.0000000000001391] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/11/2022] [Indexed: 12/05/2022]
Abstract
ABSTRACT Nowadays, there is limited prevention and treatment for myocardial fibrosis in diabetic cardiomyopathy (DCM). Our study aimed to depict the mechanism of the lncRNA TUG1/miR-145a-5p/Cfl2 axis in DCM and to provide a molecular basis for the study of this disease. Male C57BL/6J mice were intraperitoneally injected with streptozotocin to establish DCM mouse models. The expression levels of lncRNA TUG1, miR-145a-5p, and Cfl2 in myocardial tissues of mice were tested by RT-qPCR or Western blot. Cardiac function was assessed by echocardiography. The contents of Ang-II, TNF-α, and IL-1β were measured using ELISA. The histopathological observation was performed by HE staining and Masson staining. The expression levels of myocardial fibrosis-related genes COL1A1, MMP2, and FN1 were determined by RT-qPCR. In addition, bioinformatics website, RIP assay, pull-down assay, and luciferase activity assay were conducted to verify the relationships of lncRNA TUG1, miR-145a-5p, and Cfl2. In the DCM mouse model, lncRNA TUG1 and Cfl2 expression levels were upregulated and miR-145a-5p expression was downregulated. Downregulation of lncRNA TUG1 improved cardiac function and myocardial fibrosis; decreased COL1A1, MMP2, and FN1 expression levels; as well as TNF-α, IL-1β, and Ang-II contents in myocardial tissues of DCM mice. Upregulation of miR-145a-5p showed the same trend as downregulation of lncRNA TUG1. In addition, upregulating miR-145a-5p reversed the promotion roles of lncRNA TUG1 on myocardial fibrosis in DCM mice, and upregulating Cfl2 compromised the improvement effect of downregulated lncRNA TUG1 on myocardial fibrosis in DCM mice. Mechanistically, there was a binding site between lncRNA TUG1 and miR-145a-5p, and miR-145a-5p had a targeting relationship with Cfl2. This study highlights that lncRNA TUG1 sponges miR-145a-5p to aggravate myocardial fibrosis in DCM mice by promoting Cfl2.
Collapse
Affiliation(s)
- KunWei Wang
- Department of Endocrinology, Shanghai Tianyou Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yingnan Lin
- Department of General Practice, Huashan Hospital, Fudan University, Shanghai, China
| | - Honghui Shen
- Department of Endocrinology, Shanghai Tianyou Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shushu Yu
- Department of Cardiology, People's Hospital of Shanghai Putuo, School of Medicine, Tongji University, Shanghai, China; and
| | - Jiahong Xu
- Department of Cardiology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
21
|
Popov SV, Mukhomedzyanov AV, Voronkov NS, Derkachev IA, Boshchenko AA, Fu F, Sufianova GZ, Khlestkina MS, Maslov LN. Regulation of autophagy of the heart in ischemia and reperfusion. Apoptosis 2023; 28:55-80. [PMID: 36369366 DOI: 10.1007/s10495-022-01786-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2022] [Indexed: 11/13/2022]
Abstract
Ischemia/reperfusion (I/R) of the heart leads to increased autophagic flux. Preconditioning stimulates autophagic flux by AMPK and PI3-kinase activation and mTOR inhibition. The cardioprotective effect of postconditioning is associated with activation of autophagy and increased activity of NO-synthase and AMPK. Oxidative stress stimulates autophagy in the heart during I/R. Superoxide radicals generated by NADPH-oxidase acts as a trigger for autophagy, possibly due to AMPK activation. There is reason to believe that AMPK, GSK-3β, PINK1, JNK, hexokinase II, MEK, PKCα, and ERK kinases stimulate autophagy, while mTOR, PKCδ, Akt, and PI3-kinase can inhibit autophagy in the heart during I/R. However, there is evidence that PI3-kinase could stimulate autophagy in ischemic preconditioning of the heart. It was found that transcription factors FoxO1, FoxO3, NF-κB, HIF-1α, TFEB, and Nrf-2 enhance autophagy in the heart in I/R. Transcriptional factors STAT1, STAT3, and p53 inhibit autophagy in I/R. MicroRNAs could stimulate and inhibit autophagy in the heart in I/R. Long noncoding RNAs regulate the viability and autophagy of cardiomyocytes in hypoxia/reoxygenation (H/R). Nitric oxide (NO) donors and endogenous NO could activate autophagy of cardiomyocytes. Activation of heme oxygenase-1 promotes cardiomyocyte tolerance to H/R and enhances autophagy. Hydrogen sulfide increases cardiac tolerance to I/R and inhibits apoptosis and autophagy via mTOR and PI3-kinase activation.
Collapse
Affiliation(s)
- Sergey V Popov
- Cardiology Research Institute, Tomsk National Research Medical Centre, the Russian Academy of Sciences, Tomsk, Russia, 634012
| | - Alexander V Mukhomedzyanov
- Cardiology Research Institute, Tomsk National Research Medical Centre, the Russian Academy of Sciences, Tomsk, Russia, 634012
| | - Nikita S Voronkov
- Cardiology Research Institute, Tomsk National Research Medical Centre, the Russian Academy of Sciences, Tomsk, Russia, 634012
| | - Ivan A Derkachev
- Cardiology Research Institute, Tomsk National Research Medical Centre, the Russian Academy of Sciences, Tomsk, Russia, 634012
| | - Alla A Boshchenko
- Cardiology Research Institute, Tomsk National Research Medical Centre, the Russian Academy of Sciences, Tomsk, Russia, 634012
| | - Feng Fu
- School of Basic Medicine, Fourth Military Medical University, No.169, West Changle Road, Xi'an, 710032, China
| | | | | | - Leonid N Maslov
- Cardiology Research Institute, Tomsk National Research Medical Centre, the Russian Academy of Sciences, Tomsk, Russia, 634012.
| |
Collapse
|
22
|
Ju C, Ma Y, Zuo X, Wang X, Song Z, Zhang Z, Zhu Z, Li X, Liang Z, Ding T, Hu X, Wang Z. Photobiomodulation promotes spinal cord injury repair by inhibiting macrophage polarization through lncRNA TUG1-miR-1192/TLR3 axis. Cell Mol Biol Lett 2023; 28:5. [PMID: 36658478 PMCID: PMC9854040 DOI: 10.1186/s11658-023-00417-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Secondary spinal cord injury (SCI) often causes the aggravation of inflammatory reaction and nerve injury, which affects the recovery of motor function. Bone-marrow-derived macrophages (BMDMs) were recruited to the injured area after SCI, and the M1 polarization is the key process for inducing inflammatory response and neuronal apoptosis. We previously showed that photobiomodulation (PBM) can inhibit the polarization of M1 phenotype of BMDMs and reduce inflammation, but the underlying mechanisms are unclear. The purpose of this study is to explore the potential target and mechanism of PBM in treating SCI. METHODS Transcriptome sequencing and bioinformatics analysis showed that long noncoding RNA taurine upregulated gene 1 (lncRNA TUG1) was a potential target of PBM. The expression and specific mechanism of lncRNA TUG1 were detected by qPCR, immunofluorescence, flow cytometry, western blotting, fluorescence in situ hybridization, and luciferase assay. The Basso mouse scale (BMS) and gait analysis were used to evaluate the recovery of motor function in mice. RESULTS Results showed that lncRNA TUG1 may be a potential target of PBM, regulating the polarization of BMDMs, inflammatory response, and the axial growth of DRG. Mechanistically, TUG1 competed with TLR3 for binding to miR-1192 and attenuated the inhibitory effect of miR-1192 on TLR3. This effect protected TLR3 from degradation, enabling the high expression of TLR3, which promoted the activation of downstream NF-κB signal and the release of inflammatory cytokines. In vivo, PBM treatment could reduce the expression of TUG1, TLR3, and inflammatory cytokines and promoted nerve survival and motor function recovery in SCI mice. CONCLUSIONS Our study clarified that the lncRNA TUG1/miR-1192/TLR3 axis is an important pathway for PBM to inhibit M1 macrophage polarization and inflammation, which provides theoretical support for its clinical application in patients with SCI.
Collapse
Affiliation(s)
- Cheng Ju
- grid.233520.50000 0004 1761 4404Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Changle West Road No. 127, Xi’an, 710032 Shaanxi China
| | - Yangguang Ma
- grid.233520.50000 0004 1761 4404Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Changle West Road No. 127, Xi’an, 710032 Shaanxi China
| | - Xiaoshuang Zuo
- grid.233520.50000 0004 1761 4404Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Changle West Road No. 127, Xi’an, 710032 Shaanxi China
| | - Xuankang Wang
- grid.233520.50000 0004 1761 4404Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Changle West Road No. 127, Xi’an, 710032 Shaanxi China
| | - Zhiwen Song
- grid.233520.50000 0004 1761 4404Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Changle West Road No. 127, Xi’an, 710032 Shaanxi China
| | - Zhihao Zhang
- grid.233520.50000 0004 1761 4404Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Changle West Road No. 127, Xi’an, 710032 Shaanxi China
| | - Zhijie Zhu
- grid.233520.50000 0004 1761 4404Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Changle West Road No. 127, Xi’an, 710032 Shaanxi China
| | - Xin Li
- grid.233520.50000 0004 1761 4404Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Changle West Road No. 127, Xi’an, 710032 Shaanxi China
| | - Zhuowen Liang
- grid.233520.50000 0004 1761 4404Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Changle West Road No. 127, Xi’an, 710032 Shaanxi China
| | - Tan Ding
- grid.233520.50000 0004 1761 4404Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Changle West Road No. 127, Xi’an, 710032 Shaanxi China
| | - Xueyu Hu
- grid.233520.50000 0004 1761 4404Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Changle West Road No. 127, Xi’an, 710032 Shaanxi China
| | - Zhe Wang
- grid.233520.50000 0004 1761 4404Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Changle West Road No. 127, Xi’an, 710032 Shaanxi China
| |
Collapse
|
23
|
Li Y, Peng Q, Shang J, Dong W, Wu S, Guo X, Xie Z, Chen C. The role of taurine in male reproduction: Physiology, pathology and toxicology. Front Endocrinol (Lausanne) 2023; 14:1017886. [PMID: 36742382 PMCID: PMC9889556 DOI: 10.3389/fendo.2023.1017886] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Taurine, a sulfur-containing amino acid, has a wide range of biological effects, such as bile salt formation, osmotic regulation, oxidative stress inhibition, immunomodulation and neuromodulation. Taurine has been proved to be synthesized and abundant in male reproductive organs. Recently, accumulating data showed that taurine has a potential protective effect on reproductive function of male animals. In physiology, taurine can promote the endocrine function of the hypothalamus-pituitary-testis (HPT) axis, testicular tissue development, spermatogenesis and maturation, delay the aging of testicular structure and function, maintain the homeostasis of the testicular environment, and enhance sexual ability. In pathology, taurine supplement may be beneficial to alleviate pathological damage of male reproductive system, including oxidative damage of sperm preservation in vitro, testicular reperfusion injury and diabetes -induced reproductive complications. In addition, taurine acts as a protective agent against toxic damage to the male reproductive system by exogenous substances (e.g., therapeutic drugs, environmental pollutants, radiation). Related mechanisms include reduced oxidative stress, increased antioxidant capacity, inhibited inflammation and apoptosis, restored the secretory activity of the HPT axis, reduced chromosomal variation, enhanced sperm mitochondrial energy metabolism, cell membrane stabilization effect, etc. Therefore, this article reviewed the protective effect of taurine on male reproductive function and its detailed mechanism, in order to provide reference for further research and clinical application.
Collapse
Affiliation(s)
- Yuanyuan Li
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Qianwen Peng
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Jia Shang
- Arts Department, School of Kaifeng Culture and Tourism, Henan, Kaifeng, China
| | - Wanglin Dong
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Sijia Wu
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Xiajun Guo
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Zhenxing Xie
- School of Basic Medical Science, Henan University, Henan, Kaifeng, China
| | - Chaoran Chen
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
| |
Collapse
|
24
|
Yang Q, Fan W, Lai B, Liao B, Deng M. lncRNA-TCONS_00008552 expression in patients with pulmonary arterial hypertension due to congenital heart disease. PLoS One 2023; 18:e0281061. [PMID: 36893166 PMCID: PMC9997923 DOI: 10.1371/journal.pone.0281061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 01/16/2023] [Indexed: 03/10/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are potential regulators of a variety of cardiovascular diseases. Therefore, there is a series of differentially expressed lncRNAs in pulmonary arterial hypertension (PAH) that may be used as markers to diagnose PAH and even predict the prognosis. However, their specific mechanisms remain largely unknown. Therefore, we investigated the biological role of lncRNAs in patients with PAH. First, we screened patients with PAH secondary to ventricular septal defect (VSD) and those with VSD without PAH to assess differences in lncRNA and mRNA expression between the two groups. Our results revealed the significant upregulation of 813 lncRNAs and 527 mRNAs and significant downregulation of 541 lncRNAs and 268 mRNAs in patients with PAH. Then, we identified 10 hub genes in a constructed protein-protein interaction network. Next, we performed bioinformatics analyses, including Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis and subsequently constructed coding-noncoding co-expression networks. We screened lncRNA-TCONS_00008552 and lncRNA-ENST00000433673 as candidate genes and verified the expression levels of the lncRNAs using quantitative reverse-transcription PCR. Although expression levels of lncRNA-TCONS_00008552 in the plasma from the PAH groups were significantly increased compared with the control groups, there was no significant difference in the expression of lncRNA-ENST00000433673 between the two groups. This study bolsters our understanding of the role of lncRNA in PAH occurrence and development and indicates that lncRNA-TCONS_00008552 is a novel potential molecular marker for PAH.
Collapse
Affiliation(s)
- Qi Yang
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases) Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Wei Fan
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases) Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Banghui Lai
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases) Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Bin Liao
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases) Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- * E-mail: (BL); (MD)
| | - Mingbin Deng
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases) Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- * E-mail: (BL); (MD)
| |
Collapse
|
25
|
Long T, Pan W, Li F, Sheikh SA, Xie Q, Zhang C. Berberine up‐regulates miR‐340‐5p to protect myocardial ischaemia/reperfusion from HMGB1‐mediated inflammatory injury. ESC Heart Fail 2022; 10:931-942. [PMID: 36453191 PMCID: PMC10053273 DOI: 10.1002/ehf2.14235] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 10/26/2022] [Accepted: 11/04/2022] [Indexed: 12/02/2022] Open
Abstract
AIMS Myocardial ischaemia/reperfusion injury (MIRI) is a major cause of heart failure after myocardial infarction. Berberine (BBR) presents anti-inflammatory and immunosuppressive properties in many diseases. Our research looked into the therapeutic effects and mechanism of BBR in MIRI. METHODS AND RESULTS MIRI animal and cell models were established. The mRNA and protein expressions were assessed using reverse transcription and quantitative real-time polymerase chain reaction and western blot. The haemodynamic parameters (left ventricular ejection fraction and left ventricular ejection fraction) were detected by echocardiography. The myocardial infarct size and myocardium lesion were assessed by triphenyltetrazolium chloride and haematoxylin-eosin staining. The levels of injury factors were determined by ELISA. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling staining was performed to analyse cell apoptosis. Dual luciferase reporter gene and RNA immunoprecipitation assays were carried out to verify the interaction between miR-340-5p and HMGB1. BBR administration could improve the haemodynamic parameters and infarct size in MIRI rats (all P < 0.05). In MIRI rat model, BBR reduced cardiomyocyte apoptosis and inflammation (all P < 0.05). BBR could promote miR-340-5p expression (0.64 ± 0.21, P < 0.05), which is lowly expressed in MIRI group (0.24 ± 0.10, P < 0.01) in compare with the sham group (0.99 ± 0.01). MiR-340-5p knockdown abolished the protective effects of BBR on H/R-treated cardiomyocytes (all P < 0.05). BBR suppressed the HMGB1/TLR4/NF-κB pathway activation in MIRI. HMGB1 functioned as the target of miR-340-5p, and its silencing reversed the effect of miR-340-5p inhibitor on BBR-treated MIRI. CONCLUSIONS In MIRI, BBR repressed HMGB1-mediated TLR4/NF-κB signalling pathway through miR-340-5p to suppress cardiomyocyte apoptosis and inflammation.
Collapse
Affiliation(s)
- Tianyi Long
- Department of Cardiology Xiangya Hospital, Central South University No. 87 Xiangya Road Changsha 410008 China
- Department of National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University Changsha China
| | - Wei Pan
- Department of Cardiology Xiangya Hospital, Central South University No. 87 Xiangya Road Changsha 410008 China
- Department of National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University Changsha China
| | - Fei Li
- Department of Cardiology Xiangya Hospital, Central South University No. 87 Xiangya Road Changsha 410008 China
- Department of National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University Changsha China
| | - Sayed Ali Sheikh
- Department of Cardiology Xiangya Hospital, Central South University No. 87 Xiangya Road Changsha 410008 China
- Internal Medicine Department, Cardiology, College of Medicine Jouf University Sakakah Saudi Arabia
| | - Qiying Xie
- Department of Cardiology Xiangya Hospital, Central South University No. 87 Xiangya Road Changsha 410008 China
- Department of National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University Changsha China
| | - Chenglong Zhang
- Department of Cardiology Xiangya Hospital, Central South University No. 87 Xiangya Road Changsha 410008 China
- Department of National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University Changsha China
| |
Collapse
|
26
|
Ge X, Meng Q, Liu X, Liu J, Ma X, Shi S, Li M, Lin F, Liang X, Gong X, Liu Z, Han W, Zhou X. Alterations of long noncoding RNAs and mRNAs in extracellular vesicles derived from the murine heart post-ischemia-reperfusion injury. J Cell Mol Med 2022; 26:6006-6018. [PMID: 36444487 PMCID: PMC9753460 DOI: 10.1111/jcmm.17617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 11/30/2022] Open
Abstract
Extracellular vesicles (EVs) play important roles in cardiovascular diseases by delivering their RNA cargos. However, the features and possible role of the lncRNAs and mRNAs in cardiac EVs during ischemia-reperfusion (IR) remain unclear. Therefore, we performed RNA sequencing analysis to profile the features of lncRNAs and mRNAs and predicted their potential functions. Here, we demonstrated that the severity of IR injury was significantly correlated with cardiac EV production. RNA sequencing identified 73 significantly differentially expressed (DE) lncRNAs (39 upregulated and 34 downregulated) and 720 DE-mRNAs (317 upregulated and 403 downregulated). Gene Ontology (GO) and pathway analysis were performed to predict the potential functions of the DE-lncRNAs and mRNAs. The lncRNA-miRNA-mRNA ceRNA network showed the possible functions of DE-lncRNAs with DE-mRNAs which are enriched in the pathways of T cell receptor signalling pathway and cell adhesion molecules. Moreover, the expressions of ENSMUST00000146010 and ENSMUST00000180630 were negatively correlated with the severity of IR injury. A significant positive correlation was revealed between TCONS_00010866 expression and the severity of the cardiac injury. These findings revealed the lncRNA and mRNA profiles in the heart derived EVs and provided potential targets and pathways involved in cardiac IR injury.
Collapse
Affiliation(s)
- Xinyu Ge
- Research Center for Translational MedicineShanghai East Hospital, Tongji University School of MedicineShanghaiChina,Shanghai Heart Failure Research CenterShanghai East Hospital, Tongji University School of MedicineShanghaiChina,Department of Cardiothoracic SurgeryShanghai East Hospital, Tongji University School of MedicineShanghaiChina
| | - Qingshu Meng
- Research Center for Translational MedicineShanghai East Hospital, Tongji University School of MedicineShanghaiChina,Shanghai Heart Failure Research CenterShanghai East Hospital, Tongji University School of MedicineShanghaiChina
| | - Xuan Liu
- Research Center for Translational MedicineShanghai East Hospital, Tongji University School of MedicineShanghaiChina,Shanghai Heart Failure Research CenterShanghai East Hospital, Tongji University School of MedicineShanghaiChina,Department of Cardiothoracic SurgeryShanghai East Hospital, Tongji University School of MedicineShanghaiChina
| | - Jing Liu
- Research Center for Translational MedicineShanghai East Hospital, Tongji University School of MedicineShanghaiChina,Shanghai Heart Failure Research CenterShanghai East Hospital, Tongji University School of MedicineShanghaiChina,Department of Cardiothoracic SurgeryShanghai East Hospital, Tongji University School of MedicineShanghaiChina
| | - Xiaoxue Ma
- Research Center for Translational MedicineShanghai East Hospital, Tongji University School of MedicineShanghaiChina,Shanghai Heart Failure Research CenterShanghai East Hospital, Tongji University School of MedicineShanghaiChina
| | - Shanshan Shi
- Research Center for Translational MedicineShanghai East Hospital, Tongji University School of MedicineShanghaiChina,Shanghai Heart Failure Research CenterShanghai East Hospital, Tongji University School of MedicineShanghaiChina
| | - Mimi Li
- Research Center for Translational MedicineShanghai East Hospital, Tongji University School of MedicineShanghaiChina,Shanghai Heart Failure Research CenterShanghai East Hospital, Tongji University School of MedicineShanghaiChina
| | - Fang Lin
- Research Center for Translational MedicineShanghai East Hospital, Tongji University School of MedicineShanghaiChina,Shanghai Heart Failure Research CenterShanghai East Hospital, Tongji University School of MedicineShanghaiChina,Department of Cardiothoracic SurgeryShanghai East Hospital, Tongji University School of MedicineShanghaiChina
| | - Xiaoting Liang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji UniversityShanghaiChina
| | - Xin Gong
- Department of Heart FailureShanghai East Hospital, Tongji University School of MedicineShanghaiChina
| | - Zhongmin Liu
- Research Center for Translational MedicineShanghai East Hospital, Tongji University School of MedicineShanghaiChina,Shanghai Heart Failure Research CenterShanghai East Hospital, Tongji University School of MedicineShanghaiChina,Department of Cardiothoracic SurgeryShanghai East Hospital, Tongji University School of MedicineShanghaiChina,Shanghai Institute of Stem Cell Research and Clinical TranslationShanghaiChina
| | - Wei Han
- Department of Heart FailureShanghai East Hospital, Tongji University School of MedicineShanghaiChina
| | - Xiaohui Zhou
- Research Center for Translational MedicineShanghai East Hospital, Tongji University School of MedicineShanghaiChina,Shanghai Heart Failure Research CenterShanghai East Hospital, Tongji University School of MedicineShanghaiChina
| |
Collapse
|
27
|
Wang Q, Zhou H, Zhu X, Jiang F, Yu Q, Zhang J, Ji Y. miR-208 inhibits myocardial tissues apoptosis in mice with acute myocardial infarction by targeting inhibition of PDCD4. J Biochem Mol Toxicol 2022; 36:e23202. [PMID: 36086866 DOI: 10.1002/jbt.23202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 07/03/2022] [Accepted: 08/16/2022] [Indexed: 12/24/2022]
Abstract
This article aimed to investigate the role of miR-208 in the apoptosis of myocardial tissues in acute myocardial infarction (AMI) mice. The AMI mouse model was constructed. Then, miR-208 expression in AMI mice was regulated by transfection. The mouse myocardial tissues were subject to hematoxylin-eosin (HE) staining, TUNEL assay, and immunofluorescence analysis. H9c2 cell transfection and hypoxia induction were then completed, and cell apoptosis and cytokine levels were tested. Additionally, RNA pull-down and dual luciferase reporter gene assays were conducted for exploring the relation of miR-208 with programmed cell death 4 (PDCD4). Additionally, fluorescence in situ hybridization (FISH) was conducted for investigating miR-208 and PDCD4 colocalization within H9c2 cells. AMI mice had severe damage, apoptosis, decreased miR-208 expression, increased IL-1β, IL-6, IL-8 levels, whereas reduced IL-10 level within myocardial tissues. H9c2 cells under hypoxia induction exhibited decreased miR-208 expression, promoted apoptosis, increased protein expression of Bax and cleaved-caspase-3, decreased protein expression of Bcl-2 and caspase-3, elevated IL-1β, IL-6, IL-8 levels and decreased IL-10 level. miR-208 upregulation alleviated the damage and apoptosis of myocardial tissues in AMI mice. AMI mice with miR-208 upregulation showed decreased expression of Bax and cleaved-caspase-3, increased expression of Bcl-2 and caspase-3, reduced levels of IL-1β, IL-6, IL-8, whereas an increased level of IL-10. miR-208 showed direct inhibition of PDCD4. PDCD4 and miR-208 were mainly co-expressed in the cytoplasm. The upregulated PDCD4 expression abolished miR-208's suppression of H9c2 cell apoptosis induced by hypoxia. Besides this, miR-208 inhibited myocardial tissue apoptosis in AMI mice by inhibiting PDCD4 expression.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Cardio-thoracic Surgery, Wujin Hospital Affiliated with Jiangsu University, The Wujin Clinical College of Xuzhou Medical University, Changzhou, People's Republic of China
| | - Huxiang Zhou
- Medical College of Jiangsu University, Zhenjiang, People's Republic of China
| | - Xiaobo Zhu
- Department of Cardio-thoracic Surgery, Wujin Hospital Affiliated with Jiangsu University, The Wujin Clinical College of Xuzhou Medical University, Changzhou, People's Republic of China
| | - Feng Jiang
- Department of Cardio-thoracic Surgery, Wujin Hospital Affiliated with Jiangsu University, The Wujin Clinical College of Xuzhou Medical University, Changzhou, People's Republic of China
| | - Qiuhua Yu
- Department of Cardio-thoracic Surgery, Wujin Hospital Affiliated with Jiangsu University, The Wujin Clinical College of Xuzhou Medical University, Changzhou, People's Republic of China
| | - Junjie Zhang
- Department of Cardio-thoracic Surgery, Wujin Hospital Affiliated with Jiangsu University, The Wujin Clinical College of Xuzhou Medical University, Changzhou, People's Republic of China
| | - Yaxiang Ji
- Department of Cardiac Ultrasound, Wujin Hospital Affiliated with Jiangsu University, The Wujin Clinical College of Xuzhou Medical University, Changzhou, People's Republic of China
| |
Collapse
|
28
|
Fadaei S, Zarepour F, Parvaresh M, Motamedzadeh A, Tamehri Zadeh SS, Sheida A, Shabani M, Hamblin MR, Rezaee M, Zarei M, Mirzaei H. Epigenetic regulation in myocardial infarction: Non-coding RNAs and exosomal non-coding RNAs. Front Cardiovasc Med 2022; 9:1014961. [PMID: 36440025 PMCID: PMC9685618 DOI: 10.3389/fcvm.2022.1014961] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/17/2022] [Indexed: 08/13/2023] Open
Abstract
Myocardial infarction (MI) is one of the leading causes of deaths globally. The early diagnosis of MI lowers the rate of subsequent complications and maximizes the benefits of cardiovascular interventions. Many efforts have been made to explore new therapeutic targets for MI, and the therapeutic potential of non-coding RNAs (ncRNAs) is one good example. NcRNAs are a group of RNAs with many different subgroups, but they are not translated into proteins. MicroRNAs (miRNAs) are the most studied type of ncRNAs, and have been found to regulate several pathological processes in MI, including cardiomyocyte inflammation, apoptosis, angiogenesis, and fibrosis. These processes can also be modulated by circular RNAs and long ncRNAs via different mechanisms. However, the regulatory role of ncRNAs and their underlying mechanisms in MI are underexplored. Exosomes play a crucial role in communication between cells, and can affect both homeostasis and disease conditions. Exosomal ncRNAs have been shown to affect many biological functions. Tissue-specific changes in exosomal ncRNAs contribute to aging, tissue dysfunction, and human diseases. Here we provide a comprehensive review of recent findings on epigenetic changes in cardiovascular diseases as well as the role of ncRNAs and exosomal ncRNAs in MI, focusing on their function, diagnostic and prognostic significance.
Collapse
Affiliation(s)
- Sara Fadaei
- Department of Internal Medicine and Endocrinology, Shohadae Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Zarepour
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehrnoosh Parvaresh
- Department of Physical Medicine and Rehabilitation, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Alireza Motamedzadeh
- Department of Internal Medicine, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Shabani
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Department of Anesthesiology, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Mehdi Rezaee
- Department of Anesthesiology, School of Medicine, Shahid Madani Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - Maryam Zarei
- Tehran Heart Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
29
|
Zheng X, Zhong T, Yu F, Duan J, Tang Y, Liu Y, Li M, Sun D, Yin D. Deficiency of a novel lncRNA-HRAT protects against myocardial ischemia reperfusion injury by targeting miR-370-3p/RNF41 pathway. Front Cardiovasc Med 2022; 9:951463. [PMID: 36172578 PMCID: PMC9510651 DOI: 10.3389/fcvm.2022.951463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/22/2022] [Indexed: 01/17/2023] Open
Abstract
Accumulating evidence indicates that long non-coding RNAs (lncRNAs) contribute to myocardial ischemia/reperfusion (I/R) injury. However, the underlying mechanisms by which lncRNAs modulate myocardial I/R injury have not been thoroughly examined and require further investigation. A novel lncRNA named lncRNA-hypoxia/reoxygenation (H/R)-associated transcript (lncRNA-HRAT) was identified by RNA sequencing analysis. The expression of lncRNA-HRAT exhibited a significant increase in the I/R mice hearts and cardiomyocytes treated with H/R. LncRNA-HRAT overexpression facilitates H/R-induced cardiomyocyte apoptosis. Furthermore, cardiomyocyte-specific deficiency of lncRNA-HRAT in vivo after I/R decreased creatine kinase (CK) release in the serum, reduced myocardial infarct area, and improved cardiac dysfunction. Molecular mechanistic investigations revealed that lncRNA-HRAT serves as a competing endogenous RNA (ceRNA) of miR-370-3p, thus upregulating the expression of ring finger protein 41 (RNF41), thereby aggravating apoptosis in cardiomyocytes induced by H/R. This study revealed that the lncRNA-HRAT/miR-370-3p/RNF41 pathway regulates cardiomyocyte apoptosis and myocardial injury. These findings suggest that targeted inhibition of lncRNA-HRAT may offer a novel therapeutic method to prevent myocardial I/R injury.
Collapse
Affiliation(s)
- Xinbin Zheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, China
| | - Ting Zhong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Fan Yu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Jingsi Duan
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Yao Tang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yaxiu Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Mingrui Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Deqiang Sun
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Deling Yin
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
- *Correspondence: Deling Yin,
| |
Collapse
|
30
|
Wei Y, Xiao L, Yingying L, Haichen W. Pinoresinol diglucoside ameliorates H/R-induced injury of cardiomyocytes by regulating miR-142-3p and HIF1AN. J Biochem Mol Toxicol 2022; 36:e23175. [PMID: 35962614 DOI: 10.1002/jbt.23175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/21/2022] [Accepted: 07/21/2022] [Indexed: 11/10/2022]
Abstract
This study is aimed to investigate the effect of pinoresinol diglucoside (PDG) in ameliorating myocardial ischemia-reperfusion injury (MIRI). Hypoxia/reperfusion (H/R)-induced H9c2 cardiomyocytes were used to establish an in-vitro ischemia-reperfusion injury model of cardiomyocytes. Cells were treated with 1 μmol/L of PDG. Reactive oxygen species (ROS) level was detected by a 2',7'-dichlorofluorescein-diacetate assay. The release of lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB) was examined by enzyme-linked immunosorbent assay. The viability and apoptosis of H9c2 cells were probed by MTT assay and flow cytometry. Besides this, Western blot and quantitative real-time PCR were used to detect microRNA-142-3p (miR-142-3p) and hypoxia-inducible factor 1 subunit alpha inhibitor (HIF1AN) expression levels. The binding sequence between miR-142-3p and HIF1AN 3'-untranslated region was validated by a dual-luciferase reporter gene assay. PDG treatment significantly reduced the level of ROS, LDH, and CK-MB, promoted viability, and inhibited the apoptosis of H9c2 cells. PDG treatment promoted miR-142-3p expression and inhibited HIF1AN expression in H9c2 cells. MiR-142-3p overexpression enhanced the effects of PDG on ROS, LDH, CK-MB levels, cell viability, and apoptosis in H9c2 cardiomyocytes, while overexpression of HIF1AN reversed the above effects. PDG ameliorates H/R-induced injury of cardiomyocytes by regulating miR-142-3p and HIF1AN.
Collapse
Affiliation(s)
- Yuan Wei
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liang Xiao
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liu Yingying
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wang Haichen
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
31
|
Non-Coding RNA Networks as Potential Novel Biomarker and Therapeutic Target for Sepsis and Sepsis-Related Multi-Organ Failure. Diagnostics (Basel) 2022; 12:diagnostics12061355. [PMID: 35741168 PMCID: PMC9222180 DOI: 10.3390/diagnostics12061355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 02/04/2023] Open
Abstract
According to “Sepsis-3” consensus, sepsis is a life-threatening clinical syndrome caused by a dysregulated inflammatory host response to infection. A rapid identification of sepsis is mandatory, as the extent of the organ damage triggered by both the pathogen itself and the host’s immune response could abruptly evolve to multiple organ failure and ultimately lead to the death of the patient. The most commonly used therapeutic strategy is to provide hemodynamic and global support to the patient and to rapidly initiate broad-spectrum empiric antibiotic therapy. To date, there is no gold standard diagnostic test that can ascertain the diagnosis of sepsis. Therefore, once sepsis is suspected, the presence of organ dysfunction can be assessed using the Sepsis-related Organ Failure Assessment (SOFA) score, although the diagnosis continues to depend primarily on clinical judgment. Clinicians can now rely on several serum biomarkers for the diagnosis of sepsis (e.g., procalcitonin), and promising new biomarkers have been evaluated, e.g., presepsin and adrenomedullin, although their clinical relevance in the hospital setting is still under discussion. Non-codingRNA, including long non-codingRNAs (lncRNAs), circularRNAs (circRNAs) and microRNAs (miRNAs), take part in a complex chain of events playing a pivotal role in several important regulatory processes in humans. In this narrative review we summarize and then analyze the function of circRNAs-miRNA-mRNA networks as putative novel biomarkers and therapeutic targets for sepsis, focusing only on data collected in clinical settings in humans.
Collapse
|
32
|
Cao Y, Liu J, Lu Q, Huang K, Yang B, Reilly J, Jiang N, Shu X, Shang L. An update on the functional roles of long non‑coding RNAs in ischemic injury (Review). Int J Mol Med 2022; 50:91. [PMID: 35593308 PMCID: PMC9170192 DOI: 10.3892/ijmm.2022.5147] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/05/2022] [Indexed: 11/20/2022] Open
Abstract
Ischemic injuries result from ischemia and hypoxia in cells. Tissues and organs receive an insufficient supply of nutrients and accumulate metabolic waste, which leads to the development of inflammation, fibrosis and a series of other issues. Ischemic injuries in the brain, heart, kidneys, lungs and other organs can cause severe adverse effects. Acute renal ischemia induces acute renal failure, heart ischemia induces myocardial infarction and cerebral ischemia induces cerebrovascular accidents, leading to loss of movement, consciousness and possibly, life-threatening disabilities. Existing evidence suggests that long non-coding RNAs (lncRNAs) are regulatory sequences involved in transcription, post-transcription, epigenetic regulation and multiple physiological processes. lncRNAs have been shown to be differentially expressed following ischemic injury, with the severity of the ischemic injury being affected by the upregulation or downregulation of certain types of lncRNA. The present review article provides an extensive summary of the functional roles of lncRNAs in ischemic injury, with a focus on the brain, heart, kidneys and lungs. The present review mainly summarizes the functional roles of lncRNA MALAT1, lncRNA MEG3, lncRNA H19, lncRNA TUG1, lncRNA NEAT1, lncRNA AK139328 and lncRNA CAREL, among which lncRNA MALAT1, in particular, plays a crucial role in ischemic injury and is currently a hot research topic.
Collapse
Affiliation(s)
- Yanqun Cao
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan 422000, P.R. China
| | - Jia Liu
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan 422000, P.R. China
| | - Quzhe Lu
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan 422000, P.R. China
| | - Kai Huang
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan 422000, P.R. China
| | - Baolin Yang
- Department of Human Anatomy, School of Basic Medicine, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - James Reilly
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK
| | - Na Jiang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi 330006, P.R. China
| | - Xinhua Shu
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan 422000, P.R. China
| | - Lei Shang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
33
|
Omadacycline Efficacy against Streptococcus Agalactiae Isolated in China: Correlation between Resistance and Virulence Gene and Biofilm Formation. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:7636983. [PMID: 35510054 PMCID: PMC9061024 DOI: 10.1155/2022/7636983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/03/2022] [Indexed: 11/27/2022]
Abstract
This study aimed to evaluate the activity, resistance, clonality of MIC distribution, and the correlation between virulence and resistance genes and biofilm formation of omadacycline (OMC) in clinics for Streptococcus agalactiae isolates from China. 162 isolates were collected retrospectively in China. The S. agalactiae were collected from the body's cervical secretions, wound secretions, ear swabs, secretions, semen, venous blood, cerebrospinal fluid, pee, etc. The MIC of OMC against S. agalactiae was determined by broth microdilution. The inhibition zone diameters of OMC and other common antibiotics were measured using filter paper. D-test was performed to determine the phenotype of cross resistance between erythromycin and clindamycin. In Multilocus sequence typing (MLST), some commonly-detected resistance genes and virulence gene of these S. agalactiae isolates were investigated using polymerase chain reaction (PCR). Biofilms were detected by crystal violet staining. Our data demonstrated the correalation of the biofilm formation and OMA antimicrobial susceptibility of S.agalactiae clinical isolates with the carrier of virulence gene scpB. Conclusively, OMC exhibits the robust antimcirobial activity against clinical S. agalactiae isolates from China compared with DOX or MIN, and the carrier of the virulence gene scpB might correlate with the biofilm formation in OMC-resistant S. agalactiae.
Collapse
|
34
|
Ghafouri-Fard S, Shoorei H, Mohaqiq M, Majidpoor J, Moosavi MA, Taheri M. Exploring the role of non-coding RNAs in autophagy. Autophagy 2022; 18:949-970. [PMID: 33525971 PMCID: PMC9196749 DOI: 10.1080/15548627.2021.1883881] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/13/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
As a self-degradative mechanism, macroautophagy/autophagy has a role in the maintenance of energy homeostasis during critical periods in the development of cells. It also controls cellular damage through the eradication of damaged proteins and organelles. This process is accomplished by tens of ATG (autophagy-related) proteins. Recent studies have shown the involvement of non-coding RNAs in the regulation of autophagy. These transcripts mostly modulate the expression of ATG genes. Both long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have been shown to modulate the autophagy mechanism. Levels of several lncRNAs and miRNAs are altered in this process. In the present review, we discuss the role of lncRNAs and miRNAs in the regulation of autophagy in diverse contexts such as cancer, deep vein thrombosis, spinal cord injury, diabetes and its complications, acute myocardial infarction, osteoarthritis, pre-eclampsia and epilepsy.Abbreviations: AMI: acute myocardial infarction; ATG: autophagy-related; lncRNA: long non-coding RNA; miRNA: microRNA.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahdi Mohaqiq
- Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Moosavi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Wu LD, Liu Y, Li F, Chen JY, Zhang J, Qian LL, Wang RX. Glucose fluctuation promotes cardiomyocyte apoptosis by triggering endoplasmic reticulum (ER) stress signaling pathway in vivo and in vitro. Bioengineered 2022; 13:13739-13751. [PMID: 35707846 PMCID: PMC9275931 DOI: 10.1080/21655979.2022.2080413] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Glucose fluctuation is more harmful than sustained hyperglycemia, but the effect on cardiomyocyte apoptosis have not yet been clarified. In this study, we aim to identify the effect of glucose fluctuation on cardiomyocyte apoptosis and explore the underlying mechanism. Sprague-Dawley rats were intraperitoneally injected with streptozotocin (STZ) and divided into three groups: controlled diabetic group (C-STZ); uncontrolled diabetic group (U-STZ) and glucose fluctuated diabetic group (GF-STZ). After twelve weeks, echocardiography, Hematoxylin-eosin (HE) staining, and Masson staining were adopted to assess the cardiac function and pathological changes. TUNEL staining was used to detect apoptotic cells. Expressions of apoptosis-related proteins and key molecules in the endoplasmic reticulum (ER) stress pathway were determined via western blots. Further, primary cardiomyocytes incubated in different glucose conditions were treated with the inhibitor of ER stress to explore the causative role of ER stress in glucose fluctuation-induced cardiomyocyte apoptosis. In vivo, we demonstrated that glucose fluctuation promoted cardiomyocyte apoptosis, and were more harmful to cardiomyocytes than sustained hyperglycemia. Moreover, glucose fluctuation significantly triggered ER stress signaling pathway. In vitro, primary cardiomyocyte apoptosis induced by glucose fluctuation and the activation of ER stress were significantly attenuated by 4-PBA, which is an ER stress inhibitor. Above all, glucose fluctuation can promote cardiomyocyte apoptosis through triggering the ER stress signaling pathway in diabetic rats and in primary cardiomyocytes.
Collapse
Affiliation(s)
- Li-Da Wu
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Ying Liu
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Feng Li
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Jia-Yi Chen
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Jie Zhang
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Ling-Ling Qian
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Ru-Xing Wang
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| |
Collapse
|
36
|
Wang YW, Dong HZ, Tan YX, Bao X, Su YM, Li X, Jiang F, Liang J, Huang ZC, Ren YL, Xu YL, Su Q. HIF-1α-regulated lncRNA-TUG1 promotes mitochondrial dysfunction and pyroptosis by directly binding to FUS in myocardial infarction. Cell Death Dis 2022; 8:178. [PMID: 35396503 PMCID: PMC8993815 DOI: 10.1038/s41420-022-00969-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 12/02/2022]
Abstract
Myocardial infarction (MI) is a fatal heart disease that affects millions of lives worldwide each year. This study investigated the roles of HIF-1α/lncRNA-TUG1 in mitochondrial dysfunction and pyroptosis in MI. CCK-8, DHE, lactate dehydrogenase (LDH) assays, and JC-1 staining were performed to measure proliferation, reactive oxygen species (ROS), LDH leakage, and mitochondrial damage in hypoxia/reoxygenation (H/R)-treated cardiomyocytes. Enzyme-linked immunoassay (ELISA) and flow cytometry were used to detect LDH, creatine kinase (CK), and its isoenzyme (CK-MB) levels and caspase-1 activity. Chromatin immunoprecipitation (ChIP), luciferase assay, and RNA-immunoprecipitation (RIP) were used to assess the interaction between HIF-1α, TUG1, and FUS. Quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting, and immunohistochemistry were used to measure HIF-1α, TUG1 and pyroptosis-related molecules. Hematoxylin and eosin (HE), 2,3,5-triphenyltetrazolium chloride (TTC), and terminal deoxynucleotidyl transferase dUTP risk end labelling (TUNEL) staining were employed to examine the morphology, infarction area, and myocardial injury in the MI mouse model. Mitochondrial dysfunction and pyroptosis were induced in H/R-treated cardiomyocytes, accompanied by an increase in the expression of HIF-α and TUG1. HIF-1α promoted TUG1 expression by directly binding to the TUG1 promoter. TUG1 silencing inhibited H/R-induced ROS production, mitochondrial injury and the expression of the pyroptosis-related proteins NLRP3, caspase-1 and GSDMD. Additionally, H/R elevated FUS levels in cardiomyocytes, which were directly inhibited by TUG1 silencing. Fused in sarcoma (FUS) overexpression reversed the effect of TUG1 silencing on mitochondrial damage and caspase-1 activation. However, the ROS inhibitor N-acetylcysteine (NAC) promoted the protective effect of TUG1 knockdown on H/R-induced cardiomyocyte damage. The in vivo MI model showed increased infarction, myocardial injury, ROS levels and pyroptosis, which were inhibited by TUG1 silencing. HIF-1α targeting upregulated TUG1 promotes mitochondrial damage and cardiomyocyte pyroptosis by combining with FUS, thereby promoting the occurrence of MI. HIF-1α/TUG1/FUS may serve as a potential treatment target for MI.
Collapse
Affiliation(s)
- Yong-Wang Wang
- Department of Anesthesiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, Zhuang Autonomous Region, P. R. China
| | - Hong-Zhi Dong
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, 300222, P. R. China
| | - Yong-Xing Tan
- Department of Intensive Care Unit, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, Zhuang Autonomous Region, P. R. China
| | - Xu Bao
- Department of Anesthesiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, Zhuang Autonomous Region, P. R. China
| | - Ying-Man Su
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, Zhuang Autonomous Region, P. R. China
| | - Xin Li
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, Zhuang Autonomous Region, P. R. China
| | - Fang Jiang
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, Zhuang Autonomous Region, P. R. China
| | - Jing Liang
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, Zhuang Autonomous Region, P. R. China
| | - Zhen-Cai Huang
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, Zhuang Autonomous Region, P. R. China
| | - Yan-Ling Ren
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, Zhuang Autonomous Region, P. R. China
| | - Yu-Li Xu
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, Zhuang Autonomous Region, P. R. China
| | - Qiang Su
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, Zhuang Autonomous Region, P. R. China.
| |
Collapse
|
37
|
Wang D, Niu Z, Wang X. The Regulatory Role of Non-coding RNA in Autophagy in Myocardial Ischemia-Reperfusion Injury. Front Pharmacol 2022; 13:822669. [PMID: 35370737 PMCID: PMC8970621 DOI: 10.3389/fphar.2022.822669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
Following an acute myocardial infarction (AMI), thrombolysis, coronary artery bypass grafting and primary percutaneous coronary intervention (PPCI) are the best interventions to restore reperfusion and relieve the ischemic myocardium, however, the myocardial ischemia-reperfusion injury (MIRI) largely offsets the benefits of revascularization in patients. Studies have demonstrated that autophagy is one of the important mechanisms mediating the occurrence of the MIRI, while non-coding RNAs are the main regulatory factors of autophagy, which plays an important role in the autophagy-related mTOR signaling pathways and the process of autophagosome formation Therefore, non-coding RNAs may be used as novel clinical diagnostic markers and therapeutic targets in the diagnosis and treatment of the MIRI. In this review, we not only describe the effect of non-coding RNA regulation of autophagy on MIRI outcome, but also zero in on the regulation of non-coding RNA on autophagy-related mTOR signaling pathways and mitophagy. Besides, we focus on how non-coding RNAs affect the outcome of MIRI by regulating autophagy induction, formation and extension of autophagic vesicles, and the fusion of autophagosome and lysosome. In addition, we summarize all non-coding RNAs reported in MIRI that can be served as possible druggable targets, hoping to provide a new idea for the prediction and treatment of MIRI.
Collapse
Affiliation(s)
- Dan Wang
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shanghai, China
| | - Zhenchao Niu
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shanghai, China
| | - Xiaolong Wang
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shanghai, China
| |
Collapse
|
38
|
Han X, Guo X, Chang J, Zhang J, Chen L, Wang H, Du F, Zeng X, Guo C. Integrinβ3 mediates the protective effects of soluble receptor for advanced glycation end-products during myocardial ischemia/reperfusion through AKT/STAT3 signaling pathway. Apoptosis 2022; 27:354-367. [PMID: 35359221 DOI: 10.1007/s10495-022-01724-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2022] [Indexed: 11/02/2022]
Abstract
Soluble receptor for advanced glycation end-product (sRAGE) was reported to protect myocardial ischemia/reperfusion (I/R) injuries via directly interacting with cardiomyocytes besides competing with RAGE for AGEs. However, the specific molecule for the interaction between sRAGE and cardiomyocytes are not clearly defined. Integrins which were reported to interact with RAGE on leukocytes were also expressed on myocardial cells, therefore it was supposed that sRAGE might interact with integrins on cardiomyocytes to protect hearts from ischemia/reperfusion injuries. The results showed that sRAGE increased the expression of integrinβ3 but not integrinβ1, β2, β4 or β5 in cardiomyocytes during I/R injuries. Meanwhile, the suppressive effects of sRAGE on cardiac function, cardiac infraction size and apoptosis in mice were cancelled by inhibition of integrinβ3 with cilengitide (CLG, 75 mg/kg). The results from cultured cardiomyocytes also proved that sRAGE attenuated myocardial apoptosis and autophagy through interacting with integrinβ3 to activate Akt and STAT3 pathway during oxygen and glucose deprivation/reperfusion (OGD/R) treatment. Furthermore, the phosphorylation of STAT3 was significantly downregulated by the inhibition of Akt (LY294002, 10 μM) in OGD/R and sRAGE treated cardiomyocytes, which suggested that STAT3 pathway was induced by Akt in I/R and sRAGE treated cardiomyocytes. The present study contributes to the understanding of myocardial I/R pathogenesis and provided a novel integrinβ3-dependent therapy strategy for sRAGE ameliorating I/R injuries.
Collapse
Affiliation(s)
- Xuejie Han
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 1 Dongjiaomin Lane, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Xinying Guo
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 1 Dongjiaomin Lane, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Jing Chang
- Department of Pathology, Beijing Youan Hospital, Capital Medical University, No. 8 You An Men Wai Xi Tou Tiao, Fengtai District, Beijing, 100069, People's Republic of China
| | - Jie Zhang
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 1 Dongjiaomin Lane, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Lu Chen
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 1 Dongjiaomin Lane, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Hongxia Wang
- Department of Physiology and Pathophysiology, Capital Medical University, No. 10 You An Men Wai Xi Tou Tiao, Fengtai District, Beijing, 100069, People's Republic of China
| | - Fenghe Du
- Department of Geriatrics, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China
| | - Xiangjun Zeng
- Department of Physiology and Pathophysiology, Capital Medical University, No. 10 You An Men Wai Xi Tou Tiao, Fengtai District, Beijing, 100069, People's Republic of China.
| | - Caixia Guo
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 1 Dongjiaomin Lane, Dongcheng District, Beijing, 100730, People's Republic of China.
| |
Collapse
|
39
|
Kansakar U, Varzideh F, Mone P, Jankauskas SS, Santulli G. Functional Role of microRNAs in Regulating Cardiomyocyte Death. Cells 2022; 11:983. [PMID: 35326433 PMCID: PMC8946783 DOI: 10.3390/cells11060983] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/08/2023] Open
Abstract
microRNAs (miRNA, miRs) play crucial roles in cardiovascular disease regulating numerous processes, including inflammation, cell proliferation, angiogenesis, and cell death. Herein, we present an updated and comprehensive overview of the functional involvement of miRs in the regulation of cardiomyocyte death, a central event in acute myocardial infarction, ischemia/reperfusion, and heart failure. Specifically, in this systematic review we are focusing on necrosis, apoptosis, and autophagy.
Collapse
Affiliation(s)
- Urna Kansakar
- Department of Medicine (Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (F.V.); (P.M.); (S.S.J.)
| | - Fahimeh Varzideh
- Department of Medicine (Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (F.V.); (P.M.); (S.S.J.)
| | - Pasquale Mone
- Department of Medicine (Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (F.V.); (P.M.); (S.S.J.)
| | - Stanislovas S. Jankauskas
- Department of Medicine (Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (F.V.); (P.M.); (S.S.J.)
- Department of Molecular Pharmacology, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Gaetano Santulli
- Department of Medicine (Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (F.V.); (P.M.); (S.S.J.)
- Department of Molecular Pharmacology, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
40
|
You H, Zhao Q, Dong M. The Key Genes Underlying Pathophysiology Correlation Between the Acute Myocardial Infarction and COVID-19. Int J Gen Med 2022; 15:2479-2490. [PMID: 35282650 PMCID: PMC8904943 DOI: 10.2147/ijgm.s354885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/23/2022] [Indexed: 11/30/2022] Open
Abstract
Introduction Accumulating evidences disclose that COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has a marked effect on acute myocardial infarction (AMI). Nevertheless, the underlying pathophysiology correlation between the AMI and COVID-19 remains vague. Materials and Methods Bioinformatics analyses of the altered transcriptional profiling of peripheral blood mononuclear cells (PBMCs) in patients with AMI and COVID-19 were implemented, including identification of differentially expressed genes and common genes between AMI and COVID-19, protein–protein interactions, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses, TF-genes and miRNA coregulatory networks, to explore their biological functions and potential roles in the pathogenesis of COVID-19-related AMI. Conclusion Our bioinformatic analyses of gene expression profiling of PBMCs in patients with AMI and COVID-19 provide us with a unique view regarding underlying pathophysiology correlation between the two vital diseases.
Collapse
Affiliation(s)
- Hongjun You
- Department of Cardiovascular Medicine, Shaanxi Provincial People’s Hospital, Xi’an, 710068, Shaanxi, People’s Republic of China
| | - Qianqian Zhao
- Department of Clinical Immunology, The First Affiliated Hospital, Air Force Military Medical University, Xi’an, 710032, Shaanxi, People’s Republic of China
| | - Mengya Dong
- Department of Cardiovascular Medicine, Shaanxi Provincial People’s Hospital, Xi’an, 710068, Shaanxi, People’s Republic of China
- Correspondence: Mengya Dong, Department of Cardiovascular Medicine, Shaanxi Provincial People’s Hospital, 256 West Youyi Road, Xi’an, Shaanxi, 710068, People’s Republic of China, Tel +86–15802943974, Email
| |
Collapse
|
41
|
Sun W, Wu X, Yu P, Zhang Q, Shen L, Chen J, Tong H, Fan M, Shi H, Chen X. LncAABR07025387.1 Enhances Myocardial Ischemia/Reperfusion Injury Via miR-205/ACSL4-Mediated Ferroptosis. Front Cell Dev Biol 2022; 10:672391. [PMID: 35186915 PMCID: PMC8847229 DOI: 10.3389/fcell.2022.672391] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 01/03/2022] [Indexed: 12/27/2022] Open
Abstract
Ferroptosis is associated with the pathology of myocardial ischemia/reperfusion (MI/R) injury following myocardial infarction, which is a leading cause of death worldwide. Although long noncoding RNAs (lncRNAs) are known to regulate gene expression, their roles in MI/R-induced ferroptosis remain unclear. In this study, we explored the lncRNA expression profiles in a rat model of MI/R injury and found that the novel lncRNA, lncAABR07025387.1, was highly expressed in MI/R-injured myocardial tissues and hypoxia/reoxygenation (H/R)-challenged myocardial cells. Silencing lncAABR07025387.1 improved MI/R injury in vivo and inhibited myocardial cell ferroptosis under H/R conditions. Bioinformatics analyses and luciferase, pull-down, and RNA-binding immunoprecipitation assays further revealed that lncAABR07025387.1 interacted with miR-205, which directly targeted ACSL4, a known contributor to ferroptosis. Furthermore, downregulating miR-205 reversed the ACSL4 inhibition induced by silencing lncAABR07025387.1. These findings suggest that, mechanistically, lncAABR07025387.1 negatively regulates miR-205 expression and subsequently upregulates ACSL4-mediated ferroptosis. In conclusion, this study demonstrates that lncAABR07025387.1 acts as a competing endogenous RNA during MI/R injury and highlights the therapeutic potential of lncRNAs for treating myocardial injury.
Collapse
Affiliation(s)
- Weixin Sun
- Department of Cardiology, Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiang Wu
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Gerontology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- Department of Gerontology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Peng Yu
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Qian Zhang
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Le Shen
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiandong Chen
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Huaqin Tong
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Manlu Fan
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Haibo Shi
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Cardiology, Liyang City Hospital of TCM, Changzhou, China
- *Correspondence: Haibo Shi, ; Xiaohu Chen,
| | - Xiaohu Chen
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Haibo Shi, ; Xiaohu Chen,
| |
Collapse
|
42
|
LncRNA HOTTIP Knockdown Attenuates Acute Myocardial Infarction via Regulating miR-92a-2/c-Met Axis. Cardiovasc Toxicol 2022; 22:352-364. [PMID: 35044621 PMCID: PMC8907089 DOI: 10.1007/s12012-021-09717-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/21/2021] [Indexed: 12/11/2022]
Abstract
Increasing investigations have focused on long non-coding RNAs (lncRNAs) in various human diseases, including acute myocardial infarction (AMI). Although lncRNA HOTTIP has been identified to play an important role in coronary artery diseases, its role and specific mechanism in AMI remain unclear. To investigate the potential role of HOTTIP in MI, HOTTIP expression in hypoxia-treated cardiomyocytes and myocardial tissues of MI mice was evaluated. The potential targets of HOTTIP and miR-92a-2 were predicted using Starbase and Targetscan. To further determine the cardio-protective effects of HOTTIP in vivo, si-HOTTIP and miR-92a-2 mimics were individually or co-injected into mice through intramyocardial injection. Moreover, their roles were further confirmed in rescue experiments. HOTTIP was significantly upregulated in ischemic myocardium of MI mice and hypoxia-induced cardiomyocytes. Moreover, HOTTIP knockdown markedly promoted cardiomyocyte growth and inhibited cardiomyocyte apoptosis in vitro. Luciferase reporter assay showed that HOTTIP could directly sponge miR-92a-2 to negatively regulate miR-92a-2 expression. In addition, c-Met was identified as a direct target of miR-92a-2, and their correlation was confirmed by luciferase reporter assay. MiR-92a-2 overexpression significantly enhanced the protective effect of HOTTIP knockdown against AMI through partially inhibiting c-Met expression. Our results demonstrated that HOTTIP downregulation attenuated AMI progression via the targeting miR-92a-2/c-Met axis and suggested that HOTTIP might be a potential therapeutic target for AMI.
Collapse
|
43
|
Bupivacaine Induces ROS-Dependent Autophagic Damage in DRG Neurons via TUG1/mTOR in a High-Glucose Environment. Neurotox Res 2022; 40:111-126. [PMID: 35043378 DOI: 10.1007/s12640-021-00461-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/27/2021] [Accepted: 12/06/2021] [Indexed: 02/07/2023]
Abstract
Bupivacaine (BP) is a commonly clinically used local anesthetic (LA). Current studies suggest that neurological complications are increased in diabetic patients after LA application, but the molecular mechanism is poorly understood. LA-induced autophagy and neuronal injury have been reported. We hypothesized that a high-glucose environment aggravates BP-induced autophagic damage. Mouse dorsal root ganglion (DRG) neurons were treated with BP in a high-glucose environment, and the results showed that reactive oxygen species (ROS) levels increased, autophagy was activated, autophagy flux was blocked, and cell viability decreased. Pretreatment with the ROS scavenger N-acetyl-cysteine (NAC) attenuated ROS-mediated autophagy regulation. Moreover, the expression of the long noncoding RNA (lncRNA) taurine upregulated gene 1 (TUG1) increased, and NAC and TUG1 siRNA inhibited the expression of TUG1/mammalian target of rapamycin (mTOR) in DRGs treated with BP in a high-glucose environment. Intriguingly, contrary to previous reports on a positive effect on neurons, we found that rapamycin, an autophagy activator, and chloroquine, an autophagy and lysosome inhibitor, both exacerbated autophagic damage. These data suggest that a high-glucose environment exacerbated BP induced ROS-dependent autophagic damage in DRG neurons through the TUG1/mTOR signaling pathway, which provides a theoretical basis and target for the clinical prevention and treatment of BP neurotoxicity in diabeties.
Collapse
|
44
|
Wang Y, Jian Y, Zhang X, Ni B, Wang M, Pan C. Melatonin protects H9c2 cardiomyoblasts from oxygen-glucose deprivation and reperfusion-induced injury by inhibiting Rac1/JNK/Foxo3a/Bim signaling pathway. Cell Biol Int 2021; 46:415-426. [PMID: 34882903 DOI: 10.1002/cbin.11739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/17/2021] [Accepted: 12/04/2021] [Indexed: 11/06/2022]
Abstract
Melatonin has been shown to protect against ischemia/reperfusion (I/R)-induced myocardial injury, however, the precise molecular mechanisms have not been fully clarified. The present study was aimed to investigate whether inactivation of Rac1/JNK/Foxo3a/Bim signaling pathway is responsible for the protective effect of melatonin on I/R-induced myocardial injury. Our results showed that Foxo3a downregulation contributed to the protective effect of melatonin on OGD/R-induced injury of H9c2 cardiomyoblasts. Melatonin treatment led to a reduced activity of Rac1, which was responsible for Foxo3a downregulation and decreased cell injury in OGD/R-exposed H9c2 cells. Furthermore, JNK acts as a downstream effector of Rac1 in mediating melatonin-induced inactivation of Foxo3a/Bim signaling pathway and decreased cell injury in OGD/R-exposed H9c2 cells. In conclusion, our results indicate that melatonin protects H9c2 cells against OGD/R-induced injury by inactivating the Rac1/JNK/Foxo3a/Bim signaling pathway. This study provided a novel insight into the protective mechanism of melatonin against I/R-induced myocardial injury.
Collapse
Affiliation(s)
- Yulin Wang
- Department of Emergency Center, The Second Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Ying Jian
- Department of Cardiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Xiaofu Zhang
- Department of Cardiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Bin Ni
- Department of Cardiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Mingwei Wang
- Department of Cardiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Chunqi Pan
- Department of Cardiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
45
|
Yao T, Song Y, Li S, Gu J, Yan X. Inhibition of lncRNA NEAT1 protects endothelial cells against hypoxia/reoxygenation‑induced NLRP3 inflammasome activation by targeting the miR‑204/BRCC3 axis. Mol Med Rep 2021; 25:32. [PMID: 34850961 PMCID: PMC8669661 DOI: 10.3892/mmr.2021.12548] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 08/27/2020] [Indexed: 12/02/2022] Open
Abstract
Cardiovascular ischemia/reperfusion (I/R) injury is primarily caused by oxygen recovery after prolonged hypoxia. Previous studies found that the long non coding RNA (lncRNA) nuclear enriched abundant transcript 1 (NEAT1) was involved in cardiovascular pathology, and that NOD-like receptor protein 3 (NLRP3) inflammasome activation-dependent pyroptosis played a key role in cardiovascular I/R injury. The present study aimed to explore the molecular mechanism of I/R pathogenesis in order to provide novel insights for potential future therapies. Cell viability and lactate dehydrogenase enzyme activity assays were used to detect cell injury after human umbilical vein endothelial cells (HUVECs) were subjected to hypoxia/reoxygenation (H/R). The expression of the NEAT1/microRNA (miR)-204/BRCA1/BRCA2-containing complex subunit 3 (BRCC3) axis was examined by reverse transcription-quantitative PCR, and the associations among genes were confirmed by luciferase reporter assays. Western blotting and ELISA were used to measure the level of NLRP3 inflammasome activation-dependent pyroptosis. The results demonstrated that NEAT1, BRCC3 expression and NLRP3 inflammasome activation-dependent pyroptosis were significantly increased in H/R-injured HUVECs, whereas silencing BRCC3 or NEAT1 attenuated H/R-induced injury and pyroptosis. NEAT1 positively regulated BRCC3 expression via competitively binding with miR-204. Moreover, NEAT1 overexpression counteracted miR-204 mimic-induced injury, BRCC3 expression and NLRP3 inflammasome activation-dependent pyroptosis. Taken together, these findings demonstrated that inhibition of lncRNA NEAT1 protects HUVECs against H/R-induced NLRP3 inflammasome activation by targeting the miR-204/BRCC3 axis.
Collapse
Affiliation(s)
- Tao Yao
- Department of Anesthesiology, Shenzhen Bao'an Maternity and Child Health Hospital, Shenzhen, Guangdong 518100, P.R. China
| | - Yiting Song
- Department of Anesthesiology, Shenzhen Bao'an Maternity and Child Health Hospital, Shenzhen, Guangdong 518100, P.R. China
| | - Shutao Li
- Department of Anesthesiology, Shenzhen Bao'an Maternity and Child Health Hospital, Shenzhen, Guangdong 518100, P.R. China
| | - Jing Gu
- Department of Anesthesiology, Shenzhen Bao'an Maternity and Child Health Hospital, Shenzhen, Guangdong 518100, P.R. China
| | - Xuetao Yan
- Department of Anesthesiology, Shenzhen Bao'an Maternity and Child Health Hospital, Shenzhen, Guangdong 518100, P.R. China
| |
Collapse
|
46
|
Lv XW, He ZF, Zhu PP, Qin QY, Han YX, Xu TT. miR-451-3p alleviates myocardial ischemia/reperfusion injury by inhibiting MAP1LC3B-mediated autophagy. Inflamm Res 2021; 70:1089-1100. [PMID: 34633468 DOI: 10.1007/s00011-021-01508-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE AND DESIGN We aim to explore the molecular mechanism of myocardial ischemia-reperfusion injury (MIRI). METHODS The H9C2 cells were cultured under hypoxia/reoxygenation (H/R) condition to induce myocardial injury in vitro. The expression of miR-451-3p and MAP1LC3B was detected by RT-qPCR. Dual-luciferase reporter assay and RNA pull-down assay were performed to examine the relationship between microRNA (miR)-451-3p and MAP1LC3B. CCK8 was used to test cell viability. The level of LDH and CK was evaluated via ELISA. Immunofluorescence assay and flow cytometry were applied to detect autophagy and apoptosis, respectively. Autophagy-related protein expressions were determined by western blotting. Furthermore, an in vivo rat model of MIRI was established by subjection to 30 min ischemia and subsequently 24 h reperfusion for validation of the role of miR-451-3p in regulating MIRI in vivo. RESULTS miR-451-3p was down-regulated in MIRI, and miR-451-3p mimics transfection alleviated autophagy and apoptosis induced by MIRI. miR-451-3p could target MAP1LC3B directly. Co-transfection miR-451-3p mimics and pcDNA 3.1 MAP1LC3B curbed the protected effects of miR-451-3p mimics on MIRI. CONCLUSIONS miR-451-3p played a protective role in MIRI via inhibiting MAP1LC3B-mediated autophagy, which may provide new molecular targets for the treatment of MIRI and further improves the clinical outcomes of heart diseases.
Collapse
Affiliation(s)
- Xiang-Wei Lv
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, No.20, Lequn Road, Guilin, 541001, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zi-Feng He
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, No.20, Lequn Road, Guilin, 541001, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Pan-Pan Zhu
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, No.20, Lequn Road, Guilin, 541001, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Qiu-Yu Qin
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, No.20, Lequn Road, Guilin, 541001, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yun-Xue Han
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, No.20, Lequn Road, Guilin, 541001, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Tong-Tong Xu
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, No.20, Lequn Road, Guilin, 541001, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
47
|
Majka M, Kleibert M, Wojciechowska M. Impact of the Main Cardiovascular Risk Factors on Plasma Extracellular Vesicles and Their Influence on the Heart's Vulnerability to Ischemia-Reperfusion Injury. Cells 2021; 10:3331. [PMID: 34943838 PMCID: PMC8699798 DOI: 10.3390/cells10123331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
The majority of cardiovascular deaths are associated with acute coronary syndrome, especially ST-elevation myocardial infarction. Therapeutic reperfusion alone can contribute up to 40 percent of total infarct size following coronary artery occlusion, which is called ischemia-reperfusion injury (IRI). Its size depends on many factors, including the main risk factors of cardiovascular mortality, such as age, sex, systolic blood pressure, smoking, and total cholesterol level as well as obesity, diabetes, and physical effort. Extracellular vesicles (EVs) are membrane-coated particles released by every type of cell, which can carry content that affects the functioning of other tissues. Their role is essential in the communication between healthy and dysfunctional cells. In this article, data on the variability of the content of EVs in patients with the most prevalent cardiovascular risk factors is presented, and their influence on IRI is discussed.
Collapse
Affiliation(s)
- Miłosz Majka
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
| | - Marcin Kleibert
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
| | - Małgorzata Wojciechowska
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
- Invasive Cardiology Unit, Independent Public Specialist Western Hospital John Paul II, Daleka 11, 05-825 Grodzisk Mazowiecki, Poland
| |
Collapse
|
48
|
Chen C, Lu C, He D, Na N, Wu Y, Luo Z, Huang F. Inhibition of HMGB1 alleviates myocardial ischemia/reperfusion injury in diabetic mice via suppressing autophagy. Microvasc Res 2021; 138:104204. [PMID: 34119533 DOI: 10.1016/j.mvr.2021.104204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/15/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Diabetes aggravates myocardial ischemia/reperfusion (I/R) injury (MI/RI). The association between high mobility group box 1 protein (HMGB1) and autophagy in diabetic MI/RI remains unknown. Therefore, we investigated whether inhibiting HMGB1 can regulate autophagy in diabetic mice (DM) after I/R injury. METHODS I/R models of C57BL/KsJ mice and db/db mice were established. Histological changes, infarct size (IS), HMGB1 protein, and autophagy-related proteins were detected after 24h of reperfusion. In DM treatment groups, anti-HMGB1 antibody (H-Ig) was injected via tail vein after reperfusion for 15min, and the above-mentioned experimental methods were performed at the end of reperfusion. RESULTS Compared with the I/R group, the pathological myocardial damage and IS were significantly increased in the I/R (DM) group. Additionally, the levels of HMGB1, Beclin1, and LC3II/LC3I ratio were remarkably higher in the I/R (DM) group than those in the I/R group, while p62 level was lower. In the H-Ig (DM) group, injection of H-Ig significantly reduced the IS, as well as alleviated pathological myocardial damage. Moreover, Beclin1, LC3II/LC3I ratio, and p62 levels were notably reversed after this treatment. CONCLUSIONS I/R-induced myocardium was aggravated by diabetes, which may be related to increased release of HMGB1 and activated autophagy. Inhibition of HMGB1 alleviates diabetic MIRI which was associated with reduced autophagy.
Collapse
Affiliation(s)
- Chuanbin Chen
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, Guangxi, China
| | - Chuanghong Lu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, Guangxi, China
| | - Dewei He
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, Guangxi, China
| | - Na Na
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Yunjiao Wu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, Guangxi, China
| | - Zuchun Luo
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, Guangxi, China; Internal Medicine College, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Feng Huang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, Guangxi, China.
| |
Collapse
|
49
|
Li Y, Xu B, Yang J, Wang L, Tan X, Hu X, Sun L, Chen S, Zhu L, Chen X, Chen G. Liraglutide protects against lethal renal ischemia-reperfusion injury by inhibiting high-mobility group box 1 nuclear-cytoplasmic translocation and release. Pharmacol Res 2021; 173:105867. [PMID: 34481074 DOI: 10.1016/j.phrs.2021.105867] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/19/2022]
Abstract
Liraglutide, a glucagon-like peptide-1 receptor (GLP-1R) agonist, has been reported to exert protective effects against myocardial, hepatic, and gastric ischemia-reperfusion injury (IRI), but whether it can protect against renal IRI remains unknown. Here, a lethal renal IRI model was established with a 100% mortality rate in untreated mice. Treatment with liraglutide involving a regimen of multiple doses resulted in 100% survival, remarkable preservation of renal function, a significant reduction in pathological damage, and blunted upregulation of TNF-α, IL-1β, IL-6, MCP-1, TLR-2, TLR-4, and RAGE mRNA. We found that liraglutide treatment dramatically inhibited ischemia-induced nucleocytoplasmic translocation and release of HMGB1. This inhibition was associated with a marked decrease (~ 60%) in nuclear histone acetyltransferase activity. In addition, the protective effects of liraglutide on renal IRI were largely abolished by the administration of exogenous HMGB1. When the GLP-1R antagonist exendin (9-39) was given to mice before each liraglutide administration, or GLP-1R-/- mice were used for the renal IRI experiments, the protective effect of liraglutide on renal IRI was partially reversed. Moreover, liraglutide pretreatment significantly inhibited HMGB1 nucleocytoplasmic translocation during hypoxic culture of HK-2 cells in vitro, but the addition of exendin (9-39) significantly eliminated this inhibition. We demonstrate here that liraglutide can exert a strong protective effect on lethal renal IRI in mice. This protection appears to be related to the inhibition of HMGB1 nuclear-cytoplasmic translocation and release and partially depends on GLP-1R. Thus, liraglutide may be therapeutically useful for the clinical prevention and treatment of organ IRI.
Collapse
Affiliation(s)
- Yakun Li
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Bingyang Xu
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Yang
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, China; Key Laboratory of Organ Transplantation, Ministry of Public Health, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, China
| | - Lu Wang
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, China; Key Laboratory of Organ Transplantation, Ministry of Public Health, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, China
| | - Xiaosheng Tan
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaofan Hu
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Lingjuan Sun
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Song Chen
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, China; Key Laboratory of Organ Transplantation, Ministry of Public Health, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, China
| | - Lan Zhu
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, China; Key Laboratory of Organ Transplantation, Ministry of Public Health, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, China
| | - Xiaoping Chen
- Key Laboratory of Organ Transplantation, Ministry of Education, China; Key Laboratory of Organ Transplantation, Ministry of Public Health, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, China.
| | - Gang Chen
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, China; Key Laboratory of Organ Transplantation, Ministry of Public Health, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, China.
| |
Collapse
|
50
|
Zhao S, Chen W, Li W, Yu W, Li S, Rao T, Ruan Y, Zhou X, Liu C, Qi Y, Cheng F. LncRNA TUG1 attenuates ischaemia-reperfusion-induced apoptosis of renal tubular epithelial cells by sponging miR-144-3p via targeting Nrf2. J Cell Mol Med 2021; 25:9767-9783. [PMID: 34547172 PMCID: PMC8505827 DOI: 10.1111/jcmm.16924] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/17/2021] [Accepted: 09/01/2021] [Indexed: 12/22/2022] Open
Abstract
Renal ischaemia/reperfusion (I/R) injury may induce kidney damage and dysfunction, in which oxidative stress and apoptosis play important roles. Long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) are reported to be closely related to renal I/R, but the specific molecular mechanism is still unclear. The purpose of this research was to explore the regulatory effect of lncRNA TUG1 on oxidative stress and apoptosis in renal I/R injury. This research revealed that in renal I/R injury and hypoxia/reperfusion (H/R) injury in vitro, the expression level of lncRNA TUG1 was upregulated, and oxidative stress levels and apoptosis levels were negatively correlated with the expression level of lncRNA TUG1. Using bioinformatics databases such as TargetScan and microRNA.org, microRNA-144-3p (miR-144-3p) was predicted to be involved in the association between lncRNA TUG1 and Nrf2. This study confirmed that the level of miR-144-3p was significantly reduced following renal I/R injury and H/R injury in vitro, and miR-144-3p was determined to target Nrf2 and inhibit its expression. In addition, lncRNA TUG1 can reduce the inhibitory effect of miR-144-3p on Nrf2 by sponging miR-144-3p. In summary, our research shows that lncRNA TUG1 regulates oxidative stress and apoptosis during renal I/R injury through the miR-144-3p/Nrf2 axis, which may be a new treatment target for renal I/R injury.
Collapse
Affiliation(s)
- Sheng Zhao
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Wu Chen
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Wei Li
- Department of AnesthesiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Weimin Yu
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Siqi Li
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Ting Rao
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yuan Ruan
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Xiangjun Zhou
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Cong Liu
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yucheng Qi
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Fan Cheng
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|