1
|
Zehetner L, Széliová D, Kraus B, Hernandez Bort JA, Zanghellini J. Multi-omics driven genome-scale metabolic modeling improves viral vector yield in HEK293. Metab Eng 2025; 91:103-118. [PMID: 40220853 DOI: 10.1016/j.ymben.2025.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/06/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025]
Abstract
HEK293 cells are a versatile cell line extensively used in the production of recombinant proteins and viral vectors, notably Adeno-associated virus (AAV) (Bulcha et al., 2021). Despite their high transfection efficiency and adaptability to various culture conditions, challenges remain in achieving sufficient yields of active viral particles. This study presents a comprehensive multi-omics analysis of two HEK293 strains under good manufacturing practice conditions, focusing on the metabolic and cellular responses during AAV production. The investigation included lipidomic, exometabolomic, and transcriptomic profiling across different conditions and time points. Genome-scale metabolic models (GSMMs) were reconstructed for these strains to elucidate metabolic shifts and identify potential bottlenecks in AAV production. Notably, the study revealed significant differences between a High-producing (HP) and a Low-producing (LP) HEK293 strains, highlighting pseudohypoxia in the LP strain. Key findings include the identification of hypoxia-inducible factor 1-alpha (HIF-1α) as a critical regulator in the LP strain, linking pseudohypoxia to poor AAV productivity. Inhibition of HIF-1α resulted in immediate cessation of cell growth and a 2.5-fold increase in viral capsid production, albeit with a decreased number of viral genomes, impacting the full-to-empty particle ratio. This trade-off is significant because it highlights a key challenge in AAV production: achieving a balance between capsid assembly and genome packaging to optimize the yield of functional viral vectors. Overall this suggests that while HIF-1α inhibition enhances capsid assembly, it simultaneously hampers nucleotide synthesis via the pentose phosphate pathway (PPP), necessary for nucleotide synthesis, and therefore for AAV genome replication.
Collapse
Affiliation(s)
- L Zehetner
- Department for Analytical Chemistry, University of Vienna, Vienna, 1090, Austria; Doctoral School of Chemistry, University of Vienna, Vienna, 1090, Austria.
| | - D Széliová
- Department for Analytical Chemistry, University of Vienna, Vienna, 1090, Austria.
| | - B Kraus
- Institute of Molecular Biotechnology, Institut für Molekulare Biotechnologie GmbH, Vienna, 1030, Austria
| | - J A Hernandez Bort
- Department of Applied Life Sciences, Bioengineering, University of Applied Sciences Campus Vienna, Vienna, 1100, Austria.
| | - J Zanghellini
- Department for Analytical Chemistry, University of Vienna, Vienna, 1090, Austria.
| |
Collapse
|
2
|
Chen Y, Zhang F, Ren W, Zhou Y, Jiang S, Zhang S, Xu G, Ge X, Gao H. A strategy for evaluating the impact of processing of Chinese meteria medica on meridian tropism: the influence of salt-water processing of phellodendri chinensis cortex on renal transport proteins. Front Pharmacol 2025; 16:1558298. [PMID: 40260384 PMCID: PMC12009851 DOI: 10.3389/fphar.2025.1558298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/21/2025] [Indexed: 04/23/2025] Open
Abstract
Introduction This study elucidated the potential mechanisms by which Phellodendri Chinensis Cortex with salt-water processing (SPC) enhances renal targeting efficacy, through investigating the effects of Phellodendri Chinensis Cortex (PC) on renal uptake and efflux transport capabilities before and after salt-water processing. Methods This study employed molecular docking, UPLC-TDQ-MS/MS, BCA, Western Blotting, and RT-PCR to assess the effects of raw Phellodendri Chinensis Cortex (RPC), SPC, berberine (BBR), and berberrubine (BBRR) on the transport capacity and expression of renal transport proteins OAT1, OAT3, OCT2, MATE1, MATE2K, P-gp, and MRP2 in HEK-293 cells. Results Analyses demonstrated that BBR and BBRR exhibited a strong affinity for OCT2, P-gp, MRP2. Compared to RPC, SPC can increase the uptake capacity and expression of OCT2, while it can decrease efflux capacity and expression of P-gp and MRP2. Simultaneously, BBRR showed similar effects on OCT2, P-gp, and MRP2, compared to BBR. Therefore, the enhanced renal targeting effect of SPC can be attributed to the differential impact of the partial conversion of BBR to BBRR on the transport capacity of the renal transporters OCT2, P-gp, and MRP2. Conclusion This study investigated the interactions between renal transporter proteins and drugs, with the objective of elucidating the mechanism by which SPC enhances renal targeting efficacy. The findings of this study offer new insights and methodologies for exploring the effects of Processing of Chinese Materia Medica (PCMM) on the meridian tropism of other traditional Chinese medicines (TCMs).
Collapse
|
3
|
Müller C, Siegwart G, Heider S, Sokolov M, Botros A, Umprecht A, von Stosch M, Cruz Bournazou MN. Iterative hybrid model based optimization of rAAV production. Biotechnol Prog 2025:e70006. [PMID: 40129076 DOI: 10.1002/btpr.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 01/20/2025] [Accepted: 01/29/2025] [Indexed: 03/26/2025]
Abstract
Changes in serotype or genetic payload of recombinant adeno associated virus (rAAVs) gene therapies require adapting the transfection conditions of the upstream HEK293 cultivations. This study adopts an iterative model-based experiment design approach, where increasing data availability is leveraged to evolve models of different complexity. Initial models based on data from shaker flask runs guided the design of the first round at Ambr250 scale. With Ambr250 data becoming available, hybrid models capturing process state evolutions and historical models incorporating these evolutions to predict rAAV titer, were developed. These models were then combined into a full model approach, which was utilized within a Bayesian Optimization framework for the design of a second round of Ambr250 scale runs. The iterative approach was tested across different projects applying transfer learning to enhance the predictive power and improve the subsequent optimization. The approach was benchmarked against a statistical Design of Experiment method. The results show that the model-based experiment design consistently (and across projects) produces higher rAAV titer values than the benchmark approach (Project C: 4.4% or 7.0% increases in titer values relative to the response surface modeling approach for ELISA and ddPCR, respectively; Project D: 32.4% or 10.9% increases in titer values relative to the standard DoE-screening pick for ELISA and ddPCR, respectively), effectively optimizing the transfection mixture composition. The combination of propagation and historical models, augmented by transfer learning and an ever-increasing amount of data, enhanced the process design workflow, contributing to improved rAAV production through efficient transfection strategies.
Collapse
Affiliation(s)
| | - Gerald Siegwart
- Pharmaceutical Sciences, R&D, Baxalta Innovations GmbH, a Takeda company, Vienna, Austria
| | - Susanne Heider
- Pharmaceutical Sciences, R&D, Baxalta Innovations GmbH, a Takeda company, Vienna, Austria
| | | | | | - Alexandra Umprecht
- Pharmaceutical Sciences, R&D, Baxalta Innovations GmbH, a Takeda company, Vienna, Austria
| | | | - Mariano Nicolas Cruz Bournazou
- DataHow, Zurich, Switzerland
- Technische Universität Berlin, Institute of Biotechnology, Chair of Bioprocess Engineering, Berlin, Germany
| |
Collapse
|
4
|
Nguyen TNT, Park D, Canova CT, Sangerman J, Srinivasan P, Ou RW, Barone PW, Neufeld C, Wolfrum JM, Springs SL, Sinskey AJ, Braatz RD. Perfusion-Based Production of rAAV via an Intensified Transient Transfection Process. Biotechnol Bioeng 2025. [PMID: 40103325 DOI: 10.1002/bit.28967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/05/2025] [Accepted: 02/26/2025] [Indexed: 03/20/2025]
Abstract
Increasing demand for recombinant adeno-associated virus (rAAV)-based gene therapies necessitates increased manufacturing production. Transient transfection of mammalian cells remains the most commonly used method to produce clinical-grade rAAVs due to its ease of implementation. However, transient transfection processes are often characterized by suboptimal yields and low fractions of full-to-total capsids, both of which contribute to the high cost of goods of many rAAV-based gene therapies. Our previously developed mechanistic model for rAAV2/5 production indicated that the inadequate capsid filling is due to a temporal misalignment between viral DNA replication and capsid synthesis within the cells and the repression of later phase capsid formation by Rep proteins. We experimentally validated this prediction and showed that performing multiple, time-separated doses of plasmid increases the production of rAAV. In this study, we use the insights generated by our mechanistic model to develop an intensified process for rAAV production that combines perfusion with high cell density re-transfection. We demonstrate that performing multiple, time-separated doses at high cell density boosts both cell-specific and volumetric productivity and improves plasmid utilization when compared to a single bolus at standard operating conditions. Our results establish a new paradigm for continuously manufacturing rAAV via transient transfection that improves productivity and reduces manufacturing costs.
Collapse
Affiliation(s)
- Tam N T Nguyen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Damdae Park
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Christopher T Canova
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jose Sangerman
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Prasanna Srinivasan
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Rui Wen Ou
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Paul W Barone
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Caleb Neufeld
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jacqueline M Wolfrum
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Stacy L Springs
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Anthony J Sinskey
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Richard D Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
5
|
Gurazada SGR, Kennedy HM, Braatz RD, Mehrman SJ, Polson SW, Rombel IT. HEK-omics: The promise of omics to optimize HEK293 for recombinant adeno-associated virus (rAAV) gene therapy manufacturing. Biotechnol Adv 2025; 79:108506. [PMID: 39708987 DOI: 10.1016/j.biotechadv.2024.108506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/14/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Gene therapy is poised to transition from niche to mainstream medicine, with recombinant adeno-associated virus (rAAV) as the vector of choice. However, robust, scalable, industrialized production is required to meet demand and provide affordable patient access, which has not yet materialized. Closing the chasm between demand and supply requires innovation in biomanufacturing to achieve the essential step change in rAAV product yield and quality. Omics provides a rich source of mechanistic knowledge that can be applied to HEK293, the most commonly used cell line for rAAV production. In this review, the findings from a growing number of diverse studies that apply genomics, epigenomics, transcriptomics, proteomics, and metabolomics to HEK293 bioproduction are explored. Learnings from CHO-omics, application of omics approaches to improve CHO bioproduction, provide a framework to explore the potential of "HEK-omics" as a multi-omics-informed approach providing actionable mechanistic insights for improved transient and stable production of rAAV and other recombinant products in HEK293.
Collapse
Affiliation(s)
- Sai Guna Ranjan Gurazada
- Center for Bioinformatics and Computational Biology, Department of Computer and Information Sciences, University of Delaware, Newark, DE, United States
| | | | - Richard D Braatz
- Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Steven J Mehrman
- Johnson & Johnson, J&J Innovative Medicine, Spring House, PA, United States
| | - Shawn W Polson
- Center for Bioinformatics and Computational Biology, Department of Computer and Information Sciences, University of Delaware, Newark, DE, United States.
| | | |
Collapse
|
6
|
Xu X, Farnós O, Paes BCMF, Nesdoly S, Kamen AA. Multivariate data analysis on multisensor measurement for inline process monitoring of adenovirus production in HEK293 cells. Biotechnol Bioeng 2024; 121:2175-2192. [PMID: 38613199 DOI: 10.1002/bit.28712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024]
Abstract
In the era of Biopharma 4.0, process digitalization fundamentally requires accurate and timely monitoring of critical process parameters (CPPs) and quality attributes. Bioreactor systems are equipped with a variety of sensors to ensure process robustness and product quality. However, during the biphasic production of viral vectors or replication-competent viruses for gene and cell therapies and vaccination, current monitoring techniques relying on a single working sensor can be affected by the physiological state change of the cells due to infection/transduction/transfection step required to initiate production. To address this limitation, a multisensor (MS) monitoring system, which includes dual-wavelength fluorescence spectroscopy, dielectric signals, and a set of CPPs, such as oxygen uptake rate and pH control outputs, was employed to monitor the upstream process of adenovirus production in HEK293 cells in bioreactor. This system successfully identified characteristic responses to infection by comparing variations in these signals, and the correlation between signals and target critical variables was analyzed mechanistically and statistically. The predictive performance of several target CPPs using different multivariate data analysis (MVDA) methods on data from a single sensor/source or fused from multiple sensors were compared. An MS regression model can accurately predict viable cell density with a relative root mean squared error (rRMSE) as low as 8.3% regardless of the changes occurring over the infection phase. This is a significant improvement over the 12% rRMSE achieved with models based on a single source. The MS models also provide the best predictions for glucose, glutamine, lactate, and ammonium. These results demonstrate the potential of using MVDA on MS systems as a real-time monitoring approach for biphasic bioproduction processes. Yet, models based solely on the multiplicity and timing of infection outperformed both single-sensor and MS models, emphasizing the need for a deeper mechanistic understanding in virus production prediction.
Collapse
Affiliation(s)
- Xingge Xu
- Department of Bioengineering, McGill University, Montreal, Canada
| | - Omar Farnós
- Department of Bioengineering, McGill University, Montreal, Canada
| | | | - Sean Nesdoly
- Department of Bioengineering, McGill University, Montreal, Canada
| | - Amine A Kamen
- Department of Bioengineering, McGill University, Montreal, Canada
| |
Collapse
|
7
|
Xue W, Fulco C, Sha S, Alden N, Panteli J, Hossler P, Warren J. Adeno-associated virus perfusion enhanced expression: A commercially scalable, high titer, high quality producer cell line process. Mol Ther Methods Clin Dev 2024; 32:101266. [PMID: 38868441 PMCID: PMC11166877 DOI: 10.1016/j.omtm.2024.101266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/10/2024] [Indexed: 06/14/2024]
Abstract
With safety and efficacy demonstrated over hundreds of clinical trials in the last 30 years, along with at least six recent global marketing authorizations achieved since 2017, recombinant adeno-associated viruses (rAAVs) have been established as the leading therapeutic gene transfer vector for rare, monogenic diseases. Significant advances in manufacturing technology have been made in the last few decades to address challenges with GMP production of rAAV products, although yield, cost, scalability, and quality remain a challenge. With transient transfection processes established as a manufacturing platform for multiple commercial AAV products, there remains significant yield, cost, robustness, and scalability constraints that need to be resolved to enable a reliable supply of rAAV products for global patient access. The development of stable producer cell lines for rAAV products has enabled scalability and, in some cases, improvements in productivity. Herein we describe a novel AAV perfusion-enhanced expression (APEX) process, resulting in higher maximum cell densities in the production bioreactor with a 3- to 6-fold increase in volumetric productivity. This process has been successfully demonstrated across multiple serotypes in large scale cell culture with titers approaching 1 × 1012 GC/mL. The APEX production platform marks a significant leap forward in the efficient and effective manufacturing of rAAV vector products.
Collapse
Affiliation(s)
- Wei Xue
- Ultragenyx Pharmaceutical Inc., Global CMC Development, 19 Presidential Way, Woburn, MA 01801, USA
| | - Cameron Fulco
- Ultragenyx Pharmaceutical Inc., Global CMC Development, 19 Presidential Way, Woburn, MA 01801, USA
| | - Sha Sha
- Ultragenyx Pharmaceutical Inc., Global CMC Development, 19 Presidential Way, Woburn, MA 01801, USA
| | - Nick Alden
- Ultragenyx Pharmaceutical Inc., Global CMC Development, 19 Presidential Way, Woburn, MA 01801, USA
| | - Jan Panteli
- Ultragenyx Pharmaceutical Inc., Global CMC Development, 19 Presidential Way, Woburn, MA 01801, USA
| | - Patrick Hossler
- Ultragenyx Pharmaceutical Inc., Global CMC Development, 19 Presidential Way, Woburn, MA 01801, USA
| | - James Warren
- Ultragenyx Pharmaceutical Inc., Global CMC Development, 19 Presidential Way, Woburn, MA 01801, USA
| |
Collapse
|
8
|
Pérez-Rubio P, Lavado-García J, Bosch-Molist L, Romero EL, Cervera L, Gòdia F. Extracellular vesicle depletion and UGCG overexpression mitigate the cell density effect in HEK293 cell culture transfection. Mol Ther Methods Clin Dev 2024; 32:101190. [PMID: 38327808 PMCID: PMC10847930 DOI: 10.1016/j.omtm.2024.101190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024]
Abstract
The hitherto unexplained reduction of cell-specific productivity in transient gene expression (TGE) at high cell density (HCD) is known as the cell density effect (CDE). It currently represents a major challenge in TGE-based bioprocess intensification. This phenomenon has been largely reported, but the molecular principles governing it are still unclear. The CDE is currently understood to be caused by the combination of an unknown inhibitory compound in the extracellular medium and an uncharacterized cellular change at HCD. This study investigates the role of extracellular vesicles (EVs) as extracellular inhibitors for transfection through the production of HIV-1 Gag virus-like particles (VLPs) via transient transfection in HEK293 cells. EV depletion from the extracellular medium restored transfection efficiency in conditions that suffer from the CDE, also enhancing VLP budding and improving production by 60%. Moreover, an alteration in endosomal formation was observed at HCD, sequestering polyplexes and preventing transfection. Overexpression of UDP-glucose ceramide glucosyltransferase (UGCG) enzyme removed intracellular polyplex sequestration, improving transfection efficiency. Combining EV depletion and UGCG overexpression improved transfection efficiency by ∼45% at 12 × 106 cells/mL. These results suggest that the interaction between polyplexes and extracellular and intracellular vesicles plays a crucial role in the CDE, providing insights for the development of strategies to mitigate its impact.
Collapse
Affiliation(s)
- Pol Pérez-Rubio
- Grup d’Enginyeria de Bioprocessos i Biocatàlisi Aplicada, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Jesús Lavado-García
- Grup d’Enginyeria de Bioprocessos i Biocatàlisi Aplicada, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Laia Bosch-Molist
- Grup d’Enginyeria de Bioprocessos i Biocatàlisi Aplicada, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Elianet Lorenzo Romero
- Grup d’Enginyeria de Bioprocessos i Biocatàlisi Aplicada, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Laura Cervera
- Grup d’Enginyeria de Bioprocessos i Biocatàlisi Aplicada, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Francesc Gòdia
- Grup d’Enginyeria de Bioprocessos i Biocatàlisi Aplicada, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
9
|
Silva CAT, Kamen AA, Henry O. Intensified Influenza Virus Production in Suspension HEK293SF Cell Cultures Operated in Fed-Batch or Perfusion with Continuous Harvest. Vaccines (Basel) 2023; 11:1819. [PMID: 38140223 PMCID: PMC10747379 DOI: 10.3390/vaccines11121819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Major efforts in the intensification of cell culture-based viral vaccine manufacturing focus on the development of high-cell-density (HCD) processes, often operated in perfusion. While perfusion operations allow for higher viable cell densities and volumetric productivities, the high perfusion rates (PR) normally adopted-typically between 2 and 4 vessel volumes per day (VVD)-dramatically increase media consumption, resulting in a higher burden on the cell retention device and raising challenges for the handling and disposal of high volumes of media. In this study, we explore high inoculum fed-batch (HIFB) and low-PR perfusion operations to intensify a cell culture-based process for influenza virus production while minimizing media consumption. To reduce product retention time in the bioreactor, produced viral particles were continuously harvested using a tangential flow depth filtration (TFDF) system as a cell retention device and harvest unit. The feeding strategies developed-a hybrid fed-batch with continuous harvest and a low-PR perfusion-allowed for infections in the range of 8-10 × 106 cells/mL while maintaining cell-specific productivity comparable to the batch control, resulting in a global increase in the process productivity. Overall, our work demonstrates that feeding strategies that minimize media consumption are suitable for large-scale influenza vaccine production.
Collapse
Affiliation(s)
- Cristina A. T. Silva
- Department of Chemical Engineering, Polytechnique Montréal, Montreal, QC H3T 1J4, Canada
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada;
| | - Amine A. Kamen
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada;
| | - Olivier Henry
- Department of Chemical Engineering, Polytechnique Montréal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
10
|
Lavado-García J, Pérez-Rubio P, Cervera L, Gòdia F. The cell density effect in animal cell-based bioprocessing: Questions, insights and perspectives. Biotechnol Adv 2022; 60:108017. [PMID: 35809763 DOI: 10.1016/j.biotechadv.2022.108017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/31/2022] [Accepted: 07/01/2022] [Indexed: 11/28/2022]
Abstract
One of the main challenges in the development of bioprocesses based on cell transient expression is the commonly reported reduction of cell specific productivity at increasing cell densities. This is generally known as the cell density effect (CDE). Many efforts have been devoted to understanding the cell metabolic implications to this phenomenon in an attempt to design operational strategies to overcome it. A comprehensive analysis of the main studies regarding the CDE is provided in this work to better define the elements comprising its cause and impact. Then, examples of methodologies and approaches employed to achieve successful transient expression at high cell densities (HCD) are thoroughly reviewed. A critical assessment of the limitations of the reported studies in the understanding of the CDE is presented, covering the leading hypothesis of the molecular implications. The overall analysis of previous work on CDE may offer useful insights for further research into manufacturing of biologics.
Collapse
Affiliation(s)
- Jesús Lavado-García
- Grup d'Enginyeria Cel·lular i Bioprocessos, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Pol Pérez-Rubio
- Grup d'Enginyeria Cel·lular i Bioprocessos, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Laura Cervera
- Grup d'Enginyeria Cel·lular i Bioprocessos, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Francesc Gòdia
- Grup d'Enginyeria Cel·lular i Bioprocessos, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
11
|
Joiner J, Huang Z, McHugh K, Stebbins M, Aron K, Borys M, Khetan A. Process modeling of recombinant adeno-associated virus production in HEK293 cells. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2022.100823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
12
|
The efficient development of a novel recombinant adenovirus zoster vaccine perfusion production process. Vaccine 2022; 40:2036-2043. [PMID: 35216843 PMCID: PMC8863426 DOI: 10.1016/j.vaccine.2022.02.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/25/2022] [Accepted: 02/04/2022] [Indexed: 11/20/2022]
Abstract
The adenovirus vector vaccines induce humoral and cellular immune responses and have been used to develop vaccines for effective prevention of life-threating viruses, such as Ebola and Coronaviruses. High demand of vaccines worldwide requires optimization of the production process. Perfusion process increases cell concentration and volumetric productivity, so that it becomes the commonly used strategy in vaccine production In this study, we optimized and developed a perfusion process for the adenovirus-based zoster vaccine production efficiently. We first tested different perfusion strategies in shake flasks, showing semi-continuous strategies for optimal HEK 293 cell growth. We then evaluated three empirical key process parameters (cell concentration at the time of infection (VCC), multiplicity of infection (MOI), virus production pH) by the design of experiment (DoE) method, from which the robust setpoint (VCC 1.04 × 107 cells/mL, MOI 9, and virus production pH 7.17) was confirmed in both shake flask and 2 L benchtop bioreactor. In the bioreactor, we compared the performances of two perfusion systems, the commercially-available XCell ATF® system and a novel peristaltic pump-driven alternating tangential flow perfusion system (PATFP system) that we developed. During cell cultivation stage, both perfusion systems have comparable performances regarding viable cell concentration and cell viability. At 2 dpi, the PATFP system resulted in an adenovirus titer of 2.1 × 1010 IFU/mL and cell-specific virus yield of 2,062 IFU/cell, reaching 75% and 77% of values for XCell ATF® system. This study demonstrates the perfusion process to be superior strategy for adenovirus-based vaccine production compared to the batch-mode strategy (1,467 IFU/cell). Furthermore, our PATFP system shows potential to be comparable to the XCell ATF® system, and it would become an alternative perfusion strategy for the vaccine production.
Collapse
|
13
|
Abbate T, Dewasme L, Vande Wouwer A, Bogaerts P. Adaptive flux variability analysis of HEK cell cultures. Comput Chem Eng 2020. [DOI: 10.1016/j.compchemeng.2019.106633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
14
|
Lavado-García J, Jorge I, Cervera L, Vázquez J, Gòdia F. Multiplexed Quantitative Proteomic Analysis of HEK293 Provides Insights into Molecular Changes Associated with the Cell Density Effect, Transient Transfection, and Virus-Like Particle Production. J Proteome Res 2020; 19:1085-1099. [DOI: 10.1021/acs.jproteome.9b00601] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jesús Lavado-García
- Grup d’Enginyeria Cellular i Bioprocés, Departament d’Enginyeria Química, Biològica i Ambiental, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Inmaculada Jorge
- Laboratory of Cardiovascular Proteomics, Centro Nacional Investigaciones Cardiovasculares (CNIC), C/Melchor Fernández Almagro 3, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Madrid 28029, Spain
| | - Laura Cervera
- Grup d’Enginyeria Cellular i Bioprocés, Departament d’Enginyeria Química, Biològica i Ambiental, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Jesús Vázquez
- Laboratory of Cardiovascular Proteomics, Centro Nacional Investigaciones Cardiovasculares (CNIC), C/Melchor Fernández Almagro 3, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Madrid 28029, Spain
| | - Francesc Gòdia
- Grup d’Enginyeria Cellular i Bioprocés, Departament d’Enginyeria Química, Biològica i Ambiental, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
15
|
Xie L, Miao J, Li X, Yi X, Chu J. Regulation of the pyruvate metabolism node by monogene and polygene engineering of HEK-293 cells. RSC Adv 2019; 9:35760-35770. [PMID: 35528064 PMCID: PMC9074685 DOI: 10.1039/c9ra07418j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 10/21/2019] [Indexed: 11/21/2022] Open
Abstract
HEK-293 cells are increasingly being used in the production of human adenovirus (HAdV) vaccines. However, the production of HAdV vaccine has not met the requirements of industrial production. Recently, we investigated the effects of various regulatory genes of the pyruvate metabolism node on the substance and energy metabolism and adenovirus reproduction in HEK-293 cells. Initially, single regulatory genes, including pkm2, pdhα, pyc2, mpc3, aralar1, ldha and pdk1, were studied. We found that metabolic performance and adenovirus reproduction capacity in HEK-293 cells were improved, and maximum adenovirus titre was increased approximately 15-fold. Next, we co-overexpressed the key genes, including pkm2, pyc2 and aralar1. The PYC2-A-P-L cells that had the appropriate co-overexpression levels of three genes had the most pronounced regulatory effect. The maximum cell density and maximum specific growth rate were increased by 21% compared with that in the control. The ΔLac/ΔGlc and ΔNH3/ΔGln were decreased by 26% and 27%, respectively. The ATP production rate and the ATP/O2 ratio were increased by 110% and 20%, respectively. The level of reactive oxygen species (ROS) was reduced by 60%. The adenovirus reproductive ability of the PYC2-A-P-L cells was approximately 30-fold higher than that of the control. The results showed that proper overexpression of the aralar1, pkm2 and pyc2 genes can significantly improve the substance and energy metabolism efficiency in HEK-293 cells, maximize the metabolic balance of pyruvate, and ultimately improve HAdV reproduction. This study provides a method of regulation of pyruvate metabolism and polygenic metabolic engineering in mammalian cells cultured in vitro and suggests an effective method for efficient HAdV production. HEK-293 cells are increasingly being used in the production of human adenovirus (HAdV) vaccines.![]()
Collapse
Affiliation(s)
- Li Xie
- State Key Laboratory of Bioreactor Engineering
- School of Bioengineering, East China University of Science and Technology
- Shanghai 200237
- China
| | - Junqing Miao
- State Key Laboratory of Bioreactor Engineering
- School of Bioengineering, East China University of Science and Technology
- Shanghai 200237
- China
| | - Xiangchao Li
- State Key Laboratory of Bioreactor Engineering
- School of Bioengineering, East China University of Science and Technology
- Shanghai 200237
- China
| | - Xiaoping Yi
- State Key Laboratory of Bioreactor Engineering
- School of Bioengineering, East China University of Science and Technology
- Shanghai 200237
- China
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering
- School of Bioengineering, East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
16
|
Martínez-Monge I, Albiol J, Lecina M, Liste-Calleja L, Miret J, Solà C, Cairó JJ. Metabolic flux balance analysis during lactate and glucose concomitant consumption in HEK293 cell cultures. Biotechnol Bioeng 2018; 116:388-404. [PMID: 30411322 DOI: 10.1002/bit.26858] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 09/29/2018] [Accepted: 10/26/2018] [Indexed: 01/06/2023]
Abstract
At early stages of the exponential growth phase in HEK293 cell cultures, the tricarboxylic acid cycle is unable to process all the amount of NADH generated in the glycolysis pathway, being lactate the main by-product. However, HEK293 cells are also able to metabolize lactate depending on the environmental conditions. It has been recently observed that one of the most important modes of lactate metabolization is the cometabolism of lactate and glucose, observed even during the exponential growth phase. Extracellular lactate concentration and pH appear to be the key factors triggering the metabolic shift from glucose consumption and lactate production to lactate and glucose concomitant consumption. The hypothesis proposed for triggering this metabolic shift to lactate and glucose concomitant consumption is that HEK293 cells metabolize extracellular lactate as a response to both extracellular protons and lactate accumulation, by means of cotransporting them (extracellular protons and lactate) into the cytosol. At this point, there exists a considerable controversy about how lactate reaches the mitochondrial matrix: the first hypothesis proposes that lactate is converted into pyruvate in the cytosol, and afterward, pyruvate enters into the mitochondria; the second alternative considers that lactate enters first into the mitochondria, and then, is converted into pyruvate. In this study, lactate transport and metabolization into mitochondria is shown to be feasible, as evidenced by means of respirometry tests with isolated active mitochondria, including the depletion of lactate concentration of the respirometry assay. Although the capability of lactate metabolization by isolated mitochondria is demonstrated, the possibility of lactate being converted into pyruvate in the cytosol cannot be excluded from the discussion. For this reason, the calculation of the metabolic fluxes for an HEK293 cell line was performed for the different metabolic phases observed in batch cultures under pH controlled and noncontrolled conditions, considering both hypotheses. The main objective of this study is to evaluate the redistribution of cellular metabolism and compare the differences or similarities between the phases before and after the metabolic shift of HEK293 cells (shift observed when pH is not controlled). That is from a glucose consumption/lactate production phase to a glucose-lactate coconsumption phase. Interestingly, switching to a glucose and lactate cometabolization results in a better-balanced cell metabolism, with decreased glucose and amino acids uptake rates, affecting minimally cell growth. This behavior could be applied to further develop new approaches in terms of cell engineering and to develop improved cell culture strategies in the field of animal cell technology.
Collapse
Affiliation(s)
- Iván Martínez-Monge
- Departament of Chemical, Biological and Environmental Engineering, Autonomous University of Barcelona, Cerdanyola del Vallès, Spain
| | - Joan Albiol
- Departament of Chemical, Biological and Environmental Engineering, Autonomous University of Barcelona, Cerdanyola del Vallès, Spain
| | - Martí Lecina
- Departament of Chemical, Biological and Environmental Engineering, Autonomous University of Barcelona, Cerdanyola del Vallès, Spain.,Bioengineering Department, IQS-Universitat Ramon Llull, Barcelona, Spain
| | - Leticia Liste-Calleja
- Departament of Chemical, Biological and Environmental Engineering, Autonomous University of Barcelona, Cerdanyola del Vallès, Spain
| | - Joan Miret
- Departament of Chemical, Biological and Environmental Engineering, Autonomous University of Barcelona, Cerdanyola del Vallès, Spain
| | - Carles Solà
- Departament of Chemical, Biological and Environmental Engineering, Autonomous University of Barcelona, Cerdanyola del Vallès, Spain
| | - Jordi J Cairó
- Departament of Chemical, Biological and Environmental Engineering, Autonomous University of Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
17
|
Carinhas N, Koshkin A, Pais DAM, Alves PM, Teixeira AP. 13 C-metabolic flux analysis of human adenovirus infection: Implications for viral vector production. Biotechnol Bioeng 2016; 114:195-207. [PMID: 27477740 DOI: 10.1002/bit.26063] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 07/24/2016] [Accepted: 07/26/2016] [Indexed: 01/08/2023]
Abstract
Adenoviruses are human pathogens increasingly used as gene therapy and vaccination vectors. However, their impact on cell metabolism is poorly characterized. We performed carbon labeling experiments with [1,2-13 C]glucose or [U-13 C]glutamine to evaluate metabolic alterations in the amniocyte-derived, E1-transformed 1G3 cell line during production of a human adenovirus type 5 vector (AdV5). Nonstationary 13 C-metabolic flux analysis revealed increased fluxes of glycolysis (17%) and markedly PPP (over fourfold) and cytosolic AcCoA formation (nearly twofold) following infection of growing cells. Interestingly, infection of growth-arrested cells increased overall carbon flow even more, including glutamine anaplerosis and TCA cycle activity (both over 1.5-fold), but was unable to stimulate the PPP and was associated with a steep drop in AdV5 replication (almost 80%). Our results underscore the importance of nucleic and fatty acid biosynthesis for adenovirus replication. Overall, we portray a metabolic blueprint of human adenovirus infection, highlighting similarities with other viruses and cancer, and suggest strategies to improve AdV5 production. Biotechnol. Bioeng. 2017;114: 195-207. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nuno Carinhas
- iBET, Instituto de Biologia Experimental e Tecnológica, Avenida da República, Oeiras, 2781-157, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, Oeiras, 2780-157, Portugal
| | - Alexey Koshkin
- iBET, Instituto de Biologia Experimental e Tecnológica, Avenida da República, Oeiras, 2781-157, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, Oeiras, 2780-157, Portugal
| | - Daniel A M Pais
- iBET, Instituto de Biologia Experimental e Tecnológica, Avenida da República, Oeiras, 2781-157, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, Oeiras, 2780-157, Portugal
| | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Avenida da República, Oeiras, 2781-157, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, Oeiras, 2780-157, Portugal
| | - Ana P Teixeira
- iBET, Instituto de Biologia Experimental e Tecnológica, Avenida da República, Oeiras, 2781-157, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, Oeiras, 2780-157, Portugal
| |
Collapse
|
18
|
Impact of Adenovirus infection in host cell metabolism evaluated by (1)H-NMR spectroscopy. J Biotechnol 2016; 231:16-23. [PMID: 27215342 DOI: 10.1016/j.jbiotec.2016.05.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/12/2016] [Accepted: 05/19/2016] [Indexed: 12/22/2022]
Abstract
Adenovirus-based vectors are powerful vehicles for gene transfer applications in vaccination and gene therapy. Although highly exploited in the clinical setting, key aspects of the adenovirus biology are still not well understood, in particular the subversion of host cell metabolism during viral infection and replication. The aim of this work was to gain insights on the metabolism of two human cell lines (HEK293 and an amniocyte-derived cell line, 1G3) after infection with an adenovirus serotype 5 vector (AdV5). In order to profile metabolic alterations, we used (1)H-NMR spectroscopy, which allowed the quantification of 35 metabolites in cell culture supernatants with low sample preparation and in a relatively short time. Significant differences between both cell lines in non-infected cultures were identified, namely in glutamine and acetate metabolism, as well as by-product secretion. The main response to AdV5 infection was an increase in glucose consumption and lactate production rates. Moreover, cultures performed with or without glutamine supplementation confirmed the exhaustion of this amino acid as one of the main causes of lower AdV5 production at high cell densities (10- and 1.5-fold less specific yields in HEK293 and 1G3 cells, respectively), and highlighted different degrees of glutamine dependency of adenovirus replication in each cell line. The observed metabolic alterations associated with AdV5 infection and specificity of the host cell line can be useful for targeted bioprocess optimization.
Collapse
|
19
|
Metabolic flux profiling of MDCK cells during growth and canine adenovirus vector production. Sci Rep 2016; 6:23529. [PMID: 27004747 PMCID: PMC4804208 DOI: 10.1038/srep23529] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/08/2016] [Indexed: 12/16/2022] Open
Abstract
Canine adenovirus vector type 2 (CAV2) represents an alternative to human adenovirus vectors for certain gene therapy applications, particularly neurodegenerative diseases. However, more efficient production processes, assisted by a greater understanding of the effect of infection on producer cells, are required. Combining [1,2-(13)C]glucose and [U-(13)C]glutamine, we apply for the first time (13)C-Metabolic flux analysis ((13)C-MFA) to study E1-transformed Madin-Darby Canine Kidney (MDCK) cells metabolism during growth and CAV2 production. MDCK cells displayed a marked glycolytic and ammoniagenic metabolism, and (13)C data revealed a large fraction of glutamine-derived labelling in TCA cycle intermediates, emphasizing the role of glutamine anaplerosis. (13)C-MFA demonstrated the importance of pyruvate cycling in balancing glycolytic and TCA cycle activities, as well as occurrence of reductive alphaketoglutarate (AKG) carboxylation. By turn, CAV2 infection significantly upregulated fluxes through most central metabolism, including glycolysis, pentose-phosphate pathway, glutamine anaplerosis and, more prominently, reductive AKG carboxylation and cytosolic acetyl-coenzyme A formation, suggestive of increased lipogenesis. Based on these results, we suggest culture supplementation strategies to stimulate nucleic acid and lipid biosynthesis for improved canine adenoviral vector production.
Collapse
|
20
|
Tapia F, Vázquez-Ramírez D, Genzel Y, Reichl U. Bioreactors for high cell density and continuous multi-stage cultivations: options for process intensification in cell culture-based viral vaccine production. Appl Microbiol Biotechnol 2016; 100:2121-32. [PMID: 26758296 PMCID: PMC4756030 DOI: 10.1007/s00253-015-7267-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/17/2015] [Accepted: 12/21/2015] [Indexed: 01/09/2023]
Abstract
With an increasing demand for efficacious, safe, and affordable vaccines for human and animal use, process intensification in cell culture-based viral vaccine production demands advanced process strategies to overcome the limitations of conventional batch cultivations. However, the use of fed-batch, perfusion, or continuous modes to drive processes at high cell density (HCD) and overextended operating times has so far been little explored in large-scale viral vaccine manufacturing. Also, possible reductions in cell-specific virus yields for HCD cultivations have been reported frequently. Taking into account that vaccine production is one of the most heavily regulated industries in the pharmaceutical sector with tough margins to meet, it is understandable that process intensification is being considered by both academia and industry as a next step toward more efficient viral vaccine production processes only recently. Compared to conventional batch processes, fed-batch and perfusion strategies could result in ten to a hundred times higher product yields. Both cultivation strategies can be implemented to achieve cell concentrations exceeding 10(7) cells/mL or even 10(8) cells/mL, while keeping low levels of metabolites that potentially inhibit cell growth and virus replication. The trend towards HCD processes is supported by development of GMP-compliant cultivation platforms, i.e., acoustic settlers, hollow fiber bioreactors, and hollow fiber-based perfusion systems including tangential flow filtration (TFF) or alternating tangential flow (ATF) technologies. In this review, these process modes are discussed in detail and compared with conventional batch processes based on productivity indicators such as space-time yield, cell concentration, and product titers. In addition, options for the production of viral vaccines in continuous multi-stage bioreactors such as two- and three-stage systems are addressed. While such systems have shown similar virus titers compared to batch cultivations, keeping high yields for extended production times is still a challenge. Overall, we demonstrate that process intensification of cell culture-based viral vaccine production can be realized by the consequent application of fed-batch, perfusion, and continuous systems with a significant increase in productivity. The potential for even further improvements is high, considering recent developments in establishment of new (designer) cell lines, better characterization of host cell metabolism, advances in media design, and the use of mathematical models as a tool for process optimization and control.
Collapse
Affiliation(s)
- Felipe Tapia
- International Max Planck Research School for Advanced Methods in Process and Systems Engineering, Sandtorstr. 1, 39106, Magdeburg, Germany
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany
| | - Daniel Vázquez-Ramírez
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany
| | - Yvonne Genzel
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany.
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany
- Chair for Bioprocess Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| |
Collapse
|
21
|
Fernandes de Sousa S, Bastin G, Jolicoeur M, Vande Wouwer A. Dynamic metabolic flux analysis using a convex analysis approach: Application to hybridoma cell cultures in perfusion. Biotechnol Bioeng 2015; 113:1102-12. [DOI: 10.1002/bit.25879] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/30/2015] [Accepted: 11/01/2015] [Indexed: 12/22/2022]
Affiliation(s)
| | - Georges Bastin
- Department of Mathematical Engineering; ICTEAM; Catholic University of Louvain; Louvain-La-Neuve Belgium
| | - Mario Jolicoeur
- Department of Chemical Engineering; Laboratory in Applied Metabolic Engineering; Polytechnic University of Montreal; Montréal Canada
| | | |
Collapse
|
22
|
Silva AC, Simão D, Küppers C, Lucas T, Sousa MFQ, Cruz P, Carrondo MJT, Kochanek S, Alves PM. Human amniocyte-derived cells are a promising cell host for adenoviral vector production under serum-free conditions. Biotechnol J 2015; 10:760-71. [DOI: 10.1002/biot.201400765] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 04/02/2015] [Accepted: 04/13/2015] [Indexed: 11/09/2022]
|
23
|
Sá JV, Duarte TM, Carrondo MJT, Alves PM, Teixeira AP. Metabolic Flux Analysis: A Powerful Tool in Animal Cell Culture. CELL ENGINEERING 2015. [DOI: 10.1007/978-3-319-10320-4_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
24
|
Genzel Y, Vogel T, Buck J, Behrendt I, Ramirez DV, Schiedner G, Jordan I, Reichl U. High cell density cultivations by alternating tangential flow (ATF) perfusion for influenza A virus production using suspension cells. Vaccine 2014; 32:2770-81. [DOI: 10.1016/j.vaccine.2014.02.016] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
25
|
Garcia-Albornoz MA, Nielsen J. Application of Genome-Scale Metabolic Models in Metabolic Engineering. Ind Biotechnol (New Rochelle N Y) 2013. [DOI: 10.1089/ind.2013.0011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
| | - Jens Nielsen
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| |
Collapse
|
26
|
Decline in baculovirus-expressed recombinant protein production with increasing cell density is strongly correlated to impairment of virus replication and mRNA expression. Appl Microbiol Biotechnol 2013; 97:5245-57. [PMID: 23519736 DOI: 10.1007/s00253-013-4835-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 03/03/2013] [Accepted: 03/05/2013] [Indexed: 10/27/2022]
Abstract
The cell density effect is a well-established constraint in the baculovirus-insect cell expression platform, in which cell-specific productivity declines with increasing cell density, hence limiting the maximum achievable volumetric yield of protein product. A deeper elucidation of this phenomenon is sought in this study, by tracking the peak production of viral DNA (vDNA), recombinant LacZ mRNA, and β-galactosidase (β-gal) protein, over a wide range of cell densities. Sf9 suspension cell cultures were propagated in Sf-900 III serum-free medium and synchronously infected with rAcMNPV at multiple infection cell densities (ICDs) of between 0.5 and 8 × 10(6) cells/mL. There was a strong negative linear correlation between the specific β-gal yield and the peak cell density (PCD) post-infection, but contrary to previous reports, the yield decline started at a lower PCD of around 1 × 10(6) cells/mL. Most interestingly, there also was a corresponding strong negative linear correlation between the specific vDNA or LacZ mRNA yield, and the PCD. Comparing the infections at the highest and lowest PCDs tested, the yield decline was most dramatic for β-gal protein (95 %) and LacZ mRNA (90 %), while it was more moderate for vDNA (50 %). These declines were significantly reduced but not completely arrested, when spent medium was replaced with fresh at the ICD. These findings suggest that protein yield deterioration with increasing cell density originated from limitations during upstream events such as virus gene replication or transcription, rather than during the translational phase. Such limitations may be largely nutritional, but a more complex mechanism may be implicated.
Collapse
|
27
|
Gerdtzen ZP. Modeling metabolic networks for mammalian cell systems: general considerations, modeling strategies, and available tools. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2012; 127:71-108. [PMID: 21984615 DOI: 10.1007/10_2011_120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Over the past decades, the availability of large amounts of information regarding cellular processes and reaction rates, along with increasing knowledge about the complex mechanisms involved in these processes, has changed the way we approach the understanding of cellular processes. We can no longer rely only on our intuition for interpreting experimental data and evaluating new hypotheses, as the information to analyze is becoming increasingly complex. The paradigm for the analysis of cellular systems has shifted from a focus on individual processes to comprehensive global mathematical descriptions that consider the interactions of metabolic, genomic, and signaling networks. Analysis and simulations are used to test our knowledge by refuting or validating new hypotheses regarding a complex system, which can result in predictive capabilities that lead to better experimental design. Different types of models can be used for this purpose, depending on the type and amount of information available for the specific system. Stoichiometric models are based on the metabolic structure of the system and allow explorations of steady state distributions in the network. Detailed kinetic models provide a description of the dynamics of the system, they involve a large number of reactions with varied kinetic characteristics and require a large number of parameters. Models based on statistical information provide a description of the system without information regarding structure and interactions of the networks involved. The development of detailed models for mammalian cell metabolism has only recently started to grow more strongly, due to the intrinsic complexities of mammalian systems, and the limited availability of experimental information and adequate modeling tools. In this work we review the strategies, tools, current advances, and recent models of mammalian cells, focusing mainly on metabolism, but discussing the methodology applied to other types of networks as well.
Collapse
Affiliation(s)
- Ziomara P Gerdtzen
- Department of Chemical Engineering and Biotechnology, Millennium Institute for Cell Dynamics and Biotechnology: a Centre for Systems Biology, University of Chile, Beauchef 850, Santiago, Chile,
| |
Collapse
|
28
|
Enhanced glycoprotein production in HEK-293 cells expressing pyruvate carboxylase. Metab Eng 2011; 13:499-507. [DOI: 10.1016/j.ymben.2011.05.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 04/26/2011] [Accepted: 05/13/2011] [Indexed: 12/22/2022]
|
29
|
Niklas J, Heinzle E. Metabolic flux analysis in systems biology of mammalian cells. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2011; 127:109-32. [PMID: 21432052 DOI: 10.1007/10_2011_99] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reaction rates or metabolic fluxes reflect the integrated phenotype of genome, transcriptome and proteome interactions, including regulation at all levels of the cellular hierarchy. Different methods have been developed in the past to analyse intracellular fluxes. However, compartmentation of mammalian cells, varying utilisation of multiple substrates, reversibility of metabolite uptake and production, unbalanced growth behaviour and adaptation of cells to changing environment during cultivation are just some reasons that make metabolic flux analysis (MFA) in mammalian cell culture more challenging compared to microorganisms. In this article MFA using the metabolite balancing methodology and the advantages and disadvantages of (13)C MFA in mammalian cell systems are reviewed. Application examples of MFA in the optimisation of cell culture processes for the production of biopharmaceuticals are presented with a focus on the metabolism of the main industrial workhorse. Another area in which mammalian cell culture plays a key role is in medical and toxicological research. It is shown that MFA can be used to understand pathophysiological mechanisms and can assist in understanding effects of drugs or other compounds on cellular metabolism.
Collapse
Affiliation(s)
- Jens Niklas
- Biochemical Engineering Institute, Saarland University, Campus A 1.5, 66123, Saarbrücken, Germany
| | | |
Collapse
|
30
|
Zamorano F, Wouwer AV, Bastin G. A detailed metabolic flux analysis of an underdetermined network of CHO cells. J Biotechnol 2010; 150:497-508. [PMID: 20869402 DOI: 10.1016/j.jbiotec.2010.09.944] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 09/14/2010] [Accepted: 09/15/2010] [Indexed: 10/19/2022]
Abstract
In this article the metabolic flux analysis of growing CHO-320 cells is performed for a detailed metabolic network which involves 100 reactions and embraces all the significant pathways describing the metabolism of CHO cells. The purpose is to investigate the efficiency of the flux analysis when it is based on a relatively small set of extracellular measurements that can be easily achieved in most laboratories. In this case the flux analysis problem leads to a generally underdetermined mass balance system, as data are not sufficient to uniquely define the metabolic fluxes. Our main contribution is to show that, provided the system of mass balance equations is well-posed, although it is underdetermined, very narrow intervals may be found for most fluxes. The importance of checking the well-posedness of the problem is emphasized and the influence of the number of available measurements on the accuracy of the metabolic flux intervals is systematically investigated. In all cases the computed flux intervals are bounded and a single well defined value is obtained for the formation rates of the cellular macromolecules (proteins, DNA, RNA, lipids) that are not measured. The potential gain of a simple theoretical assumption regarding the metabolism of Threonine is also discussed and compared with an optimal solution calculated by maximizing the biomass formation rate. Alternative network structures obtained by inverting the direction of reversible reactions are also considered. Finally, the results of the metabolic flux analysis are exploited to estimate the total energy production resulting from the metabolism of growing CHO-320 cells.
Collapse
Affiliation(s)
- F Zamorano
- Department of Automatic Control, University of Mons, Boulevard Dolez 31, 7000 Mons, Belgium.
| | | | | |
Collapse
|
31
|
Henry O, Jolicoeur M, Kamen A. Unraveling the metabolism of HEK-293 cells using lactate isotopomer analysis. Bioprocess Biosyst Eng 2010; 34:263-73. [PMID: 20848294 DOI: 10.1007/s00449-010-0468-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 09/01/2010] [Indexed: 01/22/2023]
Abstract
HEK-293 is the most extensively used human cell line for the production of viral vectors and is gaining increasing attention for the production of recombinant proteins by transient transfection. To further improve the metabolic characterization of this cell line, we have performed cultures using ¹³C-labeled substrates and measured the resulting mass isotopomer distributions in lactate by LC/MS. Simultaneous metabolite and isotopomer balancing allowed improvement and validation of the metabolic model and quantification of key intracellular pathways. We have determined the amounts of glucose carbon channeled through the PPP, incorporated into the TCA cycle for energy production and lipids biosynthesis, as well as the cytosolic and mitochondrial malic enzyme fluxes. Our analysis also revealed that glutamine did not significantly contribute to lactate formation. An improved and quantitative understanding of the central carbon metabolism is greatly needed to pursue the rational development of engineering approaches at both the cellular and process levels.
Collapse
Affiliation(s)
- Olivier Henry
- Chemical Engineering Department, École Polytechnique de Montréal, C.P. 6079, Succ. Centre-ville, Montréal, QC H3C3A7, Canada.
| | | | | |
Collapse
|
32
|
Zhi W, Shouwen C, Lifang R, Ming S, Ziniu Y. A fundamental regulatory role of formate on thuringiensin production by resting cell of Bacillus thuringiensis YBT-032. Bioprocess Biosyst Eng 2009; 30:225-9. [PMID: 17387519 DOI: 10.1007/s00449-007-0118-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Accepted: 02/06/2007] [Indexed: 11/26/2022]
Abstract
In this work, a fundamental regulatory role of formate on thuringiensin production by resting cell of Bacillus thuringiensis YBT-032 was investigated. Nicotinamide adenine dinucleotide (NADH) production and formate dehydrogenase activity increased with formate addition from 0.5 to 2.0 g/L, respectively. However, with the formate addition of 1.5 g/L, the activities of pyruvate kinase and glucose 6-phosphate dehydrogenase reached a peak and increased by 316 and 150% relative to those of the control, respectively. In addition, intracellular production of pyruvate, aspartate, citrate and adenine were significantly enhanced by 75, 66, 32 and 78% as well. An improvement (90%) of thuringiensin production was also successfully obtained. Interestingly to point out, thuringiensin yield was closely correlative with adenine production, and the linear relationship was also observed. The results suggest that appropriate formate addition did act as a modulator and facilitate carbon flux in glycolysis and pentose phosphate pathway to synthesize adenine and thuringiensin via intracellular NADH availability.
Collapse
Affiliation(s)
- Wang Zhi
- National Engineering Research Center for Microbial Pesticides, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | | | | | | | | |
Collapse
|
33
|
Bernal V, Carinhas N, Yokomizo AY, Carrondo MJT, Alves PM. Cell density effect in the baculovirus-insect cells system: a quantitative analysis of energetic metabolism. Biotechnol Bioeng 2009; 104:162-80. [PMID: 19459142 DOI: 10.1002/bit.22364] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The cell density effect (i.e., the drop in the specific productivity in the baculovirus-insect cells expression system when cells are infected at high cell densities) has been extensively described in the literature. In this article, a model for the central metabolism of serum-free suspension cultures of Spodoptera frugiperda Sf9 cells is proposed and used to investigate the metabolic basis for this phenomenon. The main metabolic pathways (glycolysis, pentose phosphate pathway, tricarboxylic acids cycle, glutaminolysis, and amino acids metabolism), cellular growth and energetics were considered. The analysis of the stoichiometric model allowed further understanding of the interplay of the consumption of carbon and nitrogen sources in insect cells. Moreover, metabolic flux analysis revealed that Sf9 cells undergo a progressive inhibition of central metabolism when grown to high cell densities, for which the incorporation of amino acids carbon backbones into the TCA cycle (mainly glutamine) and the down-regulation of glycolysis are partially responsible. Following infection by baculovirus and cellular division arrest, central energy metabolism depended on the infection strategy chosen (cell concentration at the moment of infection and multiplicity of infection), inhibition being observed at high cell densities. Interestingly, the energetic status of the culture correlated with the decrease in cellular production of baculovirus, meaning that there is room for process optimization through the application of metabolic engineering techniques.
Collapse
Affiliation(s)
- Vicente Bernal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa (ITQB-UNL/IBET), Oeiras, Portugal
| | | | | | | | | |
Collapse
|
34
|
From the first to the third generation adenoviral vector: what parameters are governing the production yield? Biotechnol Adv 2008; 27:133-44. [PMID: 19013226 DOI: 10.1016/j.biotechadv.2008.10.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 10/13/2008] [Accepted: 10/14/2008] [Indexed: 11/22/2022]
Abstract
Human adenoviral viral vector serotype 5 (AdV) is presently the primary viral vector used in gene therapy trials. Advancements in AdV process development directly contribute to the clinical application and commercialization of the AdV gene delivery technology. Notably, the development of AdV production in suspension culture has driven the increase in AdV volumetric and specific productivity, therefore providing large quantities of AdV required for clinical studies. This review focuses on detailing the viral, cell and cell culture parameters governing the productivity of the three generations of AdV vectors.
Collapse
|
35
|
Andrews BA, Martinez V, Asenjo JA, Gerdtzen ZP. A comparative study of cell growth and adenovirus production using suspension and stationary cell culture. J Biotechnol 2008. [DOI: 10.1016/j.jbiotec.2008.07.285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Wahl A, Sidorenko Y, Dauner M, Genzel Y, Reichl U. Metabolic flux model for an anchorage-dependent MDCK cell line: characteristic growth phases and minimum substrate consumption flux distribution. Biotechnol Bioeng 2008; 101:135-52. [PMID: 18646224 DOI: 10.1002/bit.21873] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Up to now cell-culture based vaccine production processes only reach low productivities. The reasons are: (i) slow cell growth and (ii) low cell concentrations. To address these shortcomings, a quantitative analysis of the process conditions, especially the cell growth and the metabolic capabilities of the host cell line is required. For this purpose a MDCK cell based influenza vaccine production process was investigated. With a segregated growth model four distinct cell growth phases are distinguished in the batch process. In the first phase the cells attach to the surface of the microcarriers and show low metabolic activity. The second phase is characterized by exponential cell growth. In the third phase, preceded by a change in oxygen consumption, contact inhibition leads to a decrease in cell growth. Finally, the last phase before infection shows no further increase in cell numbers. To gain insight into the metabolic activity during these phases, a detailed metabolic model of MDCK cell was developed based on genome information and experimental analysis. The MDCK model was also used to calculate a theoretical flux distribution representing an optimized cell that only consumes a minimum of carbon sources. Comparing this minimum substrate consumption flux distribution to the fluxes estimated from experiments unveiled high overflow metabolism under the applied process conditions.
Collapse
Affiliation(s)
- Aljoscha Wahl
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106 Magdeburg, Germany.
| | | | | | | | | |
Collapse
|
37
|
Pohlscheidt M, Langer U, Minuth T, Bödeker B, Apeler H, Hörlein HD, Paulsen D, Rübsamen-Waigmann H, Henzler HJ, Reichl U. Development and optimisation of a procedure for the production of Parapoxvirus ovis by large-scale microcarrier cell culture in a non-animal, non-human and non-plant-derived medium. Vaccine 2008; 26:1552-65. [PMID: 18295380 DOI: 10.1016/j.vaccine.2008.01.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2007] [Revised: 12/29/2007] [Accepted: 01/08/2008] [Indexed: 12/31/2022]
Abstract
For the production of a chemically inactivated Parapoxvirus ovis (PPVO), an adherent bovine kidney cell line was cultivated on Cytodex-3 microcarriers in suspension culture. The inactivated and purified virus particles have shown immune modulatory activity in several animal models. PPVO was produced by a biphasic batch process at the 3.5 and 10 L scale. Aeration was realised by bubble-free membrane oxygenation via a tube stator with a central two-blade anchor impeller. In order to increase efficiency, process robustness and safety, the established process was optimised. The cell line was adapted to a protein-free medium (except recombinant insulin) in order to increase biosafety. A scale up to a 50 L pilot plant with direct cell expansion was performed successfully. In parallel, the biphasic batch process was optimised with special emphasis on different operating conditions (cell number, Multiplicity of Infection (MOI), etc.) and process management (fed-batch, dialysis, etc.). The quality and concentration of the purified virus particles was assessed by quantitative electron microscopy, residual host cell protein and DNA-content and, finally, biologic activity in a transgenic mouse model. This integrated approach led to a new, safe, robust and highly productive large-scale production process, called "Volume-Expanded-Fed" Batch with cell densities up to 6-7e06 cells/mL. By subsequent dilution of infected cells into the next process scale, an increase in total productivity by a factor of 40 (related to an established biphasic batch process) was achieved.
Collapse
Affiliation(s)
- M Pohlscheidt
- Roche Diagnostics GmbH, Pharma Biotech Production and Development, Penzberg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Cloutier M, Perrier M, Jolicoeur M. Dynamic flux cartography of hairy roots primary metabolism. PHYTOCHEMISTRY 2007; 68:2393-404. [PMID: 17555780 DOI: 10.1016/j.phytochem.2007.04.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 04/16/2007] [Accepted: 04/20/2007] [Indexed: 05/15/2023]
Abstract
A dynamic model for plant cell and hairy root primary metabolism is presented. The model includes nutrient uptake (Pi, sugars, nitrogen sources), the glycolysis and pentose phosphate pathways, the TCA cycle, amino acid biosynthesis, respiratory chain, biosynthesis of cell building blocks (structural hexoses, organic acids, lipids, and organic phosphated molecules). The energy shuttles (ATP, ADP) and cofactors (NAD/H, NADP/H) are also included. The model describes the kinetics of 44 biochemical reactions (fluxes) of the primary metabolism of plant cells and includes 41 biochemical species (metabolites, nutrients, biomass components). Multiple Michaelis-Menten type kinetics are used to describe biochemical reaction rates. Known regulatory phenomena on metabolic pathways are included using sigmoid switch functions. A visualization framework showing fluxes and metabolite concentrations over time is presented. The visualization of fluxes and metabolites is used to analyze simulation results from Catharanthus roseus hairy root 50 d batch cultures. The visualization of the metabolic system allows analyzing split ratios between pathways and flux time-variations. For carbon metabolism, the cells were observed to have relatively high and stable fluxes for the central carbon metabolism and low and variable fluxes for anabolic pathways. For phosphate metabolism, a very high free intracellular Pi turnover rate was observed with higher flux variations than for the carbon metabolism. Nitrogen metabolism also exhibited large flux variations. The potential uses of the model are also discussed.
Collapse
Affiliation(s)
- M Cloutier
- Canada Research Chair on the Development of Metabolic Engineering Tools, Bio-P2, Department of Chemical Engineering, Ecole Polytechnique de Montreal, PO Box 6079, Station Centre-ville, Montreal, Quebec, Canada H3C 3A7
| | | | | |
Collapse
|
39
|
Wang Z, Chen S, Sun M, Yu Z. A fundamental dual regulatory role of citrate on the biosyntheses of thuringiensin and poly-β-hydroxybutyrate in Bacillus thuringiensis YBT-032. Biotechnol Lett 2007; 29:779-84. [PMID: 17279445 DOI: 10.1007/s10529-006-9302-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 12/18/2006] [Accepted: 12/18/2006] [Indexed: 11/29/2022]
Abstract
The production of alpha-ketoglutarate, adenine, thuringiensin production rate and thuringiensin yield on glucose consumed increased by 22%, 36%, 40% and 40%, respectively, in presence of 2 g citrate/l. However, citrate decreased pyruvate production, poly-beta-hydroxybutyrate (PHB) production rate and PHB yield by 62%, 31% and 45%, respectively. The activities of pyruvate kinase and glucose-6-phosphate dehydrogenase were 36%-45% lower and 50%-120% higher than those of the control, respectively. The results suggest that citrate regulated the carbon flux to synthesis of adenine present in thuringiensin with a higher efficiency of utilization of glucose by decreasing PHB synthesis.
Collapse
Affiliation(s)
- Zhi Wang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | | | | | | |
Collapse
|
40
|
Mortensen OH, Frandsen L, Schjerling P, Nishimura E, Grunnet N. PGC-1alpha and PGC-1beta have both similar and distinct effects on myofiber switching toward an oxidative phenotype. Am J Physiol Endocrinol Metab 2006; 291:E807-16. [PMID: 16720625 DOI: 10.1152/ajpendo.00591.2005] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peroxisome proliferator-activated receptor-gamma coactivator-1alpha and -1beta (PGC-1alpha and PGC-1beta) were overexpressed by adenovirus-mediated gene transfer in cultures of primary rat skeletal muscle cells derived from neonatal myoblasts. Effects on muscle fiber type transition and metabolism were studied from days 5 to 22 of culture. PGC-1alpha and PGC-1beta overexpression caused a three- to fourfold increase in mRNA level, a doubling of enzymatic activity of citrate synthase, a slight increase in short-chain acyl-CoA dehydrogenase mRNA, a doubling of the mRNA level, and a 30-50% increase in enzymatic activity of glyceraldehyde-3-phosphate dehydrogenase. Lactate dehydrogenase or creatine kinase activity was unchanged. PGC-1alpha enhanced glycogen buildup twofold at 5 or 25 mM glucose, whereas PGC-1beta caused a decrease. Both PGC-1alpha and PGC-1beta overexpression caused a faster maturation of myotubes, as seen by mRNA downregulation of the immature embryonal and perinatal myosin heavy-chain (MHC) isoforms. PGC-1alpha or PGC-1beta overexpression enhanced mRNA of the slow oxidative-associated MHC isoform MHCIb and downregulated mRNA levels of the fast glycolytic-associated MHC isoforms MHCIIX and MHCIIB. Only PGC-1beta overexpression caused an increase in mRNA of the intermediary fast oxidative-associated MHC isoform MHCIIA. PGC-1alpha or PGC-1beta overexpression upregulated GLUT4 mRNA and downregulated myocyte enhancer factor 2C transcription factor mRNA; only PGC-1alpha overexpression caused an increase in the mRNA expression of TRB3, a negative regulator of insulin signaling. These results show that both PGC-1alpha and PGC-1beta are involved in the regulation of skeletal muscle fiber transition and metabolism and that they have both overlapping and differing effects.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Blotting, Northern
- Cells, Cultured
- Energy Metabolism/physiology
- Glucose Transporter Type 4/biosynthesis
- Glucose Transporter Type 4/genetics
- Glycogen/metabolism
- MEF2 Transcription Factors
- Muscle Contraction/physiology
- Muscle Fibers, Skeletal/enzymology
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/metabolism
- Myogenic Regulatory Factors/biosynthesis
- Myogenic Regulatory Factors/genetics
- Myosin Heavy Chains/genetics
- Myosin Heavy Chains/metabolism
- Oxidation-Reduction
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
- Protein Kinases/biosynthesis
- Protein Kinases/genetics
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA-Binding Proteins/biosynthesis
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Rats
- Rats, Wistar
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Ole Hartvig Mortensen
- Department of Medical Biochemistry and Genetics, University of Copenhagen, Blegdamsvej 3, Bldg. 6.5, DK-2200 N, Denmark
| | | | | | | | | |
Collapse
|