1
|
Zhang P, Liu Y, Zhan Y, Zou P, Cai X, Chen Y, Shao L. Circ-0006332 stimulates cardiomyocyte pyroptosis via the miR-143/TLR2 axis to promote doxorubicin-induced cardiac damage. Epigenetics 2024; 19:2380145. [PMID: 39018487 PMCID: PMC11259061 DOI: 10.1080/15592294.2024.2380145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/02/2024] [Indexed: 07/19/2024] Open
Abstract
Doxorubicin (DOX)-mediated cardiotoxicity can impair the clinical efficacy of chemotherapy, leading to heart failure (HF). Given the importance of circRNAs and miRNAs in HF, this paper intended to delineate the mechanism of the circular RNA 0006332 (circ -0,006,332)/microRNA (miR)-143/Toll-like receptor 2 (TLR2) axis in doxorubicin (DOX)-induced HF. The binding of miR-143 to circ -0,006,332 and TLR2 was assessed with the dual-luciferase assay, and the binding between miR-143 and circ -0,006,332 was determined with FISH, RIP, and RNA pull-down assays. miR-143 and/or circ -0,006,332 were overexpressed in rats and cardiomyocytes, followed by DOX treatment. In cardiomyocytes, miR-143 and TLR2 expression, cell viability, LDH release, ATP contents, and levels of IL-1β, IL-18, TNF-α, and pyroptosis-related molecules were examined. In rats, cardiac function, serum levels of cardiac enzymes, apoptosis, myocardial fibrosis, and levels of IL-1β, IL-18, TNF-α, TLR2, and pyroptosis-related molecules were detected. miR-143 diminished TLR2 expression by binding to TLR2, and circ -0,006,332 bound to miR-143 to downregulate miR-143 expression. miR-143 expression was reduced and TLR2 expression was augmented in DOX-induced cardiomyocytes. miR-143 inhibited DOX-induced cytotoxicity by suppressing pyroptosis in H9C2 cardiomyocytes. In DOX-induced rats, miR-143 reduced cardiac dysfunction, myocardial apoptosis, myocardial fibrosis, TLR2 levels, and pyroptosis. Furthermore, overexpression of circ -0,006,332 blocked these effects of miR-143 on DOX-induced cardiomyocytes and rats. Circ -0,006,332 stimulates cardiomyocyte pyroptosis by downregulating miR-143 and upregulating TLR2, thus promoting DOX-induced cardiac injury.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Neurology, Jiangxi Provincial People’s Hospital, The First Hospital Affiliated to Nanchang Medical College, Nanchang, Jiangxi, China
| | - Yuanyuan Liu
- Department of Cardiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital to Nanchang Medical College, Nanchang, Jiangxi, China
| | - Yuliang Zhan
- Department of Cardiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital to Nanchang Medical College, Nanchang, Jiangxi, China
| | - Pengtao Zou
- Department of Cardiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital to Nanchang Medical College, Nanchang, Jiangxi, China
| | - Xinyong Cai
- Department of Cardiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital to Nanchang Medical College, Nanchang, Jiangxi, China
| | - Yanmei Chen
- Department of Cardiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital to Nanchang Medical College, Nanchang, Jiangxi, China
| | - Liang Shao
- Department of Cardiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital to Nanchang Medical College, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Zhang Z, Jin B, Zhang Y, Yang M, Wang C, Zhu Y, Li T, Lin J, Yang M, Cheng Y, Xu S, He K, Xu J, Mi Y, Jiang J, Sun Z. USP14 modulates cell pyroptosis and ameliorates doxorubicin-induced cardiotoxicity by deubiquitinating and stabilizing SIRT3. Free Radic Biol Med 2024; 225:741-757. [PMID: 39490774 DOI: 10.1016/j.freeradbiomed.2024.10.302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/19/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
This study investigates the role of the deubiquitinating enzyme USP14 in alleviating doxorubicin (DOX)-induced cardiotoxicity (DIC), particularly concerning its mechanism of regulating pyroptosis through the stabilization of the mitochondrial protein SIRT3. Using in vivo and in vitro models, the research demonstrated that USP14 overexpression protects against DOX-induced cardiac damage by modulating pyroptosis. Silencing SIRT3 via siRNA revealed that SIRT3 is a key intermediary molecule in USP14-mediated regulation of pyroptosis. Notably, DOX exposure resulted in decreased USP14 expression, while its overexpression preserved mitochondrial function and reduced oxidative stress by stabilizing SIRT3. Immunoprecipitation confirmed that USP14 stabilizes SIRT3 through deubiquitination. These findings position USP14 as a promising therapeutic target for mitigating DOX-induced cardiotoxicity by stabilizing SIRT3 and maintaining mitochondrial integrity, suggesting potential novel strategies for cardio-protection in chemotherapy.
Collapse
Affiliation(s)
- Zhiming Zhang
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, No.150 Ximen Street, Linhai, Zhejiang Province, 317000, China; Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, No.150 Ximen Street, Linhai, Zhejiang Province, 317000, China
| | - Binwei Jin
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, No.150 Ximen Street, Linhai, Zhejiang Province, 317000, China; Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, No.150 Ximen Street, Linhai, Zhejiang Province, 317000, China
| | - Yang Zhang
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, No.150 Ximen Street, Linhai, Zhejiang Province, 317000, China; Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, No.150 Ximen Street, Linhai, Zhejiang Province, 317000, China
| | - Minjun Yang
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, No.150 Ximen Street, Linhai, Zhejiang Province, 317000, China; Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, No.150 Ximen Street, Linhai, Zhejiang Province, 317000, China
| | - Cheng Wang
- Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, No.150 Ximen Street, Linhai, Zhejiang Province, 317000, China; Department of Cardiology, Taizhou Hospital of Zhejiang Province, Shaoxing University, No.150 Ximen Street, Linhai, Zhejiang Province, 317000, China
| | - Yu Zhu
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, No.150 Ximen Street, Linhai, Zhejiang Province, 317000, China
| | - Tao Li
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, No.150 Ximen Street, Linhai, Zhejiang Province, 317000, China; Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, No.150 Ximen Street, Linhai, Zhejiang Province, 317000, China
| | - Jiangbo Lin
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, No.150 Ximen Street, Linhai, Zhejiang Province, 317000, China; Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, No.150 Ximen Street, Linhai, Zhejiang Province, 317000, China
| | - Mengqi Yang
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, No.150 Ximen Street, Linhai, Zhejiang Province, 317000, China; Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, No.150 Ximen Street, Linhai, Zhejiang Province, 317000, China
| | - Ying Cheng
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, No.150 Ximen Street, Linhai, Zhejiang Province, 317000, China; Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, No.150 Ximen Street, Linhai, Zhejiang Province, 317000, China
| | - Shasha Xu
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, No.150 Ximen Street, Linhai, Zhejiang Province, 317000, China; Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, No.150 Ximen Street, Linhai, Zhejiang Province, 317000, China
| | - Kui He
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, No.150 Ximen Street, Linhai, Zhejiang Province, 317000, China; Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, No.150 Ximen Street, Linhai, Zhejiang Province, 317000, China
| | - Jiayi Xu
- Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, No.150 Ximen Street, Linhai, Zhejiang Province, 317000, China; Department of Cardiology, Taizhou Hospital of Zhejiang Province, Shaoxing University, No.150 Ximen Street, Linhai, Zhejiang Province, 317000, China
| | - Yafei Mi
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, No.150 Ximen Street, Linhai, Zhejiang Province, 317000, China; Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, No.150 Ximen Street, Linhai, Zhejiang Province, 317000, China; Department of Cardiology, Taizhou Hospital of Zhejiang Province, Shaoxing University, No.150 Ximen Street, Linhai, Zhejiang Province, 317000, China.
| | - Jianjun Jiang
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, No.150 Ximen Street, Linhai, Zhejiang Province, 317000, China; Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, No.150 Ximen Street, Linhai, Zhejiang Province, 317000, China.
| | - Zhenzhu Sun
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, No.150 Ximen Street, Linhai, Zhejiang Province, 317000, China; Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, No.150 Ximen Street, Linhai, Zhejiang Province, 317000, China.
| |
Collapse
|
3
|
Lin X, Ma X, Zhao S, Yao J, Han L, Jing Y, Xue X. Cardiovascular toxicity in antitumor therapy: biological and therapeutic insights. Trends Cancer 2024; 10:920-934. [PMID: 39097431 DOI: 10.1016/j.trecan.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/28/2024] [Accepted: 07/12/2024] [Indexed: 08/05/2024]
Abstract
The evolution of antitumor therapies has significantly improved cancer prognosis but has concurrently resulted in cardiovascular toxicities. Understanding the biological mechanisms behind these toxicities is crucial for effective management. Immunotherapy-related cardiovascular toxicities are primarily mediated by immune cells and secreted cytokines. Chemotherapy may cause cardiovascular damage through autophagy disruption and mitochondrial dysfunction. Targeted therapies can induce toxicity through endothelin-1 (ET-1) production and cardiac signaling disruption. Radiotherapy may lead to cardiomyopathy and myocardial fibrosis by affecting endothelial cells, triggering inflammatory responses and accelerating atherosclerosis. This review provides insights into these mechanisms and strategies, aiming to enhance the clinical prevention and treatment of cardiovascular toxicities.
Collapse
Affiliation(s)
- Xuwen Lin
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xidong Ma
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Sheng Zhao
- Department of Cardiology, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Yao
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Leng Han
- Brown Center for Immunotherapy, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Department of Biostatistics and Health Data Science, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
| | - Ying Jing
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Guangzhou, China.
| | - Xinying Xue
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China; Department of Respiratory and Critical Care, Shandong Second Medical University, Weifang, China.
| |
Collapse
|
4
|
Li Y, Yan J, Yang P. The mechanism and therapeutic strategies in doxorubicin-induced cardiotoxicity: Role of programmed cell death. Cell Stress Chaperones 2024; 29:666-680. [PMID: 39343295 PMCID: PMC11490929 DOI: 10.1016/j.cstres.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/26/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024] Open
Abstract
Doxorubicin (DOX) is the most commonly used anthracycline anticancer agent, while its clinical utility is limited by harmful side effects like cardiotoxicity. Numerous studies have elucidated that programmed cell death plays a significant role in DOX-induced cardiotoxicity (DIC). This review summarizes several kinds of programmed cell death, including apoptosis, pyroptosis, necroptosis, autophagy, and ferroptosis. Furthermore, oxidative stress, inflammation, and mitochondrial dysfunction are also important factors in the molecular mechanisms of DIC. Besides, a comprehensive understanding of specific signal pathways of DIC can be helpful to its treatment. Therefore, the related signal pathways are elucidated in this review, including sirtuin deacetylase (silent information regulator 2 [Sir2]) 1 (SIRT1)/nuclear factor erythroid 2-related factor 2, SIRT1/Klotho, SIRT1/Recombinant Sestrin 2, adenosine monophosphate-activated protein kinase, AKT, and peroxisome proliferator-activated receptor. Heat shock proteins function as chaperones, which play an important role in various stressful situations, especially in the heart. Thus, some of heat shock proteins involved in DIC are also included. Hence, the last part of this review focuses on the therapeutic research based on the mechanisms above.
Collapse
Affiliation(s)
- Yanzhao Li
- Department of Second Clinical Medical College, Southern Medical University, Guangzhou, China.
| | - Jing Yan
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Pingzhen Yang
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Zou H, Zhang M, Yang X, Shou H, Chen Z, Zhu Q, Luo T, Mou X, Chen X. Cynaroside regulates the AMPK/SIRT3/Nrf2 pathway to inhibit doxorubicin-induced cardiomyocyte pyroptosis. J Zhejiang Univ Sci B 2024; 25:756-772. [PMID: 39308066 PMCID: PMC11422794 DOI: 10.1631/jzus.b2300691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/17/2023] [Indexed: 09/25/2024]
Abstract
Doxorubicin (DOX) is a commonly administered chemotherapy drug for treating hematological malignancies and solid tumors; however, its clinical application is limited by significant cardiotoxicity. Cynaroside (Cyn) is a flavonoid glycoside distributed in honeysuckle, with confirmed potential biological functions in regulating inflammation, pyroptosis, and oxidative stress. Herein, the effects of Cyn were evaluated in a DOX-induced cardiotoxicity (DIC) mouse model, which was established by intraperitoneal injections of DOX (5 mg/kg) once a week for three weeks. The mice in the treatment group received dexrazoxane, MCC950, and Cyn every two days. Blood biochemistry, histopathology, immunohistochemistry, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and western blotting were conducted to investigate the cardioprotective effects and potential mechanisms of Cyn treatment. The results demonstrated the significant benefits of Cyn treatment in mitigating DIC; it could effectively alleviate oxidative stress to a certain extent, maintain the equilibrium of cell apoptosis, and enhance the cardiac function of mice. These effects were realized via regulating the transcription levels of pyroptosis-related genes, such as nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), caspase-1, and gasdermin D (GSDMD). Mechanistically, for DOX-induced myocardial injury, Cyn could significantly modulate the expression of pivotal genes, including adenosine monophosphate-activated protein kinase (AMPK), peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), sirtuin 3 (SIRT3), and nuclear factor erythroid 2-related factor 2 (Nrf2). We attribute it to the mediation of AMPK/SIRT3/Nrf2 pathway, which plays a central role in preventing DOX-induced cardiomyocyte injury. In conclusion, the present study confirms the therapeutic potential of Cyn in DIC by regulating the AMPK/SIRT3/Nrf2 pathway.
Collapse
Affiliation(s)
- Hai Zou
- Department of Critical Care Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | | | - Xue Yang
- Clinical Research Institute, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Huafeng Shou
- Center for Reproductive Medicine, Department of Gynecology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Zhenglin Chen
- Graduate School of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Quanfeng Zhu
- Graduate School of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ting Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaozhou Mou
- Clinical Research Institute, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China.
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China.
| | - Xiaoyi Chen
- Clinical Research Institute, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China. ,
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China. ,
| |
Collapse
|
6
|
Suthivanich P, Boonhoh W, Sumneang N, Punsawad C, Cheng Z, Phungphong S. Aerobic Exercise Attenuates Doxorubicin-Induced Cardiomyopathy by Suppressing NLRP3 Inflammasome Activation in a Rat Model. Int J Mol Sci 2024; 25:9692. [PMID: 39273638 PMCID: PMC11395441 DOI: 10.3390/ijms25179692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
Doxorubicin (DOX) is a potent chemotherapeutic agent with well-documented dose-dependent cardiotoxicity. Regular exercise is recognized for its cardioprotective effects against DOX-induced cardiac inflammation, although the precise mechanisms remain incompletely understood. The activation of inflammasomes has been implicated in the pathogenesis and treatment of DOX-induced cardiotoxicity, with the nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome emerging as a key mediator in cardiovascular inflammation. This study aimed to investigate the role of exercise in modulating the NLRP3 inflammasome to protect against DOX-induced cardiac inflammation. Male Sprague-Dawley rats were randomly assigned to receive a 10-day course of DOX or saline injections, with or without a preceding 10-week treadmill running regimen. Cardiovascular function and histological changes were subsequently evaluated. DOX-induced cardiotoxicity was characterized by cardiac atrophy, systolic dysfunction, and hypotension, alongside activation of the NLRP3 inflammasome. Our findings revealed that regular exercise preserved cardiac mass and hypertrophic indices and prevented DOX-induced cardiac dysfunction, although it did not fully preserve blood pressure. These results underscore the significant cardioprotective effects of exercise against DOX-induced cardiotoxicity. While regular exercise did not entirely prevent DOX-induced hypotension, our findings demonstrate that it confers protection against DOX-induced cardiotoxicity by suppressing NLRP3 inflammasome activation in the heart, underscoring its anti-inflammatory role. Further research should explore the temporal dynamics and interactions among exercise, pyroptosis, and other pathways in DOX-induced cardiotoxicity to enhance translational applications in cardiovascular medicine.
Collapse
Affiliation(s)
- Phichaya Suthivanich
- Doctor of Philosophy Program in Physiology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Worakan Boonhoh
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Natticha Sumneang
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Chuchard Punsawad
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Zhaokang Cheng
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Sukanya Phungphong
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
7
|
Zhai X, Zhou J, Huang X, Weng J, Lin H, Sun S, Chi J, Meng L. LncRNA GHET1 from bone mesenchymal stem cell-derived exosomes improves doxorubicin-induced pyroptosis of cardiomyocytes by mediating NLRP3. Sci Rep 2024; 14:19078. [PMID: 39154102 PMCID: PMC11330485 DOI: 10.1038/s41598-024-70151-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 08/13/2024] [Indexed: 08/19/2024] Open
Abstract
Doxorubicin (DOX) is an important chemotherapeutic agent for the treatment of hematologic tumors and breast carcinoma. However, its clinical application is limited owing to severe cardiotoxicity. Pyroptosis is a form of programmed cell death linked to DOX-induced cardiotoxicity. Bone mesenchymal stem cell-derived exosomes (BMSC-Exos) and endothelial progenitor cells-derived exosomes (EPC-Exos) have a protective role in the myocardium. Here we found that BMSC-Exos could improve DOX-induced cardiotoxicity by inhibiting pyroptosis, but EPC-Exos couldn't. Compared with EPCs-Exo, BMSC-Exo-overexpressing lncRNA GHET1 more effectively suppressed pyroptosis, protecting against DOX-induced cardiotoxicity. Further studies showed that lncRNA GHET1 effectively decreased the expression of Nod-like receptor protein 3 (NLRP3), which plays a vital role in pyroptosis by binding to IGF2 mRNA-binding protein 1 (IGF2BP1), a non-catalytic posttranscriptional enhancer of NLRP3 mRNA. In summary, lncRNA GHET1 released by BMSC-Exo ameliorated DOX-induced pyroptosis by targeting IGF2BP1 to reduce posttranscriptional stabilization of NLRP3.
Collapse
Affiliation(s)
- Xiaoya Zhai
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing, China
| | - Jiedong Zhou
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Xingxiao Huang
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing, China
| | - Jingfan Weng
- Department of Cardiac Rehabilitation, Zhejiang Hospital, Hangzhou, China
| | - Hui Lin
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing, China
| | - Shimin Sun
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing, China
| | - Jufang Chi
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing, China
| | - Liping Meng
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing, China.
| |
Collapse
|
8
|
Xu J, Lv M, Ni X. Marein Alleviates Doxorubicin-Induced Cardiotoxicity through FAK/AKT Pathway Modulation while Potentiating its Anticancer Activity. Cardiovasc Toxicol 2024; 24:818-835. [PMID: 38896162 DOI: 10.1007/s12012-024-09882-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
Doxorubicin (DOX) is an effective anticancer agent, yet its clinical utility is hampered by dose-dependent cardiotoxicity. This study explores the cardioprotective potential of Marein (Mar) against DOX-induced cardiac injury and elucidates underlying molecular mechanisms. Neonatal rat cardiomyocytes (NRCMs) and murine models were employed to assess the impact of Mar on DOX-induced cardiotoxicity (DIC). In vitro, cell viability, oxidative stress were evaluated. In vivo, a chronic injection method was employed to induce a DIC mouse model, followed by eight weeks of Mar treatment. Cardiac function, histopathology, and markers of cardiotoxicity were assessed. In vitro, Mar treatment demonstrated significant cardioprotective effects in vivo, as evidenced by improved cardiac function and reduced indicators of cardiac damage. Mechanistically, Mar reduced inflammation, oxidative stress, and apoptosis in cardiomyocytes, potentially via activation of the Focal Adhesion Kinase (FAK)/AKT pathway. Mar also exhibited an anti-ferroptosis effect. Interestingly, Mar did not compromise DOX's efficacy in cancer cells, suggesting a dual benefit in onco-cardiology. Molecular docking studies suggested a potential interaction between Mar and FAK. This study demonstrates Mar's potential as a mitigator of DOX-induced cardiotoxicity, offering a translational perspective on its clinical application. By activating the FAK/AKT pathway, Mar exerts protective effects against DOX-induced cardiomyocyte damage, highlighting its promise in onco-cardiology. Further research is warranted to validate these findings and advance Mar as a potential adjunctive therapy in cancer treatment.
Collapse
MESH Headings
- Animals
- Doxorubicin/toxicity
- Cardiotoxicity
- Proto-Oncogene Proteins c-akt/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/metabolism
- Signal Transduction/drug effects
- Focal Adhesion Kinase 1/metabolism
- Oxidative Stress/drug effects
- Apoptosis/drug effects
- Humans
- Disease Models, Animal
- Heart Diseases/chemically induced
- Heart Diseases/metabolism
- Heart Diseases/prevention & control
- Heart Diseases/enzymology
- Heart Diseases/pathology
- Male
- Anthraquinones/pharmacology
- Mice, Inbred C57BL
- Rats, Sprague-Dawley
- Rats
- Cell Line, Tumor
- Cytoprotection
- Cells, Cultured
- Antibiotics, Antineoplastic/toxicity
- Mice
Collapse
Affiliation(s)
- Juanjuan Xu
- Department of Cardiology, Huanggang Central Hospital, Huanggang, China.
| | - Manjun Lv
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohong Ni
- Department of Neurology, Huanggang Central Hospital, Huanggang, China
| |
Collapse
|
9
|
Zhang M, Wu X, Wen Y, Li Z, Chen F, Zou Y, Dong X, Liu X, Wang J. Epirubicin induces cardiotoxicity through disrupting ATP6V0A2-dependent lysosomal acidification and triggering ferroptosis in cardiomyocytes. Cell Death Discov 2024; 10:337. [PMID: 39048556 PMCID: PMC11269639 DOI: 10.1038/s41420-024-02095-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
Epirubicin (EPI) is effective in the treatment of malignant cancers, but its application is limited by life-threatening cardiotoxicity. Iron homeostasis disturbance has been implicated in anthracycline induced cardiotoxicity (AIC), and ferroptosis is involved in AIC which dependent upon intracellular iron. However, the role and exact mechanisms of ferroptosis in the pathogenesis of epirubicin-induced cardiotoxicity (EIC) remain elusive. In this study, we aimed to investigate mechanisms underlying ferroptosis-driven EIC. Epirubicin triggered ferroptosis both in vivo and in cultured cardiomyocytes, and pretreatment with ferroptosis inhibitor, Ferrostatin-1(Fer-1) alleviates EIC. Microarray analysis was performed to screen for potential molecules involved in EIC in neonatal primary mouse ventricular cardiomyocytes (NMVMs). We found that the transcript level of ATP6V0A2, a subunit of vacuolar ATPase (V-ATPase), was significantly downregulated when NMVMs were subjected to EPI, which was verified in vivo and in vitro as measured by real time quantitative reverse transcription PCR (qRT-PCR) and immunoblotting. Intriguingly, overexpression of ATP6V0A2 effectively decreased excessive oxidative stress and lipid-peroxidation accumulation, thereby inhibiting ferroptosis and protecting cardiomyocytes against EIC, as evidenced by functional, enzymatic, and morphological changes. Mechanistically, forced expression of ATP6V0A2 restored lysosomal acidification in EPI-treated cardiomyocytes and protected cardiomyocytes and mice hearts from ferroptosis-driven EIC. In this study, our data elucidate that ferroptosis is involved in EIC, which is ignited by ATP6V0A2-dependent lysosomal acidification dysfunction. Our study provides a new potential therapeutic target for ameliorating EIC.
Collapse
Affiliation(s)
- Mingming Zhang
- Department of Cardiology, the first affiliated hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, China
| | - Xin Wu
- Department of Obstetrics, the first affiliated hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, China
| | - Yuting Wen
- Department of Pathogen Biology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, China
| | - Zhiquan Li
- Department of Cardiology, the first affiliated hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, China
| | - Fuzhong Chen
- Department of Cardiology, the first affiliated hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, China
| | - Yu Zou
- Department of Cardiology, the first affiliated hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, China
| | - Xiaoyu Dong
- Department of Cardiology, the first affiliated hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, China
| | - Xinjian Liu
- Department of Pathogen Biology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, China.
- Key Laboratory of Antibody Technique of National Health Commission of China, Nanjing Medical University, 101 Longmian Avenue, Nanjing, China.
| | - Junhong Wang
- Department of Cardiology, the first affiliated hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, China.
| |
Collapse
|
10
|
Xie S, Sun Y, Zhao X, Xiao Y, Zhou F, Lin L, Wang W, Lin B, Wang Z, Fang Z, Wang L, Zhang Y. An update of the molecular mechanisms underlying anthracycline induced cardiotoxicity. Front Pharmacol 2024; 15:1406247. [PMID: 38989148 PMCID: PMC11234178 DOI: 10.3389/fphar.2024.1406247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024] Open
Abstract
Anthracycline drugs mainly include doxorubicin, epirubicin, pirarubicin, and aclamycin, which are widely used to treat a variety of malignant tumors, such as breast cancer, gastrointestinal tumors, lymphoma, etc. With the accumulation of anthracycline drugs in the body, they can induce serious heart damage, limiting their clinical application. The mechanism by which anthracycline drugs cause cardiotoxicity is not yet clear. This review provides an overview of the different types of cardiac damage induced by anthracycline-class drugs and delves into the molecular mechanisms behind these injuries. Cardiac damage primarily involves alterations in myocardial cell function and pathological cell death, encompassing mitochondrial dysfunction, topoisomerase inhibition, disruptions in iron ion metabolism, myofibril degradation, and oxidative stress. Mechanisms of uptake and transport in anthracycline-induced cardiotoxicity are emphasized, as well as the role and breakthroughs of iPSC in cardiotoxicity studies. Selected novel cardioprotective therapies and mechanisms are updated. Mechanisms and protective strategies associated with anthracycline cardiotoxicity in animal experiments are examined, and the definition of drug damage in humans and animal models is discussed. Understanding these molecular mechanisms is of paramount importance in mitigating anthracycline-induced cardiac toxicity and guiding the development of safer approaches in cancer treatment.
Collapse
Affiliation(s)
- Sicong Xie
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuwei Sun
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuan Zhao
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yiqun Xiao
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fei Zhou
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liang Lin
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Wang
- College of Electronic and Optical Engineering and College of Flexible Electronics, Future Technology, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Bin Lin
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Department of Pharmacy, Changxing People's Hospital, Huzhou, China
| | - Zun Wang
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zixuan Fang
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lei Wang
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Zhang
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Department of Pharmacy, Changxing People's Hospital, Huzhou, China
| |
Collapse
|
11
|
Chen Y, Xu M, Liu XM, Wang JX, Sun MF, Song JX, Guan P, Ji ES, Wang N. Mechanistic study of Huangqi Guizhi Wuwu decoction amelioration of doxorubicin-induced cardiotoxicity by reducing oxidative stress and inhibiting cellular pyroptosis. Biomed Pharmacother 2024; 175:116653. [PMID: 38688172 DOI: 10.1016/j.biopha.2024.116653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/06/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024] Open
Abstract
Huangqi Guizhi Wuwu Decoction (HQGZWWD) has shown promising potential in treating various cardiovascular diseases. This study aimed to elucidate the molecular basis and therapeutic role of HQGZWWD in the treatment of doxorubicin (DOX)-induced myocardial injury. The HPLC fingerprint of HQGZWWD was used to analyze the active components. A DOX-induced myocardial damage rat model was developed, and the therapeutic effects of HQGZWWD were evaluated using echocardiography, myocardial enzyme levels, and hematoxylin and eosin staining. Network pharmacology was used to screen treatment targets, and western blotting and immunohistochemistry were performed to assess cellular pyroptosis levels. Oxidative stress levels were measured using assay kits, and mitochondrial damage was examined using transmission electron microscopy. An in vitro model of DOX-induced cell damage was established, and treatment was administered using serum containing HQGZWWD and N-acetylcysteine (NAC). Oxidative stress levels were detected using assay kits and DCFH-DA, whereas cellular pyroptosis levels were assessed through WB, immunofluorescence, and ELISA assays. HQGZWWD ameliorated DOX-induced myocardial injury. Network pharmacology identified IL-1β and IL-18 as crucial targets. HQGZWWD downregulated the protein levels of the inflammatory factors IL-1β and IL-18, inhibited the expression of GSDMD-NT, and simultaneously suppressed the synthesis of Caspase-1, ASC, NLRP3, and Caspase-11. Additionally, HQGZWWD inhibited oxidative stress, and the use of NAC as an oxidative stress inhibitor resulted in significant inhibition of the GSDMD-NT protein in H9C2 cells. These findings highlight the myocardial protective effects of HQGZWWD by inhibiting oxidative stress and suppressing both canonical and non-canonical pyroptotic pathways.
Collapse
Affiliation(s)
- Yu Chen
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, China
| | - Meng Xu
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, China
| | - Xiao-Mei Liu
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, China
| | - Jian-Xin Wang
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, China
| | - Meng-Fan Sun
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, China
| | - Ji-Xian Song
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, China
| | - Peng Guan
- Laboratory of Molecular Iron Metabolism, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| | - En-Sheng Ji
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, China; Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, China.
| | - Na Wang
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, China; Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, China.
| |
Collapse
|
12
|
Hu H, Zhong Z, Meng L, Chen J, Yu Z, Lu K. Knockdown of NR4A1 alleviates doxorubicin-induced cardiotoxicity through inhibiting the activation of the NLRP3 inflammasome. Biochem Biophys Res Commun 2024; 700:149582. [PMID: 38306930 DOI: 10.1016/j.bbrc.2024.149582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/10/2024] [Accepted: 01/24/2024] [Indexed: 02/04/2024]
Abstract
Doxorubicin (DOX) is a widely used antitumor drug, but its clinical applicability is hampered by the unfortunate side effect of DOX-induced cardiotoxicity (DIC). In our current study, we retrieved three high-throughput sequencing datasets related to DIC from the Gene Expression Omnibus (GEO) datasets. We conducted differential analysis using R (DESeq2) to pinpoint differentially expressed genes (DEGs, and identified 11 genes that were consistently altered in both the control and DOX-treated groups. Notably, our Random Forest analysis of these three GEO datasets highlighted the significance of nuclear receptor subfamily 4 group A member 1 (NR4A1) in the context of DIC. The DOX-induced mouse model and cell model were used for the in vivo and in vitro studies to reveal the role of NR4A1 in DIC. We found that silencing NR4A1 by adeno-associated virus serotype 9 (AAV9) contained shRNA in vivo alleviated the DOX-induced cardiac dysfunction, cardiomyocyte injury and fibrosis. Mechanistically, we found NR4A1 silencing was able to inhibit DOX-induced the cleavage of NLRP3, IL-1β and GSDMD in vivo. Further in vitro studies have shown that inhibition of NR4A1 suppressed DOX-induced cytotoxicity and oxidative stress through the same molecular mechanism. We prove that NR4A1 plays a critical role in DOX-induced cardiotoxicity by inducing pyroptosis via activation of the NLRP3 inflammasome, and it might be a promising therapeutic target for DIC.
Collapse
Affiliation(s)
- Huanhuan Hu
- Department of Cardiology, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou Central Hospital, Zhejiang, 313000, China
| | - Zuoquan Zhong
- The First Clinical Medical College, Wenzhou Medical University, Zhejiang, 325000, China
| | - Liping Meng
- Department of Cardiology, Shaoxing People's Hospital, Zhejiang, 312000, China
| | - Jiming Chen
- Department of Cardiology, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou Central Hospital, Zhejiang, 313000, China
| | - Ziheng Yu
- Department of Cardiology, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou Central Hospital, Zhejiang, 313000, China
| | - Kongjie Lu
- Department of Cardiology, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou Central Hospital, Zhejiang, 313000, China.
| |
Collapse
|
13
|
Shi W, Chen J, Zhao N, Xing Y, Liu S, Chen M, Fang W, Zhang T, Li L, Zhang H, Zhang M, Zeng X, Chen S, Wang S, Xie S, Deng W. Targeting heat shock protein 47 alleviated doxorubicin-induced cardiotoxicity and remodeling in mice through suppression of the NLRP3 inflammasome. J Mol Cell Cardiol 2024; 186:81-93. [PMID: 37995517 DOI: 10.1016/j.yjmcc.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023]
Abstract
AIM Doxorubicin-induced cardiotoxicity (DIC) is an increasing problem, occurring in many cancer patients receiving anthracycline chemotherapy, ultimately leading to heart failure (HF). Unfortunately, DIC remains difficult to manage due to an ignorance regarding pathophysiological mechanisms. Our work aimed to evaluate the role of HSP47 in doxorubicin-induced HF, and to explore the molecular mechanisms. METHODS AND RESULTS Mice were exposed to multi-intraperitoneal injection of doxorubicin (DOX, 4mg/kg/week, for 6 weeks continuously) to produce DIC. HSP47 expression was significantly upregulated in serum and in heart tissue in DOX-treated mice and in isolated cardiomyocytes. Mice with cardiac-specific HSP47 overexpression and knockdown were generated using recombinant adeno-associated virus (rAVV9) injection. Importantly, cardiac-specific HSP47 overexpression exacerbated cardiac dysfunction in DIC, while HSP47 knockdown prevented DOX-induced cardiac dysfunction, cardiac atrophy and fibrosis in vivo and in vitro. Mechanistically, we identified that HSP47 directly interacted with IRE1α in cardiomyocytes. Furthermore, we provided powerful evidence that HSP47-IRE1α complex promoted TXNIP/NLRP3 inflammasome and reinforced USP1-mediated NLRP3 ubiquitination. Moreover, NLRP3 deficiency in vivo conspicuously abolished HSP47-mediated cardiac atrophy and fibrogenesis under DOX condition. CONCLUSION HSP47 was highly expressed in serum and cardiac tissue after doxorubicin administration. HSP47 contributed to long-term anthracycline chemotherapy-associated cardiac dysfunction in an NLRP3-dependent manner. HSP47 therefore represents a plausible target for future therapy of doxorubicin-induced HF.
Collapse
Affiliation(s)
- Wenke Shi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Jiaojiao Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Nan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Yun Xing
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Shiqiang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Mengya Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Wenxi Fang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Tong Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Lanlan Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Heng Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Min Zhang
- Department of Endocrinology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, PR China
| | - Xiaofeng Zeng
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, PR China
| | - Si Chen
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, PR China
| | - Shasha Wang
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, PR China
| | - Saiyang Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China.
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China.
| |
Collapse
|
14
|
Qiu Y, Jiang P, Huang Y. Anthracycline-induced cardiotoxicity: mechanisms, monitoring, and prevention. Front Cardiovasc Med 2023; 10:1242596. [PMID: 38173817 PMCID: PMC10762801 DOI: 10.3389/fcvm.2023.1242596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Anthracyclines are the most fundamental and important treatment of several cancers especially for lymphoma and breast cancer. However, their use is limited by a dose-dependent cardiotoxicity which may emerge early at the initiation of anthracycline administration or several years after termination of the therapy. A full comprehending of the mechanisms of anthracycline-induced cardiotoxicity, which has not been achieved and is currently under the efforts, is critical to the advance of developing effective methods to protect against the cardiotoxicity, as well as to early detect and treat it. Therefore, we review the recent progress of the mechanism underlying anthracycline-induced cardiotoxicity, as well as approaches to monitor and prevent this issue.
Collapse
Affiliation(s)
- Yun Qiu
- Department of Cardiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Piao Jiang
- Department of Oncology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
- The First Clinical Medical College, Nanchang University, Nanchang, China
| | - Yingmei Huang
- Department of Cardiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| |
Collapse
|
15
|
Fang G, Li X, Yang F, Huang T, Qiu C, Peng K, Yang Y, Lan C. Galangin attenuates doxorubicin-induced cardiotoxicity via activating nuclear factor erythroid 2-related factor 2/heme oxygenase 1 signaling pathway to suppress oxidative stress and inflammation. Phytother Res 2023; 37:5854-5870. [PMID: 37655750 DOI: 10.1002/ptr.7991] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 09/02/2023]
Abstract
Doxorubicin (DOX) has aroused contradiction between its potent anti-tumor capacity and severe cardiotoxicity. Galangin (Gal) possesses antioxidant, anti-inflammatory, and antiapoptotic activities. We aimed to explore the role and underlying mechanisms of Gal on DOX-induced cardiotoxicity. Mice were intraperitoneally injected with DOX (3 mg/kg, every 2 days for 2 weeks) to generate cardiotoxicity model and Gal (15 mg/kg, 2 weeks) was co-administered via gavage daily. Nuclear factor erythroid 2-related factor 2 (Nrf2) specific inhibitor, ML385, was employed to explore the underlying mechanisms. Compared to DOX-insulted mice, Gal effectively improved cardiac dysfunction and ameliorated myocardial damage. DOX-induced increase of reactive oxygen species, malondialdehyde, and NADPH oxidase activity and downregulation of superoxide dismutase (SOD) activity were blunted by Gal. Gal also markedly blocked increase of IL-1β, IL-6, and TNF-α in DOX-insulted heart. Mechanistically, Gal reversed DOX-induced downregulation of Nrf2, HO-1, and promoted nuclear translocation of Nrf2. ML385 markedly blunted the cardioprotective effects of Gal, as well as inhibitive effects on oxidative stress and inflammation. Gal ameliorates DOX-induced cardiotoxicity by suppressing oxidative stress and inflammation via activating Nrf2/HO-1 signaling pathway. Gal may serve as a promising cardioprotective agent for DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Guangyao Fang
- Department of Cardiology, General Hospital of Western Theater Command, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Xiuchuan Li
- Department of Cardiology, General Hospital of Western Theater Command, Chengdu, China
| | - Fengyuan Yang
- Department of Nephrology, General Hospital of Western Theater Command, Chengdu, China
| | - Ting Huang
- Department of Medical Oncology, People's Hospital of Luotian County, Huanggang, China
| | - Chenming Qiu
- Department of Burn and Plastic Surgery, General Hospital of Western Theater Command, Chengdu, China
| | - Ke Peng
- Department of Cardiology, General Hospital of Western Theater Command, Chengdu, China
| | - Yongjian Yang
- Department of Cardiology, General Hospital of Western Theater Command, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Cong Lan
- Department of Cardiology, General Hospital of Western Theater Command, Chengdu, China
| |
Collapse
|
16
|
Zhang E, Shang C, Ma M, Zhang X, Liu Y, Song S, Li X. Polyguluronic acid alleviates doxorubicin-induced cardiotoxicity by suppressing Peli1-NLRP3 inflammasome-mediated pyroptosis. Carbohydr Polym 2023; 321:121334. [PMID: 37739547 DOI: 10.1016/j.carbpol.2023.121334] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/24/2023]
Abstract
Polyguluronic acid (PG), a polysaccharide from alginate, possesses excellent bioactivities. We prepared high-purity PG with 10.41 kDa molecular weight (Mw) and a 59 average degree of polymerization (DP) by acid hydrolysis, three pH grades, Q-Sepharose column elution, and Sephadex G-25 column desalination. Then, we evaluated the PG protective effects on doxorubicin-induced cardiotoxicity (DIC) in vitro and in vivo. The nontoxic PG enhanced cellular viability, reduced cell pyroptosis morphology, diminished the LDH and IL-1β release, and downregulated expressions of ASC oligomerization, NLRP3, cl-CASP1, and GSDMD, by which PG protected the cardiomyocytes from NLRP3 inflammasome-mediated pyroptosis in doxorubicin-stimulated HL-1 cells and C57BL/6J mice. The probable underlying mechanism may be that PG downregulated doxorubicin -induced Peli1, the deficiency of which could inhibit doxorubicin-induced NLRP3 inflammasome-mediated pyroptosis. These results suggested that polysaccharide PG from alginate could prevent DIC and may be a potential therapeutic agent or bioactive material for preventing DIC.
Collapse
Affiliation(s)
- E Zhang
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Chuangeng Shang
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Mingtao Ma
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Xuanfeng Zhang
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Yu Liu
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Shuliang Song
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Xia Li
- Marine College, Shandong University, Weihai, Shandong 264209, China; School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| |
Collapse
|
17
|
Gielecińska A, Kciuk M, Yahya EB, Ainane T, Mujwar S, Kontek R. Apoptosis, necroptosis, and pyroptosis as alternative cell death pathways induced by chemotherapeutic agents? Biochim Biophys Acta Rev Cancer 2023; 1878:189024. [PMID: 37980943 DOI: 10.1016/j.bbcan.2023.189024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/22/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
For decades, common chemotherapeutic drugs have been established to trigger apoptosis, the preferred immunologically "silent" form of cell death. The primary objective of this review was to show that various FDA-approved chemotherapeutic drugs, including cisplatin, cyclosporine, doxorubicin, etoposide, 5-fluorouracil, gemcitabine, paclitaxel, or vinblastine can trigger necroptosis and pyroptosis. We aimed to provide the advantages and disadvantages of the induction of the given type of cell death by chemotherapeutical agents. Moreover, we give a short overview of the molecular mechanism of each type of cell death and indicate the existing crosstalks between cell death types. Finally, we provide a comparison of cell death types to facilitate the exploration of cell death types induced by other chemotherapeutical agents. Understanding the cell death pathway induced by a drug can lessen side effects and assist the discovery of new combinations with synergistic effects and low systemic toxicity.
Collapse
Affiliation(s)
- A Gielecińska
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Molecular Biotechnology and Genetics, Banacha St. 12/16, 90-237 Lodz, Poland; University of Lodz, Doctoral School of Exact and Natural Sciences, Banacha Street 12/16, 90-237 Lodz, Poland.
| | - M Kciuk
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Molecular Biotechnology and Genetics, Banacha St. 12/16, 90-237 Lodz, Poland
| | - E-B Yahya
- Bioprocess Technology Division, School of Industrial Technology, University Sains Malaysia, Penang 11800, Malaysia
| | - T Ainane
- Superior School of Technology of Khenifra, University of Sultan Moulay Slimane, P.O. Box 170, Khenifra 54000, Morocco
| | - S Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - R Kontek
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Molecular Biotechnology and Genetics, Banacha St. 12/16, 90-237 Lodz, Poland
| |
Collapse
|
18
|
Li X. Doxorubicin-mediated cardiac dysfunction: Revisiting molecular interactions, pharmacological compounds and (nano)theranostic platforms. ENVIRONMENTAL RESEARCH 2023; 234:116504. [PMID: 37356521 DOI: 10.1016/j.envres.2023.116504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 06/27/2023]
Abstract
Although chemotherapy drugs are extensively utilized in cancer therapy, their administration for treatment of patients has faced problems that regardless of chemoresistance, increasing evidence has shown concentration-related toxicity of drugs. Doxorubicin (DOX) is a drug used in treatment of solid and hematological tumors, and its function is based on topoisomerase suppression to impair cancer progression. However, DOX can also affect the other organs of body and after chemotherapy, life quality of cancer patients decreases due to the side effects. Heart is one of the vital organs of body that is significantly affected by DOX during cancer chemotherapy, and this can lead to cardiac dysfunction and predispose to development of cardiovascular diseases and atherosclerosis, among others. The exposure to DOX can stimulate apoptosis and sometimes, pro-survival autophagy stimulation can ameliorate this condition. Moreover, DOX-mediated ferroptosis impairs proper function of heart and by increasing oxidative stress and inflammation, DOX causes cardiac dysfunction. The function of DOX in mediating cardiac toxicity is mediated by several pathways that some of them demonstrate protective function including Nrf2. Therefore, if expression level of such protective mechanisms increases, they can alleviate DOX-mediated cardiac toxicity. For this purpose, pharmacological compounds and therapeutic drugs in preventing DOX-mediated cardiotoxicity have been utilized and they can reduce side effects of DOX to prevent development of cardiovascular diseases in patients underwent chemotherapy. Furthermore, (nano)platforms are used comprehensively in treatment of cardiovascular diseases and using them for DOX delivery can reduce side effects by decreasing concentration of drug. Moreover, when DOX is loaded on nanoparticles, it is delivered into cells in a targeted way and its accumulation in healthy organs is prevented to diminish its adverse impacts. Hence, current paper provides a comprehensive discussion of DOX-mediated toxicity and subsequent alleviation by drugs and nanotherapeutics in treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaofeng Li
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine Tongji University, Shanghai, 200072, China.
| |
Collapse
|
19
|
Kwok C, Nolan M. Cardiotoxicity of anti-cancer drugs: cellular mechanisms and clinical implications. Front Cardiovasc Med 2023; 10:1150569. [PMID: 37745115 PMCID: PMC10516301 DOI: 10.3389/fcvm.2023.1150569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 07/17/2023] [Indexed: 09/26/2023] Open
Abstract
Cardio-oncology is an emerging field that seeks to enhance quality of life and longevity of cancer survivors. It is pertinent for clinicians to understand the cellular mechanisms of prescribed therapies, as this contributes to robust understanding of complex treatments and off-target effects, improved communication with patients, and guides long term care with the goal to minimise or prevent cardiovascular complications. Our aim is to review the cellular mechanisms of cardiotoxicity involved in commonly used anti-cancer treatments and identify gaps in literature and strategies to mitigate cardiotoxicity effects and guide future research endeavours.
Collapse
Affiliation(s)
- Cecilia Kwok
- Department of Medicine, Western Health, Melbourne, VIC, Australia
| | - Mark Nolan
- Department of Medicine, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Cardiovascular Imaging, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| |
Collapse
|
20
|
Zhao X, Tian Z, Sun M, Dong D. Nrf2: a dark horse in doxorubicin-induced cardiotoxicity. Cell Death Discov 2023; 9:261. [PMID: 37495572 PMCID: PMC10372151 DOI: 10.1038/s41420-023-01565-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023] Open
Abstract
Being a broad-spectrum anticancer drug, doxorubicin is indispensable for clinical treatment. Unexpectedly, its cardiotoxic side effects have proven to be a formidable obstacle. Numerous studies are currently devoted to elucidating the pathological mechanisms underlying doxorubicin-induced cardiotoxicity. Nrf2 has always played a crucial role in oxidative stress, but numerous studies have demonstrated that it also plays a vital part in pathological mechanisms like cell death and inflammation. Numerous studies on the pathological mechanisms associated with doxorubicin-induced cardiotoxicity demonstrate this. Several clinical drugs, natural and synthetic compounds, as well as small molecule RNAs have been demonstrated to prevent doxorubicin-induced cardiotoxicity by activating Nrf2. Consequently, this study emphasizes the introduction of Nrf2, discusses the role of Nrf2 in doxorubicin-induced cardiotoxicity, and concludes with a summary of the therapeutic modalities targeting Nrf2 to ameliorate doxorubicin-induced cardiotoxicity, highlighting the potential value of Nrf2 in doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Xiaopeng Zhao
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, 110102, China
| | - Zheng Tian
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, 110102, China
| | - Mingli Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, 110102, China.
| | - Dan Dong
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning, 110122, China.
| |
Collapse
|
21
|
Alexandraki A, Papageorgiou E, Zacharia M, Keramida K, Papakonstantinou A, Cipolla CM, Tsekoura D, Naka K, Mazzocco K, Mauri D, Tsiknakis M, Manikis GC, Marias K, Marcou Y, Kakouri E, Konstantinou I, Daniel M, Galazi M, Kampouroglou E, Ribnikar D, Brown C, Karanasiou G, Antoniades A, Fotiadis D, Filippatos G, Constantinidou A. New Insights in the Era of Clinical Biomarkers as Potential Predictors of Systemic Therapy-Induced Cardiotoxicity in Women with Breast Cancer: A Systematic Review. Cancers (Basel) 2023; 15:3290. [PMID: 37444400 PMCID: PMC10340234 DOI: 10.3390/cancers15133290] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Cardiotoxicity induced by breast cancer therapies is a potentially serious complication associated with the use of various breast cancer therapies. Prediction and better management of cardiotoxicity in patients receiving chemotherapy is of critical importance. However, the management of cancer therapy-related cardiac dysfunction (CTRCD) lacks clinical evidence and is based on limited clinical studies. AIM To provide an overview of existing and potentially novel biomarkers that possess a promising predictive value for the early and late onset of CTRCD in the clinical setting. METHODS A systematic review of published studies searching for promising biomarkers for the prediction of CTRCD in patients with breast cancer was undertaken according to PRISMA guidelines. A search strategy was performed using PubMed, Google Scholar, and Scopus for the period 2013-2023. All subjects were >18 years old, diagnosed with breast cancer, and received breast cancer therapies. RESULTS The most promising biomarkers that can be used for the development of an alternative risk cardiac stratification plan for the prediction and/or early detection of CTRCD in patients with breast cancer were identified. CONCLUSIONS We highlighted the new insights associated with the use of currently available biomarkers as a standard of care for the management of CTRCD and identified potentially novel clinical biomarkers that could be further investigated as promising predictors of CTRCD.
Collapse
Affiliation(s)
- Alexia Alexandraki
- A.G. Leventis Clinical Trials Unit, Bank of Cyprus Oncology Centre, 32 Acropoleos Avenue, Nicosia 2006, Cyprus; (E.P.); (M.Z.)
| | - Elisavet Papageorgiou
- A.G. Leventis Clinical Trials Unit, Bank of Cyprus Oncology Centre, 32 Acropoleos Avenue, Nicosia 2006, Cyprus; (E.P.); (M.Z.)
| | - Marina Zacharia
- A.G. Leventis Clinical Trials Unit, Bank of Cyprus Oncology Centre, 32 Acropoleos Avenue, Nicosia 2006, Cyprus; (E.P.); (M.Z.)
| | - Kalliopi Keramida
- 2nd Department of Cardiology, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece;
- Cardiology Department, General Anti-Cancer Oncological Hospital, Agios Savvas, 11522 Athens, Greece
| | - Andri Papakonstantinou
- Department of Oncology-Pathology, Karolinska Institute, 17176 Stockholm, Sweden;
- Department for Breast, Endocrine Tumours and Sarcoma, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Carlo M. Cipolla
- Cardioncology and Second Opinion Division, European Institute of Oncology (IEO), IRCCS, Via Ripamonti 435, 20141 Milan, Italy;
| | - Dorothea Tsekoura
- 2nd Department of Surgery, Aretaieio University Hospital, National and Kapodistrian University of Athens, 76 Vas. Sofias Av., 11528 Athens, Greece; (D.T.); (E.K.)
| | - Katerina Naka
- 2nd Cardiology Department, University of Ioannina Medical School, 45110 Ioannina, Greece;
| | - Ketti Mazzocco
- Applied Research Division for Cognitive and Psychological Science, European Institute of Oncology IRCCS, 20139 Milan, Italy;
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Davide Mauri
- Department of Medical Oncology, University of Ioannina, 45110 Ioannina, Greece;
| | - Manolis Tsiknakis
- Department of Electrical and Computer Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece; (M.T.); (K.M.)
- Computational BioMedicine Laboratory (CBML), Institute of Computer Science, Foundation for Research and Technology Hellas (FORTH), 70013 Heraklion, Greece;
| | - Georgios C. Manikis
- Computational BioMedicine Laboratory (CBML), Institute of Computer Science, Foundation for Research and Technology Hellas (FORTH), 70013 Heraklion, Greece;
| | - Kostas Marias
- Department of Electrical and Computer Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece; (M.T.); (K.M.)
- Computational BioMedicine Laboratory (CBML), Institute of Computer Science, Foundation for Research and Technology Hellas (FORTH), 70013 Heraklion, Greece;
| | - Yiola Marcou
- Department of Medical Oncology, Bank of Cyprus Oncology Centre, 32 Acropoleos Avenue, Nicosia 2006, Cyprus; (Y.M.); (E.K.); (I.K.); (M.G.)
| | - Eleni Kakouri
- Department of Medical Oncology, Bank of Cyprus Oncology Centre, 32 Acropoleos Avenue, Nicosia 2006, Cyprus; (Y.M.); (E.K.); (I.K.); (M.G.)
| | - Ifigenia Konstantinou
- Department of Medical Oncology, Bank of Cyprus Oncology Centre, 32 Acropoleos Avenue, Nicosia 2006, Cyprus; (Y.M.); (E.K.); (I.K.); (M.G.)
| | - Maria Daniel
- Department of Radiation Oncology, Bank of Cyprus Oncology Centre, 32 Acropoleos Avenue, Nicosia 2006, Cyprus;
| | - Myria Galazi
- Department of Medical Oncology, Bank of Cyprus Oncology Centre, 32 Acropoleos Avenue, Nicosia 2006, Cyprus; (Y.M.); (E.K.); (I.K.); (M.G.)
| | - Effrosyni Kampouroglou
- 2nd Department of Surgery, Aretaieio University Hospital, National and Kapodistrian University of Athens, 76 Vas. Sofias Av., 11528 Athens, Greece; (D.T.); (E.K.)
| | - Domen Ribnikar
- Division of Medical Oncology, Institute of Oncology Ljubljana, Faculty of Medicine, University of Ljubljana, Zaloska Cesta 2, 1000 Ljubljana, Slovenia;
| | - Cameron Brown
- Translational Medicine, Stremble Ventures Ltd., 59 Christaki Kranou, Limassol 4042, Cyprus;
| | - Georgia Karanasiou
- Biomedical Research Institute, Foundation for Research and Technology, Hellas, 45500 Ioannina, Greece;
| | - Athos Antoniades
- Research and Development, Stremble Ventures Ltd., 59 Christaki Kranou, Limassol 4042, Cyprus;
| | - Dimitrios Fotiadis
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece;
| | - Gerasimos Filippatos
- Cardio-Oncology Clinic, Heart Failure Unit, Department of Cardiology, National and Kapodistrian University of Athens Medical School, Athens University Hospital Attikon, 11527 Athens, Greece;
| | - Anastasia Constantinidou
- Department of Medical Oncology, Bank of Cyprus Oncology Centre, 32 Acropoleos Avenue, Nicosia 2006, Cyprus; (Y.M.); (E.K.); (I.K.); (M.G.)
- School of Medicine, University of Cyprus, Panepistimiou 1, Aglantzia, Nicosia 2408, Cyprus
| |
Collapse
|
22
|
Wei S, Ma W, Yang Y, Sun T, Jiang C, Liu J, Zhang B, Li W. Trastuzumab potentiates doxorubicin-induced cardiotoxicity via activating the NLRP3 inflammasome in vivo and in vitro. Biochem Pharmacol 2023:115662. [PMID: 37331637 DOI: 10.1016/j.bcp.2023.115662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/20/2023]
Abstract
Trastuzumab (Tra), the first humanized monoclonal antibody that targets human epidermal growth factor receptor 2 (HER2), is commonly used alongside doxorubicin (Dox) as a combination therapy in HER2-positive breast cancer. Unfortunately, this leads to a more severe cardiotoxicity than Dox alone. NLRP3 inflammasome is known to be involved in Dox-induced cardiotoxicity and multiple cardiovascular diseases. However, whether the NLRP3 inflammasome contributes to the synergistic cardiotoxicity of Tra has not been elucidated. In this study, primary neonatal rat cardiomyocyte (PNRC), H9c2 cells and mice were treated with Dox (15 mg/kg in mice or 1μM in cardiomyocyte) or Tra (15.75 mg/kg in mice or 1μM in cardiomyocyte), or Dox combined Tra as cardiotoxicity models to investigate this question. Our results demonstrated that Tra significantly potentiated Dox-induced cardiomyocyte apoptosis and cardiac dysfunction. These were accompanied by the increased expressions of NLRP3 inflammasome components (NLRP3, ASC and cleaved caspase-1), the secretion of IL-β and the pronounced production of ROS. Inhibiting the activation of NLRP3 inflammasome by NLRP3 silencing significantly reduced cell apoptosis and ROS production in Dox combined Tra-treated PNRC. Compared with the wild type mice, the systolic dysfunction, myocardial hypertrophy, cardiomyocyte apoptosis and oxidative stress induced by Dox combined Tra were alleviated in NLRP3 gene knockout mice. Our data revealed that the co-activation of NLRP3 inflammasome by Tra promoted the inflammation, oxidative stress and cardiomyocytes apoptosis in Dox combined Tra-induced cardiotoxicity model both in vivo and in vitro. Our results suggest that NLRP3 inhibition is a promising cardioprotective strategy in Dox/Tra combination therapy.
Collapse
Affiliation(s)
- Shanshan Wei
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Wanjun Ma
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China; Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuanying Yang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Taoli Sun
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Chuanhao Jiang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jian Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China.
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
23
|
Fang G, Li X, Yang F, Huang T, Qiu C, Peng K, Wang Z, Yang Y, Lan C. Amentoflavone mitigates doxorubicin-induced cardiotoxicity by suppressing cardiomyocyte pyroptosis and inflammation through inhibition of the STING/NLRP3 signalling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 117:154922. [PMID: 37321078 DOI: 10.1016/j.phymed.2023.154922] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/16/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Doxorubicin (DOX) is a potent anticancer chemotherapeutic agent whose clinical application is substantially constrained by its cardiotoxicity. The pathophysiology of DOX-induced cardiotoxicity manifests as cardiomyocyte pyroptosis and inflammation. Amentoflavone (AMF) is a naturally occurring biflavone possessing anti-pyroptotic and anti-inflammatory properties. However, the mechanism through which AMF alleviates DOX-induced cardiotoxicity remains undetermined. PURPOSE This study aimed at investigating the role of AMF in alleviating DOX-induced cardiotoxicity. STUDY DESIGN AND METHODS To assess the in vivo effect of AMF, DOX was intraperitoneally administered into a mouse model to induce cardiotoxicity. To elucidate the underlying mechanisms, the activities of STING/NLRP3 were quantified using the NLRP3 agonist nigericin and the STING agonist amidobenzimidazole (ABZI). Primary cardiomyocytes isolated from neonatal Sprague-Dawley rats were treated with saline (vehicle) or DOX with or without AMF and/or ABZI. The echocardiogram, haemodynamics, cardiac injury markers, heart/body weight ratio, and pathological alterations were monitored; the STING/NLRP3 pathway-associated proteins were detected by western blot and cardiomyocyte pyroptosis was analysed by immunofluorescence staining of cleaved N-terminal GSDMD and scanning electron microscopy. Furthermore, we evaluated the potential of AMF in compromising the anticancer effects of DOX in human breast cancer cell lines. RESULTS AMF substantially alleviated cardiac dysfunction and reduced heart/body weight ratio and myocardial damage in mice models of DOX-induced cardiotoxicity. AMF effectively suppressed DOX-mediated upregulation of IL-1β, IL-18, TNF-α, and pyroptosis-related proteins, including NLRP3, cleaved caspase-1, and cleaved N-terminal GSDMD. The levels of apoptosis-related proteins, namely Bax, cleaved caspase-3, and BCL-2 were not affected. In addition, AMF inhibited STING phosphorylation in DOX-affected hearts. Intriguingly, the administration of nigericin or ABZI dampened the cardioprotective effects of AMF. The in vitro anti-pyroptotic effect of AMF was demonstrated in attenuating the DOX-induced reduction in cardiomyocyte cell viability, upregulation of cleaved N-terminal GSDMD, and pyroptotic morphology alteration at the microstructural level. AMF exhibited a synergistic effect with DOX to reduce the viability of human breast cancer cells. CONCLUSION AMF alleviates DOX-induced cardiotoxicity by suppressing cardiomyocyte pyroptosis and inflammation via inhibition of the STING/NLRP3 signalling pathway, thereby validating its efficacy as a cardioprotective agent.
Collapse
Affiliation(s)
- Guangyao Fang
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, P.R. China.; Department of Cardiology, General Hospital of Western Theater Command, Chengdu, Sichuan, P.R. China
| | - Xiuchuan Li
- Department of Cardiology, General Hospital of Western Theater Command, Chengdu, Sichuan, P.R. China
| | - Fengyuan Yang
- Department of Nephrology, General Hospital of Western Theater Command, Chengdu, Sichuan, P.R. China
| | - Ting Huang
- Department of Medical Oncology, People's Hospital of Luotian County, Huanggang, Hubei, P.R. China
| | - Chenming Qiu
- Department of Burn and Plastic Surgery, General Hospital of Western Theater Command, Chengdu, Sichuan, P.R. China
| | - Ke Peng
- Department of Cardiology, General Hospital of Western Theater Command, Chengdu, Sichuan, P.R. China
| | - Ziran Wang
- Department of Orthopedics, 903rd Hospital of PLA, Hangzhou, Zhejiang, P.R. China
| | - Yongjian Yang
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, P.R. China.; Department of Cardiology, General Hospital of Western Theater Command, Chengdu, Sichuan, P.R. China..
| | - Cong Lan
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, P.R. China.; Department of Cardiology, General Hospital of Western Theater Command, Chengdu, Sichuan, P.R. China..
| |
Collapse
|
24
|
Zhou W, Zhao L, Wang H, Liu X, Liu Y, Xu K, Yu H, Suda K, He Y. Pyroptosis: A promising target for lung cancer therapy. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:94-101. [PMID: 39170826 PMCID: PMC11332860 DOI: 10.1016/j.pccm.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Indexed: 08/23/2024]
Abstract
Pyroptosis is a type of programed cell death that differs from apoptosis, ferroptosis, or necrosis. Numerous studies have reported that it plays a critical role in tumorigenesis and modification of the tumor microenvironment in multiple tumors. In this review, we briefly describe the canonical, non-canonical, and alternative mechanisms of pyroptotic cell death. We also summarize the potential roles of pyroptosis in oncogenesis, tumor development, and lung cancer treatment, including chemotherapy, radiotherapy, targeted therapy, and immunotherapy. Pyroptosis has double-edged effects on the modulation of the tumor environment and lung cancer treatment. Further exploration of pyroptosis-based drugs could provide novel therapeutic strategies for lung cancer.
Collapse
Affiliation(s)
- Wensheng Zhou
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Lishu Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Hao Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Xinyue Liu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Yujin Liu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Kandi Xu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Hui Yu
- Department of Medicine, Division of Medical Oncology and Department of Pathology, University of Colorado Cancer Center, Aurora, CO 80045, USA
| | - Kenichi Suda
- Department of Surgery, Division of Thoracic Surgery, Kindai University Faculty of Medicine, Osaka-Sayama 589-8511, Japan
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
- School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
25
|
Hänggi K, Ruffell B. Cell death, therapeutics, and the immune response in cancer. Trends Cancer 2023; 9:381-396. [PMID: 36841748 PMCID: PMC10121860 DOI: 10.1016/j.trecan.2023.02.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/19/2023] [Accepted: 02/03/2023] [Indexed: 02/27/2023]
Abstract
Induction of cell death is inexorably linked with cancer therapy, but this can also initiate wound-healing processes that have been linked to cancer progression and therapeutic resistance. Here we describe the contribution of apoptosis and the lytic cell death pathways in the response to therapy (including chemotherapy and immunotherapy). We also discuss how necroptosis, pyroptosis, and ferroptosis function to promote tumor immunogenicity, along with emerging findings that these same forms of death can paradoxically contribute to immune suppression and tumor progression. Understanding the duality of cell death in cancer may allow for the development of therapeutics that shift the balance towards regression.
Collapse
Affiliation(s)
- Kay Hänggi
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Brian Ruffell
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA; Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
26
|
Zhang W, Wang X, Tang Y, Huang C. Melatonin alleviates doxorubicin-induced cardiotoxicity via inhibiting oxidative stress, pyroptosis and apoptosis by activating Sirt1/Nrf2 pathway. Biomed Pharmacother 2023; 162:114591. [PMID: 36965257 DOI: 10.1016/j.biopha.2023.114591] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 03/27/2023] Open
Abstract
Melatonin confers cardioprotective effects on multiple cardiovascular diseases, including doxorubicin-induced cardiomyopathy. The effectiveness of melatonin in mitigating myocardial injuries caused by Doxorubicin through enhancement of mitochondrial function is already established, however, the role of melatonin in regulating the Sirtuin-1 (Sirt1)/Nuclear factor E2-associated factor 2 (Nrf2) pathway in lessening the onset of Doxorubicin-induced cardiomyopathy is yet to be elucidated. To address this, H9C2 cardiomyocytes and C57BL/6 mice were employed to construct in vitro and in vivo models of Dox-induced myocardial impairments, respectively. Results showed that Dox markedly evoked oxidative stress, pyroptosis and apoptosis both in vitro and in vivo, which were significantly alleviated by melatonin administration. Mechanistically, melatonin attenuated Dox-induced downregulation of Sirt1 and Nrf2, and both inhibition of Sirt1 and Nrf2 significantly reversed the cardioprotective effects of melatonin. In conclusion, our studies suggest that the activation of the Sirt1/Nrf2 pathway is the underlying mechanism behind melatonin's ability to curtail oxidative stress, pyroptosis, and apoptosis in Dox-induced cardiomyopathy. These promising results demonstrated the potential application of melatonin as a treatment for doxorubicin-induced cardiac injury.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Yanhong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China.
| |
Collapse
|
27
|
Shi S, Chen Y, Luo Z, Nie G, Dai Y. Role of oxidative stress and inflammation-related signaling pathways in doxorubicin-induced cardiomyopathy. Cell Commun Signal 2023; 21:61. [PMID: 36918950 PMCID: PMC10012797 DOI: 10.1186/s12964-023-01077-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/12/2023] [Indexed: 03/16/2023] Open
Abstract
Doxorubicin (DOX) is a powerful and commonly used chemotherapeutic drug, used alone or in combination in a variety of cancers, while it has been found to cause serious cardiac side effects in clinical application. More and more researchers are trying to explore the molecular mechanisms of DOX-induced cardiomyopathy (DIC), in which oxidative stress and inflammation are considered to play a significant role. This review summarizes signaling pathways related to oxidative stress and inflammation in DIC and compounds that exert cardioprotective effects by acting on relevant signaling pathways, including the role of Nrf2/Keap1/ARE, Sirt1/p66Shc, Sirt1/PPAR/PGC-1α signaling pathways and NOS, NOX, Fe2+ signaling in oxidative stress, as well as the role of NLRP3/caspase-1/GSDMD, HMGB1/TLR4/MAPKs/NF-κB, mTOR/TFEB/NF-κB pathways in DOX-induced inflammation. Hence, we attempt to explain the mechanisms of DIC in terms of oxidative stress and inflammation, and to provide a theoretical basis or new idea for further drug research on reducing DIC. Video Abstract.
Collapse
Affiliation(s)
- Saixian Shi
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Luzhou, 646000, Sichuan Province, China.,School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Ye Chen
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Luzhou, 646000, Sichuan Province, China.,School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Zhijian Luo
- Department of Ultrasound, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Guojun Nie
- The First Outpatient Department of People's Liberation Army Western Theater General Hospital, Chengdu, 610000, Sichuan Province, China
| | - Yan Dai
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Luzhou, 646000, Sichuan Province, China.
| |
Collapse
|
28
|
Feng J, Wu Y. Endothelial-to-Mesenchymal Transition: Potential Target of Doxorubicin-Induced Cardiotoxicity. Am J Cardiovasc Drugs 2023; 23:231-246. [PMID: 36841924 DOI: 10.1007/s40256-023-00573-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/02/2023] [Indexed: 02/27/2023]
Abstract
The use of chemotherapeutic agents is becoming more frequent as the proportion of new oncology patients increases worldwide, with prolonged survival after treatment. As one of the most popular chemotherapy drugs, doxorubicin plays a substantial role in the treatment of tumors. Unfortunately, the use of doxorubicin is associated with several adverse effects, particularly severe cardiotoxicity that can be life-threatening, which greatly limits its clinical use. For decades, scientists have tried to explore many cardioprotective agents and therapeutic approaches, but their efficacy remains controversial, and some drugs have even brought about significant adverse effects. The concrete molecular mechanism of doxorubicin-induced cardiotoxicity is still to be unraveled, yet endothelial damage is gradually being identified as an important mechanism triggering the development and progression of doxorubicin-induced cardiotoxicity. Endothelial-to-mesenchymal transition (EndMT), a fundamental process regulating morphogenesis in multicellular organisms, is recognized to be associated with endothelial damage repair and acts as an important factor in the progression of cardiovascular diseases, tumors, and rheumatic immune diseases. Mounting evidence suggests that endothelial-mesenchymal transition may play a non-negligible role in doxorubicin-induced cardiotoxicity. In this paper, we reviewed the molecular mechanisms and signaling pathways of EndMT and outlined the molecular mechanisms of doxorubicin-induced cardiotoxicity and the current therapeutic advances. Furthermore, we summarized the basic principles of doxorubicin-induced endothelial-mesenchymal transition that lead to endothelial dysfunction and cardiotoxicity, aiming to provide suggestions or new ideas for the prevention and treatment of doxorubicin-induced endothelial and cardiac injury.
Collapse
Affiliation(s)
- Jie Feng
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yanqing Wu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
29
|
Doxorubicin-An Agent with Multiple Mechanisms of Anticancer Activity. Cells 2023; 12:cells12040659. [PMID: 36831326 PMCID: PMC9954613 DOI: 10.3390/cells12040659] [Citation(s) in RCA: 112] [Impact Index Per Article: 112.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Doxorubicin (DOX) constitutes the major constituent of anti-cancer treatment regimens currently in clinical use. However, the precise mechanisms of DOX's action are not fully understood. Emerging evidence points to the pleiotropic anticancer activity of DOX, including its contribution to DNA damage, reactive oxygen species (ROS) production, apoptosis, senescence, autophagy, ferroptosis, and pyroptosis induction, as well as its immunomodulatory role. This review aims to collect information on the anticancer mechanisms of DOX as well as its influence on anti-tumor immune response, providing a rationale behind the importance of DOX in modern cancer therapy.
Collapse
|
30
|
Yu X, Yang Y, Chen T, Wang Y, Guo T, Liu Y, Li H, Yang L. Cell death regulation in myocardial toxicity induced by antineoplastic drugs. Front Cell Dev Biol 2023; 11:1075917. [PMID: 36824370 PMCID: PMC9941345 DOI: 10.3389/fcell.2023.1075917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Homeostatic regulation of cardiomyocytes plays a critical role in maintaining normal physiological activity of cardiac tissue. Severe cardiotoxicity can lead to heart disease, including but not limited to arrhythmias, myocardial infarction and cardiac hypertrophy. In recent years, significant progress has been made in developing new therapies for cancer that have dramatically changed the treatment of several malignancies and continue to improve patient survival, but can also lead to serious cardiac adverse effects. Mitochondria are key organelles that maintain homeostasis in myocardial tissue and have been extensively involved in various cardiovascular disease episodes, including ischemic cardiomyopathy, heart failure and stroke. Several studies support that mitochondrial targeting is a major determinant of the cardiotoxic effects triggered by chemotherapeutic agents increasingly used in solid and hematologic tumors. This antineoplastic therapy-induced mitochondrial toxicity is due to different mechanisms, usually altering the mitochondrial respiratory chain, energy production and mitochondrial kinetics, or inducing mitochondrial oxidative/nitrosative stress, ultimately leading to cell death. This review focuses on recent advances in forms of cardiac cell death and related mechanisms of antineoplastic drug-induced cardiotoxicity, including autophagy, ferroptosis, apoptosis, pyroptosis, and necroptosis, explores and evaluates key proteins involved in cardiac cell death signaling, and presents recent advances in cardioprotective strategies for this disease. It aims to provide theoretical basis and targets for the prevention and treatment of pharmacological cardiotoxicity in clinical settings.
Collapse
Affiliation(s)
- Xue Yu
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yan Yang
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Tianzuo Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yuqin Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Tianwei Guo
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yujun Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Hong Li
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China,*Correspondence: Liming Yang, ; Hong Li,
| | - Liming Yang
- Department of Pathophysiology, Harbin Medical University-Daqing, Daqing, China,*Correspondence: Liming Yang, ; Hong Li,
| |
Collapse
|
31
|
Nifuroxazide mitigates doxorubicin-induced cardiovascular injury: Insight into oxidative/NLRP3/GSDMD-mediated pyroptotic signaling modulation. Life Sci 2023; 314:121311. [PMID: 36549350 DOI: 10.1016/j.lfs.2022.121311] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Doxorubicin (DOX) is a widely used powerful anthracycline for treatment of many varieties of malignancies; however its cumulative and dose-dependent cardio-toxicity has been limited its clinical use. In the current study, in vivo and in vitro (neonatal rat's cardiomyocytes) experiments were conducted to identify the impact of nifuroxazide (NIFU) on DOX-induced cardiomyopathy, vascular injury, and hemato-toxcity and plot the underlying regulatory mechanisms. Cardiovascular injury was induced in vivo by I.P. injection of an overall dose of DOX (21 mg/kg) administered (3.5 mg/kg) twice weekly for 21 days. NIFU (10 and 30 mg/kg) was administered orally once daily for 21 days, 1 week after DOX injection initiation. In vivo experiments confirmed NIFU to restore blood cells counts and hemoglobin concentration. Moreover, NIFU normalized the myocardial functional status as confirmed by ECG examination and myocardial injury markers; CK-MB, LDH, and AST. NIFU restored the balance between TAC and both of ROS and MDA and down-regulated the protein expression of TLR4, NF-kB, TXNIP, NLR-family pyrin domain containing 3 (NLRP3), caspase-1, IL-1β, and GSDMD-N terminal, with inhibition of the up-stream of NLRP3 and the down-stream DOX-induced pyroptosis. The in vitro assay confirmed well preserved cardiomyocytes' architecture, amelioration of NLRP3/IL-1 β-mediated cell pyroptosis, enhanced cell viability, and improved spontaneous beating. Moreover, NIFU normalized the disturbed aortic oxidant-antioxidant balance; enhanced eNOS- mediated endothelial relaxation, and down regulated IL-1β expression. Thus, NIFU may be proposed to serve as a cardioprotective agent to attenuate DOX-induced cardio-toxicity and vascular injury.
Collapse
|
32
|
Mauro AG, Mezzaroma E, Toldo S, Melendez GC, Franco RL, Lesnefsky EJ, Abbate A, Hundley WG, Salloum FN. NLRP3-mediated inflammation in cardio-oncology: sterile yet harmful. Transl Res 2023; 252:9-20. [PMID: 35948198 PMCID: PMC9839540 DOI: 10.1016/j.trsl.2022.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 01/17/2023]
Abstract
Despite significant advances and the continuous development of novel, effective therapies to treat a variety of malignancies, cancer therapy-induced cardiotoxicity has been identified as a prominent cause of morbidity and mortality, closely competing with secondary malignancies. This unfortunate limitation has prompted the inception of the field of cardio-oncology with its purpose to provide the necessary knowledge and key information on mechanisms that support the use of the most efficacious cancer therapy with minimal or no interruption while paying close attention to preventing cardiovascular related morbidity and mortality. Several mechanisms that contribute to cancer therapy-induced cardiotoxicity have been proposed and studied. These mainly involve mitochondrial dysfunction and reactive oxygen species-induced oxidative stress, lysosomal damage, impaired autophagy, cell senescence, DNA damage, and sterile inflammation with the formation and activation of the NLRP3 inflammasome. In this review, we focus on describing the principal mechanisms for different classes of cancer therapies that lead to cardiotoxicity involving the NLRP3 inflammasome. We also summarize current evidence of cardio-protection with inflammasome inhibitors in the context of heart disease in general, and further highlight the potential application of this evidence for clinical translation in at risk patients for the purpose of preventing cancer therapy associated cardiovascular morbidity and mortality.
Collapse
Affiliation(s)
- Adolfo G Mauro
- Pauley Heart Center, Department of Internal Medicine, Cardiology, Virginia Commonwealth University, Richmond, VA
| | - Eleonora Mezzaroma
- Pauley Heart Center, Department of Internal Medicine, Cardiology, Virginia Commonwealth University, Richmond, VA
| | - Stefano Toldo
- Pauley Heart Center, Department of Internal Medicine, Cardiology, Virginia Commonwealth University, Richmond, VA
| | - Giselle C Melendez
- Department of Internal Medicine, Sections on Cardiovascular Medicine, Department of Pathology, Section on Comparative Medicine, Wake Forest, School of Medicine, Winston-Salem, NC
| | - R Lee Franco
- College of Humanities and Sciences, Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA
| | - Edward J Lesnefsky
- Pauley Heart Center, Department of Internal Medicine, Cardiology, Virginia Commonwealth University, Richmond, VA; Department of the Medical Service of the McGuire Veterans Affairs Medical Center, Richmond, VA
| | - Antonio Abbate
- Pauley Heart Center, Department of Internal Medicine, Cardiology, Virginia Commonwealth University, Richmond, VA
| | - W Gregory Hundley
- Pauley Heart Center, Department of Internal Medicine, Cardiology, Virginia Commonwealth University, Richmond, VA
| | - Fadi N Salloum
- Pauley Heart Center, Department of Internal Medicine, Cardiology, Virginia Commonwealth University, Richmond, VA.
| |
Collapse
|
33
|
Sun J, Zhou J, Sun S, Lin H, Zhang H, Zhong Z, Chi J, Guo H. Protective effect of urotensin II receptor antagonist urantide and exercise training on doxorubicin-induced cardiotoxicity. Sci Rep 2023; 13:1279. [PMID: 36690700 PMCID: PMC9870887 DOI: 10.1038/s41598-023-28437-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Doxorubicin (DOX) has a wide antitumor spectrum, but its adverse cardiotoxicity may lead to heart failure. Urotensin II (UII) is the most potent vasoconstrictor in mammals. It plays a role by activating the UII receptor (UT), the orphan G protein-coupled receptor (GPR14), collectively referred to as the UII/UT system. In the new version of "Chinese expert consensus on cardiac rehabilitation of chronic heart failure," it is pointed out that exercise rehabilitation is the cornerstone of cardiac rehabilitation. In this study, in vitro and in vivo assessments were performed using DOX-treated H9C2 cells and rats. It was found that the UT antagonist Urantide and exercise training improved DOX-induced cardiac insufficiency, reduced DOX-induced cardiomyocyte apoptosis, improved the structural disorder of myocardial fibers, and inhibited DOX-induced myocardial fibrosis. Further studies showed that Urantide alleviated DOX-induced cardiotoxicity by downregulating the expression levels of the p38 mitogen-activated protein kinase signaling pathway.
Collapse
Affiliation(s)
- Jing Sun
- Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Jiedong Zhou
- Medical College of Shaoxing University, Shaoxing, China
| | - Shimin Sun
- Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Hui Lin
- Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Hanlin Zhang
- Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Zuoquan Zhong
- Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Jufang Chi
- Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China.
| | - HangYuan Guo
- Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China.
| |
Collapse
|
34
|
Sun Z, Fang C, Xu S, Wang B, Li D, Liu X, Mi Y, Guo H, Jiang J. SIRT3 attenuates doxorubicin-induced cardiotoxicity by inhibiting NLRP3 inflammasome via autophagy. Biochem Pharmacol 2023; 207:115354. [PMID: 36435202 DOI: 10.1016/j.bcp.2022.115354] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
Doxorubicin (DOX) is a highly effective and extensively used chemotherapeutic drug but is limited by its cardiotoxicity. In our previous study, we showed that DOX-induced cardiotoxicity (DIC) triggers autophagy and pyroptosis. Sirtuin 3(SIRT3) is an NAD + -dependent deacetylase of the mitochondria that regulates autophagy. However, it is unknown if the protective effects of SIRT3 on DOX-induced cardiotoxicity involve the inhibition of NLRP3 inflammasome activation. In this study, we constructed in vivo and in vitro DIC models to investigate the effects and potential mechanisms of SIRT3 on DIC. We found that the overexpression of SIRT3 remarkably attenuated DIC through inhibition of the NLRP3 inflammasome. Moreover, we found that the overexpression of SIRT3 restored the dynamic balance of autophagosome/autolysosomes by targeting the mTOR/ULK1 signaling pathway. Application of the mTOR agonist MHY1485 further demonstrated that SIRT3 inhibited NLRP3 inflammasome activation by regulating autophagy. Collectively, the results suggest that SIRT3 effectively attenuates the cardiotoxicity of DOX and provides a theoretical foundation for further exploration of DIC.
Collapse
Affiliation(s)
- Zhengzhu Sun
- Department of Cardiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China; Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Chongfeng Fang
- Department of Cardiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China; Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Shasha Xu
- Department of Cardiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China; Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Bin Wang
- Department of Cardiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China; Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Danlei Li
- Department of Cardiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China; Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Xiaoman Liu
- Department of Cardiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China; Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Yafei Mi
- Department of Cardiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China; Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Hangyuan Guo
- College of Medicine, Shaoxing University, No. 508 Huancheng W Rd, Shaoxing 312000, Zhejiang, China.
| | - Jianjun Jiang
- Department of Cardiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China; Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China.
| |
Collapse
|
35
|
Prathumsap N, Ongnok B, Khuanjing T, Arinno A, Maneechote C, Apaijai N, Chunchai T, Arunsak B, Kerdphoo S, Janjek S, Chattipakorn SC, Chattipakorn N. Vagus nerve stimulation exerts cardioprotection against doxorubicin-induced cardiotoxicity through inhibition of programmed cell death pathways. Cell Mol Life Sci 2022; 80:21. [PMID: 36583785 PMCID: PMC11072695 DOI: 10.1007/s00018-022-04678-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/07/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022]
Abstract
The aberration of programmed cell death including cell death associated with autophagy/mitophagy, apoptosis, necroptosis, pyroptosis, and ferroptosis can be observed in the development and progression of doxorubicin-induced cardiotoxicity (DIC). Vagus nerve stimulation (VNS) has been shown to exert cardioprotection against cardiomyocyte death through the release of the neurotransmitter acetylcholine (ACh) under a variety of pathological conditions. However, the roles of VNS and its underlying mechanisms against DIC have never been investigated. Forty adults male Wistar rats were divided into 5 experimental groups: (i) control without VNS (CSham) group, (ii) doxorubicin (3 mg/kg/day, i.p.) without VNS (DSham) group, (iii) doxorubicin + VNS (DVNS) group, (iv) doxorubicin + VNS + mAChR antagonist (atropine; 1 mg/kg/day, ip, DVNS + Atro) group, and (v) doxorubicin + VNS + nAChR antagonist (mecamylamine; 7.5 mg/kg/day, ip, DVNS + Mec) group. Our results showed that doxorubicin insult led to left ventricular (LV) dysfunction through impaired cardiac autonomic balance, decreased mitochondrial function, imbalanced mitochondrial dynamics, and exacerbated cardiomyocyte death including autophagy/mitophagy, apoptosis, necroptosis, pyroptosis, and ferroptosis. However, VNS treatment improved cardiac mitochondrial and autonomic functions, and suppressed excessive autophagy, apoptosis, necroptosis, pyroptosis, and ferroptosis, leading to improved LV function. Consistent with this, ACh effectively improved cell viability and suppressed cell cytotoxicity in doxorubicin-treated H9c2 cells. In contrast, either inhibitors of muscarinic (mAChR) or nicotinic acetylcholine receptor (nAChR) completely abrogated the favorable effects mediated by VNS and acetylcholine. These findings suggest that VNS exerts cardioprotective effects against doxorubicin-induced cardiomyocyte death via activation of both mAChR and nAChR.
Collapse
Affiliation(s)
- Nanthip Prathumsap
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Benjamin Ongnok
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Thawatchai Khuanjing
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Apiwan Arinno
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chayodom Maneechote
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nattayaporn Apaijai
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Titikorn Chunchai
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Busarin Arunsak
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sasiwan Kerdphoo
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sornram Janjek
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Oral Biology and Diagnostic Science, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
36
|
Hwang S, Kim SH, Yoo KH, Chung MH, Lee JW, Son KH. Exogenous 8-hydroxydeoxyguanosine attenuates doxorubicin-induced cardiotoxicity by decreasing pyroptosis in H9c2 cardiomyocytes. BMC Mol Cell Biol 2022; 23:55. [DOI: 10.1186/s12860-022-00454-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022] Open
Abstract
AbstractDoxorubicin (DOX), which is widely used in cancer treatment, can induce cardiomyopathy. One of the main mechanisms whereby DOX induces cardiotoxicity involves pyroptosis through the NLR family pyrin domain containing 3 (NLRP3) inflammasome and gasdermin D (GSDMD). Increased NAPDH oxidase (NOX) and oxidative stress trigger pyroptosis. Exogenous 8-hydroxydeoxyguanosine (8-OHdG) decreases reactive oxygen species (ROS) production by inactivating NOX. Here, we examined whether 8-OHdG treatment can attenuate DOX-induced pyroptosis in H9c2 cardiomyocytes. Exposure to DOX increased the peroxidative glutathione redox status and NOX1/2/4, toll-like receptor (TLR)2/4, and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) expression, while an additional 8-OHdG treatment attenuated these effects. Furthermore, DOX induced higher expression of NLRP3 inflammasome components, including NLRP3, apoptosis-associated speck-like protein containing a c-terminal caspase recruitment domain (ASC), and pro-caspase-1. Moreover, it increased caspase-1 activity, a marker of pyroptosis, and interleukin (IL)-1β expression. All these effects were attenuated by 8-OHdG treatment. In addition, the expression of the cardiotoxicity markers, atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) was increased by DOX, whereas the increase of ANP and BNP induced by DOX treatment was reversed by 8-OHdG. In conclusion, exogenous 8-OHdG attenuated DOX-induced pyroptosis by decreasing the expression of NOX1/2/3, TLR2/4, and NF-κB. Thus, 8-OHdG may attenuate DOX-induced cardiotoxicity through the inhibition of pyroptosis.
Collapse
|
37
|
Abd-Ellatif RN, Nasef NA, El-Horany HES, Emam MN, Younis RL, El Gheit REA, Elseady W, Radwan DA, Hafez YM, Eissa A, Aboalsoud A, Shalaby RH, Atef MM. Adrenomedullin Mitigates Doxorubicin-Induced Nephrotoxicity in Rats: Role of Oxidative Stress, Inflammation, Apoptosis, and Pyroptosis. Int J Mol Sci 2022; 23:14570. [PMID: 36498902 PMCID: PMC9741179 DOI: 10.3390/ijms232314570] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/03/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
Doxorubicin (DOX) is an anticancer antibiotic which has various effects in human cancers. It is one of the commonly known causes of drug-induced nephrotoxicity, which results in acute renal injury. Adrenomedullin (ADM), a vasodilator peptide, is widely distributed in many tissues and has potent protective effects. Therefore, the current study aimed to examine the protective potential mechanisms of ADM against DOX-induced nephrotoxicity. A total of 28 male Wistar rats were randomized into four groups: control group, doxorubicin group (15 mg/kg single intraperitoneal injection of DOX), adrenomedullin + doxorubicin group (12 μg/kg/day intraperitoneal injection of ADM) 3 days prior to DOX injection and continuing for 14 days after the model was established, and adrenomedullin group. Kidney function biomarkers, oxidative stress markers, and inflammatory mediators (TNF-α, NLRP3, IL-1β, and IL-18) were assessed. The expressions of gasdermin D and ASC were assessed by real-time PCR. Furthermore, the abundances of caspase-1 (p20), Bcl-2, and Bax immunoreactivity were evaluated. ADM administration improved the biochemical parameters of DOX-induced nephrotoxicity, significantly reduced oxidative damage markers and inflammatory mediators, and suppressed both apoptosis and pyroptosis. These results were confirmed by the histopathological findings and revealed that ADM's antioxidant, anti-inflammatory, anti-apoptotic, and anti-pyroptotic properties may have prospective applications in the amelioration of DOX-induced nephrotoxicity.
Collapse
Affiliation(s)
- Rania Nagi Abd-Ellatif
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Nahla Anas Nasef
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Hemat El-Sayed El-Horany
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
- Biochemistry Department, College of Medicine, Ha’il University, Ha’il 2440, Saudi Arabia
| | - Marwa Nagy Emam
- Physiology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Reham Lotfy Younis
- Physiology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | | | - Walaa Elseady
- Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Doaa A. Radwan
- Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Yasser Mostafa Hafez
- Internal Medicine Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Ahmad Eissa
- Internal Medicine Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Alshimaa Aboalsoud
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Rania H. Shalaby
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
- Dubai Medical College for Girls, Dubai 20170, United Arab Emirates
| | - Marwa Mohamed Atef
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
38
|
Kawano I, Adamcova M. MicroRNAs in doxorubicin-induced cardiotoxicity: The DNA damage response. Front Pharmacol 2022; 13:1055911. [PMID: 36479202 PMCID: PMC9720152 DOI: 10.3389/fphar.2022.1055911] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/11/2022] [Indexed: 10/17/2023] Open
Abstract
Doxorubicin (DOX) is a chemotherapeutic drug widely used for cancer treatment, but its use is limited by cardiotoxicity. Although free radicals from redox cycling and free cellular iron have been predominant as the suggested primary pathogenic mechanism, novel evidence has pointed to topoisomerase II inhibition and resultant genotoxic stress as the more fundamental mechanism. Recently, a growing list of microRNAs (miRNAs) has been implicated in DOX-induced cardiotoxicity (DIC). This review summarizes miRNAs reported in the recent literature in the context of DIC. A particular focus is given to miRNAs that regulate cellular responses downstream to DOX-induced DNA damage, especially p53 activation, pro-survival signaling pathway inhibition (e.g., AMPK, AKT, GATA-4, and sirtuin pathways), mitochondrial dysfunction, and ferroptosis. Since these pathways are potential targets for cardioprotection against DOX, an understanding of how miRNAs participate is necessary for developing future therapies.
Collapse
Affiliation(s)
| | - Michaela Adamcova
- Department of Physiology, Faculty of Medicine in Hradec Kralove, Charles University in Prague, Hradec Kralove, Czechia
| |
Collapse
|
39
|
Ye B, Shi X, Xu J, Dai S, Xu J, Fan X, Han B, Han J. Gasdermin D mediates doxorubicin-induced cardiomyocyte pyroptosis and cardiotoxicity via directly binding to doxorubicin and changes in mitochondrial damage. Transl Res 2022; 248:36-50. [PMID: 35545198 DOI: 10.1016/j.trsl.2022.05.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/25/2022] [Accepted: 05/03/2022] [Indexed: 12/21/2022]
Abstract
Doxorubicin (Dox), as a widely used anthracycline antitumor drug, can cause severe cardiotoxicity. Cardiomyocyte death and inflammation are involved in the pathophysiology of Dox-induced cardiotoxicity (DIC). Gasdermin D (GSDMD) is known as a key executioner of pyroptosis, which is a pro-inflammatory programmed cell death. We aimed to investigate the impact of GSDMD on DIC and systematically reveal its underlying mechanisms. Our findings indicated that Dox induced cardiomyocyte pyroptosis in a GSDMD-dependent manner by utilizing siRNA or overexpression-plasmid technique. We then generated GSDMD global knockout mice via CRISPR/Cas9 system and found that GSDMD deficiency reduced Dox-induced cardiomyopathy. Dox induced the activation of inflammatory caspases, which subsequently mediated GSDMD-N generation indirectly. Using molecular dynamics simulation and cell-free systems, we confirmed that Dox directly bound to GSDMD and facilitated GSDMD-N-mediated pyroptosis. Furthermore, GSDMD also mediated Dox-induced mitochondrial damage via Bnip3 and mitochondrial perforation in cardiomyocytes. These findings provide fresh insights into the mechanism of how Dox-engaged GSDMD orchestrates adverse cardiotoxicity and highlight the prospects of GSDMD as a potential target for DIC.
Collapse
Affiliation(s)
- Bozhi Ye
- Department of Cardiology, The First Affiliated Hospital of WenZhou Medical University, WenZhou, Zhejiang 325000, China
| | - Xiaowen Shi
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, China
| | - Jianjiang Xu
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, China
| | - Shanshan Dai
- Department of Cardiology, The First Affiliated Hospital of WenZhou Medical University, WenZhou, Zhejiang 325000, China
| | - Jiajun Xu
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, China
| | - Xiaoxi Fan
- Department of Cardiology, The First Affiliated Hospital of WenZhou Medical University, WenZhou, Zhejiang 325000, China
| | - Bingjiang Han
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, China
| | - Jibo Han
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, China.
| |
Collapse
|
40
|
Understanding the Protective Role of Exosomes in Doxorubicin-Induced Cardiotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2852251. [PMID: 36132225 PMCID: PMC9484956 DOI: 10.1155/2022/2852251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/25/2022] [Accepted: 08/23/2022] [Indexed: 12/06/2022]
Abstract
Doxorubicin (DOX) is a class of effective chemotherapeutic agents widely used in clinical practice. However, its use has been limited by cardiotoxicity. The mechanism of DOX-induced cardiotoxicity (DIC) is complex, involving oxidative stress, Ca2+ overload, inflammation, pyroptosis, ferroptosis, apoptosis, senescence, etc. Exosomes (EXOs), as extracellular vesicles (EVs), play an important role in the material exchange and signal transmission between cells by carrying components such as proteins and RNAs. More recently, there has been a growing number of publications focusing on the protective effect of EXOs on DIC. Here, this review summarized the main mechanisms of DIC, discussed the mechanism of EXOs in the treatment of DIC, and further explored the value of EXOs as diagnostic biomarkers and therapeutic strategies for DIC.
Collapse
|
41
|
Habimana O, Modupe Salami O, Peng J, Yi GH. Therapeutic Implications of Targeting Pyroptosis in Cardiac-related Etiology of Heart Failure. Biochem Pharmacol 2022; 204:115235. [PMID: 36044938 DOI: 10.1016/j.bcp.2022.115235] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022]
Abstract
Heart failure remains a considerable clinical and public health problem, it is the dominant cause of death from cardiovascular diseases, besides, cardiovascular diseases are one of the leading causes of death worldwide. The survival of patients with heart failure continues to be low with 45-60% reported deaths within five years. Apoptosis, necrosis, autophagy, and pyroptosis mediate cardiac cell death. Acute cell death is the hallmark pathogenesis of heart failure and other cardiac pathologies. Inhibition of pyroptosis, autophagy, apoptosis, or necrosis reduces cardiac damage and improves cardiac function in cardiovascular diseases. Pyroptosis is a form of inflammatory deliberate cell death that is characterized by the activation of inflammasomes such as NOD-like receptors (NLR), absent in melanoma 2 (AIM2), interferon-inducible protein 16 (IFI-16), and their downstream effector cytokines: Interleukin IL-1β and IL-18 leading to cell death. Recent studies have shown that pyroptosis is also the dominant cell death process in cardiomyocytes, cardiac fibroblasts, endothelial cells, and immune cells. It plays a crucial role in the pathogenesis of cardiac diseases that contribute to heart failure. This review intends to summarize the therapeutic implications targeting pyroptosis in the main cardiac pathologies preceding heart failure.
Collapse
Affiliation(s)
- Olive Habimana
- International College, University of South China, 28, W Changsheng Road, Hengyang, Hunan, 421001, China
| | | | - Jinfu Peng
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, 28, W Changsheng Road, Hengyang, Hunan, 421001, China; Institute of Pharmacy and Pharmacology, Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, 28, W Changsheng Road, Hengyang, Hunan, 421001, China
| | - Guang-Hui Yi
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, 28, W Changsheng Road, Hengyang, Hunan, 421001, China; Institute of Pharmacy and Pharmacology, Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, 28, W Changsheng Road, Hengyang, Hunan, 421001, China.
| |
Collapse
|
42
|
Jong J, Pinney JR, Packard RRS. Anthracycline-induced cardiotoxicity: From pathobiology to identification of molecular targets for nuclear imaging. Front Cardiovasc Med 2022; 9:919719. [PMID: 35990941 PMCID: PMC9381993 DOI: 10.3389/fcvm.2022.919719] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/28/2022] [Indexed: 11/19/2022] Open
Abstract
Anthracyclines are a widely used class of chemotherapy in pediatric and adult cancers, however, their use is hampered by the development of cardiotoxic side-effects and ensuing complications, primarily heart failure. Clinically used imaging modalities to screen for cardiotoxicity are mostly echocardiography and occasionally cardiac magnetic resonance imaging. However, the assessment of diastolic and global or segmental systolic function may not be sensitive to detect subclinical or early stages of cardiotoxicity. Multiple studies have scrutinized molecular nuclear imaging strategies to improve the detection of anthracycline-induced cardiotoxicity. Anthracyclines can activate all forms of cell death in cardiomyocytes. Injury mechanisms associated with anthracycline usage include apoptosis, necrosis, autophagy, ferroptosis, pyroptosis, reactive oxygen species, mitochondrial dysfunction, as well as cardiac fibrosis and perturbation in sympathetic drive and myocardial blood flow; some of which have been targeted using nuclear probes. This review retraces the pathobiology of anthracycline-induced cardiac injury, details the evidence to date supporting a molecular nuclear imaging strategy, explores disease mechanisms which have not yet been targeted, and proposes a clinical strategy incorporating molecular imaging to improve patient management.
Collapse
Affiliation(s)
- Jeremy Jong
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - James R. Pinney
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Ronald Reagan UCLA Medical Center, Los Angeles, CA, United States
- Veterans Affairs West Los Angeles Medical Center, Los Angeles, CA, United States
| | - René R. Sevag Packard
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Ronald Reagan UCLA Medical Center, Los Angeles, CA, United States
- Veterans Affairs West Los Angeles Medical Center, Los Angeles, CA, United States
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
43
|
Feng D, Li J, Guo L, Liu J, Wang S, Ma X, Song Y, Liu J, Hao E. DDX3X alleviates doxorubicin-induced cardiotoxicity by regulating Wnt/β-catenin signaling pathway in an in vitro model. J Biochem Mol Toxicol 2022; 36:e23077. [PMID: 35467791 PMCID: PMC9539463 DOI: 10.1002/jbt.23077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/21/2022] [Accepted: 04/01/2022] [Indexed: 11/05/2022]
Abstract
The life-threatening adverse effects of doxorubicin (Dox) caused by its cardiotoxic properties limit its clinical application. DDX3X has been shown to participate in a variety of physiological processes, and it acts as a regulator of Wnt/β-catenin signaling. However, the role of DDX3X in Dox-induced cardiotoxicity (DIC) remains unclear. In this study, we found that DDX3X expression was significantly decreased in H9c2 cardiomyocytes treated with Dox. Ddx3x knockdown and RK-33 (DDX3X ATPase activity inhibitor) pretreatment exacerbated cardiomyocyte apoptosis and mitochondrial dysfunction induced by Dox treatment. In contrast, Ddx3x overexpression ameliorated the DIC response. Moreover, Wnt/β-catenin signaling in cardiomyocytes treated with Dox was suppressed, but this suppression was reversed by Ddx3x overexpression. Overall, this study demonstrated that DDX3X plays a protective role in DIC by activating Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Dandan Feng
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Jiang Li
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Liang Guo
- Department of AnesthesiologyThe First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan HospitalJinanChina
| | - Jing Liu
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan HospitalThe First Affiliated Hospital of Shandong First Medical UniversityJinanChina
| | - Shaochen Wang
- Department of Cardiology, Shandong Provincial Qianfoshan HospitalShandong First Medical UniversityJinanChina
| | - Xiuyuan Ma
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Yunxuan Song
- Department of Cardiology, Shandong Provincial Qianfoshan HospitalShandong First Medical UniversityJinanChina
| | - Ju Liu
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan HospitalThe First Affiliated Hospital of Shandong First Medical UniversityJinanChina
| | - Enkui Hao
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| |
Collapse
|
44
|
Qu PR, Jiang ZL, Song PP, Liu LC, Xiang M, Wang J. Saponins and their derivatives: Potential candidates to alleviate anthracycline-induced cardiotoxicity and multidrug resistance. Pharmacol Res 2022; 182:106352. [PMID: 35835369 DOI: 10.1016/j.phrs.2022.106352] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 10/17/2022]
Abstract
Anthracyclines (ANTs) continue to play an irreplaceable role in oncology treatment. However, the clinical application of ANTs has been limited. In the first place, ANTs can cause dose-dependent cardiotoxicity such as arrhythmia, cardiomyopathy, and congestive heart failure. In the second place, the development of multidrug resistance (MDR) leads to their chemotherapeutic failure. Oncology cardiologists are urgently searching for agents that can both protect the heart and reverse MDR without compromising the antitumor effects of ANTs. Based on in vivo and in vitro data, we found that natural compounds, including saponins, may be active agents for other both natural and chemical compounds in the inhibition of anthracycline-induced cardiotoxicity (AIC) and the reversal of MDR. In this review, we summarize the work of previous researchers, describe the mechanisms of AIC and MDR, and focus on revealing the pharmacological effects and potential molecular targets of saponins and their derivatives in the inhibition of AIC and the reversal of MDR, aiming to encourage future research and clinical trials.
Collapse
Affiliation(s)
- Pei-Rong Qu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Zhi-Lin Jiang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Ping-Ping Song
- Institute of Chinese Materia Medica, China Academy of Chinese Medicine Sciences, Beijing 100013, China
| | - Lan-Chun Liu
- Beijing University of traditional Chinese Medicine, Beijing 100029, China
| | - Mi Xiang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Jie Wang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| |
Collapse
|
45
|
Abstract
The quest of defeating cancer and improving prognosis in survivors has generated remarkable strides forward in research and have advanced the development of new antineoplastic therapies. These achievements, combined with rapid screening and early detection, have considerably extended the life expectancy of patients surviving multiple types of malignancies. Consequently, chemotherapy-related toxicity in several organ systems, especially the cardiovascular system, has surfaced as one of the leading causes of morbidity and mortality among cancer survivors. Recent evidence classifies chemotherapy-induced cardiotoxicity as the second-leading cause of morbidity and mortality, closely comparing with secondary cancer malignancies. While a certain degree of cardiotoxicity has been reported to accompany most chemotherapies, including anthracyclines, anti-metabolites, and alkylating agents, even the latest targeted cancer therapies such as immune checkpoint inhibitors and tyrosine kinase inhibitors have been associated with acute and chronic cardiac sequelae. In this chapter, we focus on describing the principal mechanism(s) for each class of chemotherapeutic agents that lead to cardiotoxicity and the innovative translational research approaches that are currently being explored to prevent or treat cancer therapy-induced cardiotoxicity and related cardiac complications.
Collapse
Affiliation(s)
- Adolfo G Mauro
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Pauley Heart Center, Richmond, VA, United States
| | - Katherine Hunter
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Pauley Heart Center, Richmond, VA, United States
| | - Fadi N Salloum
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Pauley Heart Center, Richmond, VA, United States.
| |
Collapse
|
46
|
Guo Y, Shen Y, Yu B, Ding L, Meng Z, Wang X, Han M, Dong Z, Wang X. Hydrophilic Poly(glutamic acid)-Based Nanodrug Delivery System: Structural Influence and Antitumor Efficacy. Polymers (Basel) 2022; 14:2242. [PMID: 35683914 PMCID: PMC9182916 DOI: 10.3390/polym14112242] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/01/2023] Open
Abstract
Poly(amino acids) have advanced characteristics, including unique secondary structure, enzyme degradability, good biocompatibility, and stimuli responsibility, and are suitable as drug delivery nanocarriers for tumor therapy. The isoform structure of poly(amino acids) plays an important role in their antitumor efficacy and should be researched in detail. In this study, two kinds of pH-sensitive isoforms, including α-poly(glutamic acid) (α-PGA) and γ-PGA, were selected and used as nanocarriers to prepare a nanodrug delivery system. According to the preparation results, α-PGA can be used as an ideal drug carrier. Selecting doxorubicin (DOX) as the model drug, an α-PGA/DOX nanoparticle (α-PGA/DOX NPs) with a particle size of 110.4 nm was prepared, and the drug-loading content was 66.2%. α-PGA/DOX NPs presented obvious sustained and pH-dependent release characteristics. The IC50 value of α-PGA/DOX NPs was 1.06 ± 0.77 μg mL-1, decreasing by approximately 8.5 fold in vitro against 4T1 cells after incubation for 48 h. Moreover, α-PGA/DOX NPs enhanced antitumor efficacy in vivo, the tumor inhibition rate was 67.4%, increasing 1.5 fold over DOX injection. α-PGA/DOX NPs also reduced the systemic toxicity and cardiotoxicity of DOX. In sum, α-PGA is a biosafe nanodrug delivery carrier with potential clinical application prospects.
Collapse
Affiliation(s)
- Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (Y.G.); (Y.S.); (B.Y.); (L.D.); (Z.M.); (X.W.); (M.H.)
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Yiping Shen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (Y.G.); (Y.S.); (B.Y.); (L.D.); (Z.M.); (X.W.); (M.H.)
| | - Bo Yu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (Y.G.); (Y.S.); (B.Y.); (L.D.); (Z.M.); (X.W.); (M.H.)
| | - Lijuan Ding
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (Y.G.); (Y.S.); (B.Y.); (L.D.); (Z.M.); (X.W.); (M.H.)
| | - Zheng Meng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (Y.G.); (Y.S.); (B.Y.); (L.D.); (Z.M.); (X.W.); (M.H.)
| | - Xiaotong Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (Y.G.); (Y.S.); (B.Y.); (L.D.); (Z.M.); (X.W.); (M.H.)
| | - Meihua Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (Y.G.); (Y.S.); (B.Y.); (L.D.); (Z.M.); (X.W.); (M.H.)
| | - Zhengqi Dong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (Y.G.); (Y.S.); (B.Y.); (L.D.); (Z.M.); (X.W.); (M.H.)
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (Y.G.); (Y.S.); (B.Y.); (L.D.); (Z.M.); (X.W.); (M.H.)
| |
Collapse
|
47
|
Du XY, Xiang DC, Gao P, Peng H, Liu YL. Inhibition of (Pro)renin Receptor-Mediated Oxidative Stress Alleviates Doxorubicin-Induced Heart Failure. Front Oncol 2022; 12:874852. [PMID: 35574363 PMCID: PMC9106363 DOI: 10.3389/fonc.2022.874852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/31/2022] [Indexed: 11/22/2022] Open
Abstract
Aim Clinical utility of doxorubicin (DOX) is limited by its cardiotoxic side effect, and the underlying mechanism still needs to be fully elucidated. This research aimed to examine the role of (pro)renin receptor (PRR) in DOX-induced heart failure (HF) and its underlying mechanism. Main Methods Sprague Dawley (SD) rats were injected with an accumulative dosage of DOX (15 mg/kg) to induce HF. Cardiac functions were detected by transthoracic echocardiography examination. The levels of lactate dehydrogenase (LDH) and creatine kinase (CK) in serum were detected, and oxidative stress related injuries were evaluated. Furthermore, the mRNA expression of PRR gene and its related genes were detected by real-time PCR (RT-PCR), and protein levels of PRR, RAC1, NOX4 and NOX2 were determined by Western blot. Reactive oxygen species (ROS) were determined in DOX-treated rats or cells. Additionally, PRR and RAC1 were silenced with their respective siRNAs to validate the in vitro impacts of PRR/RAC1 on DOX-induced cardiotoxicity. Moreover, inhibitors of PRR and RAC1 were used to validate their effects in vivo. Key Findings PRR and RAC1 expressions increased in DOX-induced HF. The levels of CK and LDH as well as oxidative stress indicators increased significantly after DOX treatment. Oxidative injury and apoptosis of cardiomyocytes were attenuated both in vivo and in vitro upon suppression of PRR or RAC1. Furthermore, the inhibition of PRR could significantly down-regulate the expressions of RAC1 and NOX4 but not that of NOX2, while the inhibition of RAC1 did not affect PRR. Significance Our findings showed that PRR inhibition could weaken RAC1-NOX4 pathway and alleviate DOX-induced HF via decreasing ROS production, thereby suggesting a promising target for the treatment of DOX-induced HF.
Collapse
Affiliation(s)
- Xiao-yi Du
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Pediatrics, Maternal and Child Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dao-chun Xiang
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Gao
- Department of Clinical Pharmacy, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Peng
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hua Peng, ; Ya-li Liu,
| | - Ya-li Liu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hua Peng, ; Ya-li Liu,
| |
Collapse
|
48
|
Zhou X, Ye Q, Zheng J, Kuang L, Zhu J, Yan H. IMP3 promotes re-endothelialization after arterial injury via increasing stability of VEGF mRNAhv. J Cell Mol Med 2022; 26:2023-2037. [PMID: 35315195 PMCID: PMC8980943 DOI: 10.1111/jcmm.17225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 01/01/2022] [Accepted: 01/05/2022] [Indexed: 11/30/2022] Open
Abstract
IMP3, an RNA‐binding protein (RBP) that participates in the process of post‐transcriptional modifications of mRNA transcripts, is capable of altering cellular functions, and in some cases, be involved in specific disease progression. We aimed to investigate whether IMP3 has the ability to regulate the functional properties of endothelial cells and re‐endothelialization in response to arterial injury. Wire injury was introduced to the right carotid arteries of wildtype C57/BL6 mice. As a result, IMPs’ expressions were up‐regulated in the induced arterial lesions, and IMP3 was the most up‐regulated RNA among other IMPs. We overexpressed IMP3 before the wire‐injured surgery using adeno‐associated virus AAV2‐IMP3. In vivo studies confirmed that IMP3 overexpression accelerated the progress of re‐endothelialization after arterial injury. In vitro, endothelial cells were transfected with either ad‐IMP3 or Si‐IMP3, cell functional studies showed that IMP3 could promote endothelial cell proliferation and migration, while reducing apoptosis. Mechanistic studies also revealed that IMP3 could enhance VEGF mRNA stability and therefore up‐regulate activities of VEGF/PI3K/Akt signalling pathway. Our data indicated that IMP3 promotes re‐endothelialization after arterial injury and regulates endothelial cell proliferation, migration and apoptosis via increasing stability of VEGF mRNA and activation of VEGF/PI3K/Akt signalling pathway.
Collapse
Affiliation(s)
- Xinmiao Zhou
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Qingqing Ye
- Department of Intensive Care Unit, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jinlei Zheng
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lin Kuang
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jianhua Zhu
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hui Yan
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
49
|
Calycosin Alleviates Doxorubicin-Induced Cardiotoxicity and Pyroptosis by Inhibiting NLRP3 Inflammasome Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1733834. [PMID: 35035656 PMCID: PMC8754606 DOI: 10.1155/2022/1733834] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/19/2021] [Accepted: 12/09/2021] [Indexed: 01/13/2023]
Abstract
Calycosin (CAL) is the main active component present in Astragalus and reportedly possesses diverse pharmacological properties. However, the cardioprotective effect and underlying mechanism of CAL against doxorubicin- (DOX-) induced cardiotoxicity need to be comprehensively examined. Herein, we aimed to investigate whether the cardioprotective effects of CAL are related to its antipyroptotic effect. A cardiatoxicity model was established by stimulating H9c2 cells and C57BL/6J mice using DOX. In vitro, CAL increased H9c2 cell viability and decreased DOX-induced pyroptosis via NLRP3, caspase-1, and gasdermin D signaling pathways in a dose-dependent manner. In vivo, CAL-DOX cotreatment effectively suppressed DOX-induced cytotoxicity as well as inflammatory and cardiomyocyte pyroptosis via the same molecular mechanism. Next, we used nigericin (Nig) and NLRP3 forced overexpression to determine whether CAL imparts antipyroptotic effects by inhibiting the NLRP3 inflammasome in vitro. Furthermore, CAL suppressed DOX-induced mitochondrial oxidative stress injury in H9c2 cells by decreasing the generation of reactive oxygen species and increasing mitochondrial membrane potential and adenosine triphosphate. Likewise, CAL attenuated the DOX-induced increase in malondialdehyde content and decreased superoxide dismutase and glutathione peroxidase activities in H9c2 cells. In vivo, CAL afforded a protective effect against DOX-induced cardiac injury by improving myocardial function, inhibiting brain natriuretic peptide, and improving the changes of the histological morphology of DOX-treated mice. Collectively, our findings confirmed that CAL alleviates DOX-induced cardiotoxicity and pyroptosis by inhibiting NLRP3 inflammasome activation in vivo and in vitro.
Collapse
|
50
|
Nukala SB, Jousma J, Cho Y, Lee WH, Ong SG. Long non-coding RNAs and microRNAs as crucial regulators in cardio-oncology. Cell Biosci 2022; 12:24. [PMID: 35246252 PMCID: PMC8895873 DOI: 10.1186/s13578-022-00757-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/10/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer is one of the leading causes of morbidity and mortality worldwide. Significant improvements in the modern era of anticancer therapeutic strategies have increased the survival rate of cancer patients. Unfortunately, cancer survivors have an increased risk of cardiovascular diseases, which is believed to result from anticancer therapies. The emergence of cardiovascular diseases among cancer survivors has served as the basis for establishing a novel field termed cardio-oncology. Cardio-oncology primarily focuses on investigating the underlying molecular mechanisms by which anticancer treatments lead to cardiovascular dysfunction and the development of novel cardioprotective strategies to counteract cardiotoxic effects of cancer therapies. Advances in genome biology have revealed that most of the genome is transcribed into non-coding RNAs (ncRNAs), which are recognized as being instrumental in cancer, cardiovascular health, and disease. Emerging studies have demonstrated that alterations of these ncRNAs have pathophysiological roles in multiple diseases in humans. As it relates to cardio-oncology, though, there is limited knowledge of the role of ncRNAs. In the present review, we summarize the up-to-date knowledge regarding the roles of long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in cancer therapy-induced cardiotoxicities. Moreover, we also discuss prospective therapeutic strategies and the translational relevance of these ncRNAs.
Collapse
Affiliation(s)
- Sarath Babu Nukala
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, COMRB 4100, Chicago, IL, 60612, USA
| | - Jordan Jousma
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, COMRB 4100, Chicago, IL, 60612, USA
| | - Yoonje Cho
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, COMRB 4100, Chicago, IL, 60612, USA
| | - Won Hee Lee
- Department of Basic Medical Sciences, University of Arizona College of Medicine, ABC-1 Building, 425 North 5th Street, Phoenix, AZ, 85004, USA.
| | - Sang-Ging Ong
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, COMRB 4100, Chicago, IL, 60612, USA.
- Division of Cardiology, Department of Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, COMRB 4100, Chicago, IL, 60612, USA.
| |
Collapse
|