1
|
Guo S, Li C, Su Y, Huang X, Zhang C, Dai Y, Ji Y, Fu R, Zheng T, Fei Q, Fan D, Xia C. Scalable Electro-Biosynthesis of Ectoine from Greenhouse Gases. Angew Chem Int Ed Engl 2025; 64:e202415445. [PMID: 39410669 DOI: 10.1002/anie.202415445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Indexed: 11/14/2024]
Abstract
Converting greenhouse gases into valuable products has become a promising approach for achieving a carbon-neutral economy and sustainable development. However, the conversion efficiency depends on the energy yield of the substrate. In this study, we developed an electro-biocatalytic system by integrating electrochemical and microbial processes to upcycle CO2 into a valuable product (ectoine) using renewable energy. This system initiates the electrocatalytic reduction of CO2 to methane, an energy-dense molecule, which then serves as an electrofuel to energize the growth of an engineered methanotrophic cell factory for ectoine biosynthesis. The scalability of this system was demonstrated using an array of ten 25 cm2 electrochemical cells equipped with a high-performance carbon-supported isolated copper catalyst. The system consistently generated methane at the cathode under a total partial current of approximately -37 A (~175 mmolCH4 h-1) and O2 at the anode under a total partial current of approximately 62 A (~583 mmolO2 h-1). This output met the requirements of a 3-L bioreactor, even at maximum CH4 and O2 consumption, resulting in the high-yield conversion of CO2 to ectoine (1146.9 mg L-1). This work underscores the potential of electrifying the biosynthesis of valuable products from CO2, providing a sustainable avenue for biomanufacturing and energy storage.
Collapse
Affiliation(s)
- Shuqi Guo
- Xi'an Key Laboratory of C1 Compound Bioconversion Technology, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Chengbo Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Yuehang Su
- Xi'an Key Laboratory of C1 Compound Bioconversion Technology, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiaohan Huang
- Xi'an Key Laboratory of C1 Compound Bioconversion Technology, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Chenyue Zhang
- Xi'an Key Laboratory of C1 Compound Bioconversion Technology, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yizhou Dai
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Yuan Ji
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Rongzhan Fu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Tingting Zheng
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Qiang Fei
- Xi'an Key Laboratory of C1 Compound Bioconversion Technology, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Chuan Xia
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| |
Collapse
|
2
|
Wang J, Yao X, Xu H, Lou H, Hu B. Methane cycle in subsurface environment: A review of microbial processes. ENVIRONMENTAL RESEARCH 2025; 265:120404. [PMID: 39579853 DOI: 10.1016/j.envres.2024.120404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024]
Abstract
Methane is a pivotal component of the global carbon cycle. It acts both as a potent greenhouse gas and a vital energy source. While the microbial cycling of methane in subsurface environments is crucial, its impact on geological settings and related engineering projects is often underestimated. This review uniquely integrates the latest findings on methane production, oxidation, and migration processes in strata, revealing novel microbial mechanisms and their implications for environmental sustainability. We address critical issues of methane leakage and engineering safety during resource extraction, underscoring the urgent need for effective methane management strategies. This work clarifies geological factors affecting methane budgets and emissions, deepening our understanding of methane dynamics. It offers practical insights for geological engineering and sustainable natural gas hydrate exploration, paving the way for future research and applications.
Collapse
Affiliation(s)
- Jiahui Wang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China; Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiangwu Yao
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, Zhejiang, China; Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hailiang Xu
- Zhejiang HI-TECH Environmental Technology Co., Ltd, China
| | - Honghai Lou
- Zhejiang HI-TECH Environmental Technology Co., Ltd, China
| | - Baolan Hu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, Zhejiang, China; Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Wang J, Wu D, Wu Q, Chen J, Zhao Y, Wang H, Liu F, Yuan Q. Vertical profiles of community and activity of methanotrophs in large lake and reservoir of Southwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177782. [PMID: 39626421 DOI: 10.1016/j.scitotenv.2024.177782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024]
Abstract
Microbial methane oxidation plays a significant role in regulating methane emissions from lakes and reservoirs. However, the differences in methane oxidation activity and methanotrophic community between lakes and reservoirs remain inadequately characterized. In this study, sediment and water samples were collected from the large shallow lake (Dianchi) and deep reservoirs (Dongfeng and Hongjiadu) located in karst area, Southwest China. The results indicated that the rates of aerobic oxidation of methane (AeOM) in lake sediment ranged from 7.1 to 27.7 μg g-1 d-1, which was higher than that in reservoirs sediment (1.92 to 11.56 μg g-1 d-1). Similarly, the average AeOM in the water column of lake (104.7 μg L-1 d-1) was much higher than that of reservoirs (46 μg L-1 d-1). The content of sediment organic carbon and dissolved inorganic carbon were important factors that influenced the rates of AeOM in sediment and water column, respectively. 16S rRNA genes sequencing revealed a higher relative abundance of methanotrophs in lake sediments compared to reservoir sediments. The dominant methanotrophic taxa in lake was Methylococcaceae (type Ib), while Methylomonadaceae (type Ia) was predominant in reservoirs. Meanwhile, anaerobic methane-oxidizing microorganisms Candidatus Methylomirabilis and Candidatus Methanoperedens were also abundant in sediments of reservoirs. However, metatranscriptomic analysis revealed that the type I methanotrophs, especially Methylobacter, was most active in the sediment of both lake and reservoir. Water depth and conductivity could be the key controlling factors of the structures of methanotrophic communities in sediment and water column, respectively. Metagenome-assembled genomes suggested that type I methanotrophs exhibited greater motility, as evidenced by a higher number of flagellar assembly genes, while type II methanotrophs demonstrated advantages in metabolic processes such as carbon, phosphorus, and methane metabolism.
Collapse
Affiliation(s)
- Jiayi Wang
- State Key Laboratory of Environment Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Debin Wu
- State Key Laboratory of Environment Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiusheng Wu
- State Key Laboratory of Environment Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingan Chen
- State Key Laboratory of Environment Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang 550081, China; Guizhou Province Field Scientific Observation and Research Station of Hongfeng Lake Reservoir Ecosystem, Guiyang 551499, China
| | - Yuan Zhao
- State Key Laboratory of Environment Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heng Wang
- State Key Laboratory of Environment Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fukang Liu
- State Key Laboratory of Environment Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quan Yuan
- State Key Laboratory of Environment Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang 550081, China; Guizhou Province Field Scientific Observation and Research Station of Hongfeng Lake Reservoir Ecosystem, Guiyang 551499, China.
| |
Collapse
|
4
|
Wu J, Xu Q, Zhang R, Bai X, Zhang C, Chen Q, Chen H, Wang N, Huang D. Methane oxidation coupling with heavy metal and microplastic transformations for biochar-mediated landfill cover soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135879. [PMID: 39298948 DOI: 10.1016/j.jhazmat.2024.135879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/28/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
The impact of co-occurring heavy metal (HM) and microplastic (MP) pollution on methane (CH4) oxidation by methanotrophs (MOB) in landfill cover soil (LCS) and the role of biochar in mediating these collaborative transformations remains unclear. This study conducted batch-scale experiments using LCS treated with individual or combined HMs and MPs, with or without biochar amendment. Differentiation in methanotrophic activities, HM transformations, MP aging, soil properties, microbial communities, and functional genes across the groups were analyzed. Biochar proved essential in sustaining efficient CH4 oxidation under HM and MP stress, mainly by diversifying MOB, and enhancing polysaccharide secretion to mitigate environmental stress. While low levels of HMs slightly inhibited CH4 oxidation, high HM concentration enhanced methanotrophic activities by promoting electron transfer process. MPs consistently stimulated CH4 oxidation, exerting a stronger influence than HMs. Notably, the simultaneous presence of low levels of HMs and MPs synergistically boosted CH4 oxidation, linked to distinct microbial evolution and adaptation. Methanotrophic activities were demonstrated to affect the fate of HMs and MPs. Complete passivation of Cu was readily achieved, whereas Zn stabilization was negatively influenced by biochar and MPs. The aging of MPs was also partially suppressed by biochar and HM adsorption.
Collapse
Affiliation(s)
- Jiang Wu
- Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Qiyong Xu
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, China
| | - Rujie Zhang
- Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Xinyue Bai
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, China
| | - Chao Zhang
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, China
| | - Qindong Chen
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, China
| | - Huaihai Chen
- Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Ning Wang
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, China
| | - Dandan Huang
- Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, China.
| |
Collapse
|
5
|
Esembaeva MA, Kulyashov MA, Kolpakov FA, Akberdin IR. A Study of the Community Relationships Between Methanotrophs and Their Satellites Using Constraint-Based Modeling Approach. Int J Mol Sci 2024; 25:12469. [PMID: 39596533 PMCID: PMC11594979 DOI: 10.3390/ijms252212469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Biotechnology continues to drive innovation in the production of pharmaceuticals, biofuels, and other valuable compounds, leveraging the power of microbial systems for enhanced yield and sustainability. Genome-scale metabolic (GSM) modeling has become an essential approach in this field, which enables a guide for targeting genetic modifications and the optimization of metabolic pathways for various industrial applications. While single-species GSM models have traditionally been employed to optimize strains like Escherichia coli and Lactococcus lactis, the integration of these models into community-based approaches is gaining momentum. Herein, we present a pipeline for community metabolic modeling with a user-friendly GUI, applying it to analyze interactions between Methylococcus capsulatus, a biotechnologically important methanotroph, and Escherichia coli W3110 under oxygen- and nitrogen-limited conditions. We constructed models with unmodified and homoserine-producing E. coli strains using the pipeline implemented in the original BioUML platform. The E. coli strain primarily utilized acetate from M. capsulatus under oxygen limitation. However, homoserine produced by E. coli significantly reduced acetate secretion and the community growth rate. This homoserine was taken up by M. capsulatus, converted to threonine, and further exchanged as amino acids. In nitrogen-limited modeling conditions, nitrate and ammonium exchanges supported the nitrogen needs, while carbon metabolism shifted to fumarate and malate, enhancing E. coli TCA cycle activity in both cases, with and without modifications. The presence of homoserine altered cross-feeding dynamics, boosting amino acid exchanges and increasing pyruvate availability for M. capsulatus. These findings suggest that homoserine production by E. coli optimizes resource use and has potential for enhancing microbial consortia productivity.
Collapse
Affiliation(s)
| | | | | | - Ilya R. Akberdin
- Department of Computational Biology, Scientific Center of Genetics and Life Sciences, Sirius University of Science and Technology, Sirius 354340, Russia; (M.A.E.); (M.A.K.); (F.A.K.)
| |
Collapse
|
6
|
Jia M, Liu M, Li J, Jiang W, Xin F, Zhang W, Jiang Y, Jiang M. Formaldehyde: An Essential Intermediate for C1 Metabolism and Bioconversion. ACS Synth Biol 2024; 13:3507-3522. [PMID: 39395007 DOI: 10.1021/acssynbio.4c00454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Formaldehyde is an intermediate metabolite of methylotrophic microorganisms that can be obtained from formate and methanol through oxidation-reduction reactions. Formaldehyde is also a one-carbon (C1) compound with high uniquely reactive activity and versatility, which is more amenable to further biocatalysis. Biosynthesis of high-value-added chemicals using formaldehyde as an intermediate is theoretically feasible and promising. This review focuses on the design of the biosynthesis of high-value-added chemicals using formaldehyde as an essential intermediate. The upstream biosynthesis and downstream bioconversion pathways of formaldehyde as an intermediate metabolite are described in detail, aiming to highlight the important role of formaldehyde in the transition from inorganic to organic carbon and carbon chain elongation. In addition, challenges and future directions of formaldehyde as an intermediate for the chemicals are discussed, with the expectation of providing ideas for the utilization of C1.
Collapse
Affiliation(s)
- Mengshi Jia
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China
| | - Mengge Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China
| | - Jiawen Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China
| | - Wankui Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China
- Jiangsu Biochemical Chiral Engineering Technology Reseach Center, Changmao Biochemical Engineering Co., Ltd., Changzhou 213034, P. R. China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China
| |
Collapse
|
7
|
Jo JH, Park JH, Kim BK, Kim SJ, Park CM, Kang CK, Choi YJ, Kim H, Lee EY, Moon M, Park GW, Lee S, Lee SY, Lee JS, Lee WH, Kim JI, Kim MS. Improvement of succinate production from methane by combining rational engineering and laboratory evolution in Methylomonas sp. DH-1. Microb Cell Fact 2024; 23:297. [PMID: 39497114 PMCID: PMC11533326 DOI: 10.1186/s12934-024-02557-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/04/2024] [Indexed: 11/06/2024] Open
Abstract
Recently, methane has been considered a next-generation carbon feedstock due to its abundance and it is main component of shale gas and biogas. Methylomonas sp. DH-1 has been evaluated as a promising industrial bio-catalyst candidate. Succinate is considered one of the top building block chemicals in the agricultural, food, and pharmaceutical industries. In this study, succinate production by Methylomonas sp. DH-1 was improved by combining adaptive laboratory evolution (ALE) technology with genetic engineering in the chromosome of Methylomonas sp. DH-1, such as deletion of bypass pathway genes (succinate dehydrogenase and succinate semialdehyde dehydrogenase) or overexpression of genes related with succinate production (citrate synthase, pyruvate carboxylase and phosphoenolpyruvate carboxylase). Through ALE, the maximum consumption rate of substrate gases (methane and oxygen) and the duration maintaining high substrate gas consumption rates was enhanced compared to those of the parental strain. Based on the improved methane consumption, cell growth (OD600) increased more than twice, and the succinate titer increased by ~ 48% from 218 to 323 mg/L. To prevent unwanted succinate consumption, the succinate semialdehyde dehydrogenase gene was deleted from the genome. The first enzyme of TCA cycle (citrate synthase) was overexpressed. Pyruvate carboxylase and phosphoenolpyruvate carboxylase, which produce oxaloacetate, a substrate for citrate synthase, were also overproduced by a newly identified strong promoter. The new strong promoter was screened from RNA sequencing data. When these modifications were combined in one strain, the maximum titer (702 mg/L) was successfully improved by more than three times. This study demonstrates that successful enhancement of succinic acid production can be achieved in methanotrophs through additional genetic engineering following adaptive laboratory evolution.
Collapse
Affiliation(s)
- Jae-Hwan Jo
- Bioenergy and Resources Upcycling Research Laboratory, Korea Institute of Energy Research, Daejeon, 34129, Republic of Korea
- Interdisciplinary Program for Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jeong-Ho Park
- Institute of Biotechnology, CJ CheilJedang Co, Gyeonggi-Do, Suwon-Si, 16495, Republic of Korea
| | - Byung Kwon Kim
- Research Institute, GI Biome Inc., Seongnam, Gyeonggi-Do, 13201, Republic of Korea
| | - Seon Jeong Kim
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research, Gwangju, 61003, Republic of Korea
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Chan Mi Park
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research, Gwangju, 61003, Republic of Korea
| | - Chang Keun Kang
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Yong Jun Choi
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Hyejin Kim
- Department of Chemical Engineering, Kyung Hee University, Gyeonggi-do, 17104, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering, Kyung Hee University, Gyeonggi-do, 17104, Republic of Korea
| | - Myounghoon Moon
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research, Gwangju, 61003, Republic of Korea
| | - Gwon Woo Park
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research, Gwangju, 61003, Republic of Korea
| | - Sangmin Lee
- Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Soo Youn Lee
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research, Gwangju, 61003, Republic of Korea
| | - Jin-Suk Lee
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research, Gwangju, 61003, Republic of Korea
| | - Won-Heong Lee
- Department of Integrative Food, Bioscience and Biotechnology (BK21 FOUR), Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jeong-Il Kim
- Interdisciplinary Program for Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea.
- Department of Integrative Food, Bioscience and Biotechnology (BK21 FOUR), Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Min-Sik Kim
- Bioenergy and Resources Upcycling Research Laboratory, Korea Institute of Energy Research, Daejeon, 34129, Republic of Korea.
| |
Collapse
|
8
|
Guo S, Song Q, Song X, Zhang C, Fei Q. Sustainable production of C50 carotenoid bacterioruberin from methane using soil-enriched microbial consortia. BIORESOURCE TECHNOLOGY 2024; 412:131415. [PMID: 39233184 DOI: 10.1016/j.biortech.2024.131415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Bacterioruberin is widely used in medicine, food, and cosmetics owing to its prominent characteristics of antioxidants and bioactivities. Bioconversion of methane into bacterioruberin is a promising way to address biomanufacturing substrate costs and greenhouse gas emissions but has not been achieved yet. Herein, this study aimed to upcycle methane to bacterioruberin by microbial consortia. The microbial consortia consist of Methylomonas and Methylophilus capable of synthesizing carotenoids from methane was firstly enriched from paddy soil. Through this microbial community, methane was successfully converted into C50 bacterioruberin for the first time. The bioconversion process was then optimized by the response surface methodology. Finally, the methane-derived bacterioruberin reached a record yield of 280.88 ± 2.94 μg/g dry cell weight. This study presents a cost-effective and eco-friendly approach for producing long-chain carotenoids from methane, offering a significant advancement in the direct conversion of greenhouse gases into value-added products.
Collapse
Affiliation(s)
- Shuqi Guo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Xi'an Key Laboratory of C1 Compound Bioconversion Technology, Xi'an 710049, PR China
| | - Qiaoqiao Song
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Xungong Song
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Chenyue Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Qiang Fei
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Xi'an Key Laboratory of C1 Compound Bioconversion Technology, Xi'an 710049, PR China.
| |
Collapse
|
9
|
Sun M, Gao AX, Liu X, Bai Z, Wang P, Ledesma-Amaro R. Microbial conversion of ethanol to high-value products: progress and challenges. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:115. [PMID: 39160588 PMCID: PMC11334397 DOI: 10.1186/s13068-024-02546-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/03/2024] [Indexed: 08/21/2024]
Abstract
Industrial biotechnology heavily relies on the microbial conversion of carbohydrate substrates derived from sugar- or starch-rich crops. This dependency poses significant challenges in the face of a rising population and food scarcity. Consequently, exploring renewable, non-competing carbon sources for sustainable bioprocessing becomes increasingly important. Ethanol, a key C2 feedstock, presents a promising alternative, especially for producing acetyl-CoA derivatives. In this review, we offer an in-depth analysis of ethanol's potential as an alternative carbon source, summarizing its distinctive characteristics when utilized by microbes, microbial ethanol metabolism pathway, and microbial responses and tolerance mechanisms to ethanol stress. We provide an update on recent progress in ethanol-based biomanufacturing and ethanol biosynthesis, discuss current challenges, and outline potential research directions to guide future advancements in this field. The insights presented here could serve as valuable theoretical support for researchers and industry professionals seeking to harness ethanol's potential for the production of high-value products.
Collapse
Affiliation(s)
- Manman Sun
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Institute of Hefei Artificial Intelligence Breeding Accelerator, Hefei, 230000, China
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
| | - Alex Xiong Gao
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, 999077, China
| | - Xiuxia Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China
| | - Zhonghu Bai
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China.
| | - Peng Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- Institute of Hefei Artificial Intelligence Breeding Accelerator, Hefei, 230000, China.
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
10
|
Wang Y, Liu X, Wu M, Guo J. Methane-Driven Perchlorate Reduction by a Microbial Consortium. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39037290 DOI: 10.1021/acs.est.4c04439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The phenomenon of methane oxidation linked to perchlorate reduction has been reported in multiple studies; yet, the underlying microbial mechanisms remain unclear. Here, we enriched suspended cultures by performing methane-driven perchlorate reduction under oxygen-limiting conditions in a membrane bioreactor (MBR). Batch test results proved that perchlorate reduction was coupled to methane oxidation, in which acetate was predicted as the potential intermediate and oxygen played an essential role in activating methane. By combining DNA-based stable isotope probing incubation and high-throughput sequencing analyses of 16S rRNA gene and functional genes (pmoA, pcrA, and narG), we found that synergistic interactions between aerobic methanotrophs (Methylococcus and Methylocystis) and perchlorate-reducing bacteria (PRB; Denitratisoma and Dechloromonas) played active roles in mediating methane-driven perchlorate reduction. This partnership was further demonstrated by coculture experiments in which the aerobic methanotroph could produce acetate to support PRB to complete perchlorate reduction. Our findings advance the understanding of the methane-driven perchlorate reduction process and have implications for similar microbial consortia linking methane and chlorine biogeochemical cycles in natural environments.
Collapse
Affiliation(s)
- Yulu Wang
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Acton, Canberra ACT 2601, Australia
| | - Xiawei Liu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Mengxiong Wu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
11
|
Eam H, Ko D, Lee C, Myung J. Methylosinus trichosporium OB3b bioaugmentation unleashes polyhydroxybutyrate-accumulating potential in waste-activated sludge. Microb Cell Fact 2024; 23:160. [PMID: 38822346 PMCID: PMC11140957 DOI: 10.1186/s12934-024-02442-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Wastewater treatment plants contribute approximately 6% of anthropogenic methane emissions. Methanotrophs, capable of converting methane into polyhydroxybutyrate (PHB), offer a promising solution for utilizing methane as a carbon source, using activated sludge as a seed culture for PHB production. However, maintaining and enriching PHB-accumulating methanotrophic communities poses challenges. RESULTS This study investigated the potential of Methylosinus trichosporium OB3b to bioaugment PHB-accumulating methanotrophic consortium within activated sludge to enhance PHB production. Waste-activated sludges with varying ratios of M. trichosporium OB3b (1:0, 1:1, 1:4, and 0:1) were cultivated. The results revealed substantial growth and methane consumption in waste-activated sludge with M. trichosporium OB3b-amended cultures, particularly in a 1:1 ratio. Enhanced PHB accumulation, reaching 37.1% in the same ratio culture, indicates the dominance of Type II methanotrophs. Quantification of methanotrophs by digital polymerase chain reaction showed gradual increases in Type II methanotrophs, correlating with increased PHB production. However, while initial bioaugmentation of M. trichosporium OB3b was observed, its presence decreased in subsequent cycles, indicating the dominance of other Type II methanotrophs. Microbial community analysis highlighted the successful enrichment of Type II methanotrophs-dominated cultures due to the addition of M. trichosporium OB3b, outcompeting Type I methanotrophs. Methylocystis and Methylophilus spp. were the most abundant in M. trichosporium OB3b-amended cultures. CONCLUSIONS Bioaugmentation strategies, leveraging M. trichosporium OB3b could significantly enhance PHB production and foster the enrichment of PHB-accumulating methanotrophs in activated sludge. These findings contribute to integrating PHB production in wastewater treatment plants, providing a sustainable solution for resource recovery.
Collapse
Affiliation(s)
- Hyerim Eam
- Department of Civil and Environmental Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Dayoung Ko
- Department of Civil, Urban, Earth, and Environmental Engineering, UNIST, Ulsan, 44919, Republic of Korea
| | - Changsoo Lee
- Department of Civil, Urban, Earth, and Environmental Engineering, UNIST, Ulsan, 44919, Republic of Korea
| | - Jaewook Myung
- Department of Civil and Environmental Engineering, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
12
|
Shabir R, Li Y, Megharaj M, Chen C. Biopolymer as an additive for effective biochar-based rhizobial inoculant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169263. [PMID: 38092216 DOI: 10.1016/j.scitotenv.2023.169263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/19/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Biochar is an efficient and inexpensive carrier for bacteria that stimulate plant development and growth. In this study, different biopolymer additives (cellulose, xanthan gum, chitin and tryptone) were tested with different addition ratios (1:0.1, 1:0.5 and 1:1) on further enhancing biochar capacity for supporting the growth and activity of Bradyrhizobium japonicum (CB1809). We utilized pine wood biochar (PWBC) pyrolyzed at 400 °C as the base inoculum carrier. The shelf life and survival rate of CB1809 were counted using the colony-forming unit (CFU) method for up to 120 days. Peat served as a standard reference material against which all treatments were compared. Subsequent experiments evaluated the ability of carrier inoculants to promote Glycine max L. (soybean) plant growth and nodulation under different watering regimes, i.e., 55 % water holding capacity (WHC) (D0), 30 % WHC (D1) and, 15 % WHC (D2) using sandy loam soil. Results revealed that among different additives; xanthan gum with 1:0.5 to PWBC [PWBC-xanthan gum(1:0.5)] was observed as a superior formulation in supporting rhizobial shelf life and survival rate of CB1809. In pot experiments, plants with PWBC-xanthan gum(1:0.5) formulation showed significant increase in various physiological characteristics (nitrogenase activity, chlorophyll pigments, membrane stability index, and relative water content), root architecture (root surface area, root average diameter, root volume, root tips, root forks and root crossings), and plant growth attributes (shoot/root dry biomass, shoot/root length, and number of nodules). Additionally, a reduced enrichment of isotopic signatures (δ13C, δ15N) was observed in plants treated with PWBC-xanthan gum(1:0.5), less enrichment of δ15N indicates an inverse link to nodulation and nitrogenase activity, while lower δ13C values indicates effective water use efficiency by plants during drought stress. These results suggest that biopolymers supplementation of the PWBC is useful in promoting shelf life or survival rate of CB1809.
Collapse
Affiliation(s)
- Rahat Shabir
- Australian Rivers Institute, School of Environment and Science, Griffith University, Nathan, Campus, 4111, Queensland, Australia; Cooperative Research Centre for High Performance Soils, Callaghan, NSW, Australia
| | - Yantao Li
- Australian Rivers Institute, School of Environment and Science, Griffith University, Nathan, Campus, 4111, Queensland, Australia; Cooperative Research Centre for High Performance Soils, Callaghan, NSW, Australia; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Mallavarapu Megharaj
- Cooperative Research Centre for High Performance Soils, Callaghan, NSW, Australia; Global Centre for Environmental Remediation, College of Engineering, Science and Environment, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Chengrong Chen
- Australian Rivers Institute, School of Environment and Science, Griffith University, Nathan, Campus, 4111, Queensland, Australia; Cooperative Research Centre for High Performance Soils, Callaghan, NSW, Australia.
| |
Collapse
|
13
|
Tucci FJ, Rosenzweig AC. Direct Methane Oxidation by Copper- and Iron-Dependent Methane Monooxygenases. Chem Rev 2024; 124:1288-1320. [PMID: 38305159 PMCID: PMC10923174 DOI: 10.1021/acs.chemrev.3c00727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Methane is a potent greenhouse gas that contributes significantly to climate change and is primarily regulated in Nature by methanotrophic bacteria, which consume methane gas as their source of energy and carbon, first by oxidizing it to methanol. The direct oxidation of methane to methanol is a chemically difficult transformation, accomplished in methanotrophs by complex methane monooxygenase (MMO) enzyme systems. These enzymes use iron or copper metallocofactors and have been the subject of detailed investigation. While the structure, function, and active site architecture of the copper-dependent particulate methane monooxygenase (pMMO) have been investigated extensively, its putative quaternary interactions, regulation, requisite cofactors, and mechanism remain enigmatic. The iron-dependent soluble methane monooxygenase (sMMO) has been characterized biochemically, structurally, spectroscopically, and, for the most part, mechanistically. Here, we review the history of MMO research, focusing on recent developments and providing an outlook for future directions of the field. Engineered biological catalysis systems and bioinspired synthetic catalysts may continue to emerge along with a deeper understanding of the molecular mechanisms of biological methane oxidation. Harnessing the power of these enzymes will necessitate combined efforts in biochemistry, structural biology, inorganic chemistry, microbiology, computational biology, and engineering.
Collapse
Affiliation(s)
- Frank J Tucci
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Amy C Rosenzweig
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
14
|
Crumbley AM, Garg S, Pan JL, Gonzalez R. A synthetic co-culture for bioproduction of ammonia from methane and air. J Ind Microbiol Biotechnol 2024; 51:kuae044. [PMID: 39561264 DOI: 10.1093/jimb/kuae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/16/2024] [Indexed: 11/21/2024]
Abstract
Fixed nitrogen fertilizers feed 50% of the global population, but most fixed nitrogen production occurs using energy-intensive Haber-Bosch-based chemistry combining nitrogen (N2) from air with gaseous hydrogen (H2) from methane (CH4) at high temperatures and pressures in large-scale facilities sensitive to supply chain disruptions. This work demonstrates the biological transformation of atmospheric N2 into ammonia (NH3) using CH4 as the sole carbon and energy source in a single vessel at ambient pressure and temperature, representing a biological "room-pressure and room-temperature" route to NH3 that could ultimately be developed to support compact, remote, NH3 production facilities amenable to distributed biomanufacturing. The synthetic microbial co-culture of engineered methanotroph Methylomicrobium buryatense (now Methylotuvimicrobium buryatense) and diazotroph Azotobacter vinelandii converted three CH4 molecules to l-lactate (C3H6O3) and powered gaseous N2 conversion to NH3. The design used division of labor and mutualistic metabolism strategies to address the oxygen sensitivity of nitrogenase and maximize CH4 oxidation efficiency. Media pH and salinity were central variables supporting co-cultivation. Carbon concentration heavily influenced NH3 production. Smaller-scale NH3 production near dispersed, abundant, and renewable CH4 sources could reduce disruption risks and capitalize on untapped energy resources. ONE-SENTENCE SUMMARY Co-culture of engineered microorganisms Methylomicrobium buryatense and Azotobacter vinelandii facilitated the use of methane gas as a sole carbon feedstock to produce ammonia in an ambient temperature, atmospheric pressure, single-vessel system.
Collapse
Affiliation(s)
- Anna Morgan Crumbley
- Department of Chemical and Biomolecular Engineering, Rice Universit, Houston, USA
| | - Shivani Garg
- Department of Chemical and Biomolecular Engineering, Rice Universit, Houston, USA
| | - Jonathan Lin Pan
- Department of Chemical and Biomolecular Engineering, Rice Universit, Houston, USA
| | - Ramon Gonzalez
- Department of Chemical and Biomolecular Engineering, Rice Universit, Houston, USA
| |
Collapse
|
15
|
Woern C, Grossmann L. Microbial gas fermentation technology for sustainable food protein production. Biotechnol Adv 2023; 69:108240. [PMID: 37647973 DOI: 10.1016/j.biotechadv.2023.108240] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
The development of novel, sustainable, and robust food production technologies represents one of the major pillars to address the most significant challenges humanity is going to face on earth in the upcoming decades - climate change, population growth, and resource depletion. The implementation of microfoods, i.e., foods formulated with ingredients from microbial cultivation, into the food supply chain has a huge potential to contribute towards energy-efficient and nutritious food manufacturing and represents a means to sustainably feed a growing world population. This review recapitulates and assesses the current state in the establishment and usage of gas fermenting bacteria as an innovative feedstock for protein production. In particular, we focus on the most promising representatives of this taxon: the hydrogen-oxidizing bacteria (hydrogenotrophs) and the methane-oxidizing bacteria (methanotrophs). These unicellular microorganisms can aerobically metabolize gaseous hydrogen and methane, respectively, to provide the required energy for building up cell material. A protein yield over 70% in the dry matter cell mass can be reached with no need for arable land and organic substrates making it a promising alternative to plant- and animal-based protein sources. We illuminate the holistic approach to incorporate protein extracts obtained from the cultivation of gas fermenting bacteria into microfoods. Herein, the fundamental properties of the bacteria, cultivation methods, downstream processing, and potential food applications are discussed. Moreover, this review covers existing and future challenges as well as sustainability aspects associated with the production of microbial protein through gas fermentation.
Collapse
Affiliation(s)
- Carlos Woern
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Lutz Grossmann
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
16
|
Sahoo KK, Katari JK, Das D. Recent advances in methanol production from methanotrophs. World J Microbiol Biotechnol 2023; 39:360. [PMID: 37891430 DOI: 10.1007/s11274-023-03813-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
Methanol, the simplest aliphatic molecule of the alcohol family, finds diverse range of applications as an industrial solvent, a precursor for producing other chemicals (e.g., dimethyl ether, acetic acid and formaldehyde), and a potential fuel. There are conventional chemical routes for methanol production such as, steam reforming of natural gas to form syngas, followed by catalytic conversion into methanol; direct catalytic oxidation of methane, or hydrogenation of carbon dioxide. However, these chemical routes are limited by the requirement for expensive catalysts and extreme process conditions, and plausible environmental implications. Alternatively, methanotrophic microorganisms are being explored as biological alternative for methanol production, under milder process conditions, bypassing the requirement for chemical catalysts, and without imposing any adverse environmental impact. Methanotrophs possess inherent metabolic pathways for methanol production via biological methane oxidation or carbon dioxide reduction, thus offering a surplus advantage pertaining to the sequestration of two major greenhouse gases. This review sheds light on the recent advances in methanotrophic methanol production including metabolic pathways, feedstocks, metabolic engineering, and bioprocess engineering approaches. Furthermore, various reactor configurations are discussed in view of the challenges associated with solubility and mass transfer limitations in methanotrophic gas fermentation systems.
Collapse
Affiliation(s)
- Krishna Kalyani Sahoo
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Guwahati, 781039, Assam, India
| | - John Kiran Katari
- School of Energy Science & Engineering, Indian Institute of Technology, Guwahati, 781039, Assam, India
| | - Debasish Das
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Guwahati, 781039, Assam, India.
- School of Energy Science & Engineering, Indian Institute of Technology, Guwahati, 781039, Assam, India.
| |
Collapse
|
17
|
Subudhi S, Saha K, Mudgil D, Sarangi PK, Srivastava RK, Sarma MK. Biomethanol production from renewable resources: a sustainable approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-29616-0. [PMID: 37667122 DOI: 10.1007/s11356-023-29616-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 08/27/2023] [Indexed: 09/06/2023]
Abstract
The abundant availability of various kinds of biomass and their use as feedstock for the production of gaseous and liquid biofuels has been considered a viable, eco-friendly, and sustainable mode of energy generation. Gaseous fuels like biogas and liquid fuels, e.g., bioethanol, biodiesel, and biomethanol derived from biological sources, have been theorized to produce numerous industrially relevant organic compounds replacing the traditional practice of employing fossil fuels as a raw material. Among the biofuels explored, biomethanol has shown promising potential to be a future product addressing multifactorial issues concerning sustainable energy and associated process developments. The presented mini-review has explored the importance and application of biomethanol as a value-added product. The biomethanol production process was well reviewed by focusing on different thermochemical and biochemical conversion processes. Syngas and biogas have been acknowledged as potential resources for biomethanol synthesis. The emphasis on biochemical processes is laid on the principal metabolic pathways and enzymatic machinery involved or used by microbial physiology to convert feedstock into biomethanol under normal temperature and pressure conditions. The advantage of minimizing the cost of production by utilizing suggested modifications to the overall process of biomethanol production that involves metabolic and genetic engineering in microbial strains used in the production process has been delineated. The challenges that exist in our current knowledge domain, impeding large-scale commercial production potential of biomethanol at a cost-effective rate, and strategies to overcome them along with its future scenarios have also been pointed out.
Collapse
Affiliation(s)
- Sanjukta Subudhi
- Advanced Biofuels Program, The Energy and Resources Institute, Darbari Seth Block, Habitat Place, Lodhi Road, New Delhi, 110 003, India.
| | - Koel Saha
- Advanced Biofuels Program, The Energy and Resources Institute, Darbari Seth Block, Habitat Place, Lodhi Road, New Delhi, 110 003, India
| | - Divya Mudgil
- Advanced Biofuels Program, The Energy and Resources Institute, Darbari Seth Block, Habitat Place, Lodhi Road, New Delhi, 110 003, India
| | - Prakash Kumar Sarangi
- College of Agriculture, Central Agricultural University, Imphal, 795004, Manipur, India
| | - Rajesh K Srivastava
- Department of Biotechnology, Gitam School of Technology, GITAM (Deemed to Be University), Visakhapatnam, 530045, India
| | - Mrinal Kumar Sarma
- Advanced Biofuels Program, The Energy and Resources Institute, Darbari Seth Block, Habitat Place, Lodhi Road, New Delhi, 110 003, India
| |
Collapse
|
18
|
Gan Y, Meng X, Gao C, Song W, Liu L, Chen X. Metabolic engineering strategies for microbial utilization of methanol. ENGINEERING MICROBIOLOGY 2023; 3:100081. [PMID: 39628934 PMCID: PMC11611044 DOI: 10.1016/j.engmic.2023.100081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/19/2023] [Accepted: 02/25/2023] [Indexed: 12/06/2024]
Abstract
The increasing shortage of fossil resources and environmental pollution has renewed interest in the synthesis of value-added biochemicals from methanol. However, most of native or synthetic methylotrophs are unable to assimilate methanol at a sufficient rate to produce biochemicals. Thus, the performance of methylotrophs still needs to be optimized to meet the demands of industrial applications. In this review, we provide an in-depth discussion on the properties of natural and synthetic methylotrophs, and summarize the natural and synthetic methanol assimilation pathways. Further, we discuss metabolic engineering strategies for enabling microbial utilization of methanol for the bioproduction of value-added chemicals. Finally, we highlight the potential of microbial engineering for methanol assimilation and offer guidance for achieving a low-carbon footprint for the biosynthesis of chemicals.
Collapse
Affiliation(s)
- Yamei Gan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Xin Meng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
19
|
Weng C, Peng X, Han Y. From methane to value-added bioproducts: microbial metabolism, enzymes, and metabolic engineering. ADVANCES IN APPLIED MICROBIOLOGY 2023; 124:119-146. [PMID: 37597946 DOI: 10.1016/bs.aambs.2023.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2023]
Abstract
Methane is abundant in nature, and excessive emissions will cause the greenhouse effect. Methane is also an ideal carbon and energy feedstock for biosynthesis. In the review, the microorganisms, metabolism, and enzymes for methane utilization, and the advances of conversion to value-added bioproducts were summarized. First, the physiological characteristics, classification, and methane oxidation process of methanotrophs were introduced. The metabolic pathways for methane utilization and key intermediate metabolites of native and synthetic methanotrophs were summarized. Second, the enzymatic properties, crystal structures, and catalytic mechanisms of methane-oxidizing and metabolizing enzymes in methanotrophs were described. Third, challenges and prospects in metabolic pathways and enzymatic catalysis for methane utilization and conversion to value-added bioproducts were discussed. Finally, metabolic engineering of microorganisms for methane biooxidation and bioproducts synthesis based on different pathways were summarized. Understanding the metabolism and challenges of microbial methane utilization will provide insights into possible strategies for efficient methane-based synthesis.
Collapse
Affiliation(s)
- Caihong Weng
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P.R. China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Xiaowei Peng
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P.R. China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Yejun Han
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P.R. China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, P.R. China.
| |
Collapse
|
20
|
Lu KJ, Chang CW, Wang CH, Chen FYH, Huang IY, Huang PH, Yang CH, Wu HY, Wu WJ, Hsu KC, Ho MC, Tsai MD, Liao JC. An ATP-sensitive phosphoketolase regulates carbon fixation in cyanobacteria. Nat Metab 2023; 5:1111-1126. [PMID: 37349485 PMCID: PMC10365998 DOI: 10.1038/s42255-023-00831-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/25/2023] [Indexed: 06/24/2023]
Abstract
Regulation of CO2 fixation in cyanobacteria is important both for the organism and global carbon balance. Here we show that phosphoketolase in Synechococcus elongatus PCC7942 (SeXPK) possesses a distinct ATP-sensing mechanism, where a drop in ATP level allows SeXPK to divert precursors of the RuBisCO substrate away from the Calvin-Benson-Bassham cycle. Deleting the SeXPK gene increased CO2 fixation particularly during light-dark transitions. In high-density cultures, the Δxpk strain showed a 60% increase in carbon fixation and unexpectedly resulted in sucrose secretion without any pathway engineering. Using cryo-EM analysis, we discovered that these functions were enabled by a unique allosteric regulatory site involving two subunits jointly binding two ATP, which constantly suppresses the activity of SeXPK until the ATP level drops. This magnesium-independent ATP allosteric site is present in many species across all three domains of life, where it may also play important regulatory functions.
Collapse
Affiliation(s)
- Kuan-Jen Lu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chiung-Wen Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chun-Hsiung Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | | | - Irene Y Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Pin-Hsuan Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Cheng-Han Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Hsiang-Yi Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Wen-Jin Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Ming-Daw Tsai
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.
| | - James C Liao
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
21
|
Thi Quynh Le H, Yeol Lee E. Methanotrophs: Metabolic versatility from utilization of methane to multi-carbon sources and perspectives on current and future applications. BIORESOURCE TECHNOLOGY 2023:129296. [PMID: 37302766 DOI: 10.1016/j.biortech.2023.129296] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/29/2023] [Accepted: 06/07/2023] [Indexed: 06/13/2023]
Abstract
The development of biorefineries for a sustainable bioeconomy has been driven by the concept of utilizing environmentally friendly and cost-effective renewable energy sources. Methanotrophic bacteria with a unique capacity to utilize methane as a carbon and energy source can serve as outstanding biocatalysts to develop C1 bioconversion technology. By establishing the utilization of diverse multi-carbon sources, integrated biorefinery platforms can be created for the concept of the circular bioeconomy. An understanding of physiology and metabolism could help to overcome challenges for biomanufacturing. This review summaries fundamental gaps for methane oxidation and the capability to utilize multi-carbon sources in methanotrophic bacteria. Subsequently, breakthroughs and challenges in harnessing methanotrophs as robust microbial chassis for industrial biotechnology were compiled and overviewed. Finally, capabilities to exploit the inherent advantages of methanotrophs to synthesize various target products in higher titers are proposed.
Collapse
Affiliation(s)
- Hoa Thi Quynh Le
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin 17104, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin 17104, Republic of Korea.
| |
Collapse
|
22
|
Ali Eltayb W, Abdalla M, Ahmed EL-Arabey A, Boufissiou A, Azam M, Al-Resayes SI, Alam M. Exploring particulate methane monooxygenase (pMMO) proteins using experimentation and computational molecular docking. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2023; 35:102634. [DOI: https:/doi.org/10.1016/j.jksus.2023.102634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
23
|
Ali Eltayb W, Abdalla M, Ahmed EL-Arabey A, Boufissiou A, Azam M, Al-Resayes SI, Alam M. Exploring particulate methane monooxygenase (pMMO) proteins using experimentation and computational molecular docking. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2023; 35:102634. [DOI: 10.1016/j.jksus.2023.102634] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
|
24
|
Xu J, Wang J, Ma C, Wei Z, Zhai Y, Tian N, Zhu Z, Xue M, Li D. Embracing a low-carbon future by the production and marketing of C1 gas protein. Biotechnol Adv 2023; 63:108096. [PMID: 36621726 DOI: 10.1016/j.biotechadv.2023.108096] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/14/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Food scarcity and environmental deterioration are two major problems that human populations currently face. Fortunately, the disruptive innovation of raw food materials has been stimulated by the rapid evolution of biomanufacturing. Therefore, it is expected that the new trends in technology will not only alter the natural resource-dependent food production systems and the traditional way of life but also reduce and assimilate the greenhouse gases released into the atmosphere. This review article summarizes the metabolic pathways associated with C1 gas conversion and the production of single-cell protein for animal feed. Moreover, the protein function, worldwide authorization, market access, and methods to overcome challenges in C1 gas assimilation microbial cell factory construction are also provided. With widespread attention and increasing policy support, the production of C1 gas protein will bring more opportunities and make tremendous contributions to our sustainable future.
Collapse
Affiliation(s)
- Jian Xu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Centre of Technology Innovation for Synthetic Biology, Tianjin, China; Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin, China
| | - Jie Wang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunling Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; Haihe Laboratory of Synthetic Biology, Tianjin, China; National Centre of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Zuoxi Wei
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Centre of Technology Innovation for Synthetic Biology, Tianjin, China; Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin, China
| | - Yida Zhai
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Centre of Technology Innovation for Synthetic Biology, Tianjin, China; Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin, China
| | - Na Tian
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Centre of Technology Innovation for Synthetic Biology, Tianjin, China; Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin, China
| | - Zhiguang Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Centre of Technology Innovation for Synthetic Biology, Tianjin, China.
| | - Min Xue
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Demao Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Centre of Technology Innovation for Synthetic Biology, Tianjin, China; Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin, China.
| |
Collapse
|
25
|
Cre/ lox-Mediated CRISPRi Library Reveals Core Genome of a Type I Methanotroph Methylotuvimicrobium buryatense 5GB1C. Appl Environ Microbiol 2023; 89:e0188322. [PMID: 36622175 PMCID: PMC9888281 DOI: 10.1128/aem.01883-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Methanotrophs play key roles in global methane cycling and are promising platforms for methane bioconversion. However, major gaps existing in fundamental knowledge undermines understanding of these methane-consuming microorganisms. To associate genes with a phenotype at the genome-wide level, we developed a Cre/lox-mediated method for constructing a large-scale CRISPRi library in a model methanotroph Methylotuvimicrobium buryatense 5GB1C. The efficiency of this Cre mediated integration method was up to a level of 105 CFU/μg DNA. Targeting 4,100 predicted protein-coding genes, our CRISPRi pooled screening uncovered 788 core genes for the growth of strain 5GB1C using methane. The core genes are highly consistent with the gene knockout results, indicating the reliability of the CRISPRi screen. Insights from the core genes include that annotated isozymes generally exist in metabolic pathways and many core genes are hypothetical genes. This work not only provides functional genomic data for both fundamental research and metabolic engineering of methanotrophs, but also offers a method for CRISPRi library construction. IMPORTANCE Due to their key role in methane cycling and their industrial potential, methanotrophs have drawn increasing attention. Genome-wide experimental approaches for gene-phenotype mapping accelerate our understanding and engineering of a bacterium. However, these approaches are still unavailable in methanotrophs. This work has two significant implications. First, the core genes identified here provide functional genetic basics for complete reconstruction of the metabolic network and afford more clues for knowledge gaps. Second, the Cre-mediated knock-in method developed in this work enables large-scale DNA library construction in methanotrophs; the CRISPRi library can be used to screen the genes associated with special culture conditions.
Collapse
|
26
|
Shabir R, Li Y, Zhang L, Chen C. Biochar surface properties and chemical composition determine the rhizobial survival rate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116594. [PMID: 36347218 DOI: 10.1016/j.jenvman.2022.116594] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Biochar may be potentially used as a rhizobial carrier due to its specific chemical compositions and surface properties, but the relationship between these properties and rhizobial survival rate is largely unknown. Here, we analysed the physicochemical characteristics and carrier potential of six types of biochars made from various feedstocks at 600 °C using slow pyrolysis method, and results were compared with conventional carrier material peat. Liquid suspension of Bradyrhziobium japonicum CB1809 was used to inoculate all the carrier materials. Shelf life and survival rate was determined via colony forming unit (CFU) method for up to 90 days under two storage temperature conditions (28 °C and 38 °C). The determined physicochemical characteristics of biochars were categorized into major elements, trace elements, relative ratios, surface morphology, functional groups, and key basic properties; and their interaction to shelf life was analysed using hypothesis-oriented structure equation modelling (path analysis). Results revealed that different types of biochars had different capacity to impact on shelf life due to their different physicochemical properties. Among all biochars pine wood BC was the most suitable carrier with the highest counts of 10.11 Log 10 CFU g-1 and 9.76 Log 10 CFU g-1 at the end of 90 days at 28 °C and 38 °C storage, respectively. Path analysis revealed that rhizobial shelf life was largely explained by total carbon (TC), manganese (Mn), specific surface area (SSA), pore size, CO (ketonic carbon), and O-CO (carboxyl carbon) functional groups, and all these indicators exhibited positive direct impact on shelf life. Pinewood BC showed the highest values of Mn, SSA, pore size and functional groups (CO and O-CO), contributing to its highest rhizobial shelf life and survival rate among other biochars and peat tested.
Collapse
Affiliation(s)
- Rahat Shabir
- Australian Rivers Institute and School of Environment and Science, Griffith University, Nathan Campus, 4111, Queensland, Australia; Cooperative Research Centre for High Performance Soils, Callaghan, NSW, Australia
| | - Yantao Li
- Australian Rivers Institute and School of Environment and Science, Griffith University, Nathan Campus, 4111, Queensland, Australia; Cooperative Research Centre for High Performance Soils, Callaghan, NSW, Australia; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Leiyi Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Chengrong Chen
- Australian Rivers Institute and School of Environment and Science, Griffith University, Nathan Campus, 4111, Queensland, Australia; Cooperative Research Centre for High Performance Soils, Callaghan, NSW, Australia.
| |
Collapse
|
27
|
Ray S, Jin JO, Choi I, Kim M. Recent trends of biotechnological production of polyhydroxyalkanoates from C1 carbon sources. Front Bioeng Biotechnol 2023; 10:907500. [PMID: 36686222 PMCID: PMC9852868 DOI: 10.3389/fbioe.2022.907500] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 12/06/2022] [Indexed: 01/09/2023] Open
Abstract
Growing concerns over the use of limited fossil fuels and their negative impacts on the ecological niches have facilitated the exploration of alternative routes. The use of conventional plastic material also negatively impacts the environment. One such green alternative is polyhydroxyalkanoates, which are biodegradable, biocompatible, and environmentally friendly. Recently, researchers have focused on the utilization of waste gases particularly those belonging to C1 sources derived directly from industries and anthropogenic activities, such as carbon dioxide, methane, and methanol as the substrate for polyhydroxyalkanoates production. Consequently, several microorganisms have been exploited to utilize waste gases for their growth and biopolymer accumulation. Methylotrophs such as Methylobacterium organophilum produced highest amount of PHA up to 88% using CH4 as the sole carbon source and 52-56% with CH3OH. On the other hand Cupriavidus necator, produced 71-81% of PHA by utilizing CO and CO2 as a substrate. The present review shows the potential of waste gas valorization as a promising solution for the sustainable production of polyhydroxyalkanoates. Key bottlenecks towards the usage of gaseous substrates obstructing their realization on a large scale and the possible technological solutions were also highlighted. Several strategies for PHA production using C1 gases through fermentation and metabolic engineering approaches are discussed. Microbes such as autotrophs, acetogens, and methanotrophs can produce PHA from CO2, CO, and CH4. Therefore, this article presents a vision of C1 gas into bioplastics are prospective strategies with promising potential application, and aspects related to the sustainability of the system.
Collapse
Affiliation(s)
- Subhasree Ray
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea,Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, India,*Correspondence: Myunghee Kim, ; Subhasree Ray,
| | - Jun-O Jin
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea,Department of Food Science and Technology, Yeungnam University, Gyeongsan, South Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea,Department of Food Science and Technology, Yeungnam University, Gyeongsan, South Korea
| | - Myunghee Kim
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea,Department of Food Science and Technology, Yeungnam University, Gyeongsan, South Korea,*Correspondence: Myunghee Kim, ; Subhasree Ray,
| |
Collapse
|
28
|
Zhou Y, Guo T, Gustave W, Yuan Z, Yang J, Chen D, Tang X. Anaerobic methane oxidation coupled to arsenate reduction in paddy soils: Insights from laboratory and field studies. CHEMOSPHERE 2023; 311:137055. [PMID: 36367509 DOI: 10.1016/j.chemosphere.2022.137055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Anaerobic methane oxidation (AOM) coupled to nitrate, sulfate and iron has been most extensively studied. Recently, AOM coupled with arsenate reduction (AOM-AsR) was demonstrated in laboratory microcosm incubation, however whether AOM-AsR is active in the field conditions remains elusive. Here, we used 13C-labeled methane (13CH4) to investigate the AOM-AsR process in both anaerobic microcosms and field conditions with identical soils. Our results revealed the occurrence of AOM-AsR in the field, but AOM-AsR in the field was not as active as that which occurred in the laboratory (AOM-AsR contributed approximately 33.87% and 80.76% of total As release in the field and laboratory studies, respectively). This occurred because the laboratory setting provided a more suitable condition for the AOM-AsR process. Moreover, the results suggested that the relative abundance of mcrA from the ANME-2d was the most abundant. Our results clearly demonstrate that the AOM-AsR is active in both the laboratory and field conditions. Moreover, the results highlight the potential risk the AOM-AsR for pose for As contamination in rice paddies.
Collapse
Affiliation(s)
- Yujie Zhou
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ting Guo
- School of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Williamson Gustave
- School of Chemistry, Environmental & Life Sciences, University of the Bahamas, New Providence, Nassau, Bahamas
| | - Zhaofeng Yuan
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jingxuan Yang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dan Chen
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xianjin Tang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
29
|
Khmelenina VN, But SY, Rozova ON, Oshkin IY, Pimenov NV, Dedysh SN. Genome Editing in Methanotrophic Bacteria: Potential Targets and Available Tools. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722602196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
30
|
AHL-mediated quorum sensing to regulate bacterial substance and energy metabolism: A review. Microbiol Res 2022; 262:127102. [DOI: 10.1016/j.micres.2022.127102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/08/2022] [Accepted: 06/22/2022] [Indexed: 01/09/2023]
|
31
|
Xu X, Qin Y, Li X, Ma Z, Wu W. Heterogeneity of CH 4-derived carbon induced by O 2:CH 4 mediates the bacterial community assembly processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154442. [PMID: 35288141 DOI: 10.1016/j.scitotenv.2022.154442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
The mechanism by which O2:CH4 controls microbial community assembly in the process of aerobic methane oxidation coupled to denitrification (AMED) remains largely uncharacterized, which hinders the design of engineering microbiomes for the AMED. In this study, the changes in the bacterial community in fed-batch serum bottle reactors under different O2:CH4 ratios were systematically characterized. The ratios of CH4 consumption to the amount of nitrate removal in the treatment with O2:CH4 = 1.5:1, O2:CH4 = 0.5:1, and O2:CH4 = 0.25:1 were 13.1 ± 3.4, 4.7 ± 1.1, and 5.9 ± 3.0 mol-CH4 mol-1-NO3-, respectively. The α-diversity of the bacterial community increased as O2:CH4 decreased. Significantly different selection patterns were found for the high and low O2:CH4 ratios. The coherence process dominated the selection at high O2:CH4 ratios, while the diversification process played a role when O2:CH4 was low. Differences were also observed in the composition of CH4-derived carbon between treatments with O2:CH4 = 1.5:1 and O2:CH4 = 0.5:1. Compared with the treatments with O2:CH4 = 1.5:1, the concentrations of methanol, formaldehyde, acetate, and ethanol in the treatment with O2:CH4 = 0.5:1 were significantly higher, while the concentration of formate was significantly lower. The heterogeneity of CH4-derived carbon induced by O2:CH4 was likely to be responsible for the differences in the selection patterns. Our findings bridge the gaps between the observations of bacterial community perturbations and ecological community assembly theories, highlighting the potential of the bottom-up design approach to improve the nitrate removal rate of the AME-D.
Collapse
Affiliation(s)
- Xingkun Xu
- Institute of Environment Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China
| | - Yong Qin
- Institute of Environment Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China.
| | - Xinyu Li
- Institute of Environment Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China
| | - Zhuang Ma
- Zhejiang Transper Environmental Protection Technology Co., Ltd., Hangzhou 310058, China
| | - Weixiang Wu
- Institute of Environment Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
32
|
Qin Y, Xi B, Sun X, Zhang H, Xue C, Wu B. Methane Emission Reduction and Biological Characteristics of Landfill Cover Soil Amended With Hydrophobic Biochar. Front Bioeng Biotechnol 2022; 10:905466. [PMID: 35757810 PMCID: PMC9213677 DOI: 10.3389/fbioe.2022.905466] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Biochar-amended landfill cover soil (BLCS) can promote CH4 and O2 diffusion, but it increases rainwater entry in the rainy season, which is not conducive to CH4 emission reduction. Hydrophobic biochar–amended landfill cover soil (HLCS) was prepared to investigate the changes in CH4 emission reduction and biological characteristics, and BLCS was prepared as control. Results showed that rainwater retention time in HLCS was reduced by half. HLCS had a higher CH4 reduction potential, achieving 100% CH4 removal at 25% CH4 content of landfill gas, and its main contributors to CH4 reduction were found to be at depths of 10–30 cm (upper layer) and 50–60 cm (lower layer). The relative abundances of methane-oxidizing bacteria (MOB) in the upper and lower layers of HLCS were 55.93% and 46.93%, respectively, higher than those of BLCS (50.80% and 31.40%, respectively). Hydrophobic biochar amended to the landfill cover soil can realize waterproofing, ventilation, MOB growth promotion, and efficient CH4 reduction.
Collapse
Affiliation(s)
- Yongli Qin
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.,School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, China.,Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, China
| | - Beidou Xi
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.,State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Xiaojie Sun
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.,Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, China
| | - Hongxia Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.,Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, China
| | - Chennan Xue
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.,Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, China
| | - Beibei Wu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.,Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, China
| |
Collapse
|
33
|
Khanongnuch R, Mangayil R, Santala V, Hestnes AG, Svenning MM, Rissanen AJ. Batch Experiments Demonstrating a Two-Stage Bacterial Process Coupling Methanotrophic and Heterotrophic Bacteria for 1-Alkene Production From Methane. Front Microbiol 2022; 13:874627. [PMID: 35663866 PMCID: PMC9162803 DOI: 10.3389/fmicb.2022.874627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Methane (CH4) is a sustainable carbon feedstock for value-added chemical production in aerobic CH4-oxidizing bacteria (methanotrophs). Under substrate-limited (e.g., oxygen and nitrogen) conditions, CH4 oxidation results in the production of various short-chain organic acids and platform chemicals. These CH4-derived products could be broadened by utilizing them as feedstocks for heterotrophic bacteria. As a proof of concept, a two-stage system for CH4 abatement and 1-alkene production was developed in this study. Type I and Type II methanotrophs, Methylobacter tundripaludum SV96 and Methylocystis rosea SV97, respectively, were investigated in batch tests under different CH4 and air supplementation schemes. CH4 oxidation under either microaerobic or aerobic conditions induced the production of formate, acetate, succinate, and malate in M. tundripaludum SV96, accounting for 4.8–7.0% of consumed carbon from CH4 (C-CH4), while M. rosea SV97 produced the same compounds except for malate, and with lower efficiency than M. tundripaludum SV96, accounting for 0.7–1.8% of consumed C-CH4. For the first time, this study demonstrated the use of organic acid-rich spent media of methanotrophs cultivating engineered Acinetobacter baylyi ADP1 ‘tesA-undA cells for 1-alkene production. The highest yield of 1-undecene was obtained from the spent medium of M. tundripaludum SV96 at 68.9 ± 11.6 μmol mol Csubstrate–1. However, further large-scale studies on fermenters and their optimization are required to increase the production yields of organic acids in methanotrophs.
Collapse
Affiliation(s)
- Ramita Khanongnuch
- Materials Science and Environmental Engineering, Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Rahul Mangayil
- Materials Science and Environmental Engineering, Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Ville Santala
- Materials Science and Environmental Engineering, Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Anne Grethe Hestnes
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Mette Marianne Svenning
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Antti J Rissanen
- Materials Science and Environmental Engineering, Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| |
Collapse
|
34
|
Govindaraju A, Good NM, Zytnick AM, Martinez-Gomez NC. Employing methylotrophs for a green economy: one-carbon to fuel them all and through metabolism redesign them. Curr Opin Microbiol 2022; 67:102145. [PMID: 35525169 DOI: 10.1016/j.mib.2022.102145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 11/03/2022]
Abstract
Microbial platforms are currently being optimized to revolutionize industrial energy production while mitigating shortages of global resources and food supplies. Here, we address recent advances to develop bacterial methylotrophic platforms as promising platforms enabling the reuse of products and materials (at their highest value) while reducing waste and pollution.
Collapse
Affiliation(s)
- Alekhya Govindaraju
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Nathan M Good
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Alexa M Zytnick
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | | |
Collapse
|
35
|
Recycling carbon for sustainable protein production using gas fermentation. Curr Opin Biotechnol 2022; 76:102723. [PMID: 35487158 DOI: 10.1016/j.copbio.2022.102723] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/23/2022] [Accepted: 03/17/2022] [Indexed: 02/07/2023]
Abstract
Current food production practices contribute significantly to climate change. To transition into a sustainable future, a combination of new food habits and a radical food production innovation must occur. Single-cell protein from microbial fermentation can profoundly impact sustainability. This review paper explores opportunities offered by gas fermentation to completely replace our reliance on fossil fuels for the production of food. Together with synthetic biology, designed microbial proteins from gas fermentation have the potential to reduce our dependence on fossil fuels and make food production more sustainable.
Collapse
|
36
|
Guo S, Zhang T, Chen Y, Yang S, Fei Q. Transcriptomic profiling of nitrogen fixation and the role of NifA in Methylomicrobium buryatense 5GB1. Appl Microbiol Biotechnol 2022; 106:3191-3199. [PMID: 35384448 DOI: 10.1007/s00253-022-11910-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/28/2022]
Abstract
Methanotrophs capable of converting C1-based substrates play an important role in the global carbon cycle. As one of the essential macronutrient components in the medium, the uptake of nitrogen sources severely regulates the cell's metabolism. Although the feasibility of utilizing nitrogen gas (N2) by methanotrophs has been predicted, the mechanism remains unclear. Herein, the regulation of nitrogen fixation by an essential nitrogen-fixing regulator (NifA) was explored based on transcriptomic analyses of Methylomicrobium buryatense 5GB1. A deletion mutant of the nitrogen global regulator NifA was constructed, and the growth of M. buryatense 5GB1ΔnifA exhibited significant growth inhibition compared with wild-type strain after the depletion of nitrate source in the medium. Our transcriptome analyses elucidated that 22.0% of the genome was affected in expression by NifA in M. buryatense 5GB1. Besides genes associated with nitrogen assimilation such as nitrogenase structural genes, genes related to cofactor biosynthesis, electron transport, and post-transcriptional modification were significantly upregulated in the presence of NifA to enhance N2 fixation; other genes related to carbon metabolism, energy metabolism, membrane transport, and cell motility were strongly modulated by NifA to facilitate cell metabolisms. This study not only lays a comprehensive understanding of the physiological characteristics and nitrogen metabolism of methanotrophs, but also provides a potentially efficient strategy to achieve carbon and nitrogen co-utilization.Key points• N2 fixation ability of M. buryatense 5GB1 was demonstrated for the first time in experiments by regulating the supply of N2.• NifA positively regulates nif-related genes to facilitate the uptake of N2 in M. buryatense 5GB1.• NifA regulates a broad range of cellular functions beyond nif genes in M. buryatense 5GB1.
Collapse
Affiliation(s)
- Shuqi Guo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Tianqing Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yunhao Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, China
| | - Qiang Fei
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, China. .,Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
37
|
Tseten T, Sanjorjo RA, Kwon M, Kim SW. Strategies to Mitigate Enteric Methane Emissions from Ruminant Animals. J Microbiol Biotechnol 2022; 32:269-277. [PMID: 35283433 PMCID: PMC9628856 DOI: 10.4014/jmb.2202.02019] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/15/2022]
Abstract
Human activities account for approximately two-thirds of global methane emissions, wherein the livestock sector is the single massive methane emitter. Methane is a potent greenhouse gas of over 21 times the warming effect of carbon dioxide. In the rumen, methanogens produce methane as a by-product of anaerobic fermentation. Methane released from ruminants is considered as a loss of feed energy that could otherwise be used for productivity. Economic progress and growing population will inflate meat and milk product demands, causing elevated methane emissions from this sector. In this review, diverse approaches from feed manipulation to the supplementation of organic and inorganic feed additives and direct-fed microbial in mitigating enteric methane emissions from ruminant livestock are summarized. These approaches directly or indirectly alter the rumen microbial structure thereby reducing rumen methanogenesis. Though many inorganic feed additives have remarkably reduced methane emissions from ruminants, their usage as feed additives remains unappealing because of health and safety concerns. Hence, feed additives sourced from biological materials such as direct-fed microbials have emerged as a promising technique in mitigating enteric methane emissions.
Collapse
Affiliation(s)
- Tenzin Tseten
- Division of Applied Life Science (BK21 Four), ABC-RLRC, PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Rey Anthony Sanjorjo
- Division of Applied Life Science (BK21 Four), ABC-RLRC, PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Moonhyuk Kwon
- Division of Applied Life Science (BK21 Four), ABC-RLRC, PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea,
M. Kwon Phone: +82-55-772-1362 Fax: +82-55-759-9363 E-mail:
| | - Seon-Won Kim
- Division of Applied Life Science (BK21 Four), ABC-RLRC, PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea,Corresponding authors S.W. Kim Phone: +82-55-772-1362 Fax: +82-55-759-9363 E-mail:
| |
Collapse
|
38
|
Integrative Genome-Scale Metabolic Modeling Reveals Versatile Metabolic Strategies for Methane Utilization in Methylomicrobium album BG8. mSystems 2022; 7:e0007322. [PMID: 35258342 PMCID: PMC9040813 DOI: 10.1128/msystems.00073-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Methylomicrobium album BG8 is an aerobic methanotrophic bacterium with promising features as a microbial cell factory for the conversion of methane to value-added chemicals. However, the lack of a genome-scale metabolic model (GEM) of M. album BG8 has hindered the development of systems biology and metabolic engineering of this methanotroph. To fill this gap, a high-quality GEM was constructed to facilitate a system-level understanding of the biochemistry of M. album BG8. Flux balance analysis, constrained with time-series data derived from experiments with various levels of methane, oxygen, and biomass, was used to investigate the metabolic states that promote the production of biomass and the excretion of carbon dioxide, formate, and acetate. The experimental and modeling results indicated that M. album BG8 requires a ratio of ∼1.5:1 between the oxygen- and methane-specific uptake rates for optimal growth. Integrative modeling revealed that at ratios of >2:1 oxygen-to-methane uptake flux, carbon dioxide and formate were the preferred excreted compounds, while at ratios of <1.5:1 acetate accounted for a larger fraction of the total excreted flux. Our results showed a coupling between biomass production and the excretion of carbon dioxide that was linked to the ratio between the oxygen- and methane-specific uptake rates. In contrast, acetate excretion was experimentally detected during exponential growth only when the initial biomass concentration was increased. A relatively lower growth rate was also observed when acetate was produced in the exponential phase, suggesting a trade-off between biomass and acetate production. IMPORTANCE A genome-scale metabolic model (GEM) is an integrative platform that enables the incorporation of a wide range of experimental data. It is used to reveal system-level metabolism and, thus, clarify the link between the genotype and phenotype. The lack of a GEM for Methylomicrobium album BG8, an aerobic methane-oxidizing bacterium, has hindered its use in environmental and industrial biotechnology applications. The diverse metabolic states indicated by the GEM developed in this study demonstrate the versatility in the methane metabolic processes used by this strain. The integrative GEM presented here will aid the implementation of the design-build-test-learn paradigm in the metabolic engineering of M. album BG8. This advance will facilitate the development of a robust methane bioconversion platform and help to mitigate methane emissions from environmental systems.
Collapse
|
39
|
Sharma K, Park YK, Nadda AK, Banerjee P, Singh P, Raizada P, Banat F, Bharath G, Jeong SM, Lam SS. Emerging chemo-biocatalytic routes for valorization of major greenhouse gases (GHG) into industrial products: A comprehensive review. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Genome Sequence of a Thermoacidophilic Methanotroph Belonging to the Verrucomicrobiota Phylum from Geothermal Hot Springs in Yellowstone National Park: A Metagenomic Assembly and Reconstruction. Microorganisms 2022; 10:microorganisms10010142. [PMID: 35056591 PMCID: PMC8779874 DOI: 10.3390/microorganisms10010142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/23/2021] [Accepted: 01/07/2022] [Indexed: 02/04/2023] Open
Abstract
Verrucomicrobiotal methanotrophs are thermoacidophilic methane oxidizers that have been isolated from volcanic and geothermal regions of the world. We used a metagenomic approach that entailed obtaining the whole genome sequence of a verrucomicrobiotal methanotroph from a microbial consortium enriched from samples obtained from Nymph Lake (89.9 °C, pH 2.73) in Yellowstone National Park in the USA. To identify and reconstruct the verrucomicrobiotal genome from Illumina NovaSeq 6000 sequencing data, we constructed a bioinformatic pipeline with various combinations of de novo assembly, alignment, and binning algorithms. Based on the marker gene (pmoA), we identified and assembled the Candidatus Methylacidiphilum sp. YNP IV genome (2.47 Mbp, 2392 ORF, and 41.26% GC content). In a comparison of average nucleotide identity between Ca. Methylacidiphilum sp. YNP IV and Ca. Methylacidiphilum fumariolicum SolV, its closest 16S rRNA gene sequence relative, is lower than 95%, suggesting that Ca. Methylacidiphilum sp. YNP IV can be regarded as a different species. The Ca. Methylacidiphilum sp. YNP IV genome assembly showed most of the key genes for methane metabolism, the CBB pathway for CO2 fixation, nitrogen fixation and assimilation, hydrogenases, and rare earth elements transporter, as well as defense mechanisms. The assembly and reconstruction of a thermoacidophilic methanotroph belonging to the Verrucomicrobiota phylum from a geothermal environment adds further evidence and knowledge concerning the diversity of biological methane oxidation and on the adaptation of this geochemically relevant reaction in extreme environments.
Collapse
|
41
|
Tian L, Chang J, Shi S, Ji L, Zhang J, Sun Y, Li X, Li X, Xie H, Cai Y, Chen D, Wang J, van Veen JA, Kuramae EE, Tran LSP, Tian C. Comparison of methane metabolism in the rhizomicrobiomes of wild and related cultivated rice accessions reveals a strong impact of crop domestication. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:150131. [PMID: 34788940 DOI: 10.1016/j.scitotenv.2021.150131] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 06/28/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Microbial communities from rhizosphere (rhizomicrobiomes) have been significantly impacted by domestication as evidenced by a comparison of the rhizomicrobiomes of wild and related cultivated rice accessions. While there have been many published studies focusing on the structure of the rhizomicrobiome, studies comparing the functional traits of the microbial communities in the rhizospheres of wild rice and cultivated rice accessions are not yet available. In this study, we used metagenomic data from experimental rice plots to analyze the potential functional traits of the microbial communities in the rhizospheres of wild rice accessions originated from Africa and Asia in comparison with their related cultivated rice accessions. The functional potential of rhizosphere microbial communities involved in alanine, aspartate and glutamate metabolism, methane metabolism, carbon fixation pathways, citrate cycle (TCA cycle), pyruvate metabolism and lipopolysaccharide biosynthesis pathways were found to be enriched in the rhizomicrobiomes of wild rice accessions. Notably, methane metabolism in the rhizomicrobiomes of wild and cultivated rice accessions clearly differed. Key enzymes involved in methane production and utilization were overrepresented in the rhizomicrobiome samples obtained from wild rice accessions, suggesting that the rhizomicrobiomes of wild rice maintain a different ecological balance for methane production and utilization compared with those of the related cultivated rice accessions. A novel assessment of the impact of rice domestication on the primary metabolic pathways associated with microbial taxa in the rhizomicrobiomes was performed. Results indicated a strong impact of rice domestication on methane metabolism; a process that represents a critical function of the rhizosphere microbial community of rice. The findings of this study provide important information for future breeding of rice varieties with reduced methane emission during cultivation for sustainable agriculture.
Collapse
Affiliation(s)
- Lei Tian
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin 130102, China
| | - Jingjing Chang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Microbial Ecology, Netherlands Institute of Ecology NIOO-KNAW, Wageningen, the Netherlands; Ecology and Biodiversity, Institute of Environmental Biology, Utrecht University, Utrecht, the Netherlands
| | - Shaohua Shi
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin 130102, China
| | - Li Ji
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianfeng Zhang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Yu Sun
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin 130102, China
| | - Xiaojie Li
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin 130102, China
| | - Xiujun Li
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin 130102, China
| | - Hongwei Xie
- Jiangxi Super-rice Research and Development Center, National Engineering Laboratory for Rice, Nanchang, China
| | - Yaohui Cai
- Jiangxi Super-rice Research and Development Center, National Engineering Laboratory for Rice, Nanchang, China
| | - Dazhou Chen
- Jiangxi Super-rice Research and Development Center, National Engineering Laboratory for Rice, Nanchang, China
| | - Jilin Wang
- Jiangxi Super-rice Research and Development Center, National Engineering Laboratory for Rice, Nanchang, China
| | - Johannes A van Veen
- Department of Microbial Ecology, Netherlands Institute of Ecology NIOO-KNAW, Wageningen, the Netherlands
| | - Eiko E Kuramae
- Department of Microbial Ecology, Netherlands Institute of Ecology NIOO-KNAW, Wageningen, the Netherlands; Ecology and Biodiversity, Institute of Environmental Biology, Utrecht University, Utrecht, the Netherlands.
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, TX 79409, USA.
| | - Chunjie Tian
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin 130102, China.
| |
Collapse
|
42
|
Pavan M, Reinmets K, Garg S, Mueller AP, Marcellin E, Köpke M, Valgepea K. Advances in systems metabolic engineering of autotrophic carbon oxide-fixing biocatalysts towards a circular economy. Metab Eng 2022; 71:117-141. [DOI: 10.1016/j.ymben.2022.01.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/16/2022]
|
43
|
Awasthi D, Tang YH, Amer B, Baidoo EEK, Gin J, Chen Y, Petzold CJ, Kalyuzhnaya M, Singer SW. OUP accepted manuscript. J Ind Microbiol Biotechnol 2022; 49:6521446. [PMID: 35134957 PMCID: PMC9118986 DOI: 10.1093/jimb/kuac002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/19/2022] [Indexed: 11/15/2022]
Abstract
Rhamnolipids (RLs) are well-studied biosurfactants naturally produced by pathogenic strains of Pseudomonas aeruginosa. Current methods to produce RLs in native and heterologous hosts have focused on carbohydrates as production substrate; however, methane (CH4) provides an intriguing alternative as a substrate for RL production because it is low cost and may mitigate greenhouse gas emissions. Here, we demonstrate RL production from CH4 by Methylotuvimicrobium alcaliphilum DSM19304. RLs are inhibitory to M. alcaliphilum growth (<0.05 g/l). Adaptive laboratory evolution was performed by growing M. alcaliphilum in increasing concentrations of RLs, producing a strain that grew in the presence of 5 g/l of RLs. Metabolomics and proteomics of the adapted strain grown on CH4 in the absence of RLs revealed metabolic changes, increase in fatty acid production and secretion, alterations in gluconeogenesis, and increased secretion of lactate and osmolyte products compared with the parent strain. Expression of plasmid-borne RL production genes in the parent M. alcaliphilum strain resulted in cessation of growth and cell death. In contrast, the adapted strain transformed with the RL production genes showed no growth inhibition and produced up to 1 μM of RLs, a 600-fold increase compared with the parent strain, solely from CH4. This work has promise for developing technologies to produce fatty acid-derived bioproducts, including biosurfactants, from CH4.
Collapse
Affiliation(s)
- Deepika Awasthi
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yung-Hsu Tang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Bashar Amer
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Edward E K Baidoo
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jennifer Gin
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yan Chen
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Christopher J Petzold
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Marina Kalyuzhnaya
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Steven W Singer
- Correspondence should be addressed to: Steven W. Singer. Tel: 510-486-5556; Fax: 510-486-4252; E-mail:
| |
Collapse
|
44
|
Abstract
Microbes with the capacity to use methane (CH4) as a carbon source (methanotrophs) have significant potential for the bioconversion of CH4-containing natural gas and anaerobic digestion-derived biogas to high value products. These organisms also play a vital role in the biogeochemical cycling of atmospheric CH4 by serving as the only known biological sink of this gas in terrestrial and aquatic ecosystems. Much is known regarding the enzymes and central metabolic pathways mediating CH4 utilization in these bacteria. However, large fundamental knowledge gaps exist regarding methanotroph physiology and responses to environmental stimuli, primarily due to a lack of efficient molecular tools to probe gene-function relationships. In this chapter, we describe several recently developed genetic tools and optimized genome editing methods that can be used for methanotroph metabolic engineering and to probe metabolic and physiological governing mechanisms in these unique bacteria.
Collapse
Affiliation(s)
- Sreemoye Nath
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
- BioDiscovery Institute, University of North Texas, Denton, TX, USA
| | - Jessica M Henard
- BioDiscovery Institute, University of North Texas, Denton, TX, USA
| | - Calvin A Henard
- Department of Biological Sciences, University of North Texas, Denton, TX, USA.
- BioDiscovery Institute, University of North Texas, Denton, TX, USA.
| |
Collapse
|
45
|
Systems Metabolic Engineering of Methanotrophic Bacteria for Biological Conversion of Methane to Value-Added Compounds. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022; 180:91-126. [DOI: 10.1007/10_2021_184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Øyen SB, Jakobsen HA, Haug-Warberg T, Solsvik J. Interface Mass Transfer in Reactive Bubbly Flow: A Rigorous Phase Equilibrium-Based Approach. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- S. B. Øyen
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| | - H. A. Jakobsen
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| | - T. Haug-Warberg
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| | - J. Solsvik
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| |
Collapse
|
47
|
Jo SY, Son J, Sohn YJ, Lim SH, Lee JY, Yoo JI, Park SY, Na JG, Park SJ. A shortcut to carbon-neutral bioplastic production: Recent advances in microbial production of polyhydroxyalkanoates from C1 resources. Int J Biol Macromol 2021; 192:978-998. [PMID: 34656544 DOI: 10.1016/j.ijbiomac.2021.10.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/04/2021] [Accepted: 10/09/2021] [Indexed: 12/18/2022]
Abstract
Since the 20th century, plastics that are widely being used in general life and industries are causing enormous plastic waste problems since improperly discarded plastics barely degrade and decompose. Thus, the demand for polyhydroxyalkanoates (PHAs), biodegradable polymers with material properties similar to conventional petroleum-based plastics, has been increased so far. The microbial production of PHAs is an environment-friendly solution for the current plastic crisis, however, the carbon sources for the microbial PHA production is a crucial factor to be considered in terms of carbon-neutrality. One‑carbon (C1) resources, such as methane, carbon monoxide, and carbon dioxide, are greenhouse gases and are abundantly found in nature and industry. C1 resources as the carbon sources for PHA production have a completely closed carbon loop with much advances; i) fast carbon circulation with direct bioconversion process and ii) simple fermentation procedure without sterilization as non-preferable nutrients. This review discusses the biosynthesis of PHAs based on C1 resource utilization by wild-type and metabolically engineered microbial host strains via biorefinery processes.
Collapse
Affiliation(s)
- Seo Young Jo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jina Son
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Yu Jung Sohn
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Seo Hyun Lim
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Ji Yeon Lee
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jee In Yoo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Se Young Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jeong-Geol Na
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Republic of Korea.
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
48
|
Le HTQ, Nguyen AD, Park YR, Lee EY. Sustainable biosynthesis of chemicals from methane and glycerol via reconstruction of multi-carbon utilizing pathway in obligate methanotrophic bacteria. Microb Biotechnol 2021; 14:2552-2565. [PMID: 33830652 PMCID: PMC8601198 DOI: 10.1111/1751-7915.13809] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 01/26/2023] Open
Abstract
Obligate methanotrophic bacteria can utilize methane, an inexpensive carbon feedstock, as a sole energy and carbon substrate, thus are considered as the only nature-provided biocatalyst for sustainable biomanufacturing of fuels and chemicals from methane. To address the limitation of native C1 metabolism of obligate type I methanotrophs, we proposed a novel platform strain that can utilize methane and multi-carbon substrates, such as glycerol, simultaneously to boost growth rates and chemical production in Methylotuvimicrobium alcaliphilum 20Z. To demonstrate the uses of this concept, we reconstructed a 2,3-butanediol biosynthetic pathway and achieved a fourfold higher titer of 2,3-butanediol production by co-utilizing methane and glycerol compared with that of methanotrophic growth. In addition, we reported the creation of a methanotrophic biocatalyst for one-step bioconversion of methane to methanol in which glycerol was used for cell growth, and methane was mainly used for methanol production. After the deletion of genes encoding methanol dehydrogenase (MDH), 11.6 mM methanol was obtained after 72 h using living cells in the absence of any chemical inhibitors of MDH and exogenous NADH source. A further improvement of this bioconversion was attained by using resting cells with a significantly increased titre of 76 mM methanol after 3.5 h with the supply of 40 mM formate. The work presented here provides a novel framework for a variety of approaches in methane-based biomanufacturing.
Collapse
Affiliation(s)
- Hoa Thi Quynh Le
- Department of Chemical Engineering (Integrated Engineering)Kyung Hee University17104Yongin‐siGyeonggi‐doSouth Korea
| | - Anh Duc Nguyen
- Department of Chemical Engineering (Integrated Engineering)Kyung Hee University17104Yongin‐siGyeonggi‐doSouth Korea
| | - Ye Rim Park
- Department of Chemical Engineering (Integrated Engineering)Kyung Hee University17104Yongin‐siGyeonggi‐doSouth Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (Integrated Engineering)Kyung Hee University17104Yongin‐siGyeonggi‐doSouth Korea
| |
Collapse
|
49
|
Gęsicka A, Oleskowicz-Popiel P, Łężyk M. Recent trends in methane to bioproduct conversion by methanotrophs. Biotechnol Adv 2021; 53:107861. [PMID: 34710553 DOI: 10.1016/j.biotechadv.2021.107861] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 10/11/2021] [Accepted: 10/20/2021] [Indexed: 12/26/2022]
Abstract
Methane is an abundant and low-cost gas with high global warming potential and its use as a feedstock can help mitigate climate change. Variety of valuable products can be produced from methane by methanotrophs in gas fermentation processes. By using methane as a sole carbon source, methanotrophic bacteria can produce bioplastics, biofuels, feed additives, ectoine and variety of other high-value chemical compounds. A lot of studies have been conducted through the years for natural methanotrophs and engineered strains as well as methanotrophic consortia. These have focused on increasing yields of native products as well as proof of concept for the synthesis of new range of chemicals by metabolic engineering. This review shows trends in the research on key methanotrophic bioproducts since 2015. Despite certain limitations of the known production strategies that makes commercialization of methane-based products challenging, there is currently much attention placed on the promising further development.
Collapse
Affiliation(s)
- Aleksandra Gęsicka
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Piotr Oleskowicz-Popiel
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| | - Mateusz Łężyk
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| |
Collapse
|
50
|
Chawley P, Rana A, Jagadevan S. Envisioning role of ammonia oxidizing bacteria in bioenergy production and its challenges: a review. Crit Rev Biotechnol 2021; 42:931-952. [PMID: 34641754 DOI: 10.1080/07388551.2021.1976099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Ammonia oxidizing bacteria (AOB) play a key role in the biological oxidation of ammonia to nitrite and mark their significance in the biogeochemical nitrogen cycle. There has been significant development in harnessing the ammonia oxidizing potential of AOB in the past few decades. However, very little is known about the potential applications of AOB in the bioenergy sector. As alternate sources of energy represent a thrust area for environmental sustainability, the role of AOB in bioenergy production becomes a significant area of exploration. This review highlights the role of AOB in bioenergy production and emphasizes the understanding of the genetic make-up and key cellular biochemical reactions occurring in AOB, thereby leading to the exploration of its various functional aspects. Recent outcomes in novel ammonia/nitrite oxidation steps occurring in a model AOB - Nitrosomonas europaea propel us to explore several areas of environmental implementation. Here we present the significant role of AOB in microbial fuel cells (MFC) where Nitrosomonas sp. play both anodic and cathodic functions in the generation of bioelectricity. This review also presents the potential role of AOB in curbing fuel demand by producing alternative liquid fuel such as methanol and biodiesel. Herein, the multiple roles of AOB in bioenergy production namely: bioelectricity generation, bio-methanol, and biodiesel production have been presented.
Collapse
Affiliation(s)
- Parmita Chawley
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| | - Anu Rana
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| | - Sheeja Jagadevan
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| |
Collapse
|