1
|
Sasse C, Bastakis E, Bakti F, Höfer AM, Zangl I, Schüller C, Köhler AM, Gerke J, Krappmann S, Finkernagel F, Harting R, Strauss J, Heimel K, Braus GH. Induction of Aspergillus fumigatus zinc cluster transcription factor OdrA/Mdu2 provides combined cellular responses for oxidative stress protection and multiple antifungal drug resistance. mBio 2023; 14:e0262823. [PMID: 37982619 PMCID: PMC10746196 DOI: 10.1128/mbio.02628-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 11/21/2023] Open
Abstract
IMPORTANCE An overexpression screen of 228 zinc cluster transcription factor encoding genes of A. fumigatus revealed 11 genes conferring increased tolerance to antifungal drugs. Out of these, four oxidative stress and drug tolerance transcription factor encoding odr genes increased tolerance to oxidative stress and antifungal drugs when overexpressed. This supports a correlation between oxidative stress response and antifungal drug tolerance in A. fumigatus. OdrA/Mdu2 is required for the cross-tolerance between azoles, polyenes, and oxidative stress and activates genes for detoxification. Under oxidative stress conditions or when overexpressed, OdrA/Mdu2 accumulates in the nucleus and activates detoxifying genes by direct binding at their promoters, as we describe with the mdr1 gene encoding an itraconazole specific efflux pump. Finally, this work gives new insights about drug and stress resistance in the opportunistic pathogenic fungus A. fumigatus.
Collapse
Affiliation(s)
- Christoph Sasse
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Emmanouil Bastakis
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Fruzsina Bakti
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Annalena M. Höfer
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Isabella Zangl
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Campus, Tulln, Austria
- Core Facility Bioactive Molecules–Screening and Analysis, University of Natural Resources and Life Sciences, Vienna (BOKU), Austria
| | - Christoph Schüller
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Campus, Tulln, Austria
- Core Facility Bioactive Molecules–Screening and Analysis, University of Natural Resources and Life Sciences, Vienna (BOKU), Austria
| | - Anna M. Köhler
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Jennifer Gerke
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Sven Krappmann
- Institute of Microbiology–Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Center for Infection Research (ECI) and Medical Immunology Campus Erlangen (MICE), Erlangen, Germany
| | - Florian Finkernagel
- Center for Tumor Biology and Immunology, Core Facility Bioinformatics, Philipps University, Marburg, Germany
| | - Rebekka Harting
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Joseph Strauss
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Campus, Tulln, Austria
| | - Kai Heimel
- Department of Microbial Cell Biology, Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Gerhard H. Braus
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| |
Collapse
|
2
|
Effect of Post-Polyketide Synthase Modification Groups on Property and Activity of Polyene Macrolides. Antibiotics (Basel) 2023; 12:antibiotics12010119. [PMID: 36671320 PMCID: PMC9854516 DOI: 10.3390/antibiotics12010119] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
The biosynthesis of polyene macrolides, which are natural products produced by soil actinomycetes, have been extensively explored, and recent studies have focused on the effects of post-polyketide synthase (PKS) modifications to polyene macrolides on toxicity, water solubility, and antifungal activity. For example, there are interactions between glycosyl, carboxyl, and hydroxyl or epoxy groups generated in the post-PKS modification steps; salt bridges will be formed between carboxylate and ammonium on the mycosamine; and water bridges will be formed between hydroxy and hydroxyl on mycosamine. These interactions will affect their water solubility and substrate-recognition specificity. This review summarizes research related to these post-PKS modification groups and discusses some genetic engineering operation problems and solutions that may be encountered when modifying these post-PKS modification groups. In addition, this review provides a basis for the structural research of polyene macrolide antibiotics and contributes to comprehensive and systematic knowledge, and it may thus encourage researchers to develop novel antifungal drugs with higher therapeutic indexes and medical values.
Collapse
|
3
|
Sharma V, Kaur R, Salwan R. Streptomyces: host for refactoring of diverse bioactive secondary metabolites. 3 Biotech 2021; 11:340. [PMID: 34221811 DOI: 10.1007/s13205-021-02872-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/31/2021] [Indexed: 12/22/2022] Open
Abstract
Microbial secondary metabolites are intensively explored due to their demands in pharmaceutical, agricultural and food industries. Streptomyces are one of the largest sources of secondary metabolites having diverse applications. In particular, the abundance of secondary metabolites encoding biosynthetic gene clusters and presence of wobble position in Streptomyces strains make it potential candidate as a native or heterologous host for secondary metabolite production including several cryptic gene clusters expression. Here, we have discussed the developments in Streptomyces strains genome mining, its exploration as a suitable host and application of synthetic biology for refactoring genetic systems for developing chassis for enhanced as well as novel secondary metabolites with reduced genome and cleaned background.
Collapse
Affiliation(s)
- Vivek Sharma
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Randhir Kaur
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Richa Salwan
- College of Horticulture and Forestry, Dr YS Parmar University of Horticulture and Forestry, Neri, Hamirpur, Himachal Pradesh 177001 India
| |
Collapse
|
4
|
Zhang B, Chen Y, Jiang SX, Cai X, Huang K, Liu ZQ, Zheng YG. Comparative metabolomics analysis of amphotericin B high-yield mechanism for metabolic engineering. Microb Cell Fact 2021; 20:66. [PMID: 33750383 PMCID: PMC7945361 DOI: 10.1186/s12934-021-01552-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 02/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The polyene macrocyclic compound amphotericin B (AmB) is an important antifungal antibiotic for the clinical treatment of invasive fungal infections. To rationally guide the improvement of AmB production in the main producing strain Streptomyces nodosus, comparative metabolomics analysis was performed to investigate the intracellular metabolic changes in wild-type S. nodosus ZJB20140315 with low-yield AmB production and mutant S. nodosus ZJB2016050 with high-yield AmB production, the latter of which reached industrial criteria on a pilot scale. RESULTS To investigate the relationship of intracellular metabolites, 7758 metabolites were identified in mutant S. nodosus and wildtype S. nodosus via LC-MS. Through analysis of metabolism, the level of 26 key metabolites that involved in carbon metabolism, fatty acids metabolism, amino acids metabolism, purine metabolism, folate biosynthesis and one carbon pool by folate were much higher in mutant S. nodosus. The enrichment of relevant metabolic pathways by gene overexpression strategy confirmed that one carbon pool by folate was the key metabolic pathway. Meanwhile, a recombinant strain with gene metH (methionine synthase) overexpressed showed 5.03 g/L AmB production within 120 h fermentation, which is 26.4% higher than that of the mutant strain. CONCLUSIONS These results demonstrated that comparative metabolomics analysis was an effective approach for the improvement of AmB production and could be applied for other industrially or clinically important compounds as well.
Collapse
Affiliation(s)
- Bo Zhang
- Department, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
- Engineering Research Center of Bioconversion and Bio-Purification, Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
| | - Yu Chen
- Department, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
- Engineering Research Center of Bioconversion and Bio-Purification, Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
| | - Sheng-Xian Jiang
- Department, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
- Engineering Research Center of Bioconversion and Bio-Purification, Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
| | - Xue Cai
- Department, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
- Engineering Research Center of Bioconversion and Bio-Purification, Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
| | - Kai Huang
- Department, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
- Engineering Research Center of Bioconversion and Bio-Purification, Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
| | - Zhi-Qiang Liu
- Department, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
- Engineering Research Center of Bioconversion and Bio-Purification, Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
| | - Yu-Guo Zheng
- Department, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
- Engineering Research Center of Bioconversion and Bio-Purification, Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
| |
Collapse
|
5
|
Xu Q, Qian Y, Yuan Y, Shao Q, He X, Qiao H. A Quantitative LC-MS/MS Method for Determination of Liposomal Amphotericin B in Rat Plasma and Tissues and its Application to a Toxicokinetic and Tissue Distribution Study. CURR PHARM ANAL 2020. [DOI: 10.2174/1573412915666190415150644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background::
Among the existing antifungal drugs, Amphotericin B is the first drug in
the treatment of systemic fungal infections. However, its large adverse reactions limit the clinical
application and Liposome Amphotericin B resolves the problem.
Objective::
In the present study, a rapid, simple, sensitive and efficient method based on LCMS/
MS for determination of liposomal Amphotericin B in rat plasma and tissue samples using
natamycin as the internal standard has been developed and validated.
Methods:
The analytical samples contain the plasma and various tissues disposed of by protein
precipitation and determination of liposomal Amphotericin B by an LC-MS/MS. Chromatographic
separation was achieved on a Poroshell 120 EC-C18 column (4.6 mm × 50 mm, 2.7 μm) with 10
mmol/L ammonium acetate in water-acetonitrile by gradient elution at a flow rate of 0.7 mL/min.
The MS analysis was conducted in positive electrospray ionization with Multiple Reaction Monitoring
(MRM).
Results::
The calibration curves of plasma and tissues showed good linear range from 50 to 10000
ng/mL. The analytical samples containing plasma and tissues were stable under different storage
conditions and temperature.
Conclusions: :
The developed LC-MS/MS method has been successfully applied to the studies of
toxicokinetics and tissue distribution after intravenous injection of liposomal Amphotericin B to
rats.
Collapse
Affiliation(s)
- Quanyu Xu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Yueyue Qian
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Yanjuan Yuan
- Jiangsu Provincial Institute Of Materia Medica, Nanjing 211816, China
| | - Qing Shao
- Jiangsu Provincial Institute Of Materia Medica, Nanjing 211816, China
| | - Xuejun He
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Hongqun Qiao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
6
|
Shen W, Wang D, Wei L, Zhang Y. Fungal elicitor-induced transcriptional changes of genes related to branched-chain amino acid metabolism in Streptomyces natalensis HW-2. Appl Microbiol Biotechnol 2020; 104:4471-4482. [DOI: 10.1007/s00253-020-10564-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/11/2020] [Accepted: 03/20/2020] [Indexed: 12/26/2022]
|
7
|
Chen H, Cui J, Wang P, Wang X, Wen J. Enhancement of bleomycin production in Streptomyces verticillus through global metabolic regulation of N-acetylglucosamine and assisted metabolic profiling analysis. Microb Cell Fact 2020; 19:32. [PMID: 32054531 PMCID: PMC7017467 DOI: 10.1186/s12934-020-01301-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/05/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Bleomycin is a broad-spectrum glycopeptide antitumor antibiotic produced by Streptomyces verticillus. Clinically, the mixture of bleomycin A2 and bleomycin B2 is widely used in combination with other drugs for the treatment of various cancers. As a secondary metabolite, the biosynthesis of bleomycin is precisely controlled by the complex extra-/intracellular regulation mechanisms, it is imperative to investigate the global metabolic and regulatory system involved in bleomycin biosynthesis for increasing bleomycin production. RESULTS N-acetylglucosamine (GlcNAc), the vital signaling molecule controlling the onset of development and antibiotic synthesis in Streptomyces, was found to increase the yields of bleomycins significantly in chemically defined medium. To mine the gene information relevant to GlcNAc metabolism, the DNA sequences of dasR-dasA-dasBCD-nagB and nagKA in S. verticillus were determined by chromosome walking. From the results of Real time fluorescence quantitative PCR (RT-qPCR) and electrophoretic mobility shift assays (EMSAs), the repression of the expression of nagB and nagKA by the global regulator DasR was released under induction with GlcNAc. The relief of blmT expression repression by BlmR was the main reason for increased bleomycin production. DasR, however, could not directly affect the expression of the pathway-specific repressor BlmR in the bleomycins gene cluster. With at the beginning of bleomycin synthesis, the supply of the specific precursor GDP-mannose played the key role in bleomycin production. Genetic engineering of the GDP-mannose synthesis pathway indicated that phosphomannose isomerase (ManA) and phosphomannomutase (ManB) were key enzymes for bleomycins synthesis. Here, the blmT, manA and manB co-expression strain OBlmT/ManAB was constructed. Based on GlcNAc regulation and assisted metabolic profiling analysis, the yields of bleomycin A2 and B2 were ultimately increased to 61.79 and 36.9 mg/L, respectively. CONCLUSIONS Under GlcNAc induction, the elevated production of bleomycins was mainly associated with the alleviation of the inhibition of BlmT, so blmT and specific precursor synthesis pathways were genetically engineered for bleomycins production improvement. Combination with subsequent metabolomics analysis not only effectively increased the bleomycin yield, but also extended the utilization of chitin-derived substrates in microbial-based antibiotic production.
Collapse
Affiliation(s)
- Hong Chen
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Jiaqi Cui
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Pan Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Xin Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Jianping Wen
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China. .,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
| |
Collapse
|
8
|
Howlett R, Anttonen K, Read N, Smith MCM. Disruption of the GDP-mannose synthesis pathway in Streptomyces coelicolor results in antibiotic hyper-susceptible phenotypes. MICROBIOLOGY-SGM 2018; 164:614-624. [PMID: 29493491 PMCID: PMC5982138 DOI: 10.1099/mic.0.000636] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Actinomycete bacteria use polyprenol phosphate mannose as a lipid linked sugar donor for extra-cytoplasmic glycosyl transferases that transfer mannose to cell envelope polymers, including glycoproteins and glycolipids. We showed recently that strains of Streptomyces coelicolor with mutations in the gene ppm1 encoding polyprenol phosphate mannose synthase were both resistant to phage φC31 and have greatly increased susceptibility to antibiotics that mostly act on cell wall biogenesis. Here we show that mutations in the genes encoding enzymes that act upstream of Ppm1 in the polyprenol phosphate mannose synthesis pathway can also confer phage resistance and antibiotic hyper-susceptibility. GDP-mannose is a substrate for Ppm1 and is synthesised by GDP-mannose pyrophosphorylase (GMP; ManC) which uses GTP and mannose-1-phosphate as substrates. Phosphomannomutase (PMM; ManB) converts mannose-6-phosphate to mannose-1-phosphate. S. coelicolor strains with knocked down GMP activity or with a mutation in sco3028 encoding PMM acquire phenotypes that resemble those of the ppm1- mutants i.e. φC31 resistant and susceptible to antibiotics. Differences in the phenotypes of the strains were observed, however. While the ppm1- strains have a small colony phenotype, the sco3028 :: Tn5062 mutants had an extremely small colony phenotype indicative of an even greater growth defect. Moreover we were unable to generate a strain in which GMP activity encoded by sco3039 and sco4238 is completely knocked out, indicating that GMP is also an important enzyme for growth. Possibly GDP-mannose is at a metabolic branch point that supplies alternative nucleotide sugar donors.
Collapse
Affiliation(s)
| | - Katri Anttonen
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Margaret C M Smith
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK.,Department of Biology, University of York, York, UK
| |
Collapse
|
9
|
Stiers KM, Muenks AG, Beamer LJ. Biology, Mechanism, and Structure of Enzymes in the α-d-Phosphohexomutase Superfamily. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 109:265-304. [PMID: 28683921 PMCID: PMC5802415 DOI: 10.1016/bs.apcsb.2017.04.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Enzymes in the α-d-phosphohexomutases superfamily catalyze the reversible conversion of phosphosugars, such as glucose 1-phosphate and glucose 6-phosphate. These reactions are fundamental to primary metabolism across the kingdoms of life and are required for a myriad of cellular processes, ranging from exopolysaccharide production to protein glycosylation. The subject of extensive mechanistic characterization during the latter half of the 20th century, these enzymes have recently benefitted from biophysical characterization, including X-ray crystallography, NMR, and hydrogen-deuterium exchange studies. This work has provided new insights into the unique catalytic mechanism of the superfamily, shed light on the molecular determinants of ligand recognition, and revealed the evolutionary conservation of conformational flexibility. Novel associations with inherited metabolic disease and the pathogenesis of bacterial infections have emerged, spurring renewed interest in the long-appreciated functional roles of these enzymes.
Collapse
Affiliation(s)
| | | | - Lesa J Beamer
- University of Missouri, Columbia, MO, United States.
| |
Collapse
|
10
|
Yang J, Zhu Y, Men Y, Sun S, Zeng Y, Zhang Y, Sun Y, Ma Y. Pathway Construction in Corynebacterium glutamicum and Strain Engineering To Produce Rare Sugars from Glycerol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:9497-9505. [PMID: 27998065 DOI: 10.1021/acs.jafc.6b03423] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Rare sugars are valuable natural products widely used in pharmaceutical and food industries. In this study, we expected to synthesize rare ketoses from abundant glycerol using dihydroxyacetone phosphate (DHAP)-dependent aldolases. First, a new glycerol assimilation pathway was constructed to synthesize DHAP. The enzymes which convert glycerol to 3-hydroxypropionaldehyde and l-glyceraldehyde were selected, and their corresponding aldehyde synthesis pathways were constructed in vivo. Four aldol pathways based on different aldolases and phosphorylase were gathered. Next, three pathways were assembled and the resulting strains synthesized 5-deoxypsicose, 5-deoxysorbose, and 5-deoxyfructose from glucose and glycerol and produce l-fructose, l-tagatose, l-sorbose, and l-psicose with glycerol as the only carbon source. To achieve higher product titer and yield, the recombinant strains were further engineered and fermentation conditions were optimized. Fed-batch culture of engineered strains obtained 38.1 g/L 5-deoxypsicose with a yield of 0.91 ± 0.04 mol product per mol of glycerol and synthesized 20.8 g/L l-fructose, 10.3 g/L l-tagatose, 1.2 g/L l-sorbose, and 0.95 g/L l-psicose.
Collapse
Affiliation(s)
- Jiangang Yang
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , Tianjin 300308, China
| | - Yueming Zhu
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , Tianjin 300308, China
| | - Yan Men
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , Tianjin 300308, China
| | - Shangshang Sun
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , Tianjin 300308, China
| | - Yan Zeng
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , Tianjin 300308, China
| | - Ying Zhang
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , Tianjin 300308, China
| | - Yuanxia Sun
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , Tianjin 300308, China
| | - Yanhe Ma
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , Tianjin 300308, China
| |
Collapse
|
11
|
Caffrey P, De Poire E, Sheehan J, Sweeney P. Polyene macrolide biosynthesis in streptomycetes and related bacteria: recent advances from genome sequencing and experimental studies. Appl Microbiol Biotechnol 2016; 100:3893-908. [PMID: 27023916 DOI: 10.1007/s00253-016-7474-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/13/2016] [Accepted: 03/15/2016] [Indexed: 02/07/2023]
Abstract
The polyene macrolide group includes important antifungal drugs, to which resistance does not arise readily. Chemical and biological methods have been used in attempts to make polyene antibiotics with fewer toxic side effects. Genome sequencing of producer organisms is contributing to this endeavour, by providing access to new compounds and by enabling yield improvement for polyene analogues obtained by engineered biosynthesis. This recent work is also enhancing bioinformatic methods for deducing the structures of cryptic natural products from their biosynthetic enzymes. The stereostructure of candicidin D has recently been determined by NMR spectroscopy. Genes for the corresponding polyketide synthase have been uncovered in several different genomes. Analysis of this new information strengthens the view that protein sequence motifs can be used to predict double bond geometry in many polyketides.Chemical studies have shown that improved polyenes can be obtained by modifying the mycosamine sugar that is common to most of these compounds. Glycoengineered analogues might be produced by biosynthetic methods, but polyene glycosyltransferases show little tolerance for donors other than GDP-α-D-mycosamine. Genome sequencing has revealed extending glycosyltransferases that add a second sugar to the mycosamine of some polyenes. NppY of Pseudonocardia autotrophica uses UDP-N-acetyl-α-D-glucosamine as donor whereas PegA from Actinoplanes caeruleus uses GDP-α-D-mannose. These two enzymes show 51 % sequence identity and are also closely related to mycosaminyltransferases. These findings will assist attempts to construct glycosyltransferases that transfer alternative UDP- or (d)TDP-linked sugars to polyene macrolactones.
Collapse
Affiliation(s)
- Patrick Caffrey
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Eimear De Poire
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - James Sheehan
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Paul Sweeney
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
12
|
Aparicio JF, Barreales EG, Payero TD, Vicente CM, de Pedro A, Santos-Aberturas J. Biotechnological production and application of the antibiotic pimaricin: biosynthesis and its regulation. Appl Microbiol Biotechnol 2015; 100:61-78. [PMID: 26512010 PMCID: PMC4700089 DOI: 10.1007/s00253-015-7077-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/06/2015] [Accepted: 10/11/2015] [Indexed: 12/27/2022]
Abstract
Pimaricin (natamycin) is a small polyene macrolide antibiotic used worldwide. This efficient antimycotic and antiprotozoal agent, produced by several soil bacterial species of the genus Streptomyces, has found application in human therapy, in the food and beverage industries and as pesticide. It displays a broad spectrum of activity, targeting ergosterol but bearing a particular mode of action different to other polyene macrolides. The biosynthesis of this only antifungal agent with a GRAS status has been thoroughly studied, which has permitted the manipulation of producers to engineer the biosynthetic gene clusters in order to generate several analogues. Regulation of its production has been largely unveiled, constituting a model for other polyenes and setting the leads for optimizing the production of these valuable compounds. This review describes and discusses the molecular genetics, uses, mode of action, analogue generation, regulation and strategies for increasing pimaricin production yields.
Collapse
Affiliation(s)
- Jesús F Aparicio
- Area of Microbiology, Faculty of Biology, Universidad de León, 24071, León, Spain.
| | - Eva G Barreales
- Area of Microbiology, Faculty of Biology, Universidad de León, 24071, León, Spain
| | - Tamara D Payero
- Area of Microbiology, Faculty of Biology, Universidad de León, 24071, León, Spain
| | - Cláudia M Vicente
- Dynamique des Génomes et Adaptation Microbienne, UMR 1128, INRA, Université de Lorraine, 54506, Vandoeuvre-lès-Nancy, France
| | - Antonio de Pedro
- Area of Microbiology, Faculty of Biology, Universidad de León, 24071, León, Spain
| | - Javier Santos-Aberturas
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
13
|
Exploiting the genome sequence of Streptomyces nodosus for enhanced antibiotic production. Appl Microbiol Biotechnol 2015; 100:1285-1295. [PMID: 26497174 DOI: 10.1007/s00253-015-7060-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 09/24/2015] [Accepted: 10/02/2015] [Indexed: 10/22/2022]
Abstract
The genome of the amphotericin producer Streptomyces nodosus was sequenced. A single scaffold of 7,714,110 bp was obtained. Biosynthetic genes were identified for several natural products including polyketides, peptides, siderophores and terpenes. The majority of these clusters specified known compounds. Most were silent or expressed at low levels and unlikely to compete with amphotericin production. Biosynthesis of a skyllamycin analogue was activated by introducing expression plasmids containing either a gene for a LuxR transcriptional regulator or genes for synthesis of the acyl moiety of the lipopeptide. In an attempt to boost amphotericin production, genes for acyl CoA carboxylases, a phosphopantetheinyl transferase and the AmphRIV transcriptional activator were overexpressed, and the effects on yields were investigated. This study provides the groundwork for metabolic engineering of S. nodosus strains to produce high yields of amphotericin analogues.
Collapse
|
14
|
Deciphering and engineering of the final step halogenase for improved chlortetracycline biosynthesis in industrial Streptomyces aureofaciens. Metab Eng 2013; 19:69-78. [DOI: 10.1016/j.ymben.2013.06.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/27/2013] [Accepted: 06/14/2013] [Indexed: 11/21/2022]
|
15
|
Kong D, Lee MJ, Lin S, Kim ES. Biosynthesis and pathway engineering of antifungal polyene macrolides in actinomycetes. ACTA ACUST UNITED AC 2013; 40:529-43. [DOI: 10.1007/s10295-013-1258-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 03/04/2013] [Indexed: 11/27/2022]
Abstract
Abstract
Polyene macrolides are a large family of natural products typically produced by soil actinomycetes. Polyene macrolides are usually biosynthesized by modular and large type I polyketide synthases (PKSs), followed by several steps of sequential post-PKS modifications such as region-specific oxidations and glycosylations. Although known as powerful antibiotics containing potent antifungal activities (along with additional activities against parasites, enveloped viruses and prion diseases), their high toxicity toward mammalian cells and poor distribution in tissues have led to the continuous identification and structural modification of polyene macrolides to expand their general uses. Advances in in-depth investigations of the biosynthetic mechanism of polyene macrolides and the genetic manipulations of the polyene biosynthetic pathways provide great opportunities to generate new analogues. Recently, a novel class of polyene antibiotics was discovered (a disaccharide-containing NPP) that displays better pharmacological properties such as improved water-solubility and reduced hemolysis. In this review, we summarize the recent advances in the biosynthesis, pathway engineering, and regulation of polyene antibiotics in actinomycetes.
Collapse
Affiliation(s)
- Dekun Kong
- grid.16821.3c 0000000403688293 State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology Shanghai Jiao Tong University 200240 Shanghai P. R. China
| | - Mi-Jin Lee
- grid.202119.9 0000000123648385 Department of Biological Engineering Inha University 402-751 Incheon Korea
| | - Shuangjun Lin
- grid.16821.3c 0000000403688293 State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology Shanghai Jiao Tong University 200240 Shanghai P. R. China
| | - Eung-Soo Kim
- grid.202119.9 0000000123648385 Department of Biological Engineering Inha University 402-751 Incheon Korea
| |
Collapse
|
16
|
Mora-Buyé N, Faijes M, Planas A. An engineered E.coli strain for the production of glycoglycerolipids. Metab Eng 2012; 14:551-9. [DOI: 10.1016/j.ymben.2012.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 06/12/2012] [Accepted: 06/19/2012] [Indexed: 10/28/2022]
|
17
|
Conservation of functionally important global motions in an enzyme superfamily across varying quaternary structures. J Mol Biol 2012; 423:831-46. [PMID: 22935436 DOI: 10.1016/j.jmb.2012.08.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 08/16/2012] [Accepted: 08/17/2012] [Indexed: 11/21/2022]
Abstract
The α-d-phosphohexomutase superfamily comprises enzymes involved in carbohydrate metabolism that are found in all kingdoms of life. Recent biophysical studies have shown for the first time that several of these enzymes exist as dimers in solution, prompting an examination of the oligomeric state of all proteins of known structure in the superfamily (11 different proteins; 31 crystal structures) via computational and experimental analyses. We find that these proteins range in quaternary structure from monomers to tetramers, with 6 of the 11 known structures being likely oligomers. The oligomeric state of these proteins not only is associated in some cases with enzyme subgroup (i.e., substrate specificity) but also appears to depend on domain of life, with the two archaeal proteins existing as higher-order oligomers. Within the oligomers, three distinct interfaces are observed, one of which is found in both archaeal and bacterial proteins. Normal mode analysis shows that the topological arrangement of the oligomers permits domain 4 of each protomer to move independently as required for catalysis. Our analysis suggests that the advantages associated with protein flexibility in this enzyme family are of sufficient importance to be maintained during the evolution of multiple independent oligomers. This study is one of the first showing that global motions may be conserved not only within protein families but also across members of a superfamily with varying oligomeric structures.
Collapse
|
18
|
Characterization of recombinant UDP- and ADP-glucose pyrophosphorylases and glycogen synthase to elucidate glucose-1-phosphate partitioning into oligo- and polysaccharides in Streptomyces coelicolor. J Bacteriol 2011; 194:1485-93. [PMID: 22210767 DOI: 10.1128/jb.06377-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptomyces coelicolor exhibits a major secondary metabolism, deriving important amounts of glucose to synthesize pigmented antibiotics. Understanding the pathways occurring in the bacterium with respect to synthesis of oligo- and polysaccharides is of relevance to determine a plausible scenario for the partitioning of glucose-1-phosphate into different metabolic fates. We report the molecular cloning of the genes coding for UDP- and ADP-glucose pyrophosphorylases as well as for glycogen synthase from genomic DNA of S. coelicolor A3(2). Each gene was heterologously expressed in Escherichia coli cells to produce and purify to electrophoretic homogeneity the respective enzymes. UDP-glucose pyrophosphorylase (UDP-Glc PPase) was characterized as a dimer exhibiting a relatively high V(max) in catalyzing UDP-glucose synthesis (270 units/mg) and with respect to dTDP-glucose (94 units/mg). ADP-glucose pyrophosphorylase (ADP-Glc PPase) was found to be tetrameric in structure and specific in utilizing ATP as a substrate, reaching similar activities in the directions of ADP-glucose synthesis or pyrophosphorolysis (V(max) of 0.15 and 0.27 units/mg, respectively). Glycogen synthase was arranged as a dimer and exhibited specificity in the use of ADP-glucose to elongate α-1,4-glucan chains in the polysaccharide. ADP-Glc PPase was the only of the three enzymes exhibiting sensitivity to allosteric regulation by different metabolites. Mannose-6-phosphate, phosphoenolpyruvate, fructose-6-phosphate, and glucose-6-phosphate behaved as major activators, whereas NADPH was a main inhibitor of ADP-Glc PPase. The results support a metabolic picture where glycogen synthesis occurs via ADP-glucose in S. coelicolor, with the pathway being strictly regulated in connection with other routes involved with oligo- and polysaccharides, as well as with antibiotic synthesis in the bacterium.
Collapse
|
19
|
Zhou X, Wu H, Li Z, Zhou X, Bai L, Deng Z. Over-expression of UDP-glucose pyrophosphorylase increases validamycin A but decreases validoxylamine A production in Streptomyces hygroscopicus var. jinggangensis 5008. Metab Eng 2011; 13:768-76. [PMID: 22008983 DOI: 10.1016/j.ymben.2011.10.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 10/02/2011] [Accepted: 10/04/2011] [Indexed: 11/18/2022]
Abstract
During the fermentation of Streptomyces hygroscopicus TL01 to produce validamycin A (18 g/L), a considerable amount of an intermediate validoxylamine A (4.0 g/L) is accumulated. Chemical or enzymatic hydrolysis of validamycin A was not observed during the fermentation process. Over-expression of glucosyltransferase ValG in TL01 did not increase the efficiency of glycosylation. However, increased validamycin A and decreased validoxylamine A production were observed in both the cell-free extract and fermentation broth of TL01 supplemented with a high concentration of UDP-glucose. The enzymatic activity of UDP-glucose pyrophosphorylase (Ugp) in TL01, which catalyzes UDP-glucose formation, was found to be much lower than the activities of other enzymes involved in the biosynthesis of UDP-glucose and the glucosyltransferase ValG. An ugp gene was cloned from S. hygroscopicus 5008 and verified to code for Ugp. In TL01 with an extra copy of ugp, the transcription of ugp was increased for 1.5 times, and Ugp activity was increased by 100%. Moreover, 22 g/L validamycin A and 2.5 g/L validoxylamine A were produced, and the validamycin A/validoxylamine A ratio was increased from 3.15 in TL01 to 5.75. These data prove that validamycin A biosynthesis is limited by the supply of UDP-glucose, which can be relieved by Ugp over-expression.
Collapse
Affiliation(s)
- Xiang Zhou
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | | | | | | | | |
Collapse
|
20
|
Santos-Aberturas J, Payero TD, Vicente CM, Guerra SM, Cañibano C, Martín JF, Aparicio JF. Functional conservation of PAS-LuxR transcriptional regulators in polyene macrolide biosynthesis. Metab Eng 2011; 13:756-67. [PMID: 22001323 DOI: 10.1016/j.ymben.2011.09.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 09/27/2011] [Accepted: 09/28/2011] [Indexed: 01/27/2023]
Abstract
Control of polyene macrolide production in Streptomyces natalensis is mediated by the PAS-LuxR transcriptional activator PimM. Expression of target genes in this strain is positively regulated by binding of the regulator to 14-nucleotide sites showing dyad symmetry, and overlapping the -35 element of each promoter. These sequences have been found in the upstream regions of genes belonging to different polyene biosynthetic gene clusters. All the sequences in the amphotericin, nystatin, and filipin clusters were cloned and the binding of PimM to all of them has been shown by electrophoretic mobility shift assays. The precise binding regions were investigated by DNaseI protection studies. Results indicated that PAS-luxR regulators share the same regulatory pattern in different polyene-producing strains, these genes being responsible for polyketide chain construction, and when available, the genes for sugar dehydration and attachment, and the ABC transporters, the targets for regulation. Information content analysis of the 24 sequences protected in target promoters was used to refine the information-based model of the binding site. This site now spans 16 nucleotides and adjusts to the consensus CTVGGGAWWTCCCBAG. Gene complementation of S. natalensis ΔpimM with a single copy of heterologous regulators of the PAS/LuxR class integrated into the chromosome, such as amphRIV, nysRIV, or pteF, restored antifungal production, thus proving the functional conservation of these regulators. Introduction of a single copy of pimM into the amphotericin producing strain Streptomyces nodosus, or into the filipin producing strain S. avermitilis, boosted the production of both polyenes, thus indicating that the expression of the PAS-LuxR regulator constitutes a bottleneck in the biosynthesis of the antifungal, and also that these regulators are fully exchangeable. This work is the first report of a general mechanism regulating polyene production.
Collapse
|
21
|
Rajesh T, Song E, Kim JN, Lee BR, Kim EJ, Park SH, Kim YG, Yoo D, Park HY, Choi YH, Kim BG, Yang YH. Inactivation of phosphomannose isomerase gene abolishes sporulation and antibiotic production in Streptomyces coelicolor. Appl Microbiol Biotechnol 2011; 93:1685-93. [PMID: 21952939 DOI: 10.1007/s00253-011-3581-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 08/17/2011] [Accepted: 09/14/2011] [Indexed: 11/30/2022]
Abstract
Phosphomannose isomerases (PMIs) in bacteria and fungi catalyze the reversible conversion of D-fructose-6-phosphate to D-mannose-6-phosphate during biosynthesis of GDP-mannose, which is the main intermediate in the mannosylation of important cell wall components, glycoproteins, and certain glycolipids. In the present study, the kinetic parameters of PMI from Streptomyces coelicolor were obtained, and its function on antibiotic production and sporulation was studied. manA (SCO3025) encoding PMI in S. coelicolor was deleted by insertional inactivation. Its mutant (S. coelicolor∆manA) was found to exhibit a bld-like phenotype. Additionally, S. coelicolor∆manA failed to produce the antibiotics actinorhodin and red tripyrolle undecylprodigiosin in liquid media. To identify the function of manA, the gene was cloned and expressed in Escherichia coli BL21 (DE3). The purified recombinant ManA exhibited PMI activity (K(cat)/K(m) (mM(-1) s(-1) = 0.41 for D-mannose-6-phosphate), but failed to show GDP-D-mannose pyrophosphorylase [GMP (ManC)] activity. Complementation analysis with manA from S. coelicolor or E. coli resulted in the recovery of bld-like phenotype of S. coelicolor∆manA. SCO3026, another ORF that encodes a protein with sequence similarity towards bifunctional PMI and GMP, was also tested for its ability to function as an alternate ManA. However, the purified protein of SCO3026 failed to exhibit both PMI and GMP activity. The present study shows that enzymes involved in carbohydrate metabolism could control cellular differentiation as well as the production of secondary metabolites.
Collapse
Affiliation(s)
- Thangamani Rajesh
- Department of Microbial Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Metabolic engineering of geranic acid in maize to achieve fungal resistance is compromised by novel glycosylation patterns. Metab Eng 2011; 13:414-25. [DOI: 10.1016/j.ymben.2011.01.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 01/13/2011] [Accepted: 01/31/2011] [Indexed: 11/23/2022]
|
23
|
Cao Y, Li M, Xia Y. Mapmi gene contributes to stress tolerance and virulence of the entomopathogenic fungus, Metarhizium acridum. J Invertebr Pathol 2011; 108:7-12. [PMID: 21683706 DOI: 10.1016/j.jip.2011.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 05/26/2011] [Accepted: 06/02/2011] [Indexed: 02/01/2023]
Abstract
Phosphomannose isomerase (PMI) catalyzes the reversible interconversion of fructose 6-phosphate (Fru-6-P) and mannose 6-phosphate (Man-6-P), providing a link between glycolysis and the mannose metabolic pathway. In this study, we identified pmi gene (Mapmi) from the entomopathogenic fungus, Metarhizium acridum, and analyzed its functions using RNA interference (RNAi). Amending the growth medium with cell stress chemicals significantly reduced growth, conidial production and percent germination in Mapmi-RNAi mutant strain, compared to the wild-type strain. Growth of RNAi mutant was lower than the wild type strain with glucose or fructose as sole carbon source. RNAi mutant exhibited a normal growth phenotype with mannose at low concentrations, while trace or high concentration of mannose was more negatively impacted the growth of RNAi mutant than the wild type strain. Infection with Mapmi-RNAi mutant against Locusta migratoria manilensis (Meyen) led to a significantly reduced virulence compared to infection with the wild-type strain. These results suggest that Mapmi plays essential roles in stress tolerance and pathogenicity of M. acridum.
Collapse
Affiliation(s)
- Yueqing Cao
- Genetic Engineering Research Center, College of Bioengineering, Chongqing University, Chongqing Engineering Research Center for Fungal Insecticides and Key Lab. of Functional Gene and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing 400030, PR China
| | | | | |
Collapse
|
24
|
Thykaer J, Nielsen J, Wohlleben W, Weber T, Gutknecht M, Lantz AE, Stegmann E. Increased glycopeptide production after overexpression of shikimate pathway genes being part of the balhimycin biosynthetic gene cluster. Metab Eng 2010; 12:455-61. [DOI: 10.1016/j.ymben.2010.05.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 04/29/2010] [Accepted: 05/10/2010] [Indexed: 11/26/2022]
|
25
|
Hutchinson E, Murphy B, Dunne T, Breen C, Rawlings B, Caffrey P. Redesign of polyene macrolide glycosylation: engineered biosynthesis of 19-(O)-perosaminyl-amphoteronolide B. ACTA ACUST UNITED AC 2010; 17:174-82. [PMID: 20189107 DOI: 10.1016/j.chembiol.2010.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 12/03/2009] [Accepted: 01/11/2010] [Indexed: 11/17/2022]
Abstract
Most polyene macrolide antibiotics are glycosylated with mycosamine (3,6-dideoxy-3-aminomannose). In the amphotericin B producer, Streptomyces nodosus, mycosamine biosynthesis begins with AmphDIII-catalyzed conversion of GDP-mannose to GDP-4-keto-6-deoxymannose. This is converted to GDP-3-keto-6-deoxymannose, which is transaminated to GDP-mycosamine by the AmphDII protein. The glycosyltransferase AmphDI transfers mycosamine to amphotericin aglycones (amphoteronolides). The aromatic heptaene perimycin is unusual among polyenes in that the sugar is perosamine (4,6-dideoxy-4-aminomannose), which is synthesized by direct transamination of GDP-4-keto-6-deoxymannose. Here, we use the Streptomyces aminophilus perDII perosamine synthase and perDI perosaminyltransferase genes to engineer biosynthesis of perosaminyl-amphoteronolide B in S. nodosus. Efficient production required a hybrid glycosyltransferase containing an N-terminal region of AmphDI and a C-terminal region of PerDI. This work will assist efforts to generate glycorandomized amphoteronolides for drug discovery.
Collapse
Affiliation(s)
- Eve Hutchinson
- School of Biomolecular and Biomedical Science and Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | |
Collapse
|
26
|
Espitia C, Servín-González L, Mancilla R. New insights into protein O-mannosylation in actinomycetes. MOLECULAR BIOSYSTEMS 2010; 6:775-81. [PMID: 20567761 DOI: 10.1039/b916394h] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Glycosylation is a common post-translational modification of surface exposed proteins and lipids present in all kingdoms of life. Information derived from bacterial genome sequencing, together with proteomic and genomic analysis has allowed the identification of the enzymatic glycosylation machinery. Among prokaryotes, O-mannosylation of proteins has been found in the actinomycetes and resembles protein O-mannosylation in fungi and higher eukaryotes. In this review we summarize the main features of the biosynthetic pathway of O-mannosylation in prokaryotes with special emphasis on the actinomycetes, as well as the biological role of the glycosylated target proteins.
Collapse
Affiliation(s)
- Clara Espitia
- Departamento de Inmunologia, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México DF, México
| | | | | |
Collapse
|
27
|
Yang YH, Song E, Park SH, Kim JN, Lee K, Kim E, Kim YG, Kim BG. Loss of phosphomannomutase activity enhances actinorhodin production in Streptomyces coelicolor. Appl Microbiol Biotechnol 2009; 86:1485-92. [PMID: 20024545 DOI: 10.1007/s00253-009-2368-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 11/11/2009] [Accepted: 11/13/2009] [Indexed: 11/30/2022]
Abstract
Phosphomannomutase (ManB), whose main function is the conversion of mannose-6-phosphate to mannose-1-phosphate, is involved in biosynthesis of GDP-mannose for numerous processes such as synthesis of structural carbohydrates, production of alginates and ascorbic acid, and post-translational modification of proteins in prokaryotes and eukaryotes. ManB isolated from Streptomyces coelicolor was shown to have both phosphomannomutase and phosphoglucomutase activities. Deletion of manB in S. coelicolor caused a dramatic increase in actinorhodin (ACT) production in the low-glucose Difco nutrient (DN) medium, whereas the wild-type strain did not produce ACT on this medium. Experiments involving complementation of the manB deletion showed that increased ACT production in DN media was due to blockage of phosphomannomutase activity rather than phosphoglucomutase activity. This result therefore provides useful information for the design of strategies that enhance antibiotic production through the control of carbon flux.
Collapse
Affiliation(s)
- Yung-Hun Yang
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
The polyene macrolides nystatin A1 and amphotericin B are effective but toxic antifungal antibiotics that are also active against enveloped viruses, protozoan parasites and pathogenic prion proteins. This chapter describes methods for genetic manipulation of the amphotericin and nystatin producers, Streptomyces nodosus and Streptomyces noursei. These techniques have been used to engineer the biosynthesis of several analogues of both polyenes. Methods for production, identification, purification and characterization of new analogues are also discussed.
Collapse
Affiliation(s)
- Sergey Zotchev
- Department of Biotechnology, Norwegian University of Science and Technology, Trondheim, Norway
| | | |
Collapse
|