1
|
Zhu X, Wang R, Siitonen V, Vuksanovic N, Silvaggi NR, Melançon III CE, Metsä-Ketelä M. ActVI-ORFA directs metabolic flux towards actinorhodin by preventing intermediate degradation. PLoS One 2024; 19:e0308684. [PMID: 39121077 PMCID: PMC11315284 DOI: 10.1371/journal.pone.0308684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/29/2024] [Indexed: 08/11/2024] Open
Abstract
The biosynthetic pathway of actinorhodin in Streptomyces coelicolor A3(2) has been studied for decades as a model system of type II polyketide biosynthesis. The actinorhodin biosynthetic gene cluster includes a gene, actVI-orfA, that encodes a protein that belongs to the nuclear transport factor-2-like (NTF-2-like) superfamily. The function of this ActVI-ORFA protein has been a long-standing question in this field. Several hypothetical functions, including pyran ring cyclase, enzyme complex stability enhancer, and gene transcription regulator, have been proposed for ActVI-ORFA in previous studies. However, although the recent structural analysis of ActVI-ORFA revealed a solvent-accessible cavity, the protein displayed structural differences to the well-characterized cyclase SnoaL and did not possess a DNA-binding domain. The obtained crystal structure facilitates an inspection of the previous hypotheses regarding the function of ActVI-ORFA. In the present study, we investigated the effects of a series of actVI-orfA test plasmids with different mutations in an established vector/host system. Time-course analysis of dynamic metabolism profiles demonstrated that ActVI-ORFA prevented formation of shunt metabolites and may have a metabolic flux directing function, which shepherds the flux of unstable intermediates towards actinorhodin. The expression studies resulted in the isolation and structure elucidation of two new shunt metabolites from the actinorhodin pathway. Next, we utilized computational modeling to probe the active site of ActVI-ORFA and confirmed the importance of residues R76 and H78 in the flux directing functionality by expression studies. This is the first time such a function has been observed for a member of NTF-2-like superfamily in Streptomyces secondary metabolism.
Collapse
Affiliation(s)
- Xuechen Zhu
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Rongbin Wang
- Department of Life Technologies, University of Turku, Turku, Finland
| | - Vilja Siitonen
- Department of Life Technologies, University of Turku, Turku, Finland
| | - Nemanja Vuksanovic
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Nicholas R. Silvaggi
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Charles E. Melançon III
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | | |
Collapse
|
2
|
Bianco F, Race M, Papirio S, Esposito G. Phenanthrene removal from a spent sediment washing solution in a continuous-flow stirred-tank reactor. ENVIRONMENTAL RESEARCH 2023; 228:115889. [PMID: 37054831 DOI: 10.1016/j.envres.2023.115889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023]
Abstract
The issue of polycyclic aromatic hydrocarbons (PAHs) is widespread in marine sediments involving ecological systems and human health. Sediment washing (SW) has proven to be the most effective remediation approach for sediments polluted by PAHs, such as phenanthrene (PHE). However, SW still raises waste handling concerns due to a considerable amount of effluents generated downstream. In this context, the biological treatment of a PHE- and ethanol-containing spent SW solution can represent a highly efficient and environmentally-friendly strategy, but its knowledge is still scarce in scientific literature and no studies have so far been conducted in continuous mode. Therefore, a synthetic PHE-polluted SW solution was biologically treated in a 1 L aerated continuous-flow stirred-tank reactor for 129 days by evaluating the effect of different pH values, aeration flowrates and hydraulic retention times as operating parameters over five successive phases. A PHE removal efficiency of up to 75-94% was achieved by an acclimated PHE-degrading consortium mainly composed of Proteobacteria, Bacteroidota and Firmicutes phyla through biodegradation following the adsorption mechanism. PHE biodegradation, mainly occurring via the benzoate route due to the presence of PAH-related-degrading functional genes and a phthalate accumulation up to 46 mg/L, was also accompanied by a reduction of dissolved organic carbon and ammonia nitrogen above 99% in the treated SW solution.
Collapse
Affiliation(s)
- Francesco Bianco
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043, Cassino, Italy.
| | - Marco Race
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043, Cassino, Italy
| | - Stefano Papirio
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, Via Claudio 21, 80125, Napoli, Italy
| | - Giovanni Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, Via Claudio 21, 80125, Napoli, Italy
| |
Collapse
|
3
|
WANG H, WANG L, FAN K, PAN G. Tetracycline natural products: discovery, biosynthesis and engineering. Chin J Nat Med 2022; 20:773-794. [DOI: 10.1016/s1875-5364(22)60224-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Indexed: 11/03/2022]
|
4
|
Yin L. Crystal structure determination of the halogenase CtcP from Streptomyces aureofaciens. Acta Crystallogr F Struct Biol Commun 2022; 78:270-275. [PMID: 35787554 PMCID: PMC9254895 DOI: 10.1107/s2053230x22006586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/24/2022] [Indexed: 11/10/2022] Open
Abstract
Chlortetracycline (CTC), a derivative of tetracycline (TC), is a broadly used antibiotic that inhibits the synthesis of bacterial proteins by competing with the A-site tRNA on ribosomes. A recent study showed that during the biosynthesis of CTC in Streptomyces aureofaciens, the halogenase CtcP catalyzes the final chlorination reaction and transforms TC into CTC. However, the structure of this fundamental enzyme is still lacking. Here, selenomethionine-derivatized CtcP from S. aureofaciens was overexpressed and purified and its structure was determined at 2.7 Å resolution. The structure of CtcP reveals the conserved monooxygenase domain shared by all flavin-dependent halogenases and a unique C-terminal domain. Although FAD was not observed in the structure, the monooxygenase domain has a conserved FAD-binding pocket and active center. The C-terminal domain displays an α-helical bundle fold, which could contribute to substrate specificity. This work provides a molecular basis for enzyme engineering to improve the industrial production of CTC.
Collapse
Affiliation(s)
- Lijuan Yin
- Department of Pathology, Changhai Hospital, The Second Military Medical University, 168 Changhai Road, Shanghai 200433, People’s Republic of China
| |
Collapse
|
5
|
Tan YY, Zhu GY, Ye RF, Zhang HZ, Zhu DY. Increasing Demeclocycline Production in Streptomyces aureofaciens by Manipulating the Expression of a Novel SARP Family Regulator and Its Genes. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0284-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
6
|
Crowe C, Molyneux S, Sharma SV, Zhang Y, Gkotsi DS, Connaris H, Goss RJM. Halogenases: a palette of emerging opportunities for synthetic biology-synthetic chemistry and C-H functionalisation. Chem Soc Rev 2021; 50:9443-9481. [PMID: 34368824 PMCID: PMC8407142 DOI: 10.1039/d0cs01551b] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Indexed: 12/14/2022]
Abstract
The enzymatic generation of carbon-halogen bonds is a powerful strategy used by both nature and synthetic chemists to tune the bioactivity, bioavailability and reactivity of compounds, opening up the opportunity for selective C-H functionalisation. Genes encoding halogenase enzymes have recently been shown to transcend all kingdoms of life. These enzymes install halogen atoms into aromatic and less activated aliphatic substrates, achieving selectivities that are often challenging to accomplish using synthetic methodologies. Significant advances in both halogenase discovery and engineering have provided a toolbox of enzymes, enabling the ready use of these catalysts in biotransformations, synthetic biology, and in combination with chemical catalysis to enable late stage C-H functionalisation. With a focus on substrate scope, this review outlines the mechanisms employed by the major classes of halogenases, while in parallel, it highlights key advances in the utilisation of the combination of enzymatic halogenation and chemical catalysis for C-H activation and diversification.
Collapse
Affiliation(s)
- Charlotte Crowe
- School of Chemistry, and BSRC, University of St Andrews, North HaughSt Andrews KY16 9STUK
| | - Samuel Molyneux
- School of Chemistry, and BSRC, University of St Andrews, North HaughSt Andrews KY16 9STUK
| | - Sunil V. Sharma
- School of Chemistry, and BSRC, University of St Andrews, North HaughSt Andrews KY16 9STUK
| | - Ying Zhang
- School of Chemistry, and BSRC, University of St Andrews, North HaughSt Andrews KY16 9STUK
| | - Danai S. Gkotsi
- School of Chemistry, and BSRC, University of St Andrews, North HaughSt Andrews KY16 9STUK
| | - Helen Connaris
- School of Chemistry, and BSRC, University of St Andrews, North HaughSt Andrews KY16 9STUK
| | - Rebecca J. M. Goss
- School of Chemistry, and BSRC, University of St Andrews, North HaughSt Andrews KY16 9STUK
| |
Collapse
|
7
|
Abstract
We report the development of a chemoenzymatic approach toward fasamycin A, a halogenated naphthacenoid that exhibits activities against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecalis. The synthesis was accomplished in a convergent manner: two fragments were combined together in a Sammes annulation to afford a dimethylnaphthacenone system. Finally, an enzymatic halogenation was employed to introduce the requisite chlorine substituent of the natural product at a late stage.
Collapse
Affiliation(s)
- Jian Li
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458 United States
| | - Hans Renata
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458 United States
| |
Collapse
|
8
|
Herbst E, Lee A, Tang Y, Snyder SA, Cornish VW. Heterologous Catalysis of the Final Steps of Tetracycline Biosynthesis by Saccharomyces cerevisiae. ACS Chem Biol 2021; 16:1425-1434. [PMID: 34269557 DOI: 10.1021/acschembio.1c00259] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Developing treatments for antibiotic resistant bacterial infections is among the highest priority public health challenges worldwide. Tetracyclines, one of the most important classes of antibiotics, have fallen prey to antibiotic resistance, necessitating the generation of new analogs. Many tetracycline analogs have been accessed through both total synthesis and semisynthesis, but key C-ring tetracycline analogs remain inaccessible. New methods are needed to unlock access to these analogs, and heterologous biosynthesis in a tractable host such as Saccharomyces cerevisiae is a candidate method. C-ring analog biosynthesis can mimic nature's biosynthesis of tetracyclines from anhydrotetracyclines, but challenges exist, including the absence of the unique cofactor F420 in common heterologous hosts. Toward this goal, this paper describes the biosynthesis of tetracycline from anhydrotetracycline in S. cerevisiae heterologously expressing three enzymes from three bacterial hosts: the anhydrotetracycline hydroxylase OxyS, the dehydrotetracycline reductase CtcM, and the F420 reductase FNO. This biosynthesis of tetracycline is enabled by OxyS performing just one hydroxylation step in S. cerevisiae despite its previous characterization as a double hydroxylase. This single hydroxylation enabled us to purify and structurally characterize a hypothetical intermediate in oxytetracycline biosynthesis that can explain structural differences between oxytetracycline and chlortetracycline. We show that Fo, a synthetically accessible derivative of cofactor F420, can replace F420 in tetracycline biosynthesis. Critically, the use of S. cerevisiae for the final steps of tetracycline biosynthesis described herein sets the stage to achieve a total biosynthesis of tetracycline as well as novel tetracycline analogs in S. cerevisiae with the potential to combat antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Ehud Herbst
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Arden Lee
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering and Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Scott A. Snyder
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Virginia W. Cornish
- Department of Chemistry, Columbia University, New York, New York 10027, United States
- Department of Systems Biology, Columbia University, New York, New York 10032, United States
| |
Collapse
|
9
|
Cibichakravarthy B, Jose PA. Biosynthetic Potential of Streptomyces Rationalizes Genome-Based Bioprospecting. Antibiotics (Basel) 2021; 10:antibiotics10070873. [PMID: 34356794 PMCID: PMC8300671 DOI: 10.3390/antibiotics10070873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 12/04/2022] Open
Abstract
Streptomyces are the most prolific source of structurally diverse microbial natural products. Advancing genome-based analysis reveals the previously unseen potential of Streptomyces to produce numerous novel secondary metabolites, which allows us to take natural product discovery to the next phase. However, at present there is a huge disproportion between the rate of genome reports and discovery of new compounds. From this perspective of harnessing the enduring importance of Streptomyces, we discuss the recent genome-directed advancements inspired by hidden biosynthetic wealth that provide hope for future antibiotics.
Collapse
Affiliation(s)
- Balasubramanian Cibichakravarthy
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 761000, Israel;
| | - Polapass Arul Jose
- Department of Entomology and Plant Pathology & Microbiology, The Hebrew University of Jerusalem, POB 12, Rehovot 761000, Israel
- Correspondence:
| |
Collapse
|
10
|
Sharma V, Kaur R, Salwan R. Streptomyces: host for refactoring of diverse bioactive secondary metabolites. 3 Biotech 2021; 11:340. [PMID: 34221811 DOI: 10.1007/s13205-021-02872-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/31/2021] [Indexed: 12/22/2022] Open
Abstract
Microbial secondary metabolites are intensively explored due to their demands in pharmaceutical, agricultural and food industries. Streptomyces are one of the largest sources of secondary metabolites having diverse applications. In particular, the abundance of secondary metabolites encoding biosynthetic gene clusters and presence of wobble position in Streptomyces strains make it potential candidate as a native or heterologous host for secondary metabolite production including several cryptic gene clusters expression. Here, we have discussed the developments in Streptomyces strains genome mining, its exploration as a suitable host and application of synthetic biology for refactoring genetic systems for developing chassis for enhanced as well as novel secondary metabolites with reduced genome and cleaned background.
Collapse
Affiliation(s)
- Vivek Sharma
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Randhir Kaur
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Richa Salwan
- College of Horticulture and Forestry, Dr YS Parmar University of Horticulture and Forestry, Neri, Hamirpur, Himachal Pradesh 177001 India
| |
Collapse
|
11
|
Acyltransferase AniI, a Tailoring Enzyme with Broad Substrate Tolerance for High-Level Production of Anisomycin. Appl Environ Microbiol 2021; 87:e0017221. [PMID: 33931417 DOI: 10.1128/aem.00172-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anisomycin (compound 1), a pyrrolidine antibiotic, exhibits diverse biological and pharmacologic activities. The biosynthetic gene cluster of compound 1 has been identified previously, and the multistep assembly of the core benzylpyrrolidine scaffold was characterized. However, enzymatic modifications, such as acylation, involved in compound 1 biosynthesis are unknown. In this study, the genetic manipulation of aniI proved that it encoded an indispensable acetyltransferase for compound 1 biosynthesis. Bioinformatics analysis suggested AniI as a member of maltose (MAT) and galactoside O-acetyltransferases (GAT) with C-terminal left-handed parallel beta-helix (LbH) subdomain, which were referred to as LbH-MAT-GAT sugar O-acetyltransferases. However, the biochemical assay identified that its target site was the hydroxyl group of the pyrrolidine ring. AniI was found to be tolerant of acyl donors with different chain lengths for the biosynthesis of compound 1 and derivatives 12 and 13 with butyryl and isovaleryl groups, respectively. Meanwhile, it showed comparable activity toward biosynthetic intermediates and synthesized analogues, suggesting promiscuity to the pyrrolidine ring structure of compound 1. These data may inspire new viable synthetic routes for the construction of more complex pyrrolidine ring scaffolds in compound 1. Finally, the overexpression of aniI under the control of strong promoters contributed to the higher productivities of compound 1 and its analogues. These findings reported here not only improve the understanding of anisomycin biosynthesis but also expand the substrate scope of O-acetyltransferase working on the pyrrolidine ring and pave the way for future metabolic engineering construction of high-yield strains. IMPORTANCE Acylation is an important tailoring reaction during natural product biosynthesis. Acylation could increase the structural diversity and affect the chemical stability, volatility, biological activity, and even the cellular localization of specialized compounds. Many acetyltransferases have been reported in natural product biosynthesis. The typical example of the LbH-MAT-GAT sugar O-acetyltransferase subfamily was reported to catalyze the coenzyme A (CoA)-dependent acetylation of the 6-hydroxyl group of sugars. However, no protein of this family has been characterized to acetylate a nonsugar secondary metabolic product. Here, AniI was found to catalyze the acylation of the hydroxyl group of the pyrrolidine ring and be tolerant of diverse acyl donors and acceptors, which made the biosynthesis more efficient and exclusive for biosynthesis of compound 1 and its derivatives. Moreover, the overexpression of aniI serves as a successful example of genetic manipulation of a modification gene for the high production of final products and might set the stage for future metabolic engineering.
Collapse
|
12
|
Abstract
AbstractTetracyclines belong to the first broad-spectrum, well-tolerated, and easy-to-administer antibiotics, which are effective against plague, cholera, typhoid, syphilis, Legionnaire’s disease, and anthrax. Some can also be used to treat malaria, Lyme disease, tuberculosis, Rocky Mountain spotted fever, and leprosy. Humans first encountered these chemical species involuntarily in ancient times, as evidenced from the analysis of bone samples dating back more than 1500 years. Shortly after World War II, they were “rediscovered” at Lederle Laboratories and Pfizer as a result of an intense search for new antibiotics. Their bacteriostatic action is based on the inhibition of protein biosynthesis. Since the structure elucidation by Robert Woodward, Lloyd Hillyard Conover, and others in the 1950s, tetracyclines have become preferred targets for natural product synthesis. However, on industrial scale, they became readily available by fermentation and partial synthesis. Their casual and thoughtless use in the initial decades after launch not only in humans but for veterinary purposes and as growth-enhancement agents in meat production rapidly led to the emergence of resistance. In an arms race for new antibiotics, more and more new drugs have been developed to deal with the threat. In this ongoing endeavor, a remarkable milestone was set by Andrew Myers in 2005 with the convergent total synthesis of (−)-doxycycline, as well as numerous azatetracyclines and pentacyclines, which has inspired chemists in the pharmaceutical industry to discover novel and highly active tetracyclines in recent years.
Graphic abstract
Collapse
|
13
|
Transcription factor-based biosensors: a molecular-guided approach for natural product engineering. Curr Opin Biotechnol 2021; 69:172-181. [PMID: 33493842 DOI: 10.1016/j.copbio.2021.01.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/21/2020] [Accepted: 01/10/2021] [Indexed: 12/13/2022]
Abstract
Natural products and their derivatives offer a rich source of chemical and biological diversity; however, traditional engineering of their biosynthetic pathways to improve yields and access to unnatural derivatives requires a precise understanding of their enzymatic processes. High-throughput screening platforms based on allosteric transcription-factor based biosensors can be leveraged to overcome the screening bottleneck to enable searching through large libraries of pathway/strain variants. Herein, the development and application of engineered allosteric transcription factor-based biosensors is described that enable optimization of precursor availability, product titers, and downstream product tailoring for advancing the natural product bioeconomy. We discuss recent successes for tailoring biosensor design, including computationally-based approaches, and present our future outlook with the integration of cell-free technologies and de novo protein design for rapidly generating biosensor tools.
Collapse
|
14
|
Flavin Adenine Dinucleotide-Dependent Halogenase XanH and Engineering of Multifunctional Fusion Halogenases. Appl Environ Microbiol 2020; 86:AEM.01225-20. [PMID: 32651204 DOI: 10.1128/aem.01225-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/02/2020] [Indexed: 12/19/2022] Open
Abstract
Xantholipin (compound 1), a polycyclic xanthone antibiotic, exhibited strong antibacterial activities and showed potent cytotoxicity. The biosynthetic gene cluster of compound 1 has been identified in our previous work, and the construction of xanthone nucleus has been well demonstrated. However, limited information of the halogenation involved in compound 1 biosynthesis is available. In this study, based on the genetic manipulation and biochemical assay, we characterized XanH as an indispensable flavin adenine dinucleotide (FAD)-dependent halogenase (FDH) for the biosynthesis of compound 1. XanH was found to be a bifunctional protein capable of flavin reduction and chlorination and exclusively used the NADH. However, the reduced flavin could not be fully and effectively utilized, and the presence of an extra flavin reductase (FDR) and chemical-reducing agent could promote the halogenation. XanH accepted its natural free-standing substrate with angular fused polycyclic aromatic systems. Meanwhile, it exhibited moderate halogenation activity and possessed high substrate specificity. The requirement of extra FDR for higher halogenation activity is tedious for future engineering. To facilitate efforts in engineering XanH derivative proteins, we constructed the self-sufficient FDR-XanH fusion proteins. The fusion protein E1 with comparable activities to that of XanH could be used as a good alternative for future protein engineering. Taken together, these findings reported here not only improve the understanding of polycyclic xanthones biosynthesis but also expand the substrate scope of FDH and pave the way for future engineering of biocatalysts for new active substance synthesis.IMPORTANCE Halogenation is important in medicinal chemistry and plays an essential role in the biosynthesis of active secondary metabolites. Halogenases have evolved to catalyze reactions with high efficiency and selectivity, and engineering efforts have been made to engage the selective reactivity in natural product biosynthesis. The enzymatic halogenations are an environmentally friendly approach with high regio- and stereoselectivity, which make it a potential complement to organic synthesis. FDHs constitute one of the most extensively elucidated class of halogenases; however, the inventory awaits to be expanded for biotechnology applications and for the generation of halogenated natural product analogues. In this study, XanH was found to reduce flavin and halogenated the freely diffusing natural substrate with an angular fused hexacyclic scaffold, findings which were different from those for the exclusively studied FDHs. Moreover, the FDR-XanH fusion protein E1 with comparable reactivity to that of XanH serves as a successful example of genetic fusions and sets an important stage for future protein engineering.
Collapse
|
15
|
Kong L, Wang Q, Yang W, Shen J, Li Y, Zheng X, Wang L, Chu Y, Deng Z, Chooi YH, You D. Three Recently Diverging Duplicated Methyltransferases Exhibit Substrate-Dependent Regioselectivity Essential for Xantholipin Biosynthesis. ACS Chem Biol 2020; 15:2107-2115. [PMID: 32649177 DOI: 10.1021/acschembio.0c00296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Polycyclic xanthones are characterized by highly oxygenated, angular hexacyclic frameworks and exhibit diverse biological activities. Although many of them have been isolated and chemically synthesized, the detailed biosynthetic machinery awaits discovery. Recently, xanthone construction in the xantholipin (1) pathway was shown to involve cryptic demethoxylation. This suggested a rationale for the existence of three O-methyltransferase (OMT) genes in the gene cluster, although there are only two O-methyl groups in the structure of 1. Here, in vivo and in vitro analysis have been used to show that the three paralogous OMTs, XanM1-M3, introduce individual methyl groups at specific points in the biosynthetic pathway. Each OMT can to some extent take over the role of the other OMTs, although they exhibit highly substrate-dependent regiospecificity. In addition, phylogenetic analysis suggests their evolution from a common ancestor. Four putative ancestral proteins were constructed, and one of them performed all the functions of XanM1-M3, while the others possessed more limited catalytic functions. The results suggest that a promiscuous common ancestor may have been able to catalyze all three reactions prior to gene duplication and functional divergence. The characterization of XanM1-M3 expands the enzyme inventory for polycyclic xanthone biosynthesis and suggests novel directed evolution approaches to diversifying natural product pathways.
Collapse
Affiliation(s)
- Lingxin Kong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Qing Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Weinan Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jufang Shen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yan Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xiaoqing Zheng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Lu Wang
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
| | - Yiwen Chu
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yit-Heng Chooi
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Delin You
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
16
|
Yang W, Kong L, Wang Q, Deng Z, You D. Metabolic engineering of a methyltransferase for production of drug precursors demecycline and demeclocycline in Streptomyces aureofaciens. Synth Syst Biotechnol 2020; 5:121-130. [PMID: 32637665 PMCID: PMC7320239 DOI: 10.1016/j.synbio.2020.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 11/25/2022] Open
Abstract
Demecycline (DMTC) and demeclocycline (DMCTC) are C6-demethylated derivatives of tetracycline (TC) and chlortetracycline (CTC), respectively. They are precursors of minocycline and tigecycline, which showed remarkable bioactivity against TC-resistant bacteria and have been used clinically for decades. In order to biosynthesize drug precursors DMTC and DMCTC, the function of a possible C-methyltransferase encoding gene ctcK was studied systematically in the CTC high-yielding industrial strain Streptomyces aureofaciens F3. The ΔctcK mutant accumulated two new products, which were turned out to be DMTC and DMCTC. Meanwhile, time-course analysis of the fermentation products detected the epimers of DMTC and DMCTC transformed spontaneously. Finally, an engineering strain with higher productivity of DMCTC was constructed by deleting ctcK and overexpressing ctcP of three extra copies simultaneously. Construction of these two engineering strains not only served as a successful example of synthesizing required products through metabolic engineering, but also provided original strains for following elaborate engineering to synthesize more effective tetracycline derivatives.
Collapse
Affiliation(s)
- Weinan Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Lingxin Kong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Qing Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Delin You
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| |
Collapse
|
17
|
Jung JK, Alam KK, Verosloff MS, Capdevila DA, Desmau M, Clauer PR, Lee JW, Nguyen PQ, Pastén PA, Matiasek SJ, Gaillard JF, Giedroc DP, Collins JJ, Lucks JB. Cell-free biosensors for rapid detection of water contaminants. Nat Biotechnol 2020; 38:1451-1459. [PMID: 32632301 PMCID: PMC7718425 DOI: 10.1038/s41587-020-0571-7] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 05/19/2020] [Indexed: 12/23/2022]
Abstract
Lack of access to safe drinking water is a global problem, and methods to reliably and easily detect contaminants could be transformative. We report the development of a cell-free in vitro transcription system that uses RNA Output Sensors Activated by Ligand Induction (ROSALIND) to detect contaminants in water. A combination of highly processive RNA polymerases, allosteric protein transcription factors and synthetic DNA transcription templates regulates the synthesis of a fluorescence-activating RNA aptamer. The presence of a target contaminant induces the transcription of the aptamer, and a fluorescent signal is produced. We apply ROSALIND to detect a range of water contaminants, including antibiotics, small molecules and metals. We also show that adding RNA circuitry can invert responses, reduce crosstalk and improve sensitivity without protein engineering. The ROSALIND system can be freeze-dried for easy storage and distribution, and we apply it in the field to test municipal water supplies, demonstrating its potential use for monitoring water quality.
Collapse
Affiliation(s)
- Jaeyoung K Jung
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.,Center for Synthetic Biology, Northwestern University, Evanston, IL, USA.,Center for Water Research, Northwestern University, Evanston, IL, USA
| | - Khalid K Alam
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.,Center for Synthetic Biology, Northwestern University, Evanston, IL, USA.,Center for Water Research, Northwestern University, Evanston, IL, USA
| | - Matthew S Verosloff
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA.,Center for Water Research, Northwestern University, Evanston, IL, USA.,Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL, USA
| | | | - Morgane Desmau
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA
| | - Phillip R Clauer
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jeong Wook Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Peter Q Nguyen
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Pablo A Pastén
- Departmento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Desarrollo Urbano Sustentable, Santiago, Chile
| | - Sandrine J Matiasek
- Department of Geological and Environmental Sciences, California State University, Chico, Chico, CA, USA.,Center for Water and the Environment, California State University, Chico, Chico, CA, USA
| | - Jean-François Gaillard
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN, USA.,Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | - James J Collins
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA.,Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Julius B Lucks
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA. .,Center for Synthetic Biology, Northwestern University, Evanston, IL, USA. .,Center for Water Research, Northwestern University, Evanston, IL, USA. .,Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
18
|
Wang H, Cheng X, Liu Y, Li S, Zhang Y, Wang X, Xiang W. Improved milbemycin production by engineering two Cytochromes P450 in Streptomyces bingchenggensis. Appl Microbiol Biotechnol 2020; 104:2935-2946. [PMID: 32043186 DOI: 10.1007/s00253-020-10410-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/15/2020] [Accepted: 01/23/2020] [Indexed: 12/25/2022]
Abstract
Milbemycins and their semisynthetic derivatives are recognized as effective and eco-friendly pesticides, whereas the high price limits their widespread applications in agriculture. One of the pivotal questions is the accumulation of milbemycin-like by-products, which not only reduces the yield of the target products milbemycin A3/A4, but also brings difficulty to the purification. With other analogous by-products abolished, α9/α10 and β-family milbemycins remain to be eliminated. Herein, we solved these issues by engineering of post-modification steps. First, Cyp41, a CYP268 family cytochrome P450, was identified to participate in α9/α10 biosynthesis. By deleting cyp41, milbemycin α9/α10 was eliminated with an increase of milbemycin A3/A4 titer from 2382.5 ± 55.7 mg/L to 2625.6 ± 64.5 mg/L. Then, MilE, a CYP171 family cytochrome P450, was determined to be responsible for the generation of the furan ring between C6 and C8a of milbemycins. By further overexpression of milE, the production of β-family milbemycins was reduced by 77.2%. Finally, the titer of milbemycin A3/A4 was increased by 53.1% to 3646.9 ± 69.9 mg/L. Interestingly, overexpression of milE resulted in increased transcriptional levels of milbemycin biosynthetic genes and production of total milbemycins, which implied that the insufficient function of MilE was a limiting factor to milbemycin biosynthesis. Our research not only provides an efficient engineering strategy to improve the production of a commercially important product milbemycins, but also offers the clues for future study about transcriptional regulation of milbemycin biosynthesis.
Collapse
Affiliation(s)
- Haiyan Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.,School of Life Science, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China
| | - Xu Cheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yuqing Liu
- School of Life Science, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China
| | - Shanshan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yanyan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xiangjing Wang
- School of Life Science, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China.
| | - Wensheng Xiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
19
|
Kong L, Liu J, Zheng X, Deng Z, You D. CtcS, a MarR family regulator, regulates chlortetracycline biosynthesis. BMC Microbiol 2019; 19:279. [PMID: 31823730 PMCID: PMC6905112 DOI: 10.1186/s12866-019-1670-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/01/2019] [Indexed: 01/08/2023] Open
Abstract
Background Chlortetracycline (CTC) is one of the commercially important tetracyclines (TCs) family product and is mainly produced by Streptomyces. CTC is still in a great demand due to its broad-spectrum activity against pathogens. Engineering transcriptional control allows the cell to allocate its valuable resources towards protein production and provides an important method for the build-up of desired metabolites. Despite extensive efforts concerning transcriptional regulation for increasing the productivities of TCs, the regulatory mechanisms of the CTC biosynthesis remain poorly understood. Results In this study, the possible regulatory function of CtcS, a potential member of MarR (multiple antibiotic resistance regulator) family of transcriptional regulators in S. aureofaciens F3, was demonstrated. Knockdown of ctcS altered the transcription of several biosynthesis-related genes and reduced the production of tetracycline (TC) and CTC, without obvious effect on morphological differentiation and cell growth. Especially, CtcS directly repressed the transcription of the adjacent divergent gene ctcR (which encodes a putative TC resistance efflux protein). A CtcS-binding site was identified within the promoter region of ctcR by DNase I footprinting and an inverted repeat (5′-CTTGTC-3′) composed of two 6-nt half sites in the protected region was found. Moreover, both CTC and TC could attenuate the binding activity of CtcS with target DNA. Conclusion ctcS regulated the production of TC and CTC in S. aureofaciens F3 and the overexpression of it could be used as a simple approach for the construction of engineering strain with higher productivity. Meanwhile, CtcS was characterized as a TC- and CTC-responsive MarR family regulator. This study provides a previously unrecognized function of CtcS and will benefit the research on the regulatory machinery of the MarR family regulators.
Collapse
Affiliation(s)
- Lingxin Kong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jia Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xiaoqing Zheng
- Department of Immunology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Delin You
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|
20
|
Qian Z, Bruhn T, D’Agostino PM, Herrmann A, Haslbeck M, Antal N, Fiedler HP, Brack-Werner R, Gulder TAM. Discovery of the Streptoketides by Direct Cloning and Rapid Heterologous Expression of a Cryptic PKS II Gene Cluster from Streptomyces sp. Tü 6314. J Org Chem 2019; 85:664-673. [DOI: 10.1021/acs.joc.9b02741] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Zhengyi Qian
- Biosystems Chemistry, Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM), Technical University of Munich, Lichtenbergstraße 4, 85748 Garching bei München, Germany
| | - Torsten Bruhn
- Bundesinstitut für Risikobewertung, Max-Dohrn-Str. 8-10, 10789 Berlin, Germany
| | - Paul M. D’Agostino
- Biosystems Chemistry, Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM), Technical University of Munich, Lichtenbergstraße 4, 85748 Garching bei München, Germany
- Chair of Technical Biochemistry, Technische Universität Dresden, Bergstraße 66, 01602 Dresden, Germany
| | - Alexander Herrmann
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Virology, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Martin Haslbeck
- Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching bei München, Germany
| | - Noémi Antal
- Institute of Microbiology, University of Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| | - Hans-Peter Fiedler
- Institute of Microbiology, University of Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| | - Ruth Brack-Werner
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Virology, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Tobias A. M. Gulder
- Biosystems Chemistry, Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM), Technical University of Munich, Lichtenbergstraße 4, 85748 Garching bei München, Germany
- Chair of Technical Biochemistry, Technische Universität Dresden, Bergstraße 66, 01602 Dresden, Germany
| |
Collapse
|
21
|
Ogawara H. Comparison of Antibiotic Resistance Mechanisms in Antibiotic-Producing and Pathogenic Bacteria. Molecules 2019; 24:E3430. [PMID: 31546630 PMCID: PMC6804068 DOI: 10.3390/molecules24193430] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022] Open
Abstract
Antibiotic resistance poses a tremendous threat to human health. To overcome this problem, it is essential to know the mechanism of antibiotic resistance in antibiotic-producing and pathogenic bacteria. This paper deals with this problem from four points of view. First, the antibiotic resistance genes in producers are discussed related to their biosynthesis. Most resistance genes are present within the biosynthetic gene clusters, but some genes such as paromomycin acetyltransferases are located far outside the gene cluster. Second, when the antibiotic resistance genes in pathogens are compared with those in the producers, resistance mechanisms have dependency on antibiotic classes, and, in addition, new types of resistance mechanisms such as Eis aminoglycoside acetyltransferase and self-sacrifice proteins in enediyne antibiotics emerge in pathogens. Third, the relationships of the resistance genes between producers and pathogens are reevaluated at their amino acid sequence as well as nucleotide sequence levels. Pathogenic bacteria possess other resistance mechanisms than those in antibiotic producers. In addition, resistance mechanisms are little different between early stage of antibiotic use and the present time, e.g., β-lactam resistance in Staphylococcus aureus. Lastly, guanine + cytosine (GC) barrier in gene transfer to pathogenic bacteria is considered. Now, the resistance genes constitute resistome composed of complicated mixture from divergent environments.
Collapse
Affiliation(s)
- Hiroshi Ogawara
- HO Bio Institute, 33-9, Yushima-2, Bunkyo-ku, Tokyo 113-0034, Japan.
- Department of Biochemistry, Meiji Pharmaceutical University, 522-1, Noshio-2, Kiyose, Tokyo 204-8588, Japan.
| |
Collapse
|
22
|
Robertsen HL, Musiol-Kroll EM. Actinomycete-Derived Polyketides as a Source of Antibiotics and Lead Structures for the Development of New Antimicrobial Drugs. Antibiotics (Basel) 2019; 8:E157. [PMID: 31547063 PMCID: PMC6963833 DOI: 10.3390/antibiotics8040157] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/08/2019] [Accepted: 09/10/2019] [Indexed: 01/15/2023] Open
Abstract
Actinomycetes are remarkable producers of compounds essential for human and veterinary medicine as well as for agriculture. The genomes of those microorganisms possess several sets of genes (biosynthetic gene cluster (BGC)) encoding pathways for the production of the valuable secondary metabolites. A significant proportion of the identified BGCs in actinomycetes encode pathways for the biosynthesis of polyketide compounds, nonribosomal peptides, or hybrid products resulting from the combination of both polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs). The potency of these molecules, in terms of bioactivity, was recognized in the 1940s, and started the "Golden Age" of antimicrobial drug discovery. Since then, several valuable polyketide drugs, such as erythromycin A, tylosin, monensin A, rifamycin, tetracyclines, amphotericin B, and many others were isolated from actinomycetes. This review covers the most relevant actinomycetes-derived polyketide drugs with antimicrobial activity, including anti-fungal agents. We provide an overview of the source of the compounds, structure of the molecules, the biosynthetic principle, bioactivity and mechanisms of action, and the current stage of development. This review emphasizes the importance of actinomycetes-derived antimicrobial polyketides and should serve as a "lexicon", not only to scientists from the Natural Products field, but also to clinicians and others interested in this topic.
Collapse
Affiliation(s)
- Helene L Robertsen
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| | - Ewa M Musiol-Kroll
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| |
Collapse
|
23
|
Yang T, Yang K, Chen Y, Fan K. Characterization of a Bi-directional Promoter OtrRp Involved in Oxytetracycline Biosynthesis. Curr Microbiol 2019; 76:1264-1269. [PMID: 31410507 DOI: 10.1007/s00284-019-01753-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/31/2019] [Accepted: 08/05/2019] [Indexed: 10/26/2022]
Abstract
Previous studies identified a MarR (multiple antibiotic resistance regulator) family transcription factor OtrR in the oxytetracycline biosynthetic gene cluster, which regulated the expression of an efflux pump OtrB. The genes otrB and otrR were divergent arranged and the inter-ORF (open reading frame) region between the two genes contained the promoter otrBp. In this study, we demonstrated that the reverse complementary sequence of otrBp contained the promoter of otrR, and its activity was also repressed by OtrR by sharing the same operator otrO within otrBp, and allosteric regulated by oxytetracycline. Our findings offered a solid base for the synthetic biological application of the bi-direction promoter in controlling two elements at the same time using only one signal molecule.
Collapse
Affiliation(s)
- Tongjian Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Keqian Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yihua Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Keqiang Fan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
24
|
Wang X, Yin S, Bai J, Liu Y, Fan K, Wang H, Yuan F, Zhao B, Li Z, Wang W. Heterologous production of chlortetracycline in an industrial grade Streptomyces rimosus host. Appl Microbiol Biotechnol 2019; 103:6645-6655. [PMID: 31240365 DOI: 10.1007/s00253-019-09970-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/28/2019] [Accepted: 06/05/2019] [Indexed: 01/06/2023]
Abstract
High-yielding industrial Streptomyces producer is usually obtained by multiple rounds of random mutagenesis and screening. These strains have great potential to be developed as the versatile chassis for the discovery and titer improvement of desired heterologous products. Here, the industrial strain Streptomyces rimosus 461, which is a high producer of oxytetracycline, has been engineered as a robust host for heterologous expression of chlortetracycline (CTC) biosynthetic gene cluster. First, the industrial chassis strain SR0 was constructed by deleting the whole oxytetracycline gene cluster of S. rimosus 461. Then, the biosynthetic gene cluster ctc of Streptomyces aureofaciens ATCC 10762 was integrated into the chromosome of SR0. With an additional constitutively expressed cluster-situated activator gene ctcB, the CTC titer of the engineering strain SRC1 immediately reached 1.51 g/L in shaking flask. Then, the CTC titers were upgraded to 2.15 and 3.27 g/L, respectively, in the engineering strains SRC2 and SRC3 with the enhanced ctcB expression. Further, two cluster-situated resistance genes were co-overexpressed with ctcB. The resultant strain produced CTC up to 3.80 g/L in shaking flask fermentation, which represents 38 times increase in comparison with that of the original producer. Overall, SR0 presented in this study have great potential to be used for heterologous production of tetracyclines and other type II polyketides.
Collapse
Affiliation(s)
- Xuefeng Wang
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China.,Hebei Shengxue Dacheng Pharmaceutical Co., Ltd., Shijiazhuang, 051430, Hebei, People's Republic of China
| | - Shouliang Yin
- School of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, People's Republic of China
| | - Jing Bai
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China
| | - Yang Liu
- School of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, People's Republic of China
| | - Keqiang Fan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, People's Republic of China
| | - Huizhuan Wang
- Hebei Shengxue Dacheng Pharmaceutical Co., Ltd., Shijiazhuang, 051430, Hebei, People's Republic of China
| | - Fang Yuan
- Hebei Shengxue Dacheng Pharmaceutical Co., Ltd., Shijiazhuang, 051430, Hebei, People's Republic of China
| | - Baohua Zhao
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China.
| | - Zilong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, People's Republic of China.
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, People's Republic of China.
| |
Collapse
|
25
|
Lukežič T, Fayad AA, Bader C, Harmrolfs K, Bartuli J, Groß S, Lešnik U, Hennessen F, Herrmann J, Pikl Š, Petković H, Müller R. Engineering Atypical Tetracycline Formation in Amycolatopsis sulphurea for the Production of Modified Chelocardin Antibiotics. ACS Chem Biol 2019; 14:468-477. [PMID: 30747520 DOI: 10.1021/acschembio.8b01125] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To combat the increasing spread of antimicrobial resistance and the shortage of novel anti-infectives, one strategy for the development of new antibiotics is to optimize known chemical scaffolds. Here, we focus on the biosynthetic engineering of Amycolatopsis sulphurea for derivatization of the atypical tetracycline chelocardin and its potent broad-spectrum derivative 2-carboxamido-2-deacetyl-chelocardin. Heterologous biosynthetic genes were introduced into this chelocardin producer to modify functional groups and generate new derivatives. We demonstrate cooperation of chelocardin polyketide synthase with tailoring enzymes involved in biosynthesis of oxytetracycline from Streptomyces rimosus. An interesting feature of chelocardin, compared with oxytetracycline, is the opposite stereochemistry of the C4 amino group. Genes involved in C4 transamination and N,N-dimethylation of oxytetracycline were heterologously expressed in an A. sulphurea mutant lacking C4-aminotransferase. Chelocardin derivatives with opposite stereochemistry of the C4 amino group, as N,N-dimethyl- epi-chelocardin and N,N-dimethyl-2-carboxamido-2-deacetyl- epi-chelocardin, were produced only when the aminotransferase from oxytetracycline was coexpressed with the N-methyltransferase OxyT. Surprisingly, OxyT exclusively accepted intermediates carrying an S-configured amino group at C4 in chelocardin. Applying medicinal chemistry approaches, several 2-carboxamido-2-deacetyl- epi-chelocardin derivatives modified at C4 were produced. Analysis of the antimicrobial activities of the modified compounds demonstrated that the primary amine in the R configuration is a crucial structural feature for activity of chelocardin. Unexpectedly, C10 glycosylated chelocardin analogues were identified, thus revealing the glycosylation potential of A. sulphurea. However, efficient glycosylation of the chelocardin backbone occurred only after engineering of a dimethylated amino group at the C4 position in the opposite S configuration, which suggests some evolutionary remains of chelocardin glycosylation.
Collapse
Affiliation(s)
- Tadeja Lukežič
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of
Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Acies Bio, d.o.o., Tehnološki Park 21, 1000 Ljubljana, Slovenia
| | - Antoine Abou Fayad
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of
Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Chantal Bader
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of
Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Kirsten Harmrolfs
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of
Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Johannes Bartuli
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of
Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Sebastian Groß
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of
Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Urška Lešnik
- Acies Bio, d.o.o., Tehnološki Park 21, 1000 Ljubljana, Slovenia
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Fabienne Hennessen
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of
Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Jennifer Herrmann
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of
Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Špela Pikl
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Hrvoje Petković
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of
Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, 38124 Braunschweig, Germany
| |
Collapse
|
26
|
Affiliation(s)
- Jia Zeng
- Department of Molecular BioscienceUniversity of Texas at Austin Austin, Texas 89812 United States
| | - Jixun Zhan
- Department of Biological EngineeringUtah State University Logan, Utah 84321 United States
| |
Collapse
|
27
|
Villebro R, Shaw S, Blin K, Weber T. Sequence-based classification of type II polyketide synthase biosynthetic gene clusters for antiSMASH. J Ind Microbiol Biotechnol 2019; 46:469-475. [PMID: 30610412 DOI: 10.1007/s10295-018-02131-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/24/2018] [Indexed: 02/01/2023]
Abstract
The software antiSMASH examines microbial genome data to identify and analyze biosynthetic gene clusters for a wide range of natural products. So far, type II polyketide synthase (PKS) gene clusters could only be identified, but no detailed predictions for type II PKS gene clusters could be provided. In this study, an antiSMASH module for analyzing type II PKS gene clusters has been developed. The module detects genes/proteins in the type II PKS gene cluster involved with polyketide biosynthesis and is able to make predictions about the aromatic polyketide product. Predictions include the putative starter unit, the number of malonyl elongations during polyketide biosynthesis, the putative class and the molecular weight of the product. Furthermore, putative cyclization patterns are predicted. The accuracy of the predictions generated with the new PKSII antiSMASH module was evaluated using a leave-one-out cross validation. The prediction module is available in antiSMASH version 5 at https://antismash.secondarymetabolites.org .
Collapse
Affiliation(s)
- Rasmus Villebro
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Bygning 220, 2800, Kongens Lyngby, Denmark
| | - Simon Shaw
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Bygning 220, 2800, Kongens Lyngby, Denmark
| | - Kai Blin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Bygning 220, 2800, Kongens Lyngby, Denmark.
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Bygning 220, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
28
|
Moritzer AC, Minges H, Prior T, Frese M, Sewald N, Niemann HH. Structure-based switch of regioselectivity in the flavin-dependent tryptophan 6-halogenase Thal. J Biol Chem 2018; 294:2529-2542. [PMID: 30559288 DOI: 10.1074/jbc.ra118.005393] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/07/2018] [Indexed: 11/06/2022] Open
Abstract
Flavin-dependent halogenases increasingly attract attention as biocatalysts in organic synthesis, facilitating environmentally friendly halogenation strategies that require only FADH2, oxygen, and halide salts. Different flavin-dependent tryptophan halogenases regioselectively chlorinate or brominate trypto-phan's indole moiety at C5, C6, or C7. Here, we present the first substrate-bound structure of a tryptophan 6-halogenase, namely Thal, also known as ThdH, from the bacterium Streptomyces albogriseolus at 2.55 Å resolution. The structure revealed that the C6 of tryptophan is positioned next to the ϵ-amino group of a conserved lysine, confirming the hypothesis that proximity to the catalytic residue determines the site of electrophilic aromatic substitution. Although Thal is more similar in sequence and structure to the tryptophan 7-halogenase RebH than to the tryptophan 5-halogenase PyrH, the indole binding pose in the Thal active site more closely resembled that of PyrH than that of RebH. The difference in indole orientation between Thal and RebH appeared to be largely governed by residues positioning the Trp backbone atoms. The sequences of Thal and RebH lining the substrate binding site differ in only few residues. Therefore, we exchanged five amino acids in the Thal active site with the corresponding counterparts in RebH, generating the quintuple variant Thal-RebH5. Overall conversion of l-Trp by the Thal-RebH5 variant resembled that of WT Thal, but its regioselectivity of chlorination and bromination was almost completely switched from C6 to C7 as in RebH. We conclude that structure-based protein engineering with targeted substitution of a few residues is an efficient approach to tailoring flavin-dependent halogenases.
Collapse
Affiliation(s)
| | - Hannah Minges
- Organic and Bioorganic Chemistry Research Groups, Department of Chemistry, Bielefeld University, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | | | - Marcel Frese
- Organic and Bioorganic Chemistry Research Groups, Department of Chemistry, Bielefeld University, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | - Norbert Sewald
- Organic and Bioorganic Chemistry Research Groups, Department of Chemistry, Bielefeld University, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | | |
Collapse
|
29
|
Streptomyces spp. in the biocatalysis toolbox. Appl Microbiol Biotechnol 2018; 102:3513-3536. [PMID: 29502181 DOI: 10.1007/s00253-018-8884-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/17/2018] [Accepted: 02/19/2018] [Indexed: 02/07/2023]
Abstract
About 20,100 research publications dated 2000-2017 were recovered searching the PubMed and Web of Science databases for Streptomyces, which are the richest known source of bioactive molecules. However, these bacteria with versatile metabolism are powerful suppliers of biocatalytic tools (enzymes) for advanced biotechnological applications such as green chemical transformations and biopharmaceutical and biofuel production. The recent technological advances, especially in DNA sequencing coupled with computational tools for protein functional and structural prediction, and the improved access to microbial diversity enabled the easier access to enzymes and the ability to engineer them to suit a wider range of biotechnological processes. The major driver behind a dramatic increase in the utilization of biocatalysis is sustainable development and the shift toward bioeconomy that will, in accordance to the UN policy agenda "Bioeconomy to 2030," become a global effort in the near future. Streptomyces spp. already play a significant role among industrial microorganisms. The intention of this minireview is to highlight the presence of Streptomyces in the toolbox of biocatalysis and to give an overview of the most important advances in novel biocatalyst discovery and applications. Judging by the steady increase in a number of recent references (228 for the 2000-2017 period), it is clear that biocatalysts from Streptomyces spp. hold promises in terms of valuable properties and applicative industrial potential.
Collapse
|
30
|
Reed KB, Alper HS. Expanding beyond canonical metabolism: Interfacing alternative elements, synthetic biology, and metabolic engineering. Synth Syst Biotechnol 2018; 3:20-33. [PMID: 29911196 PMCID: PMC5884228 DOI: 10.1016/j.synbio.2017.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/08/2017] [Accepted: 12/09/2017] [Indexed: 12/15/2022] Open
Abstract
Metabolic engineering offers an exquisite capacity to produce new molecules in a renewable manner. However, most industrial applications have focused on only a small subset of elements from the periodic table, centered around carbon biochemistry. This review aims to illustrate the expanse of chemical elements that can currently (and potentially) be integrated into useful products using cellular systems. Specifically, we describe recent advances in expanding the cellular scope to include the halogens, selenium and the metalloids, and a variety of metal incorporations. These examples range from small molecules, heteroatom-linked uncommon elements, and natural products to biomining and nanotechnology applications. Collectively, this review covers the promise of an expanded range of elemental incorporations and the future impacts it may have on biotechnology.
Collapse
Affiliation(s)
- Kevin B. Reed
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200E Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| | - Hal S. Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200E Dean Keeton St. Stop C0400, Austin, TX 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX 78712, USA
| |
Collapse
|
31
|
Wu N, Huang H, Min T, Hu H. TAR cloning and integrated overexpression of 6-demethylchlortetracycline biosynthetic gene cluster in Streptomyces aureofaciens. Acta Biochim Biophys Sin (Shanghai) 2017; 49:1129-1134. [PMID: 29087452 DOI: 10.1093/abbs/gmx110] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Indexed: 12/28/2022] Open
Abstract
6-Demethylchlortetracycline (6-DCT), a tetracycline antibiotic produced by Streptomyces aureofaciens, is a crucial precursor employed for the semi-synthesis of tigecycline, minocycline, and amadacyclin (PTK 0796). In this study, the 6-DCT biosynthetic gene cluster (BGC) was cloned from genomic DNA of a high 6-DCT-producing strain, S. aureofaciens DM-1, using the transformation-associated recombination method. An extra copy of the 6-DCT BGC was introduced and integrated into the chromosome of S. aureofaciens DM-1. Duplication of the 6-DCT BGC resulted in a maximum increase of the 6-DCT titer by 34%.
Collapse
Affiliation(s)
- Naxin Wu
- School of Pharmacy, Department of Pharmacology, Fudan University, Shanghai, China
- Shanghai Institute of Pharmaceutical Industry, Department of Biopharmceutical, Shanghai, China
| | - He Huang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Taoling Min
- Shanghai Institute of Pharmaceutical Industry, Department of Biopharmceutical, Shanghai, China
| | - Haifeng Hu
- Shanghai Institute of Pharmaceutical Industry, Department of Biopharmceutical, Shanghai, China
| |
Collapse
|
32
|
Ning X, Wang X, Wu Y, Kang Q, Bai L. Identification and Engineering of Post-PKS Modification Bottlenecks for Ansamitocin P-3 Titer Improvement inActinosynnema pretiosumsubsp. pretiosumATCC 31280. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201700484] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/21/2017] [Indexed: 01/22/2023]
Affiliation(s)
- Xinjuan Ning
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology; Shanghai Jiao Tong University; Shanghai 200240 China
| | - Xinran Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology; Shanghai Jiao Tong University; Shanghai 200240 China
| | - Yuanting Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology; Shanghai Jiao Tong University; Shanghai 200240 China
| | - Qianjin Kang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology; Shanghai Jiao Tong University; Shanghai 200240 China
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology; Shanghai Jiao Tong University; Shanghai 200240 China
| |
Collapse
|
33
|
Gao G, Liu X, Xu M, Wang Y, Zhang F, Xu L, Lv J, Long Q, Kang Q, Ou HY, Wang Y, Rohr J, Deng Z, Jiang M, Lin S, Tao M. Formation of an Angular Aromatic Polyketide from a Linear Anthrene Precursor via Oxidative Rearrangement. Cell Chem Biol 2017; 24:881-891.e4. [PMID: 28712746 DOI: 10.1016/j.chembiol.2017.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/28/2017] [Accepted: 06/16/2017] [Indexed: 12/24/2022]
Abstract
Bacterial aromatic polyketides are a group of natural products synthesized by polyketide synthases (PKSs) that show diverse structures and biological activities. They are structurally subclassified into linear, angular, and discoid aromatic polyketides, the formation of which is commonly determined by the shaping and folding of the poly-β-keto intermediates under the concerted actions of the minimal PKSs, cyclases and ketoreductases. Murayaquinone, found in several streptomycetes, possesses an unusual tricyclic angular aromatic polyketide core containing a 9,10-phenanthraquinone. In this study, genes essential for murayaquinone biosynthesis were identified, and a linear anthraoxirene intermediate was discovered. A unique biosynthetic model for the angular aromatic polyketide formation was discovered and confirmed through in vivo and in vitro studies. Three oxidoreductases, MrqO3, MrqO6, and MrqO7, were identified to catalyze the conversion of the linear aromatic polyketide intermediate into the final angularly arranged framework, which exemplifies a novel strategy for the biosynthesis of angular aromatic polyketides.
Collapse
Affiliation(s)
- Guixi Gao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Xiangyang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Min Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Yemin Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Fei Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Lijun Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Jin Lv
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Qingshan Long
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Qianjin Kang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Hong-Yu Ou
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Ying Wang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou 510632, P. R. China
| | - Jürgen Rohr
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Ming Jiang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.
| | - Meifeng Tao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.
| |
Collapse
|
34
|
Wang J, Xiao H, Qian ZG, Zhong JJ. Bioproduction of Antibody–Drug Conjugate Payload Precursors by Engineered Cell Factories. Trends Biotechnol 2017; 35:466-478. [DOI: 10.1016/j.tibtech.2017.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/25/2017] [Accepted: 03/01/2017] [Indexed: 12/30/2022]
|
35
|
Petković H, Lukežič T, Šušković J. Biosynthesis of Oxytetracycline by Streptomyces rimosus:
Past, Present and Future Directions in the Development
of Tetracycline Antibiotics. Food Technol Biotechnol 2017; 55:3-13. [PMID: 28559729 DOI: 10.17113/ftb.55.01.17.4617] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Natural tetracycline (TC) antibiotics were the first major class of therapeutics to earn the distinction of 'broad-spectrum antibiotics' and they have been used since the 1940s against a wide range of both Gram-positive and Gram-negative pathogens, mycoplasmas, intracellular chlamydiae, rickettsiae and protozoan parasites. The second generation of semisynthetic tetracyclines, such as minocycline and doxycycline, with improved antimicrobial potency, were introduced during the 1960s. Despite emerging resistance to TCs erupting during the 1980s, it was not until 2006, more than four decades later, that a third--generation TC, named tigecycline, was launched. In addition, two TC analogues, omadacycline and eravacycline, developed via (semi)synthetic and fully synthetic routes, respectively, are at present under clinical evaluation. Interestingly, despite very productive early work on the isolation of a Streptomyces aureofaciens mutant strain that produced 6-demethyl-7-chlortetracycline, the key intermediate in the production of second- and third-generation TCs, biosynthetic approaches in TC development have not been productive for more than 50 years. Relatively slow and tedious molecular biology approaches for the genetic manipulation of TC-producing actinobacteria, as well as an insufficient understanding of the enzymatic mechanisms involved in TC biosynthesis have significantly contributed to the low success of such biosynthetic engineering efforts. However, new opportunities in TC drug development have arisen thanks to a significant progress in the development of affordable and versatile biosynthetic engineering and synthetic biology approaches, and, importantly, to a much deeper understanding of TC biosynthesis, mostly gained over the last two decades.
Collapse
Affiliation(s)
- Hrvoje Petković
- Department of Food Science and Technology, University of Ljubljana, Biotechnical Faculty,
Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Tadeja Lukežič
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Pharmaceutical Biotechnology,
Saarland University, Campus E 8.1, DE-66123 Saarbrücken, Germany
| | - Jagoda Šušković
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology,
University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia
| |
Collapse
|
36
|
Bilyk O, Luzhetskyy A. Metabolic engineering of natural product biosynthesis in actinobacteria. Curr Opin Biotechnol 2016; 42:98-107. [DOI: 10.1016/j.copbio.2016.03.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/03/2016] [Accepted: 03/11/2016] [Indexed: 11/25/2022]
|
37
|
Wang Y, Tao Z, Zheng H, Zhang F, Long Q, Deng Z, Tao M. Iteratively improving natamycin production in Streptomyces gilvosporeus by a large operon-reporter based strategy. Metab Eng 2016; 38:418-426. [PMID: 27746324 DOI: 10.1016/j.ymben.2016.10.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 08/09/2016] [Accepted: 10/12/2016] [Indexed: 10/20/2022]
Abstract
Many high-value secondary metabolites are assembled by very large multifunctional polyketide synthases or non-ribosomal peptide synthetases encoded by giant genes, for instance, natamycin production in an industrial strain of Streptomyces gilvosporeus. In this study, a large operon reporter-based selection system has been developed using the selectable marker gene neo to report the expression both of the large polyketide synthase genes and of the entire gene cluster, thereby facilitating the selection of natamycin-overproducing mutants by iterative random mutagenesis breeding. In three successive rounds of mutagenesis and selection, the natamycin titer was increased by 110%, 230%, and 340%, respectively, and the expression of the whole biosynthetic gene cluster was correspondingly increased. An additional copy of the natamycin gene cluster was found in one overproducer. These findings support the large operon reporter-based selection system as a useful tool for the improvement of industrial strains utilized in the production of polyketides and non-ribosomal peptides.
Collapse
Affiliation(s)
- Yemin Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zhengsheng Tao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Hualiang Zheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Fei Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Qingshan Long
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Meifeng Tao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
38
|
Zhang MM, Wang Y, Ang EL, Zhao H. Engineering microbial hosts for production of bacterial natural products. Nat Prod Rep 2016; 33:963-87. [PMID: 27072804 PMCID: PMC4963277 DOI: 10.1039/c6np00017g] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Covering up to end 2015Microbial fermentation provides an attractive alternative to chemical synthesis for the production of structurally complex natural products. In most cases, however, production titers are low and need to be improved for compound characterization and/or commercial production. Owing to advances in functional genomics and genetic engineering technologies, microbial hosts can be engineered to overproduce a desired natural product, greatly accelerating the traditionally time-consuming strain improvement process. This review covers recent developments and challenges in the engineering of native and heterologous microbial hosts for the production of bacterial natural products, focusing on the genetic tools and strategies for strain improvement. Special emphasis is placed on bioactive secondary metabolites from actinomycetes. The considerations for the choice of host systems will also be discussed in this review.
Collapse
Affiliation(s)
- Mingzi M Zhang
- Metabolic Engineering Research Laboratory, Science and Engineering Institutes, Agency for Science, Technology and Research, Singapore
| | | | | | | |
Collapse
|
39
|
Molecular Genetic Characterization of an Anthrabenzoxocinones Gene Cluster in Streptomyces Sp. FJS31-2 for the Biosynthesis of BE-24566B and Zunyimycin Ale. Molecules 2016; 21:molecules21060711. [PMID: 27248985 PMCID: PMC6273070 DOI: 10.3390/molecules21060711] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/08/2016] [Accepted: 05/18/2016] [Indexed: 12/05/2022] Open
Abstract
Genome mining is an effective tool used to discover novel natural products from actinomycetes. Genome sequence analysis of Streptomyces sp. FJS31-2 revealed the presence of one putative type II polyketide gene cluster (ABX), which may correspond to type II polyketide products including BE-24566B and its chloro-derivatives. The addition of natural humus acid successfully activated the biosynthsis of the abx gene cluster. BE-24566B and its chloro-derivatives, named zunyimycin A, were also detected. The targeted deletion of the polyketide skeleton synthesis genes such as abxp, abxk, and abxs was performed in the wild strain to identify the gene cluster for BE-24566B biosynthesis.
Collapse
|
40
|
Weichold V, Milbredt D, van Pée KH. Die spezifische enzymatische Halogenierung - von der Entdeckung halogenierender Enzyme bis zu deren Anwendung in vitro und in vivo. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201509573] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Veit Weichold
- Fachrichtung Chemie und Lebensmittelchemie, Allgemeine Biochemie; TU Dresden; 01062 Dresden Deutschland
| | - Daniela Milbredt
- Fachrichtung Chemie und Lebensmittelchemie, Allgemeine Biochemie; TU Dresden; 01062 Dresden Deutschland
| | - Karl-Heinz van Pée
- Fachrichtung Chemie und Lebensmittelchemie, Allgemeine Biochemie; TU Dresden; 01062 Dresden Deutschland
| |
Collapse
|
41
|
Weichold V, Milbredt D, van Pée KH. Specific Enzymatic Halogenation-From the Discovery of Halogenated Enzymes to Their Applications In Vitro and In Vivo. Angew Chem Int Ed Engl 2016; 55:6374-89. [DOI: 10.1002/anie.201509573] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/02/2015] [Indexed: 01/22/2023]
Affiliation(s)
- Veit Weichold
- Fachrichtung Chemie und Lebensmittelchemie, Allgemeine Biochemie; TU Dresden; 01062 Dresden Germany
| | - Daniela Milbredt
- Fachrichtung Chemie und Lebensmittelchemie, Allgemeine Biochemie; TU Dresden; 01062 Dresden Germany
| | - Karl-Heinz van Pée
- Fachrichtung Chemie und Lebensmittelchemie, Allgemeine Biochemie; TU Dresden; 01062 Dresden Germany
| |
Collapse
|
42
|
Tao L, Ma Z, Xu X, Bechthold A, Bian Y, Shentu X, Yu X. EngineeringStreptomyces diastatochromogenes1628 to increase the production of toyocamycin. Eng Life Sci 2015. [DOI: 10.1002/elsc.201400239] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Libin Tao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine; College of Life Sciences; China Jiliang University; Hangzhou Zhejiang Province China
| | - Zheng Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine; College of Life Sciences; China Jiliang University; Hangzhou Zhejiang Province China
| | - Xianhao Xu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine; College of Life Sciences; China Jiliang University; Hangzhou Zhejiang Province China
| | - Andreas Bechthold
- Pharmazeutische Biologie und Biotechnologie; Institut für Pharmazeutische Wissenschaften; Albert-Ludwigs-Universität Freiburg im Breisgau; Freiburg Germany
| | - Yalin Bian
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine; College of Life Sciences; China Jiliang University; Hangzhou Zhejiang Province China
| | - Xuping Shentu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine; College of Life Sciences; China Jiliang University; Hangzhou Zhejiang Province China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine; College of Life Sciences; China Jiliang University; Hangzhou Zhejiang Province China
| |
Collapse
|
43
|
Yin S, Wang W, Wang X, Zhu Y, Jia X, Li S, Yuan F, Zhang Y, Yang K. Identification of a cluster-situated activator of oxytetracycline biosynthesis and manipulation of its expression for improved oxytetracycline production in Streptomyces rimosus. Microb Cell Fact 2015; 14:46. [PMID: 25886456 PMCID: PMC4393881 DOI: 10.1186/s12934-015-0231-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/25/2015] [Indexed: 11/10/2022] Open
Abstract
Background Oxytetracycline (OTC) is a broad-spectrum antibiotic commercially produced by Streptomyces rimosus. Despite its importance, little is known about the regulation of OTC biosynthesis, which hampered any effort to improve OTC production via engineering regulatory genes. Results A gene encoding a Streptomyces antibiotic regulatory protein (SARP) was discovered immediately adjacent to the otrB gene of oxy cluster in S. rimosus and designated otcR. Deletion and complementation of otcR abolished or restored OTC production, respectively, indicating that otcR encodes an essential activator of OTC biosynthesis. Then, the predicted consensus SARP-binding sequences were extracted from the promoter regions of oxy cluster. Transcriptional analysis in a heterologous GFP reporter system demonstrated that OtcR directly activated the transcription of five oxy promoters in E. coli, further mutational analysis of a SARP-binding sequence of oxyI promoter proved that OtcR directly interacted with the consensus repeats. Therefore, otcR was chosen as an engineering target, OTC production was significantly increased by overexpression of otcR as tandem copies each under the control of strong SF14 promoter. Conclusions A SARP activator, OtcR, was identified in oxy cluster of S. rimosus; it was shown to directly activate five promoters from oxy cluster. Overexpression of otcR at an appropriate level dramatically increased OTC production by 6.49 times compared to the parental strain, thus demonstrating the great potential of manipulating OtcR to improve the yield of OTC production. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0231-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shouliang Yin
- Department of Environmental and Biological Engineering, School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), D11 Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China.
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, People's Republic of China.
| | - Xuefeng Wang
- Shengxue Dacheng Pharmaceutical Co., Ltd, 50 Shengxue Road, Shijiazhuang, 051430, Hebei, People's Republic of China.
| | - Yaxin Zhu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, People's Republic of China.
| | - Xiaole Jia
- Shengxue Dacheng Pharmaceutical Co., Ltd, 50 Shengxue Road, Shijiazhuang, 051430, Hebei, People's Republic of China.
| | - Shanshan Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, People's Republic of China.
| | - Fang Yuan
- Shengxue Dacheng Pharmaceutical Co., Ltd, 50 Shengxue Road, Shijiazhuang, 051430, Hebei, People's Republic of China.
| | - Yuxiu Zhang
- Department of Environmental and Biological Engineering, School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), D11 Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China.
| | - Keqian Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, People's Republic of China.
| |
Collapse
|
44
|
Tan GY, Peng Y, Lu C, Bai L, Zhong JJ. Engineering validamycin production by tandem deletion of γ-butyrolactone receptor genes in Streptomyces hygroscopicus 5008. Metab Eng 2015; 28:74-81. [DOI: 10.1016/j.ymben.2014.12.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/31/2014] [Accepted: 12/08/2014] [Indexed: 11/29/2022]
|
45
|
Weber T, Charusanti P, Musiol-Kroll EM, Jiang X, Tong Y, Kim HU, Lee SY. Metabolic engineering of antibiotic factories: new tools for antibiotic production in actinomycetes. Trends Biotechnol 2014; 33:15-26. [PMID: 25497361 DOI: 10.1016/j.tibtech.2014.10.009] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 10/21/2014] [Accepted: 10/31/2014] [Indexed: 12/15/2022]
Abstract
Actinomycetes are excellent sources for novel bioactive compounds, which serve as potential drug candidates for antibiotics development. While industrial efforts to find and develop novel antimicrobials have been severely reduced during the past two decades, the increasing threat of multidrug-resistant pathogens and the development of new technologies to find and produce such compounds have again attracted interest in this field. Based on improvements in whole-genome sequencing, novel methods have been developed to identify the secondary metabolite biosynthetic gene clusters by genome mining, to clone them, and to express them in heterologous hosts in much higher throughput than before. These technologies now enable metabolic engineering approaches to optimize production yields and to directly manipulate the pathways to generate modified products.
Collapse
Affiliation(s)
- Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Alle 6, Hørsholm, Denmark
| | - Pep Charusanti
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Alle 6, Hørsholm, Denmark; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Ewa Maria Musiol-Kroll
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Alle 6, Hørsholm, Denmark
| | - Xinglin Jiang
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Alle 6, Hørsholm, Denmark
| | - Yaojun Tong
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Alle 6, Hørsholm, Denmark
| | - Hyun Uk Kim
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Alle 6, Hørsholm, Denmark; Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, BioInformatics Research Center, and BioProcess Engineering Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Sang Yup Lee
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Alle 6, Hørsholm, Denmark; Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, BioInformatics Research Center, and BioProcess Engineering Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea.
| |
Collapse
|
46
|
Wu H, Chen M, Mao Y, Li W, Liu J, Huang X, Zhou Y, Ye BC, Zhang L, Weaver DT, Zhang B. Dissecting and engineering of the TetR family regulator SACE_7301 for enhanced erythromycin production in Saccharopolyspora erythraea. Microb Cell Fact 2014; 13:158. [PMID: 25391994 PMCID: PMC4258057 DOI: 10.1186/s12934-014-0158-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 10/23/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Saccharopolyspora erythraea was extensively utilized for the industrial-scale production of erythromycin A (Er-A), a macrolide antibiotic commonly used in human medicine. Yet, S. erythraea lacks regulatory genes in the erythromycin biosynthetic gene (ery) cluster, hampering efforts to enhance Er-A production via the engineering of regulatory genes. RESULTS By the chromosome gene inactivation technique based on homologous recombination with linearized DNA fragments, we have inactivated a number of candidate TetR family transcriptional regulators (TFRs) and identified one TFR (SACE_7301) positively controlling erythromycin biosynthesis in S. erythraea A226. qRT-PCR and EMSA analyses demonstrated that SACE_7301 activated the transcription of erythromycin biosynthetic gene eryAI and the resistance gene ermE by interacting with their promoter regions with low affinities, similar to BldD (SACE_2077) previously identified to regulate erythromycin biosynthesis and morphological differentiation. Therefore, we designed a strategy for overexpressing SACE_7301 with 1 to 3 extra copies under the control of PermE* in A226. Following up-regulated transcriptional expression of SACE_7301, eryAI and ermE, the SACE_7301-overexpressed strains all increased Er-A production over A226 proportional to the number of copies. Likewise, when SACE_7301 was overexpressed in an industrial S. erythraea WB strain, Er-A yields of the mutants WB/7301, WB/2×7301 and WB/3×7301 were respectively increased by 17%, 29% and 42% relative to that of WB. In a 5 L fermentor, Er-A accumulation increased to 4,230 mg/L with the highest-yield strain WB/3×7301, an approximately 27% production improvement over WB (3,322 mg/L). CONCLUSIONS We have identified and characterized a TFR, SACE_7301, in S. erythraea that positively regulated erythromycin biosynthesis, and overexpression of SACE_7301 in wild-type and industrial S. erythraea strains enhanced Er-A yields. This study markedly improves our understanding of the unusual regulatory mechanism of erythromycin biosynthesis, and provides a novel strategy towards Er-A overproduction by engineering transcriptional regulators of S. erythraea.
Collapse
Affiliation(s)
- Hang Wu
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei, 230601, China.
| | - Meng Chen
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei, 230601, China.
| | - Yongrong Mao
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei, 230601, China.
| | - Weiwei Li
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei, 230601, China.
| | - Jingtao Liu
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei, 230601, China. .,Beijing Institute of Cell Biotechnology, Beijing, 100043, China.
| | - Xunduan Huang
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei, 230601, China.
| | - Ying Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Shanghai, 200237, China.
| | - Bang-Ce Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Shanghai, 200237, China.
| | - Lixin Zhang
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei, 230601, China. .,CAS Key Laboratory of Pathogenic Microbiology & Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - David T Weaver
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei, 230601, China.
| | - Buchang Zhang
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei, 230601, China.
| |
Collapse
|
47
|
Abstract
Natural products are important sources of pharmaceuticals, in part owing to their diverse biological activities. Enzymes from natural product biosynthetic pathways have become attractive candidates as biocatalysts for modifying the structures and bioactivities of these complex compounds. Numerous enzymes have been harvested to generate innovative scaffolds, large-scale synthesis of chiral building blocks, and semisynthesis of medicinally relevant natural product derivatives. This review discusses recent examples from three areas: (a) polyketide catalytic domain engineering geared toward synthesis of new polyketides, (b) engineering of tailoring enzymes (other than oxidative enzymes) as biocatalysts, and (c) in vitro total synthesis of natural products using purified enzyme components. With the availability of exponentially increasing genomic information and new genome mining tools, many new and powerful biocatalysts tailored for pharmaceutical synthesis will likely emerge from secondary metabolism.
Collapse
|
48
|
Enhanced production of validamycin A in Streptomyces hygroscopicus 5008 by engineering validamycin biosynthetic gene cluster. Appl Microbiol Biotechnol 2014; 98:7911-22. [DOI: 10.1007/s00253-014-5943-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 06/24/2014] [Accepted: 07/07/2014] [Indexed: 10/25/2022]
|
49
|
Salehi-Najafabadi Z, Barreiro C, Rodríguez-García A, Cruz A, López GE, Martín JF. The gamma-butyrolactone receptors BulR1 and BulR2 of Streptomyces tsukubaensis: tacrolimus (FK506) and butyrolactone synthetases production control. Appl Microbiol Biotechnol 2014; 98:4919-36. [PMID: 24562179 DOI: 10.1007/s00253-014-5595-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/31/2014] [Accepted: 02/04/2014] [Indexed: 12/28/2022]
Abstract
Streptomyces tsukubaensis is a well-established industrial tacrolimus producer strain, but its molecular genetics is very poorly known. This information shortage prevents the development of tailored mutants in the regulatory pathways. A region (named bul) contains several genes involved in the synthesis and control of the gamma-butyrolactone autoregulator molecules. This region contains ten genes (bulA, bulZ, bulY, bulR2, bulS2, bulR1, bulW, bluB, bulS1, bulC) including two γ-butyrolactone receptor homologues (bulR1, bulR2), two putative gamma-butyrolactone synthetase homologues (bulS1, bulS2) and two SARP regulatory genes (bulY, bulZ). Analysis of the autoregulatory element (ARE)-like sequences by electrophoretic mobility shift assays and footprinting using the purified BulR1 and BulR2 recombinant proteins revealed six ARE regulatory sequences distributed along the bul cluster. These sequences showed specific binding of both BulR1 (the gamma-butyrolactone receptor) and BulR2, a possible pseudo γ-butyrolactone receptor. The protected region in all cases covered a 28-nt sequence with a palindromic structure. Optimal docking area analysis of BulR1 proved that this protein can be presented as either monomer or dimer but not oligomers and that it binds to the conserved ARE sequence in both strands. The effect on tacrolimus production was analysed by deletion of the bulR1 gene, which resulted in a strong decrease of tacrolimus production. Meanwhile, the ΔbulR2 mutation did not affect the biosynthesis of this immunosuppressant.
Collapse
Affiliation(s)
- Zahra Salehi-Najafabadi
- Área de Microbiología, Departamento de Biología Molecular, Fac. CC. Biológicas y Ambientales, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
| | | | | | | | | | | |
Collapse
|
50
|
Frese M, Guzowska PH, Voß H, Sewald N. Regioselective Enzymatic Halogenation of Substituted Tryptophan Derivatives using the FAD-Dependent Halogenase RebH. ChemCatChem 2014. [DOI: 10.1002/cctc.201301090] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|