1
|
Wolf ME, Eltis LD. Recent advances in enzymes active on lignin-derived aromatic compounds. Trends Biochem Sci 2025:S0968-0004(25)00005-2. [PMID: 39952881 DOI: 10.1016/j.tibs.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/07/2025] [Accepted: 01/17/2025] [Indexed: 02/17/2025]
Abstract
Lignin is an attractive alternative to fossil fuels as a feedstock for the sustainable manufacture of chemicals. Emergent strategies for lignin valorization include tandem processes whereby thermochemical fractionation of the biomass yields a mixture of lignin-derived aromatic compounds (LDACs), which are then transformed into target compounds by a microbial cell factory. Identifying LDAC-degrading pathways is critical to optimize carbon yield from diverse depolymerization mixtures. Characterizing enzymes - especially those that catalyze the rate-limiting steps of O-demethylation, hydroxylation, and decarboxylation - informs and enables biocatalyst design. Rational, structure-based engineering of key enzymes, as well as untargeted, evolution-based approaches, further optimize biocatalysis. In this review we outline recent advances in these fields which are critical in developing biocatalysts to efficiently synthesize lignin-based bioproducts.
Collapse
Affiliation(s)
- Megan E Wolf
- Department of Microbiology and Immunology, Life Sciences Institute and Bioproducts Institute, The University of British Columbia, Vancouver, Canada
| | - Lindsay D Eltis
- Department of Microbiology and Immunology, Life Sciences Institute and Bioproducts Institute, The University of British Columbia, Vancouver, Canada.
| |
Collapse
|
2
|
Sulis DB, Lavoine N, Sederoff H, Jiang X, Marques BM, Lan K, Cofre-Vega C, Barrangou R, Wang JP. Advances in lignocellulosic feedstocks for bioenergy and bioproducts. Nat Commun 2025; 16:1244. [PMID: 39893176 PMCID: PMC11787297 DOI: 10.1038/s41467-025-56472-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/21/2025] [Indexed: 02/04/2025] Open
Abstract
Lignocellulose, an abundant renewable resource, presents a promising alternative for sustainable energy and industrial applications. However, large-scale adoption of lignocellulosic feedstocks faces considerable obstacles, including scalability, bioprocessing efficiency, and resilience to climate change. This Review examines current efforts and future opportunities for leveraging lignocellulosic feedstocks in bio-based energy and products, with a focus on enhancing conversion efficiency and scalability. It also explores emerging biotechnologies such as CRISPR-based genome editing informed by machine learning, aimed at improving feedstock traits and reducing the environmental impact of fossil fuel dependence.
Collapse
Affiliation(s)
- Daniel B Sulis
- TreeCo, Raleigh, NC, USA
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA
- NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC, USA
| | - Nathalie Lavoine
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC, USA
| | - Heike Sederoff
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Xiao Jiang
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC, USA
| | - Barbara M Marques
- TreeCo, Raleigh, NC, USA
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA
- NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC, USA
| | - Kai Lan
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC, USA
| | - Carlos Cofre-Vega
- TreeCo, Raleigh, NC, USA
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA
- NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC, USA
| | - Rodolphe Barrangou
- TreeCo, Raleigh, NC, USA.
- NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC, USA.
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA.
| | - Jack P Wang
- TreeCo, Raleigh, NC, USA.
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA.
- NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
3
|
Niraula A, Danesh A, Merindol N, Meddeb-Mouelhi F, Desgagné-Penix I. Aromatic Amino Acids: Exploring Microalgae as a Potential Biofactory. BIOTECH 2025; 14:6. [PMID: 39982273 DOI: 10.3390/biotech14010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/22/2025] Open
Abstract
In recent times, microalgae have emerged as powerful hosts for biotechnological applications, ranging from the production of lipids and specialized metabolites (SMs) of pharmaceutical interest to biofuels, nutraceutical supplements, and more. SM synthesis through bioengineered pathways relies on the availability of aromatic amino acids (AAAs) as an essential precursor. AAAs, phenylalanine, tyrosine, and tryptophan are also the building blocks of proteins, maintaining the structural and functional integrity of cells. Hence, they are crucial intermediates linking the primary and specialized metabolism. The biosynthesis pathway of AAAs in microbes and plants has been studied for decades, but not much is known about microalgae. The allosteric control present in this pathway has been targeted for metabolic engineering in microbes. This review focuses on the biosynthesis of AAAs in eukaryotic microalgae and engineering techniques for enhanced production. All the putative genes involved in AAA pathways in the model microalgae Chlamydomonas reinhardtii and Phaeodactylum tricornutum are listed in this review.
Collapse
Affiliation(s)
- Archana Niraula
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3, Canada
| | - Amir Danesh
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3, Canada
| | - Natacha Merindol
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3, Canada
| | - Fatma Meddeb-Mouelhi
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3, Canada
| | - Isabel Desgagné-Penix
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3, Canada
| |
Collapse
|
4
|
Zhao W, Shi L, Han Y, Wang X, Wang J, Xu S, Zhang X, Huang Z. Development of a microbiome for phenolic metabolism based on a domestication approach from lab to industrial application. Commun Biol 2024; 7:1716. [PMID: 39741173 DOI: 10.1038/s42003-024-07353-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 12/03/2024] [Indexed: 01/02/2025] Open
Abstract
Despite a lot of efforts devoted to construct efficient microbiomes, there are still major obstacles to moving from the lab to industrial applications due to the inapplicability of existing technologies or limited understanding of microbiome variation regularity. Here we show a domestication strategy to cultivate an effciient and resilient functional microbiome for addressing phenolic wastewater challenges, which involves directional domestication in shaker, laboratory water test in small-scale, gas test in pilot scale, water test in pilot scale, and engineering application in industrial scale. The domestication process includes the transition from water to gas, which provided complex transient environment for screening of a more adaptable and robust microbiome, thereby mitigating the performance disparities encountered when transitioning from laboratory experimentation to industrial engineering applications. Within the domestication and application processes for treating phenolic resin wastewater, a powerful functional microbiome was built by self-assembly. This leads to an augmented biodiversity and the development of more intricate phenol and formaldehyde metabolic pathways. The incorporation of increased stochastic processes and random network characteristics further suggested the stability of the microbial community during the application phase. This study elucidates the self-assembly process of microbial communities during the artificial construction process, showcasing their adaptive evolution under different adverse conditions. It serves as a noteworthy case study for the artificial construction of a microbiome for the engineering application of treating industrial wastewater.
Collapse
Affiliation(s)
- Wei Zhao
- Tianjin Key Laboratory of Industrial Biological Systems and Process Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Liuyang Shi
- Tianjin Key Laboratory of Industrial Biological Systems and Process Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Yifan Han
- Tianjin Key Laboratory of Industrial Biological Systems and Process Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Xingbiao Wang
- Tianjin Key Laboratory of Industrial Biological Systems and Process Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Jingjing Wang
- Tianjin Key Laboratory of Industrial Biological Systems and Process Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Song Xu
- Tianjin Key Laboratory of Industrial Biological Systems and Process Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Xiaoxia Zhang
- Tianjin Key Laboratory of Industrial Biological Systems and Process Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Zhiyong Huang
- Tianjin Key Laboratory of Industrial Biological Systems and Process Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China.
| |
Collapse
|
5
|
Sodré V, Bugg TDH. Sustainable production of aromatic chemicals from lignin using enzymes and engineered microbes. Chem Commun (Camb) 2024; 60:14360-14375. [PMID: 39569570 PMCID: PMC11580001 DOI: 10.1039/d4cc05064a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
Lignin is an aromatic biopolymer found in plant cell walls and is the most abundant source of renewable aromatic carbon in the biosphere. Hence there is considerable interest in the conversion of lignin, either derived from agricultural waste or produced as a byproduct of pulp/paper manufacture, into high-value chemicals. Although lignin is rather inert, due to the presence of ether C-O and C-C linkages, several microbes are able to degrade lignin. This review will introduce these microbes and the enzymes that they use to degrade lignin and will describe recent studies on metabolic engineering that can generate high-value chemicals from lignin bioconversion. Catabolic pathways for degradation of lignin fragments will be introduced, and case studies where these pathways have been engineered by gene knockout/insertion to generate bioproducts that are of interest as monomers for bioplastic synthesis or aroma chemicals will be described. Life cycle analysis of lignin bioconversion processes is discussed.
Collapse
Affiliation(s)
- Victoria Sodré
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | - Timothy D H Bugg
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
6
|
Cazier EA, Pham TN, Cossus L, Abla M, Ilc T, Lawrence P. Exploring industrial lignocellulosic waste: Sources, types, and potential as high-value molecules. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 188:11-38. [PMID: 39094219 DOI: 10.1016/j.wasman.2024.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Lignocellulosic biomass has a promising role in a circular bioeconomy and may be used to produce valuable molecules for green chemistry. Lignocellulosic biomass, such as food waste, agricultural waste, wood, paper or cardboard, corresponded to 15.7% of all waste produced in Europe in 2020, and has a high potential as a secondary raw material for industrial processes. This review first presents industrial lignocellulosic waste sources, in terms of their composition, quantities and types of lignocellulosic residues. Secondly, the possible high added-value chemicals obtained from transformation of lignocellulosic waste are detailed, as well as their potential for applications in the food industry, biomedical, energy or chemistry sectors, including as sources of polyphenols, enzymes, bioplastic precursors or biofuels. In a third part, various available transformation treatments, such as physical treatments with ultrasound or heat, chemical treatments with acids or bases, and biological treatments with enzymes or microorganisms, are presented. The last part discusses the perspectives of the use of lignocellulosic waste and the fact that decreasing the cost of transformation is one of the major issues for improving the use of lignocellulosic biomass in a circular economy and green chemistry approach, since it is currently often more expensive than petroleum-based counterparts.
Collapse
Affiliation(s)
- Elisabeth A Cazier
- UCLy (Lyon Catholic University), ESTBB, Lyon, France; UCLy (Lyon Catholic University), UR CONFLUENCE : Sciences et Humanités (EA 1598), Lyon, France; Nantes Université, Oniris, GEPEA, UMR 6144, F-44600 Saint-Nazaire, France(1).
| | - Thanh-Nhat Pham
- UCLy (Lyon Catholic University), ESTBB, Lyon, France; UCLy (Lyon Catholic University), UR CONFLUENCE : Sciences et Humanités (EA 1598), Lyon, France
| | - Louis Cossus
- UCLy (Lyon Catholic University), ESTBB, Lyon, France; UCLy (Lyon Catholic University), UR CONFLUENCE : Sciences et Humanités (EA 1598), Lyon, France
| | - Maher Abla
- UCLy (Lyon Catholic University), ESTBB, Lyon, France; UCLy (Lyon Catholic University), UR CONFLUENCE : Sciences et Humanités (EA 1598), Lyon, France.
| | - Tina Ilc
- UCLy (Lyon Catholic University), ESTBB, Lyon, France; UCLy (Lyon Catholic University), UR CONFLUENCE : Sciences et Humanités (EA 1598), Lyon, France.
| | - Philip Lawrence
- UCLy (Lyon Catholic University), ESTBB, Lyon, France; UCLy (Lyon Catholic University), UR CONFLUENCE : Sciences et Humanités (EA 1598), Lyon, France.
| |
Collapse
|
7
|
Li P, Dong C, Pang Z, Chen X. Utilization of benzoic acid-based green deep eutectic solvents for the fractionation of lignocellulosic biomass. Int J Biol Macromol 2024; 282:137062. [PMID: 39488317 DOI: 10.1016/j.ijbiomac.2024.137062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/23/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
The fractionation of lignocellulose utilizing green solvents is essential for the effective operation of biorefineries. In this study, a deep eutectic solvent (DES) system composed of benzoic acid (BA, hydrogen bond donor) and choline chloride (ChCl, hydrogen bond acceptor) was fabricated and successfully applied to the lignocellulose fractionation. The DES has low toxicity and little pollution. In this system, 67.8 % of lignin and 91.2 % of hemicellulose in poplar were removed, leaving 95.8 % of cellulose intact as solid residue. Due to the removal of the amorphous components, crystallinity of cellulose-rich water-insoluble solid (CIS) substantially increased from 55.6 % to 68.6 %, and CIS was used as feedstock for nanocrystalline cellulose preparation with excellent properties. The results showed that the obtained lignin had similar properties to CEL by GPC, FT-IR, 2D-NMR and TGA. A high-purity lignin rich in G units was recovered with a well-preserved structure, which has β-O-4 linkage content up to 53.01 %, low molecular weight, low polydispersity (1.99). Finally, the hydrolyzate can be used for fermentation. This study demonstrated that BA is suitable for DES design with excellent properties on lignin extraction, and this promising DES enable efficient pretreatment for economically feasible biomass conversion. This ChCl-BA DES facilitates environmentally friendly production of functional materials derived from cellulose and lignin under mild conditions.
Collapse
Affiliation(s)
- Pengfei Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; National Energy R&D Research Center for Biorefinery, Department of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Cuihua Dong
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Liaocheng Key Laboratory of High Yield Clean Pulping and Special Cultural Paper, Liaocheng 252300, China.
| | - Zhiqiang Pang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Xiao Chen
- Liaocheng Key Laboratory of High Yield Clean Pulping and Special Cultural Paper, Liaocheng 252300, China
| |
Collapse
|
8
|
Liu A, Ellis D, Mhatre A, Brahmankar S, Seto J, Nielsen DR, Varman AM. Biomanufacturing of value-added chemicals from lignin. Curr Opin Biotechnol 2024; 89:103178. [PMID: 39098292 DOI: 10.1016/j.copbio.2024.103178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024]
Abstract
Lignin valorization faces persistent biomanufacturing challenges due to the heterogeneous and toxic carbon substrates derived from lignin depolymerization. To address the heterogeneous nature of aromatic feedstocks, plant cell wall engineering and 'lignin first' pretreatment methods have recently emerged. Next, to convert the resulting aromatic substrates into value-added chemicals, diverse microbial host systems also continue to be developed. This includes microbes that (1) lack aromatic metabolism, (2) metabolize aromatics but not sugars, and (3) co-metabolize both aromatics and sugars, each system presenting unique pros and cons. Considering the intrinsic complexity of lignin-derived substrate mixtures, emerging and non-model microbes with native metabolism for aromatics appear poised to provide the greatest impacts on lignin valorization via biomanufacturing.
Collapse
Affiliation(s)
- Arren Liu
- Biological Design Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Dylan Ellis
- Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Apurv Mhatre
- Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Sumant Brahmankar
- Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Jong Seto
- Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - David R Nielsen
- Biological Design Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA; Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Arul M Varman
- Biological Design Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA; Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
9
|
Weimer A, Pause L, Ries F, Kohlstedt M, Adrian L, Krömer J, Lai B, Wittmann C. Systems biology of electrogenic Pseudomonas putida - multi-omics insights and metabolic engineering for enhanced 2-ketogluconate production. Microb Cell Fact 2024; 23:246. [PMID: 39261865 PMCID: PMC11389600 DOI: 10.1186/s12934-024-02509-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/10/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Pseudomonas putida KT2440 has emerged as a promising host for industrial bioproduction. However, its strictly aerobic nature limits the scope of applications. Remarkably, this microbe exhibits high bioconversion efficiency when cultured in an anoxic bio-electrochemical system (BES), where the anode serves as the terminal electron acceptor instead of oxygen. This environment facilitates the synthesis of commercially attractive chemicals, including 2-ketogluconate (2KG). To better understand this interesting electrogenic phenotype, we studied the BES-cultured strain on a systems level through multi-omics analysis. Inspired by our findings, we constructed novel mutants aimed at improving 2KG production. RESULTS When incubated on glucose, P. putida KT2440 did not grow but produced significant amounts of 2KG, along with minor amounts of gluconate, acetate, pyruvate, succinate, and lactate. 13C tracer studies demonstrated that these products are partially derived from biomass carbon, involving proteins and lipids. Over time, the cells exhibited global changes on both the transcriptomic and proteomic levels, including the shutdown of translation and cell motility, likely to conserve energy. These adaptations enabled the cells to maintain significant metabolic activity for several weeks. Acetate formation was shown to contribute to energy supply. Mutants deficient in acetate production demonstrated superior 2KG production in terms of titer, yield, and productivity. The ∆aldBI ∆aldBII double deletion mutant performed best, accumulating 2KG at twice the rate of the wild type and with an increased yield (0.96 mol/mol). CONCLUSIONS By integrating transcriptomic, proteomic, and metabolomic analyses, this work provides the first systems biology insight into the electrogenic phenotype of P. putida KT2440. Adaptation to anoxic-electrogenic conditions involved coordinated changes in energy metabolism, enabling cells to sustain metabolic activity for extended periods. The metabolically engineered mutants are promising for enhanced 2KG production under these conditions. The attenuation of acetate synthesis represents the first systems biology-informed metabolic engineering strategy for enhanced 2KG production in P. putida. This non-growth anoxic-electrogenic mode expands our understanding of the interplay between growth, glucose phosphorylation, and glucose oxidation into gluconate and 2KG in P. putida.
Collapse
Affiliation(s)
- Anna Weimer
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Laura Pause
- Systems Biotechnology Group, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Fabian Ries
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Michael Kohlstedt
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Lorenz Adrian
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Jens Krömer
- Systems Biotechnology Group, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Bin Lai
- BMBF Junior Research Group Biophotovoltaics, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
10
|
Molinari F, Salini A, Vittore A, Santoro O, Izzo L, Fusco S, Pollegioni L, Rosini E. Bio-based production of cis,cis-muconic acid as platform for a sustainable polymers production. BIORESOURCE TECHNOLOGY 2024; 408:131190. [PMID: 39094966 DOI: 10.1016/j.biortech.2024.131190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Production of the high industrial value cis,cis-muconic acid (ccMA) from renewable biomasses is of main interest especially when biological (green) processes are used. We recently generated a E. coli strain expressing five recombinant enzymes to convert vanillin (VA, from lignin) into ccMA. Here, we optimized a growing cell approach in bioreactor for the ccMA production. The medium composition, fermentation conditions, and VA addition were tuned: pulse-feeding VA at 1 mmol/h allowed to reach 5.2 g/L of ccMA in 48 h (0.86 g ccMA/g VA), with a productivity 4-fold higher compared to the resting cells approach, thus resulting in significantly lower E-factor and Process Mass Intensity green metric parameters. The recovered ccMA has been used as building block to produce a fully bioderived polymer with rubber-like properties. The sustainable optimized bioprocess can be considered an integrated approach to develop a platform for bio-based polymers production from renewable feedstocks.
Collapse
Affiliation(s)
- Filippo Molinari
- Department of Biotechnology and Life Sciences, University of Insubria, via J. H. Dunant 3, 21100 Varese, Italy
| | - Andrea Salini
- Biochemistry and Industrial Biotechnology (BIB) Laboratory, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Aniello Vittore
- Department of Biotechnology and Life Sciences, University of Insubria, via J. H. Dunant 3, 21100 Varese, Italy
| | - Orlando Santoro
- Department of Biotechnology and Life Sciences, University of Insubria, via J. H. Dunant 3, 21100 Varese, Italy
| | - Lorella Izzo
- Department of Biotechnology and Life Sciences, University of Insubria, via J. H. Dunant 3, 21100 Varese, Italy
| | - Salvatore Fusco
- Biochemistry and Industrial Biotechnology (BIB) Laboratory, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, via J. H. Dunant 3, 21100 Varese, Italy
| | - Elena Rosini
- Department of Biotechnology and Life Sciences, University of Insubria, via J. H. Dunant 3, 21100 Varese, Italy.
| |
Collapse
|
11
|
Blaga AC, Dragoi EN, Tucaliuc A, Kloetzer L, Puitel AC, Cascaval D, Galaction AI. Reactive extraction of muconic acid by hydrophobic phosphonium ionic liquids - Experimental, modelling and optimisation with Artificial Neural Networks. Heliyon 2024; 10:e36113. [PMID: 39247304 PMCID: PMC11379585 DOI: 10.1016/j.heliyon.2024.e36113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/17/2024] [Accepted: 08/09/2024] [Indexed: 09/10/2024] Open
Abstract
Muconic acid is a six-carbon dicarboxylic acid with conjugated double bonds that finds extensive use in the food (additive), chemical (production of adipic acid, monomer for functional resins and bio-plastics), and pharmaceutical sectors. The biosynthesis of muconic acid has been the subject of recent industrial and scientific attention. However, because of its low concentration in aqueous solutions and high purity requirement, downstream separation presents a significant problem. Artificial Neural Networks and Differential Evolution were used to optimize process parameters for the recovery of muconic acid from aqueous streams in a system with n-heptane as an organic diluent and ionic liquids as extractants. The system using 120 g/L tri-hexyl-tetra-decyl-phosphonium decanoate dissolved in n-heptane, pH of the aqueous phase 3, 20 min contact time, and 45 °C temperature assured a muconic acid extraction efficiency of 99,24 %. Low stripping efficiency compared to extraction efficiency was observed for the optimum conditions on the extraction step (120 g/L ionic liquids dissolved in heptane). However, re-extraction efficiencies obtained for the recycled organic phase in three consecutive stages were close to the first extraction stage. The mechanism analysis proved that the analysed phosphonium ionic liquids (PILSs) extracts only undissociated molecules of muconic acid through H-bonding.
Collapse
Affiliation(s)
- Alexandra Cristina Blaga
- "Gheorghe Asachi" Technical University of Iasi, "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, Iasi, Romania
| | - Elena Niculina Dragoi
- "Gheorghe Asachi" Technical University of Iasi, "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, Iasi, Romania
| | - Alexandra Tucaliuc
- "Gheorghe Asachi" Technical University of Iasi, "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, Iasi, Romania
| | - Lenuta Kloetzer
- "Gheorghe Asachi" Technical University of Iasi, "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, Iasi, Romania
| | - Adrian-Catalin Puitel
- "Gheorghe Asachi" Technical University of Iasi, "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, Iasi, Romania
| | - Dan Cascaval
- "Gheorghe Asachi" Technical University of Iasi, "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, Iasi, Romania
| | - Anca Irina Galaction
- "Grigore T. Popa" University of Medicine and Pharmacy, Faculty of Medical Bioengineering, Iasi, Romania
| |
Collapse
|
12
|
Wen C, Shuanghong Y, Wanrong H, Ran C, Zhishun C, Danqun H, Changjun H, Dongliang L, Qianying Z. Effects of different adding methods of fermentation medium on the quality of cigar. Front Bioeng Biotechnol 2024; 12:1440961. [PMID: 39188375 PMCID: PMC11345584 DOI: 10.3389/fbioe.2024.1440961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/12/2024] [Indexed: 08/28/2024] Open
Abstract
Background: To investigate the effects of different media and media addition methods on the fermentation of tobacco. Methods: A plant extract and a bacterial agent are used for fermenting cigar tobacco leaves in a different order of addition. The chemical composition, cellulose, and pectin content, as well as changes in the microbial community, were measured. Results: The addition method of the fermentation medium affects the quality of fermented tobacco. The optimal medium formula and addition method involve first adding plant extracts and then microbial agents. The medium formula and addition method can significantly reduce cellulose in tobacco, with a reduction rate of 46%, and significantly increase the content of β-carotene, thereby enhancing the aroma of cigarettes. There is an increase in aroma components, such as alcohols, alkanes, and olefins, in tobacco. By reducing the proportion of Aspergillus, it can alter the microbial community structure of tobacco. Conclusion: Adding plant extracts before introducing microbial agents can significantly improve the quality and alter the microbial community structure of Dexue No.1 tobacco.
Collapse
Affiliation(s)
- Cai Wen
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongging University, Chonging, China
- Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Sichuan Industrial Co., Ltd., China Tobacco Technology Innovation Center for Cigar, Chengdu, China
| | - Yang Shuanghong
- Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Sichuan Industrial Co., Ltd., China Tobacco Technology Innovation Center for Cigar, Chengdu, China
| | - Hu Wanrong
- Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Sichuan Industrial Co., Ltd., China Tobacco Technology Innovation Center for Cigar, Chengdu, China
| | - Chen Ran
- Technology Center, Guangdong China Tobacco Industry Co., Ltd., Guangzhou, China
| | - Chai Zhishun
- Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Sichuan Industrial Co., Ltd., China Tobacco Technology Innovation Center for Cigar, Chengdu, China
| | - Huo Danqun
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongging University, Chonging, China
| | - Hou Changjun
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongging University, Chonging, China
| | - Li Dongliang
- Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Sichuan Industrial Co., Ltd., China Tobacco Technology Innovation Center for Cigar, Chengdu, China
| | - Zhang Qianying
- Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Sichuan Industrial Co., Ltd., China Tobacco Technology Innovation Center for Cigar, Chengdu, China
| |
Collapse
|
13
|
Tang M, You J, Yang T, Sun Q, Jiang S, Xu M, Pan X, Rao Z. Application of modern synthetic biology technology in aromatic amino acids and derived compounds biosynthesis. BIORESOURCE TECHNOLOGY 2024; 406:131050. [PMID: 38942210 DOI: 10.1016/j.biortech.2024.131050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 06/30/2024]
Abstract
Aromatic amino acids (AAA) and derived compounds have enormous commercial value with extensive applications in the food, chemical and pharmaceutical fields. Microbial production of AAA and derived compounds is a promising prospect for its environmental friendliness and sustainability. However, low yield and production efficiency remain major challenges for realizing industrial production. With the advancement of synthetic biology, microbial production of AAA and derived compounds has been significantly facilitated. In this review, a comprehensive overview on the current progresses, challenges and corresponding solutions for AAA and derived compounds biosynthesis is provided. The most cutting-edge developments of synthetic biology technology in AAA and derived compounds biosynthesis, including CRISPR-based system, genetically encoded biosensors and synthetic genetic circuits, were highlighted. Finally, future prospects of modern strategies conducive to the biosynthesis of AAA and derived compounds are discussed. This review offers guidance on constructing microbial cell factory for aromatic compound using synthetic biology technology.
Collapse
Affiliation(s)
- Mi Tang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Jiajia You
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Tianjin Yang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Qisheng Sun
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Shuran Jiang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Meijuan Xu
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Xuewei Pan
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China.
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China.
| |
Collapse
|
14
|
Wei Y, Wang SG, Xia PF. Blue valorization of lignin-derived monomers via reprogramming marine bacterium Roseovarius nubinhibens. Appl Environ Microbiol 2024; 90:e0089024. [PMID: 38940564 PMCID: PMC11267941 DOI: 10.1128/aem.00890-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/07/2024] [Indexed: 06/29/2024] Open
Abstract
Biological valorization of lignin, the second most abundant biopolymer on Earth, is an indispensable sector to build a circular economy and net-zero future. However, lignin is recalcitrant to bioupcycling, demanding innovative solutions. We report here the biological valorization of lignin-derived aromatic carbon to value-added chemicals without requesting extra organic carbon and freshwater via reprogramming the marine Roseobacter clade bacterium Roseovarius nubinhibens. We discovered the unusual advantages of this strain for the oxidation of lignin monomers and implemented a CRISPR interference (CRISPRi) system with the lacI-Ptrc inducible module, nuclease-deactivated Cas9, and programmable gRNAs. This is the first CRISPR-based regulatory system in R. nubinhibens, enabling precise and efficient repression of genes of interest. By deploying the customized CRISPRi, we reprogrammed the carbon flux from a lignin monomer, 4-hydroxybenzoate, to achieve the maximum production of protocatechuate, a pharmaceutical compound with antibacterial, antioxidant, and anticancer properties, with minimal carbon to maintain cell growth and drive biocatalysis. As a result, we achieved a 4.89-fold increase in protocatechuate yield with a dual-targeting CRISPRi system, and the system was demonstrated with real seawater. Our work underscores the power of CRISPRi in exploiting novel microbial chassis and will accelerate the development of marine synthetic biology. Meanwhile, the introduction of a new-to-the-field lineage of marine bacteria unveils the potential of blue biotechnology leveraging resources from the ocean.IMPORTANCEOne often overlooked sector in carbon-conservative biotechnology is the water resource that sustains these enabling technologies. Similar to the "food-versus-fuel" debate, the competition of freshwater between human demands and bioproduction is another controversial issue, especially under global water scarcity. Here, we bring a new-to-the-field lineage of marine bacteria with unusual advantages to the stage of engineering biology for simultaneous carbon and water conservation. We report the valorization of lignin monomers to pharmaceutical compounds without requesting extra organic substrate (e.g., glucose) or freshwater by reprogramming the marine bacterium Roseovarius nubinhibens with a multiplex CRISPR interference system. Beyond the blue lignin valorization, we present a proof-of-principle of leveraging marine bacteria and engineering biology for a sustainable future.
Collapse
Affiliation(s)
- Ying Wei
- School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Shu-Guang Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao, China
- Sino-French Research Institute for Ecology and Environment, Shandong University, Qingdao, China
- Weihai Research Institute of Industrial Technology, Shandong University, Weihai, China
| | - Peng-Fei Xia
- School of Environmental Science and Engineering, Shandong University, Qingdao, China
| |
Collapse
|
15
|
Puertas-Bartolomé M, Gutiérrez-Urrutia I, Teruel-Enrico LL, Duong CN, Desai K, Trujillo S, Wittmann C, Del Campo A. Self-Lubricating, Living Contact Lenses. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313848. [PMID: 38583064 DOI: 10.1002/adma.202313848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/04/2024] [Indexed: 04/08/2024]
Abstract
The increasing prevalence of dry eye syndrome in aging and digital societies compromises long-term contact lens (CL) wear and forces users to regular eye drop instillation to alleviate discomfort. Here a novel approach with the potential to improve and extend the lubrication properties of CLs is presented. This is achieved by embedding lubricant-secreting biofactories within the CL material. The self-replenishable reservoirs autonomously produce and release hyaluronic acid (HA), a natural lubrication and wetting agent, long term. The hydrogel matrix regulates the growth of the biofactories and the HA production, and allows the diffusion of nutrients and HA for at least 3 weeks. The continuous release of HA sustainably reduces the friction coefficient of the CL surface. A self-lubricating CL prototype is presented, where the functional biofactories are contained in a functional ring at the lens periphery, outside of the vision area. The device is cytocompatible and fulfils physicochemical requirements of commercial CLs. The fabrication process is compatible with current manufacturing processes of CLs for vision correction. It is envisioned that the durable-by-design approach in living CL could enable long-term wear comfort for CL users and minimize the need for lubricating eye drops.
Collapse
Affiliation(s)
- María Puertas-Bartolomé
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
- Chemistry Department, Saarland University, 66123, Saarbrücken, Germany
| | | | | | - Cao Nguyen Duong
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Krupansh Desai
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Sara Trujillo
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Christoph Wittmann
- Institute for Systems Biotechnology, Saarland University, Campus A1 5, 66123, Saarbrücken, Germany
| | - Aránzazu Del Campo
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
- Chemistry Department, Saarland University, 66123, Saarbrücken, Germany
| |
Collapse
|
16
|
Meriläinen E, Efimova E, Santala V, Santala S. Carbon-wise utilization of lignin-related compounds by synergistically employing anaerobic and aerobic bacteria. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:78. [PMID: 38851749 PMCID: PMC11161944 DOI: 10.1186/s13068-024-02526-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Lignin is a highly abundant but strongly underutilized natural resource that could serve as a sustainable feedstock for producing chemicals by microbial cell factories. Because of the heterogeneous nature of the lignin feedstocks, the biological upgrading of lignin relying on the metabolic routes of aerobic bacteria is currently considered as the most promising approach. However, the limited substrate range and the inefficient catabolism of the production hosts hinder the upgrading of lignin-related aromatics. Particularly, the aerobic O-demethylation of the methoxyl groups in aromatic substrates is energy-limited, inhibits growth, and results in carbon loss in the form of CO2. RESULTS In this study, we present a novel approach for carbon-wise utilization of lignin-related aromatics by the integration of anaerobic and aerobic metabolisms. In practice, we employed an acetogenic bacterium Acetobacterium woodii for anaerobic O-demethylation of aromatic compounds, which distinctively differs from the aerobic O-demethylation; in the process, the carbon from the methoxyl groups is fixed together with CO2 to form acetate, while the aromatic ring remains unchanged. These accessible end-metabolites were then utilized by an aerobic bacterium Acinetobacter baylyi ADP1. By utilizing this cocultivation approach, we demonstrated an upgrading of guaiacol, an abundant but inaccessible substrate to most microbes, into a plastic precursor muconate, with a nearly equimolar yields (0.9 mol/mol in a small-scale cultivation and 1.0 mol/mol in a one-pot bioreactor cultivation). The process required only a minor genetic engineering, namely a single gene knock-out. Noticeably, by employing a metabolic integration of the two bacteria, it was possible to produce biomass and muconate by utilizing only CO2 and guaiacol as carbon sources. CONCLUSIONS By the novel approach, we were able to overcome the issues related to aerobic O-demethylation of methoxylated aromatic substrates and demonstrated carbon-wise conversion of lignin-related aromatics to products with yields unattainable by aerobic processes. This study highlights the power of synergistic integration of distinctive metabolic features of bacteria, thus unlocking new opportunities for harnessing microbial cocultures in upgrading challenging feedstocks.
Collapse
Affiliation(s)
- Ella Meriläinen
- Faculty of Engineering and Natural Sciences, Tampere University, Hervanta Campus, Korkeakoulunkatu 8, 33720, Tampere, Finland
| | - Elena Efimova
- Faculty of Engineering and Natural Sciences, Tampere University, Hervanta Campus, Korkeakoulunkatu 8, 33720, Tampere, Finland
| | - Ville Santala
- Faculty of Engineering and Natural Sciences, Tampere University, Hervanta Campus, Korkeakoulunkatu 8, 33720, Tampere, Finland
| | - Suvi Santala
- Faculty of Engineering and Natural Sciences, Tampere University, Hervanta Campus, Korkeakoulunkatu 8, 33720, Tampere, Finland.
| |
Collapse
|
17
|
Moreno R, Yuste L, Morales G, Rojo F. Inactivation of Pseudomonas putida KT2440 pyruvate dehydrogenase relieves catabolite repression and improves the usefulness of this strain for degrading aromatic compounds. Microb Biotechnol 2024; 17:e14514. [PMID: 38923400 PMCID: PMC11196380 DOI: 10.1111/1751-7915.14514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
Pyruvate dehydrogenase (PDH) catalyses the irreversible decarboxylation of pyruvate to acetyl-CoA, which feeds the tricarboxylic acid cycle. We investigated how the loss of PDH affects metabolism in Pseudomonas putida. PDH inactivation resulted in a strain unable to utilize compounds whose assimilation converges at pyruvate, including sugars and several amino acids, whereas compounds that generate acetyl-CoA supported growth. PDH inactivation also resulted in the loss of carbon catabolite repression (CCR), which inhibits the assimilation of non-preferred compounds in the presence of other preferred compounds. Pseudomonas putida can degrade many aromatic compounds, most of which produce acetyl-CoA, making it useful for biotransformation and bioremediation. However, the genes involved in these metabolic pathways are often inhibited by CCR when glucose or amino acids are also present. Our results demonstrate that the PDH-null strain can efficiently degrade aromatic compounds even in the presence of other preferred substrates, which the wild-type strain does inefficiently, or not at all. As the loss of PDH limits the assimilation of many sugars and amino acids and relieves the CCR, the PDH-null strain could be useful in biotransformation or bioremediation processes that require growth with mixtures of preferred substrates and aromatic compounds.
Collapse
Affiliation(s)
- Renata Moreno
- Department of Microbial BiotechnologyCentro Nacional de Biotecnología, CSICMadridSpain
| | - Luis Yuste
- Department of Microbial BiotechnologyCentro Nacional de Biotecnología, CSICMadridSpain
| | - Gracia Morales
- Department of Microbial BiotechnologyCentro Nacional de Biotecnología, CSICMadridSpain
- Present address:
European UniversityMadridSpain
| | - Fernando Rojo
- Department of Microbial BiotechnologyCentro Nacional de Biotecnología, CSICMadridSpain
| |
Collapse
|
18
|
Steele JFC, Wallace S. Deciding the future of adipic acid. Nat Chem 2024; 16:838. [PMID: 38719943 DOI: 10.1038/s41557-024-01496-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Affiliation(s)
- John F C Steele
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Stephen Wallace
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
19
|
Weiland F, Kohlstedt M, Wittmann C. Biobased de novo synthesis, upcycling, and recycling - the heartbeat toward a green and sustainable polyethylene terephthalate industry. Curr Opin Biotechnol 2024; 86:103079. [PMID: 38422776 DOI: 10.1016/j.copbio.2024.103079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
Polyethylene terephthalate (PET) has revolutionized the industrial sector because of its versatility, with its predominant uses in the textiles and packaging materials industries. Despite the various advantages of this polymer, its synthesis is, unfavorably, tightly intertwined with nonrenewable fossil resources. Additionally, given its widespread use, accumulating PET waste poses a significant environmental challenge. As a result, current research in the areas of biological recycling, upcycling, and de novo synthesis is intensifying. Biological recycling involves the use of micro-organisms or enzymes to breakdown PET into monomers, offering a sustainable alternative to traditional recycling. Upcycling transforms PET waste into value-added products, expanding its potential application range and promoting a circular economy. Moreover, studies of cascading biological and chemical processes driven by microbial cell factories have explored generating PET using renewable, biobased feedstocks such as lignin. These avenues of research promise to mitigate the environmental footprint of PET, underlining the importance of sustainable innovations in the industry.
Collapse
Affiliation(s)
- Fabia Weiland
- Institute of Systems Biotechnology, Saarland University, Germany
| | | | | |
Collapse
|
20
|
Holland C, Shapira P. Building the bioeconomy: A targeted assessment approach to identifying biobased technologies, challenges and opportunities. ENGINEERING BIOLOGY 2024; 8:1-15. [PMID: 38525250 PMCID: PMC10959757 DOI: 10.1049/enb2.12030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 03/26/2024] Open
Abstract
The authors explore opportunities, challenges, and strategies to translate and responsibly scale innovative biobased technologies to build more sustainable bioeconomies. The pandemic and other recent disruptions increased exposure to issues of resilience and regional imbalance, highlighting a need for production and consumption regimes centred more on local biobased resources and dispersed production. The authors review potential biobased technology strategies and identify promising and feasible options for the United Kingdom. Initial landscape and bibliometric analysis identified 50 potential existing and emerging biobased technologies, which were assessed for their ability to fulfil requirements related to biobased production, national applicability, and economic-, societal-, and environmental-benefits, leading to identification of 18 promising biobased production technologies. Further analysis and focus-group discussion with industrial, governmental, academic, agricultural, and social stakeholders, identified three technology clusters for targeted assessment, drawing on cellulose-, lignin-, and seaweed feedstocks. Case studies were developed for each cluster, addressing conversations around sustainable management, use of biomass feedstocks, and associated environmental-, social-, and economic challenges. Cases are presented with discussion of insights and implications for policy. The approach presented is put forward as a scalable assessment method that can be useful in prompting, informing, and advancing discussion and deliberation on opportunities and challenges for biobased transformations.
Collapse
Affiliation(s)
- Claire Holland
- Manchester Institute of Innovation ResearchAlliance Manchester Business SchoolUniversity of ManchesterManchesterUK
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals and the Future Biomanufacturing Research HubManchester Institute of BiotechnologyUniversity of ManchesterManchesterUK
| | - Philip Shapira
- Manchester Institute of Innovation ResearchAlliance Manchester Business SchoolUniversity of ManchesterManchesterUK
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals and the Future Biomanufacturing Research HubManchester Institute of BiotechnologyUniversity of ManchesterManchesterUK
- School of Public PolicyGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| |
Collapse
|
21
|
Vilbert AC, Kontur WS, Gille D, Noguera DR, Donohue TJ. Engineering Novosphingobium aromaticivorans to produce cis,cis-muconic acid from biomass aromatics. Appl Environ Microbiol 2024; 90:e0166023. [PMID: 38117061 PMCID: PMC10807440 DOI: 10.1128/aem.01660-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
The platform chemical cis,cis-muconic acid (ccMA) provides facile access to a number of monomers used in the synthesis of commercial plastics. It is also a metabolic intermediate in the β-ketoadipic acid pathway of many bacteria and, therefore, a current target for microbial production from abundant renewable resources via metabolic engineering. This study investigates Novosphingobium aromaticivorans DSM12444 as a chassis for the production of ccMA from biomass aromatics. The N. aromaticivorans genome predicts that it encodes a previously uncharacterized protocatechuic acid (PCA) decarboxylase and a catechol 1,2-dioxygenase, which would be necessary for the conversion of aromatic metabolic intermediates to ccMA. This study confirmed the activity of these two enzymes in vitro and compared their activity to ones that have been previously characterized and used in ccMA production. From these results, we generated one strain that is completely derived from native genes and a second that contains genes previously used in microbial engineering synthesis of this compound. Both of these strains exhibited stoichiometric production of ccMA from PCA and produced greater than 100% yield of ccMA from the aromatic monomers that were identified in liquor derived from alkaline pretreated biomass. Our results show that a strain completely derived from native genes and one containing homologs from other hosts are both capable of stoichiometric production of ccMA from biomass aromatics. Overall, this work combines previously unknown aspects of aromatic metabolism in N. aromaticivorans and the genetic tractability of this organism to generate strains that produce ccMA from deconstructed biomass.IMPORTANCEThe production of commodity chemicals from renewable resources is an important goal toward increasing the environmental and economic sustainability of industrial processes. The aromatics in plant biomass are an underutilized and abundant renewable resource for the production of valuable chemicals. However, due to the chemical composition of plant biomass, many deconstruction methods generate a heterogeneous mixture of aromatics, thus making it difficult to extract valuable chemicals using current methods. Therefore, recent efforts have focused on harnessing the pathways of microorganisms to convert a diverse set of aromatics into a single product. Novosphingobium aromaticivorans DSM12444 has the native ability to metabolize a wide range of aromatics and, thus, is a potential chassis for conversion of these abundant compounds to commodity chemicals. This study reports on new features of N. aromaticivorans that can be used to produce the commodity chemical cis,cis-muconic acid from renewable and abundant biomass aromatics.
Collapse
Affiliation(s)
- Avery C. Vilbert
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Wayne S. Kontur
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Derek Gille
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Daniel R. Noguera
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Timothy J. Donohue
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
22
|
Zhang Y, Cheng C, Fu B, Long T, He N, Fan J, Xue Z, Chen A, Yuan J. Microbial Upcycling of Depolymerized Lignin into Value-Added Chemicals. BIODESIGN RESEARCH 2024; 6:0027. [PMID: 39364043 PMCID: PMC11449046 DOI: 10.34133/bdr.0027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/20/2023] [Indexed: 10/05/2024] Open
Abstract
Lignin is one of the most widespread organic compounds found on earth, boasting a wealth of aromatic molecules. The use of lignin feedstock for biochemical productions is of great importance for achieving "carbon neutrality." In recent years, a strategy for lignin valorization known as the "bio-funnel" has been proposed as a means to generate a variety of commercially valuable chemicals from lignin-derived compounds. The implementation of biocatalysis and metabolic engineering techniques has substantially advanced the biotransformation of depolymerized lignin into chemicals and materials within the supply chain. In this review, we present an overview of the latest advancements in microbial upcycling of depolymerized lignin into value-added chemicals. Besides, the review provides insights into the problems facing current biological lignin valorization while proposing further research directions to improve these technologies for the extensive accomplishment of the lignin upcycling.
Collapse
Affiliation(s)
- Yang Zhang
- School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian 361102, China
| | - Cheng Cheng
- School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian 361102, China
- Technology Center, China Tobacco Fujian Industrial Co. Ltd., Xiamen 361000, Fujian, China
| | - Bixia Fu
- School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian 361102, China
| | - Teng Long
- Technology Center, China Tobacco Fujian Industrial Co. Ltd., Xiamen 361000, Fujian, China
| | - Ning He
- College of Chemistry and Chemical Engineering, Xiamen University, Fujian 361005, China
| | - Jianqiang Fan
- Technology Center, China Tobacco Fujian Industrial Co. Ltd., Xiamen 361000, Fujian, China
| | - Zheyong Xue
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Heilongjiang 150040, China
| | - Anqi Chen
- Science Center for Future Foods, Jiangnan University, Jiangsu 214122, China
| | - Jifeng Yuan
- School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian 361102, China
| |
Collapse
|
23
|
Bugg TDH. The chemical logic of enzymatic lignin degradation. Chem Commun (Camb) 2024; 60:804-814. [PMID: 38165282 PMCID: PMC10795516 DOI: 10.1039/d3cc05298b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Lignin is an aromatic heteropolymer, found in plant cell walls as 20-30% of lignocellulose. It represents the most abundant source of renewable aromatic carbon in the biosphere, hence, if it could be depolymerised efficiently, then it would be a highly valuable source of renewable aromatic chemicals. However, lignin presents a number of difficulties for biocatalytic or chemocatalytic breakdown. Research over the last 10 years has led to the identification of new bacterial enzymes for lignin degradation, and the use of metabolic engineering to generate useful bioproducts from microbial lignin degradation. The aim of this article is to discuss the chemical mechanisms used by lignin-degrading enzymes and microbes to break down lignin, and to describe current methods for generating aromatic bioproducts from lignin using enzymes and engineered microbes.
Collapse
Affiliation(s)
- Timothy D H Bugg
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
24
|
Gu J, Qiu Q, Yu Y, Sun X, Tian K, Chang M, Wang Y, Zhang F, Huo H. Bacterial transformation of lignin: key enzymes and high-value products. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:2. [PMID: 38172947 PMCID: PMC10765951 DOI: 10.1186/s13068-023-02447-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Lignin, a natural organic polymer that is recyclable and inexpensive, serves as one of the most abundant green resources in nature. With the increasing consumption of fossil fuels and the deterioration of the environment, the development and utilization of renewable resources have attracted considerable attention. Therefore, the effective and comprehensive utilization of lignin has become an important global research topic, with the goal of environmental protection and economic development. This review focused on the bacteria and enzymes that can bio-transform lignin, focusing on the main ways that lignin can be utilized to produce high-value chemical products. Bacillus has demonstrated the most prominent effect on lignin degradation, with 89% lignin degradation by Bacillus cereus. Furthermore, several bacterial enzymes were discussed that can act on lignin, with the main enzymes consisting of dye-decolorizing peroxidases and laccase. Finally, low-molecular-weight lignin compounds were converted into value-added products through specific reaction pathways. These bacteria and enzymes may become potential candidates for efficient lignin degradation in the future, providing a method for lignin high-value conversion. In addition, the bacterial metabolic pathways convert lignin-derived aromatics into intermediates through the "biological funnel", achieving the biosynthesis of value-added products. The utilization of this "biological funnel" of aromatic compounds may address the heterogeneous issue of the aromatic products obtained via lignin depolymerization. This may also simplify the separation of downstream target products and provide avenues for the commercial application of lignin conversion into high-value products.
Collapse
Affiliation(s)
- Jinming Gu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Qing Qiu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Yue Yu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Xuejian Sun
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Kejian Tian
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Menghan Chang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Yibing Wang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Fenglin Zhang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Hongliang Huo
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China.
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, Changchun, 130117, China.
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Changchun, 130117, China.
| |
Collapse
|
25
|
Stegmüller J, Rodríguez Estévez M, Shu W, Gläser L, Myronovskyi M, Rückert-Reed C, Kalinowski J, Luzhetskyy A, Wittmann C. Systems metabolic engineering of the primary and secondary metabolism of Streptomyces albidoflavus enhances production of the reverse antibiotic nybomycin against multi-resistant Staphylococcus aureus. Metab Eng 2024; 81:123-143. [PMID: 38072358 DOI: 10.1016/j.ymben.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/17/2023] [Accepted: 12/01/2023] [Indexed: 01/23/2024]
Abstract
Nybomycin is an antibiotic compound with proven activity against multi-resistant Staphylococcus aureus, making it an interesting candidate for combating these globally threatening pathogens. For exploring its potential, sufficient amounts of nybomycin and its derivatives must be synthetized to fully study its effectiveness, safety profile, and clinical applications. As native isolates only accumulate low amounts of the compound, superior producers are needed. The heterologous cell factory S. albidoflavus 4N24, previously derived from the cluster-free chassis S. albidoflavus Del14, produced 860 μg L-1 of nybomycin, mainly in the stationary phase. A first round of strain development modulated expression of genes involved in supply of nybomycin precursors under control of the common Perm* promoter in 4N24, but without any effect. Subsequent studies with mCherry reporter strains revealed that Perm* failed to drive expression during the product synthesis phase but that use of two synthetic promoters (PkasOP* and P41) enabled strong constitutive expression during the entire process. Using PkasOP*, several rounds of metabolic engineering successively streamlined expression of genes involved in the pentose phosphate pathway, the shikimic acid pathway, supply of CoA esters, and nybomycin biosynthesis and export, which more than doubled the nybomycin titer to 1.7 mg L-1 in the sixth-generation strain NYB-6B. In addition, we identified the minimal set of nyb genes needed to synthetize the molecule using single-gene-deletion strains. Subsequently, deletion of the regulator nybW enabled nybomycin production to begin during the growth phase, further boosting the titer and productivity. Based on RNA sequencing along the created strain genealogy, we discovered that the nyb gene cluster was unfavorably downregulated in all advanced producers. This inspired removal of a part and the entire set of the four regulatory genes at the 3'-end nyb of the cluster. The corresponding mutants NYB-8 and NYB-9 exhibited marked further improvement in production, and the deregulated cluster was combined with all beneficial targets from primary metabolism. The best strain, S. albidoflavus NYB-11, accumulated up to 12 mg L-1 nybomycin, fifteenfold more than the basic strain. The absence of native gene clusters in the host and use of a lean minimal medium contributed to a selective production process, providing an important next step toward further development of nybomycin.
Collapse
Affiliation(s)
- Julian Stegmüller
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | | | - Wei Shu
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Lars Gläser
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Maksym Myronovskyi
- Department of Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany
| | | | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Andriy Luzhetskyy
- Department of Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
26
|
Amendola CR, Cordell WT, Kneucker CM, Szostkiewicz CJ, Ingraham MA, Monninger M, Wilton R, Pfleger BF, Salvachúa D, Johnson CW, Beckham GT. Comparison of wild-type KT2440 and genome-reduced EM42 Pseudomonas putida strains for muconate production from aromatic compounds and glucose. Metab Eng 2024; 81:88-99. [PMID: 38000549 DOI: 10.1016/j.ymben.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/12/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023]
Abstract
Pseudomonas putida KT2440 is a robust, aromatic catabolic bacterium that has been widely engineered to convert bio-based and waste-based feedstocks to target products. Towards industrial domestication of P. putida KT2440, rational genome reduction has been previously conducted, resulting in P. putida strain EM42, which exhibited characteristics that could be advantageous for production strains. Here, we compared P. putida KT2440- and EM42-derived strains for cis,cis-muconic acid production from an aromatic compound, p-coumarate, and in separate strains, from glucose. To our surprise, the EM42-derived strains did not outperform the KT2440-derived strains in muconate production from either substrate. In bioreactor cultivations, KT2440- and EM42-derived strains produced muconate from p-coumarate at titers of 45 g/L and 37 g/L, respectively, and from glucose at 20 g/L and 13 g/L, respectively. To provide additional insights about the differences in the parent strains, we analyzed growth profiles of KT2440 and EM42 on aromatic compounds as the sole carbon and energy sources. In general, the EM42 strain exhibited reduced growth rates but shorter growth lags than KT2440. We also observed that EM42-derived strains resulted in higher growth rates on glucose compared to KT2440-derived strains, but only at the lowest glucose concentrations tested. Transcriptomics revealed that genome reduction in EM42 had global effects on transcript levels and showed that the EM42-derived strains that produce muconate from glucose exhibit reduced modulation of gene expression in response to changes in glucose concentrations. Overall, our results highlight that additional studies are warranted to understand the effects of genome reduction on microbial metabolism and physiology, especially when intended for use in production strains.
Collapse
Affiliation(s)
- Caroline R Amendola
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; Agile BioFoundry, Emeryville, CA, 94608, USA
| | - William T Cordell
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Colin M Kneucker
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Caralyn J Szostkiewicz
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Morgan A Ingraham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Michela Monninger
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Rosemarie Wilton
- Agile BioFoundry, Emeryville, CA, 94608, USA; Biosciences Division Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Davinia Salvachúa
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Christopher W Johnson
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; Agile BioFoundry, Emeryville, CA, 94608, USA.
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; Agile BioFoundry, Emeryville, CA, 94608, USA.
| |
Collapse
|
27
|
Seo K, Shu W, Rückert-Reed C, Gerlinger P, Erb TJ, Kalinowski J, Wittmann C. From waste to health-supporting molecules: biosynthesis of natural products from lignin-, plastic- and seaweed-based monomers using metabolically engineered Streptomyces lividans. Microb Cell Fact 2023; 22:262. [PMID: 38114944 PMCID: PMC10731712 DOI: 10.1186/s12934-023-02266-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Transforming waste and nonfood materials into bulk biofuels and chemicals represents a major stride in creating a sustainable bioindustry to optimize the use of resources while reducing environmental footprint. However, despite these advancements, the production of high-value natural products often continues to depend on the use of first-generation substrates, underscoring the intricate processes and specific requirements of their biosyntheses. This is also true for Streptomyces lividans, a renowned host organism celebrated for its capacity to produce a wide array of natural products, which is attributed to its genetic versatility and potent secondary metabolic activity. Given this context, it becomes imperative to assess and optimize this microorganism for the synthesis of natural products specifically from waste and nonfood substrates. RESULTS We metabolically engineered S. lividans to heterologously produce the ribosomally synthesized and posttranslationally modified peptide bottromycin, as well as the polyketide pamamycin. The modified strains successfully produced these compounds using waste and nonfood model substrates such as protocatechuate (derived from lignin), 4-hydroxybenzoate (sourced from plastic waste), and mannitol (from seaweed). Comprehensive transcriptomic and metabolomic analyses offered insights into how these substrates influenced the cellular metabolism of S. lividans. In terms of production efficiency, S. lividans showed remarkable tolerance, especially in a fed-batch process using a mineral medium containing the toxic aromatic 4-hydroxybenzoate, which led to enhanced and highly selective bottromycin production. Additionally, the strain generated a unique spectrum of pamamycins when cultured in mannitol-rich seaweed extract with no additional nutrients. CONCLUSION Our study showcases the successful production of high-value natural products based on the use of varied waste and nonfood raw materials, circumventing the reliance on costly, food-competing resources. S. lividans exhibited remarkable adaptability and resilience when grown on these diverse substrates. When cultured on aromatic compounds, it displayed a distinct array of intracellular CoA esters, presenting promising avenues for polyketide production. Future research could be focused on enhancing S. lividans substrate utilization pathways to process the intricate mixtures commonly found in waste and nonfood sources more efficiently.
Collapse
Affiliation(s)
- Kyoyoung Seo
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Wei Shu
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | | | | | - Tobias J Erb
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | | | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
28
|
Beganovic S, Rückert-Reed C, Sucipto H, Shu W, Gläser L, Patschkowski T, Struck B, Kalinowski J, Luzhetskyy A, Wittmann C. Systems biology of industrial oxytetracycline production in Streptomyces rimosus: the secrets of a mutagenized hyperproducer. Microb Cell Fact 2023; 22:222. [PMID: 37898787 PMCID: PMC10612213 DOI: 10.1186/s12934-023-02215-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/26/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND Oxytetracycline which is derived from Streptomyces rimosus, inhibits a wide range of bacteria and is industrially important. The underlying biosynthetic processes are complex and hinder rational engineering, so industrial manufacturing currently relies on classical mutants for production. While the biochemistry underlying oxytetracycline synthesis is known to involve polyketide synthase, hyperproducing strains of S. rimosus have not been extensively studied, limiting our knowledge on fundamental mechanisms that drive production. RESULTS In this study, a multiomics analysis of S. rimosus is performed and wild-type and hyperproducing strains are compared. Insights into the metabolic and regulatory networks driving oxytetracycline formation were obtained. The overproducer exhibited increased acetyl-CoA and malonyl CoA supply, upregulated oxytetracycline biosynthesis, reduced competing byproduct formation, and streamlined morphology. These features were used to synthesize bhimamycin, an antibiotic, and a novel microbial chassis strain was created. A cluster deletion derivative showed enhanced bhimamycin production. CONCLUSIONS This study suggests that the precursor supply should be globally increased to further increase the expression of the oxytetracycline cluster while maintaining the natural cluster sequence. The mutagenized hyperproducer S. rimosus HP126 exhibited numerous mutations, including large genomic rearrangements, due to natural genetic instability, and single nucleotide changes. More complex mutations were found than those typically observed in mutagenized bacteria, impacting gene expression, and complicating rational engineering. Overall, the approach revealed key traits influencing oxytetracycline production in S. rimosus, suggesting that similar studies for other antibiotics could uncover general mechanisms to improve production.
Collapse
Affiliation(s)
- Selma Beganovic
- Institute of Systems Biotechnology, Saarland University, Campus A1 5, 66123, Saarbrücken, Germany
| | | | - Hilda Sucipto
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Wei Shu
- Institute of Systems Biotechnology, Saarland University, Campus A1 5, 66123, Saarbrücken, Germany
| | - Lars Gläser
- Institute of Systems Biotechnology, Saarland University, Campus A1 5, 66123, Saarbrücken, Germany
| | | | - Ben Struck
- Centre for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Jörn Kalinowski
- Centre for Biotechnology, Bielefeld University, Bielefeld, Germany
| | | | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Campus A1 5, 66123, Saarbrücken, Germany. *
| |
Collapse
|
29
|
Bao T, Qian Y, Xin Y, Collins JJ, Lu T. Engineering microbial division of labor for plastic upcycling. Nat Commun 2023; 14:5712. [PMID: 37752119 PMCID: PMC10522701 DOI: 10.1038/s41467-023-40777-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 08/09/2023] [Indexed: 09/28/2023] Open
Abstract
Plastic pollution is rapidly increasing worldwide, causing adverse impacts on the environment, wildlife and human health. One tempting solution to this crisis is upcycling plastics into products with engineered microorganisms; however, this remains challenging due to complexity in conversion. Here we present a synthetic microbial consortium that efficiently degrades polyethylene terephthalate hydrolysate and subsequently produces desired chemicals through division of labor. The consortium involves two Pseudomonas putida strains, specializing in terephthalic acid and ethylene glycol utilization respectively, to achieve complete substrate assimilation. Compared with its monoculture counterpart, the consortium exhibits reduced catabolic crosstalk and faster deconstruction, particularly when substrate concentrations are high or crude hydrolysate is used. It also outperforms monoculture when polyhydroxyalkanoates serves as a target product and confers flexible tuning through population modulation for cis-cis muconate synthesis. This work demonstrates engineered consortia as a promising, effective platform that may facilitate polymer upcycling and environmental sustainability.
Collapse
Affiliation(s)
- Teng Bao
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Yuanchao Qian
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Yongping Xin
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - James J Collins
- Department of Biological Engineering and Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Longwood, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Ting Lu
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- National Center for Supercomputing Applications, Urbana, IL, 61801, USA.
| |
Collapse
|
30
|
Werner AZ, Cordell WT, Lahive CW, Klein BC, Singer CA, Tan EC, Ingraham MA, Ramirez KJ, Kim DH, Pedersen JN, Johnson CW, Pfleger BF, Beckham GT, Salvachúa D. Lignin conversion to β-ketoadipic acid by Pseudomonas putida via metabolic engineering and bioprocess development. SCIENCE ADVANCES 2023; 9:eadj0053. [PMID: 37672573 PMCID: PMC10482344 DOI: 10.1126/sciadv.adj0053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/04/2023] [Indexed: 09/08/2023]
Abstract
Bioconversion of a heterogeneous mixture of lignin-related aromatic compounds (LRCs) to a single product via microbial biocatalysts is a promising approach to valorize lignin. Here, Pseudomonas putida KT2440 was engineered to convert mixed p-coumaroyl- and coniferyl-type LRCs to β-ketoadipic acid, a precursor for performance-advantaged polymers. Expression of enzymes mediating aromatic O-demethylation, hydroxylation, and ring-opening steps was tuned, and a global regulator was deleted. β-ketoadipate titers of 44.5 and 25 grams per liter and productivities of 1.15 and 0.66 grams per liter per hour were achieved from model LRCs and corn stover-derived LRCs, respectively, the latter representing an overall yield of 0.10 grams per gram corn stover-derived lignin. Technoeconomic analysis of the bioprocess and downstream processing predicted a β-ketoadipate minimum selling price of $2.01 per kilogram, which is cost competitive with fossil carbon-derived adipic acid ($1.10 to 1.80 per kilogram). Overall, this work achieved bioproduction metrics with economic relevance for conversion of lignin-derived streams into a performance-advantaged bioproduct.
Collapse
Affiliation(s)
- Allison Z. Werner
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - William T. Cordell
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Ciaran W. Lahive
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Bruno C. Klein
- Catalytic Carbon Transformation and Scale-Up Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Christine A. Singer
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Eric C. D. Tan
- Catalytic Carbon Transformation and Scale-Up Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Morgan A. Ingraham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Kelsey J. Ramirez
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Dong Hyun Kim
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Jacob Nedergaard Pedersen
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Christopher W. Johnson
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Brian F. Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Gregg T. Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Davinia Salvachúa
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| |
Collapse
|
31
|
Wei H, Shao S, Deng B, Xue Y, Chen W, Yin L, Lin Y, Hussain N, Wu X, Ge B, Zheng F, Li G, Liu LM, Wu H. Generalized Rapid Synthesis of Supported Nanocluster Catalyst for Mild Hydrogenation of Phenol toward KA Oil. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207759. [PMID: 37150859 DOI: 10.1002/smll.202207759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/05/2023] [Indexed: 05/09/2023]
Abstract
Homogeneous and nanometric metal clusters with unique electronic structures are promising for catalysis, however, common synthesis techniques for metal clusters suffer from large size and even metal nanocrystals attributing to their high surface energy and unsaturated configurations. Herein, a generalized rapid annealing strategy for synthesizing a series of supported metal clusters as superior catalysts is developed. Remarkably, TiO2 supported platinum nanoclusters (Pt NC/TiO2 ) exhibits the excellent catalytic activity to realize phenol hydrogenation under mild conditions. The complete phenol conversion rate and 100% selectivity toward KA oil are achieved in aqueous solution at room temperature and normal pressure. Semi-continuous scale up production of KA oil is successfully performed under mild conditions. Such excellent performance mainly originates from the partial reconstruction of Pt NC/TiO2 in aqueous phenol solution. Considering that the phenol can be produced from lignin, this study underpins a facile, sustainable, and economical route to synthesize nylon from biomass.
Collapse
Affiliation(s)
- Hehe Wei
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Key Laboratory for Advanced Materials, Center for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shengxian Shao
- Chinese Academy of Sciences (CAS) Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bohan Deng
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Yufeng Xue
- School of Physics, Beihang University, Beijing, 100191, China
| | - Wenxing Chen
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Linlin Yin
- Chinese Academy of Sciences (CAS) Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yunxiang Lin
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Naveed Hussain
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Xiaodong Wu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Binghui Ge
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Fengbin Zheng
- Chinese Academy of Sciences (CAS) Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Guodong Li
- Chinese Academy of Sciences (CAS) Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Min Liu
- School of Physics, Beihang University, Beijing, 100191, China
| | - Hui Wu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
32
|
He S, Wang W, Wang W, Hu H, Xu P, Tang H. Microbial production of cis,cis-muconic acid from aromatic compounds in engineered Pseudomonas. Synth Syst Biotechnol 2023; 8:536-545. [PMID: 37637202 PMCID: PMC10448021 DOI: 10.1016/j.synbio.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/21/2023] [Accepted: 08/04/2023] [Indexed: 08/29/2023] Open
Abstract
Industrial expansion has led to environmental pollution by xenobiotic compounds like polycyclic aromatic hydrocarbons and monoaromatic hydrocarbons. Pseudomonas spp. have broad metabolic potential for degrading aromatic compounds. The objective of this study was to develop a "biological funneling" strategy based on genetic modification to convert complex aromatic compounds into cis,cis-muconate (ccMA) using Pseudomonas putida B6-2 and P. brassicacearum MPDS as biocatalysts. The engineered strains B6-2 (B6-2ΔcatBΔsalC) and MPDS (MPDSΔsalC(pUCP18k-catA)) thrived with biphenyl or naphthalene as the sole carbon source and produced ccMA, attaining molar conversions of 95.3% (ccMA/biphenyl) and 100% (ccMA/naphthalene). Under mixed substrates, B6-2ΔcatBΔsalC grew on biphenyl as a carbon source and transformed ccMA from non-growth substrates benzoate or salicylate to obtain higher product concentration. Inserting exogenous clusters like bedDC1C2AB and xylCMAB allowed B6-2 recombinant strains to convert benzene and toluene to ccMA. In mixed substrates, constructed consortia of engineered strains B6-2 and MPDS specialized in catabolism of biphenyl and naphthalene; the highest molar conversion rate of ccMA from mixed substrates was 85.2% when B6-2ΔcatBΔsalC was added after 24 h of MPDSΔsalC(pUCP18k-catA) incubation with biphenyl and naphthalene. This study provides worthwhile insights into efficient production of ccMA from aromatic hydrocarbons by reusing complex pollutants.
Collapse
Affiliation(s)
- Siyang He
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Weiwei Wang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Weidong Wang
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Haiyang Hu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| |
Collapse
|
33
|
Ahmad N, Aslam S, Hussain N, Bilal M, Iqbal HMN. Transforming Lignin Biomass to Value: Interplay Between Ligninolytic Enzymes and Lignocellulose Depolymerization. BIOENERGY RESEARCH 2023; 16:1246-1263. [DOI: 10.1007/s12155-022-10541-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/08/2022] [Indexed: 12/17/2024]
Abstract
Abstract
Lignin is the main constituent of lignocellulosic biomasses, which have a significant untapped ability to replace ecologically unfavorable and non-renewable fossil fuels. The lignin is broken down by ligninolytic bacteria, which also use a peripheral pathway to transform heterogeneous lignin derivatives into central intermediates like protocatechuate or catechol. By undergoing ring cleavage through the -ketoadipate pathway, these intermediates become metabolites by producing acetyl-CoA for internal product biosynthesis, including the creation of triacylglycerols and polyhydroxyalkanoates. Expanding our understanding of ligninolytic microbial communities, strains, and enzymes through bioprospecting can help us better understand the metabolism of aromatics. The most viable idea for sustainable development is the valorization of lignin into biopolymers as well as other high-value goods. This process is now being used to generate a variety of biopolymers, including polyesters, epoxies, phenol resins, poly (lactic acids), poly hydroxyl alkanoates, and polyurethanes. Furthermore, lignin recalcitrance remained a possible barrier to efficient lignin valorization, prompting several efforts to design high-efficiency bioprocesses to produce specific polymer types as well as other important bioproducts.
Graphical Abstract
Collapse
|
34
|
Troiano DT, Hofmann T, Brethauer S, Studer MHP. Toward optimal use of biomass as carbon source for chemical bioproduction. Curr Opin Biotechnol 2023; 81:102942. [PMID: 37062153 DOI: 10.1016/j.copbio.2023.102942] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/04/2023] [Accepted: 03/17/2023] [Indexed: 04/18/2023]
Abstract
Biomass is widely identified as a promising, renewable replacement for fossil feedstocks in the production of energy, fuels, and chemicals. However, the sustainable supply of biomass is limited. Economic and ecological criteria support prioritization of biomass as a carbon source for organic chemicals; however, utilization for energy currently dominates. Therefore, to optimize the use of available biomass feedstock, biorefining development must focus on high carbon efficiencies and enabling the conversion of all biomass fractions, including lignin and fermentation-derived CO2. Additionally, novel technological platforms should allow the incorporation of nontraditional, currently underutilized carbon feedstocks (e.g. manure) into biorefining processes. To this end, funneling of waste feedstocks to a single product (e.g. methane) and subsequent conversion to chemicals is a promising approach.
Collapse
Affiliation(s)
- Derek T Troiano
- School of Agricultural, Forest, and Food Sciences, Bern University of Applied Sciences, CH-3052 Zollikofen, Switzerland
| | - Tobias Hofmann
- School of Agricultural, Forest, and Food Sciences, Bern University of Applied Sciences, CH-3052 Zollikofen, Switzerland
| | - Simone Brethauer
- School of Agricultural, Forest, and Food Sciences, Bern University of Applied Sciences, CH-3052 Zollikofen, Switzerland
| | - Michael H-P Studer
- School of Agricultural, Forest, and Food Sciences, Bern University of Applied Sciences, CH-3052 Zollikofen, Switzerland.
| |
Collapse
|
35
|
Borchert AJ, Bleem A, Beckham GT. RB-TnSeq identifies genetic targets for improved tolerance of Pseudomonas putida towards compounds relevant to lignin conversion. Metab Eng 2023; 77:208-218. [PMID: 37059293 DOI: 10.1016/j.ymben.2023.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/21/2023] [Accepted: 04/12/2023] [Indexed: 04/16/2023]
Abstract
Lignin-derived mixtures intended for bioconversion commonly contain high concentrations of aromatic acids, aliphatic acids, and salts. The inherent toxicity of these chemicals places a significant bottleneck upon the effective use of microbial systems for the valorization of these mixtures. Pseudomonas putida KT2440 can tolerate stressful quantities of several lignin-related compounds, making this bacterium a promising host for converting these chemicals to valuable bioproducts. Nonetheless, further increasing P. putida tolerance to chemicals in lignin-rich substrates has the potential to improve bioprocess performance. Accordingly, we employed random barcoded transposon insertion sequencing (RB-TnSeq) to reveal genetic determinants in P. putida KT2440 that influence stress outcomes during exposure to representative constituents found in lignin-rich process streams. The fitness information obtained from the RB-TnSeq experiments informed engineering of strains via deletion or constitutive expression of several genes. Namely, ΔgacAS, ΔfleQ, ΔlapAB, ΔttgR::Ptac:ttgABC, Ptac:PP_1150:PP_1152, ΔrelA, and ΔPP_1430 mutants showed growth improvement in the presence of single compounds, and some also exhibited greater tolerance when grown using a complex chemical mixture representative of a lignin-rich chemical stream. Overall, this work demonstrates the successful implementation of a genome-scale screening tool for the identification of genes influencing stress tolerance against notable compounds within lignin-enriched chemical streams, and the genetic targets identified herein offer promising engineering targets for improving feedstock tolerance in lignin valorization strains of P. putida KT2440.
Collapse
Affiliation(s)
- Andrew J Borchert
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Alissa Bleem
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
36
|
Pauli S, Kohlstedt M, Lamber J, Weiland F, Becker J, Wittmann C. Systems metabolic engineering upgrades Corynebacterium glutamicum for selective high-level production of the chiral drug precursor and cell-protective extremolyte L-pipecolic acid. Metab Eng 2023; 77:100-117. [PMID: 36931556 DOI: 10.1016/j.ymben.2023.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/02/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
The nonproteinogenic cyclic metabolite l-pipecolic acid is a chiral precursor for the synthesis of various commercial drugs and functions as a cell-protective extremolyte and mediator of defense in plants, enabling high-value applications in the pharmaceutical, medical, cosmetic, and agrochemical markets. To date, the production of the compound is unfavorably fossil-based. Here, we upgraded the strain Corynebacterium glutamicum for l-pipecolic acid production using systems metabolic engineering. Heterologous expression of the l-lysine 6-dehydrogenase pathway, apparently the best route to be used in the microbe, yielded a family of strains that enabled successful de novo synthesis from glucose but approached a limit of performance at a yield of 0.18 mol mol-1. Detailed analysis of the producers at the transcriptome, proteome, and metabolome levels revealed that the requirements of the introduced route were largely incompatible with the cellular environment, which could not be overcome after several further rounds of metabolic engineering. Based on the gained knowledge, we based the strain design on l-l-lysine 6-aminotransferase instead, which enabled a substantially higher in vivo flux toward l-pipecolic acid. The tailormade producer C. glutamicum PIA-7 formed l-pipecolic acid up to a yield of 562 mmol mol-1, representing 75% of the theoretical maximum. Ultimately, the advanced mutant PIA-10B achieved a titer of 93 g L-1 in a fed-batch process on glucose, outperforming all previous efforts to synthesize this valuable molecule de novo and even approaching the level of biotransformation from l-lysine. Notably, the use of C. glutamicum allows the safe production of GRAS-designated l-pipecolic acid, providing extra benefit toward addressing the high-value pharmaceutical, medical, and cosmetic markets. In summary, our development sets a milestone toward the commercialization of biobased l-pipecolic acid.
Collapse
Affiliation(s)
- Sarah Pauli
- Institute for Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Michael Kohlstedt
- Institute for Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Jessica Lamber
- Institute for Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Fabia Weiland
- Institute for Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Judith Becker
- Institute for Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Christoph Wittmann
- Institute for Systems Biotechnology, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
37
|
Lignin Valorization: Production of High Value-Added Compounds by Engineered Microorganisms. Catalysts 2023. [DOI: 10.3390/catal13030555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
Lignin is the second most abundant polymer in nature, which is also widely generated during biomass fractionation in lignocellulose biorefineries. At present, most of technical lignin is simply burnt for energy supply although it represents the richest natural source of aromatics, and thus it is a promising feedstock for generation of value-added compounds. Lignin is heterogeneous in composition and recalcitrant to degradation, with this substantially hampering its use. Notably, microbes have evolved particular enzymes and specialized metabolic pathways to degrade this polymer and metabolize its various aromatic components. In recent years, novel pathways have been designed allowing to establish engineered microbial cell factories able to efficiently funnel the lignin degradation products into few metabolic intermediates, representing suitable starting points for the synthesis of a variety of valuable molecules. This review focuses on recent success cases (at the laboratory/pilot scale) based on systems metabolic engineering studies aimed at generating value-added and specialty chemicals, with much emphasis on the production of cis,cis-muconic acid, a building block of recognized industrial value for the synthesis of plastic materials. The upgrade of this global waste stream promises a sustainable product portfolio, which will become an industrial reality when economic issues related to process scale up will be tackled.
Collapse
|
38
|
Luo ZW, Choi KR, Lee SY. Improved terephthalic acid production from p-xylene using metabolically engineered Pseudomonas putida. Metab Eng 2023; 76:75-86. [PMID: 36693471 DOI: 10.1016/j.ymben.2023.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/10/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Terephthalic acid (TPA) is an important commodity chemical used as a monomer of polyethylene terephthalate (PET). Since a large quantity of PET is routinely manufactured and consumed worldwide, the development of sustainable biomanufacturing processes for its monomers (i.e. TPA and ethylene glycol) has recently gained much attention. In a previous study, we reported the development of a metabolically engineered Escherichia coli strain producing 6.7 g/L of TPA from p-xylene (pX) with a productivity and molar conversion yield of 0.278 g/L/h and 96.7 mol%, respectively. Here, we report metabolic engineering of Pseudomonas putida KT2440, a microbial chassis particularly suitable for the synthesis of aromatic compounds, for improved biocatalytic conversion of pX to TPA. To develop a plasmid-free, antibiotic-free, and inducer-free biocatalytic process for cost-competitive TPA production, all heterologous genes required for the synthetic pX-to-TPA bioconversion pathway were integrated into the chromosome of P. putida KT2440 by RecET-based markerless recombineering and overexpressed under the control of constitutive promoters. Next, TPA production was enhanced by integrating multiple copies of the heterologous genes to the ribosomal RNA genes through iteration of recombineering-based random integration and subsequent screening of high-performance strains. Finally, fed-batch fermentation process was optimized to further improve the performance of the engineered P. putida strain. As a result, 38.25 ± 0.11 g/L of TPA was produced from pX with a molar conversion yield of 99.6 ± 0.6%, which is equivalent to conversion of 99.3 ± 0.8 g pX to 154.6 ± 0.5 g TPA. This superior pX-to-TPA biotransformation process based on the engineered P. putida strain will pave the way to the commercial biomanufacturing of TPA in an industrial scale.
Collapse
Affiliation(s)
- Zi Wei Luo
- Metabolic and Biomolecular Engineering National Research Laboratory and Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea; BioProcess Engineering Research Center, KAIST, Daejeon, 34141, Republic of Korea
| | - Kyeong Rok Choi
- Metabolic and Biomolecular Engineering National Research Laboratory and Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea; BioProcess Engineering Research Center, KAIST, Daejeon, 34141, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory and Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea; BioProcess Engineering Research Center, KAIST, Daejeon, 34141, Republic of Korea; BioInformatics Research Center, KAIST Institute for the BioCentury, and KAIST Institute for Artificial Intelligence, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
39
|
Son J, Lim SH, Kim YJ, Lim HJ, Lee JY, Jeong S, Park C, Park SJ. Customized valorization of waste streams by Pseudomonas putida: State-of-the-art, challenges, and future trends. BIORESOURCE TECHNOLOGY 2023; 371:128607. [PMID: 36638894 DOI: 10.1016/j.biortech.2023.128607] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Preventing catastrophic climate events warrants prompt action to delay global warming, which threatens health and food security. In this context, waste management using engineered microbes has emerged as a long-term eco-friendly solution for addressing the global climate crisis and transitioning to clean energy. Notably, Pseudomonas putida can valorize industry-derived synthetic wastes including plastics, oils, food, and agricultural waste into products of interest, and it has been extensively explored for establishing a fully circular bioeconomy through the conversion of waste into bio-based products, including platform chemicals (e.g., cis,cis-muconic and adipic acid) and biopolymers (e.g., medium-chain length polyhydroxyalkanoate). However, the efficiency of waste pretreatment technologies, capability of microbial cell factories, and practicability of synthetic biology tools remain low, posing a challenge to the industrial application of P. putida. The present review discusses the state-of-the-art, challenges, and future prospects for divergent biosynthesis of versatile products from waste-derived feedstocks using P. putida.
Collapse
Affiliation(s)
- Jina Son
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seo Hyun Lim
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yu Jin Kim
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hye Jin Lim
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Ji Yeon Lee
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seona Jeong
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
40
|
Kolitha BS, Jayasekara SK, Tannenbaum R, Jasiuk IM, Jayakody LN. Repurposing of waste PET by microbial biotransformation to functionalized materials for additive manufacturing. J Ind Microbiol Biotechnol 2023; 50:kuad010. [PMID: 37248049 PMCID: PMC10549213 DOI: 10.1093/jimb/kuad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/20/2023] [Indexed: 05/31/2023]
Abstract
Plastic waste is an outstanding environmental thread. Poly(ethylene terephthalate) (PET) is one of the most abundantly produced single-use plastics worldwide, but its recycling rates are low. In parallel, additive manufacturing is a rapidly evolving technology with wide-ranging applications. Thus, there is a need for a broad spectrum of polymers to meet the demands of this growing industry and address post-use waste materials. This perspective article highlights the potential of designing microbial cell factories to upcycle PET into functionalized chemical building blocks for additive manufacturing. We present the leveraging of PET hydrolyzing enzymes and rewiring the bacterial C2 and aromatic catabolic pathways to obtain high-value chemicals and polymers. Since PET mechanical recycling back to original materials is cost-prohibitive, the biochemical technology is a viable alternative to upcycle PET into novel 3D printing materials, such as replacements for acrylonitrile butadiene styrene. The presented hybrid chemo-bio approaches potentially enable the manufacturing of environmentally friendly degradable or higher-value high-performance polymers and composites and their reuse for a circular economy. ONE-SENTENCE SUMMARY Biotransformation of waste PET to high-value platform chemicals for additive manufacturing.
Collapse
Affiliation(s)
- Bhagya S Kolitha
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
| | - Sandhya K Jayasekara
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
| | - Rina Tannenbaum
- Department of Materials Science and Chemical Engineering, the Stony Brook University Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Iwona M Jasiuk
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Lahiru N Jayakody
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
- Fermentation Science Institute, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
| |
Collapse
|
41
|
Ding Z, Kumar Awasthi S, Kumar M, Kumar V, Mikhailovich Dregulo A, Yadav V, Sindhu R, Binod P, Sarsaiya S, Pandey A, Taherzadeh MJ, Rathour R, Singh L, Zhang Z, Lian Z, Kumar Awasthi M. A thermo-chemical and biotechnological approaches for bamboo waste recycling and conversion to value added product: Towards a zero-waste biorefinery and circular bioeconomy. FUEL 2023; 333:126469. [DOI: 10.1016/j.fuel.2022.126469] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
42
|
Pan S, Wang G, Fan Y, Wang X, Liu J, Guo M, Chen H, Zhang S, Chen G. Enhancing the compost maturation of deer manure and corn straw by supplementation via black liquor. Heliyon 2023; 9:e13246. [PMID: 36755604 PMCID: PMC9900273 DOI: 10.1016/j.heliyon.2023.e13246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/06/2022] [Accepted: 01/23/2023] [Indexed: 01/29/2023] Open
Abstract
In this paper, the relationship between black liquor and microbial growth, enzymatic secretion and humus formation in composting was studied. The results showed that black liquor inoculation is an effective way to promote fermentation process. After black liquor inoculation, the abundance of Corynebacterium, Aequorivita, and Pedobacter, which have the catalase and oxidase activity, has been significantly increased. The enzymatic activity of alkaline phosphatase, catalase, peroxidase and invertase was 40 mg/(g·24h), 6.5 mg/(g·20 min), 13 100 mg/(g·24h), and 6100 mg/(g·24h) respectively at day 18. Humic acid and fulvic acid concentration was 12 g/kg and 11 g/kg which is higher than that of the treatments of no black liquor inoculation. The results suggested that black liquor inoculation was beneficial to indigenous microorganisms reproduce efficiently, then the secretion of enzymes related to cellulose, hemicellulose, and lipid hydrolysis, and the formation of humic substances.
Collapse
Affiliation(s)
- Shijun Pan
- College of Life Science, Jilin Agricultural University, Jilin, 130118, China
| | - Gang Wang
- College of Life Science, Jilin Agricultural University, Jilin, 130118, China
- Key Laboratory of Straw Comprehensive Utilization and Black Land Conservation, Education Ministry of China, Jilin Agricultural University, Jilin, 130118, China
| | - Yide Fan
- College of Life Science, Jilin Agricultural University, Jilin, 130118, China
| | - Xiqing Wang
- College of Food Science Technology and Chemical Engineering, Hubei University of Arts and Science, Hubei, 430000, China
| | - Juan Liu
- Sericultural Research Institute of Jilin Province, Jilin, China
| | | | - Huan Chen
- College of Life Science, Jilin Agricultural University, Jilin, 130118, China
| | - Sitong Zhang
- College of Life Science, Jilin Agricultural University, Jilin, 130118, China
| | - Guang Chen
- College of Life Science, Jilin Agricultural University, Jilin, 130118, China
- Key Laboratory of Straw Comprehensive Utilization and Black Land Conservation, Education Ministry of China, Jilin Agricultural University, Jilin, 130118, China
| |
Collapse
|
43
|
Rodriguez A, Hirakawa MP, Geiselman GM, Tran-Gyamfi MB, Light YK, George A, Sale KL. Prospects for utilizing microbial consortia for lignin conversion. FRONTIERS IN CHEMICAL ENGINEERING 2023. [DOI: 10.3389/fceng.2023.1086881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Naturally occurring microbial communities are able to decompose lignocellulosic biomass through the concerted production of a myriad of enzymes that degrade its polymeric components and assimilate the resulting breakdown compounds by members of the community. This process includes the conversion of lignin, the most recalcitrant component of lignocellulosic biomass and historically the most difficult to valorize in the context of a biorefinery. Although several fundamental questions on microbial conversion of lignin remain unanswered, it is known that some fungi and bacteria produce enzymes to break, internalize, and assimilate lignin-derived molecules. The interest in developing efficient biological lignin conversion approaches has led to a better understanding of the types of enzymes and organisms that can act on different types of lignin structures, the depolymerized compounds that can be released, and the products that can be generated through microbial biosynthetic pathways. It has become clear that the discovery and implementation of native or engineered microbial consortia could be a powerful tool to facilitate conversion and valorization of this underutilized polymer. Here we review recent approaches that employ isolated or synthetic microbial communities for lignin conversion to bioproducts, including the development of methods for tracking and predicting the behavior of these consortia, the most significant challenges that have been identified, and the possibilities that remain to be explored in this field.
Collapse
|
44
|
Vilela N, Tomazetto G, Gonçalves TA, Sodré V, Persinoti GF, Moraes EC, de Oliveira AHC, da Silva SN, Fill TP, Damasio A, Squina FM. Integrative omics analyses of the ligninolytic Rhodosporidium fluviale LM-2 disclose catabolic pathways for biobased chemical production. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:5. [PMID: 36624471 PMCID: PMC9830802 DOI: 10.1186/s13068-022-02251-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/18/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Lignin is an attractive alternative for producing biobased chemicals. It is the second major component of the plant cell wall and is an abundant natural source of aromatic compounds. Lignin degradation using microbial oxidative enzymes that depolymerize lignin and catabolize aromatic compounds into central metabolic intermediates is a promising strategy for lignin valorization. However, the intrinsic heterogeneity and recalcitrance of lignin severely hinder its biocatalytic conversion. In this context, examining microbial degradation systems can provide a fundamental understanding of the pathways and enzymes that are useful for lignin conversion into biotechnologically relevant compounds. RESULTS Lignin-degrading catabolism of a novel Rhodosporidium fluviale strain LM-2 was characterized using multi-omic strategies. This strain was previously isolated from a ligninolytic microbial consortium and presents a set of enzymes related to lignin depolymerization and aromatic compound catabolism. Furthermore, two catabolic routes for producing 4-vinyl guaiacol and vanillin were identified in R. fluviale LM-2. CONCLUSIONS The multi-omic analysis of R. fluviale LM-2, the first for this species, elucidated a repertoire of genes, transcripts, and secreted proteins involved in lignin degradation. This study expands the understanding of ligninolytic metabolism in a non-conventional yeast, which has the potential for future genetic manipulation. Moreover, this work unveiled critical pathways and enzymes that can be exported to other systems, including model organisms, for lignin valorization.
Collapse
Affiliation(s)
- Nathália Vilela
- grid.442238.b0000 0001 1882 0259Programa de Processos Tecnológicos e Ambientais, University of Sorocaba (UNISO), Sorocaba, Brazil ,grid.411087.b0000 0001 0723 2494Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Geizecler Tomazetto
- grid.7048.b0000 0001 1956 2722Department of Biological and Chemical Engineering (BCE), Aarhus University, 8200 Aarhus, Denmark
| | - Thiago Augusto Gonçalves
- grid.4989.c0000 0001 2348 0746Photobiocatalysis Unit—CPBL, and Biomass Transformation Lab—BTL, École Interfacultaire de Bioingénieurs, Université Libre de Bruxelles, Brussels, Belgium
| | - Victoria Sodré
- grid.7372.10000 0000 8809 1613Department of Chemistry, University of Warwick, Coventry, UK
| | - Gabriela Felix Persinoti
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Eduardo Cruz Moraes
- grid.411087.b0000 0001 0723 2494Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Arthur Henrique Cavalcante de Oliveira
- grid.11899.380000 0004 1937 0722Department of Chemistry, Faculty of Philosophy Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP Brazil
| | - Stephanie Nemesio da Silva
- grid.411087.b0000 0001 0723 2494Laboratory of Biology Chemical Microbial (LaBioQuiMi), Institute of Chemistry, University of Campinas (UNICAMP), Campinas, Brazil
| | - Taícia Pacheco Fill
- grid.411087.b0000 0001 0723 2494Laboratory of Biology Chemical Microbial (LaBioQuiMi), Institute of Chemistry, University of Campinas (UNICAMP), Campinas, Brazil
| | - André Damasio
- grid.411087.b0000 0001 0723 2494Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Fabio Marcio Squina
- grid.442238.b0000 0001 1882 0259Programa de Processos Tecnológicos e Ambientais, University of Sorocaba (UNISO), Sorocaba, Brazil
| |
Collapse
|
45
|
Unrean P, Champreda V. Optimized pulse-feeding fed-batch fermentation for enhanced lignin to polyhydroxyalkanoate transformation. Biotechnol Prog 2023; 39:e3302. [PMID: 36153640 DOI: 10.1002/btpr.3302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/08/2022]
Abstract
With an anticipated growth of Bio-Circular-Green economy, the amount of lignin generated as by-product from biorefineries is increasing. Hence, lignin valorising strategies become a very interesting option to improve economic viability of the biorefineries. This study revealed the development of bioprocesses for upgrading lignin into bioplastic. Specifically, a novel strain of Pseudomonas fulva has been applied for microbial bioconversion of organosolv lignin to fermentative polyhydroxyalkanoate (PHA) production. Fed-batch fermentation of lignin-to-PHA with pulse-feeding approach was optimized using Design of Experiment. Effects of C:N ratio and feeding profiles on PHA accumulation in P. fulva were investigated to determine optimal operation. Under optimized fed-batch, the PHA concentration of 195.2 ± 6.6 mg/L could be reached and the PHA content was more than 2 folds enhancement compared to batch process. Type of PHA produced was also characterized for chemical composition via GC-MS analysis. The established lignin to PHA conversion could provide platform for developing integrated lignin bioprocessing to promote cost-effective biorefineries.
Collapse
Affiliation(s)
- Pornkamol Unrean
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathum Thani, Thailand
| | - Verawat Champreda
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathum Thani, Thailand
| |
Collapse
|
46
|
Bujdoš D, Popelářová B, Volke DC, Nikel PI, Sonnenschein N, Dvořák P. Engineering of Pseudomonas putida for accelerated co-utilization of glucose and cellobiose yields aerobic overproduction of pyruvate explained by an upgraded metabolic model. Metab Eng 2023; 75:29-46. [PMID: 36343876 DOI: 10.1016/j.ymben.2022.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/11/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Pseudomonas putida KT2440 is an attractive bacterial host for biotechnological production of valuable chemicals from renewable lignocellulosic feedstocks as it can valorize lignin-derived aromatics or glucose obtainable from cellulose. P. putida EM42, a genome-reduced variant of strain KT2440 endowed with advantageous physiological properties, was recently engineered for growth on cellobiose, a major cellooligosaccharide product of enzymatic cellulose hydrolysis. Co-utilization of cellobiose and glucose was achieved in a mutant lacking periplasmic glucose dehydrogenase Gcd (PP_1444). However, the cause of the co-utilization phenotype remained to be understood and the Δgcd strain had a significant growth defect. In this study, we investigated the basis of the simultaneous uptake of the two sugars and accelerated the growth of P. putida EM42 Δgcd mutant for the bioproduction of valuable compounds from glucose and cellobiose. We show that the gcd deletion lifted the inhibition of the exogenous β-glucosidase BglC from Thermobifida fusca exerted by the intermediates of the periplasmic glucose oxidation pathway. The additional deletion of hexR gene, which encodes a repressor of the upper glycolysis genes, failed to restore rapid growth on glucose. The reduced growth rate of the Δgcd mutant was partially compensated by the implantation of heterologous glucose and cellobiose transporters (Glf from Zymomonas mobilis and LacY from Escherichia coli, respectively). Remarkably, this intervention resulted in the accumulation of pyruvate in aerobic P. putida cultures. We demonstrated that the excess of this key metabolic intermediate can be redirected to the enhanced biosynthesis of ethanol and lactate. The pyruvate overproduction phenotype was then unveiled by an upgraded genome-scale metabolic model constrained with proteomic and kinetic data. The model pointed to the saturation of glucose catabolism enzymes due to unregulated substrate uptake and it predicted improved bioproduction of pyruvate-derived chemicals by the engineered strain. This work sheds light on the co-metabolism of cellulosic sugars in an attractive biotechnological host and introduces a novel strategy for pyruvate overproduction in bacterial cultures under aerobic conditions.
Collapse
Affiliation(s)
- Dalimil Bujdoš
- Department of Experimental Biology (Section of Microbiology, Microbial Bioengineering Laboratory), Faculty of Science, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
| | - Barbora Popelářová
- Department of Experimental Biology (Section of Microbiology, Microbial Bioengineering Laboratory), Faculty of Science, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
| | - Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs, Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs, Lyngby, Denmark
| | - Nikolaus Sonnenschein
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark
| | - Pavel Dvořák
- Department of Experimental Biology (Section of Microbiology, Microbial Bioengineering Laboratory), Faculty of Science, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic.
| |
Collapse
|
47
|
Recent advances and perspectives on production of value-added organic acids through metabolic engineering. Biotechnol Adv 2023; 62:108076. [PMID: 36509246 DOI: 10.1016/j.biotechadv.2022.108076] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Organic acids are important consumable materials with a wide range of applications in the food, biopolymer and chemical industries. The global consumer organic acids market is estimated to increase to $36.86 billion by 2026. Conventionally, organic acids are produced from the chemical catalysis process with petrochemicals as raw materials, which posts severe environmental concerns and conflicts with our sustainable development goals. Most of the commonly used organic acids can be produced from various organisms. As a state-of-the-art technology, large-scale fermentative production of important organic acids with genetically-modified microbes has become an alternative to the chemical route to meet the market demand. Despite the fact that bio-based organic acid production from renewable cheap feedstock provides a viable solution, low productivity has impeded their industrial-scale application. With our deeper understanding of strain genetics, physiology and the availability of strain engineering tools, new technologies including synthetic biology, various metabolic engineering strategies, omics-based system biology tools, and high throughput screening methods are gradually established to bridge our knowledge gap. And they were further applied to modify the cellular reaction networks of potential microbial hosts and improve the strain performance, which facilitated the commercialization of consumable organic acids. Here we present the recent advances of metabolic engineering strategies to improve the production of important organic acids including fumaric acid, citric acid, itaconic acid, adipic acid, muconic acid, and we also discuss the current challenges and future perspectives on how we can develop a cost-efficient, green and sustainable process to produce these important chemicals from low-cost feedstocks.
Collapse
|
48
|
Periplasmic expression of Pseudomonas fluorescens peroxidase Dyp1B and site-directed mutant Dyp1B enzymes enhances polymeric lignin degradation activity in Pseudomonas putida KT2440. Enzyme Microb Technol 2023; 162:110147. [DOI: 10.1016/j.enzmictec.2022.110147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022]
|
49
|
Systems metabolic engineering upgrades Corynebacterium glutamicum to high-efficiency cis, cis-muconic acid production from lignin-based aromatics. Metab Eng 2023; 75:153-169. [PMID: 36563956 DOI: 10.1016/j.ymben.2022.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Lignin displays a highly challenging renewable. To date, massive amounts of lignin, generated in lignocellulosic processing facilities, are for the most part merely burned due to lacking value-added alternatives. Aromatic lignin monomers of recognized relevance are in particular vanillin, and to a lesser extent vanillate, because they are accessible at high yield from softwood-lignin using industrially operated alkaline oxidative depolymerization. Here, we metabolically engineered C. glutamicum towards cis, cis-muconate (MA) production from these key aromatics. Starting from the previously created catechol-based producer C. glutamicum MA-2, systems metabolic engineering first discovered an unspecific aromatic aldehyde reductase that formed aromatic alcohols from vanillin, protocatechualdehyde, and p- hydroxybenzaldehyde, and was responsible for the conversion up to 57% of vanillin into vanillyl alcohol. The alcohol was not re-consumed by the microbe later, posing a strong drawback on the producer. The identification and subsequent elimination of the encoding fudC gene completely abolished vanillyl alcohol formation. Second, the initially weak flux through the native vanillin and vanillate metabolism was enhanced up to 2.9-fold by implementing synthetic pathway modules. Third, the most efficient protocatechuate decarboxylase AroY for conversion of the midstream pathway intermediate protocatechuate into catechol was identified out of several variants in native and codon optimized form and expressed together with the respective helper proteins. Fourth, the streamlined modules were all genomically combined which yielded the final strain MA-9. MA-9 produced bio-based MA from vanillin, vanillate, and seven structurally related aromatics at maximum selectivity. In addition, MA production from softwood-based vanillin, obtained through alkaline depolymerization, was demonstrated.
Collapse
|
50
|
de Menezes FF, Martim DB, Ling LY, Mulato ATN, Crespim E, de Castro Oliveira JV, Driemeier CE, de Giuseppe PO, de Moraes Rocha GJ. Exploring the compatibility between hydrothermal depolymerization of alkaline lignin from sugarcane bagasse and metabolization of the aromatics by bacteria. Int J Biol Macromol 2022; 223:223-230. [PMID: 36336156 DOI: 10.1016/j.ijbiomac.2022.10.269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/21/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
Although hydrothermal treatments for biomass fractionation have been vastly studied, their effect on the depolymerization of isolated lignins in terms of yield, composition, and compatibility of the produced lignin bio-oils with bioconversion is still poorly investigated. In this study, we evaluated the hydrothermal depolymerization of an β-O-4'-rich lignin extracted from sugarcane bagasse by alkaline fractionation, investigating the influence of temperature (200-350 °C), time (30-90 min), and solid-liquid ratio (1:10-1:50 m.v-1) on yield of bio-oils (up to 31 wt%) rich in monomers (light bio-oils). Principal Components Analysis showed that the defunctionalization of the aromatic monomers was more pronounced in the most severe reaction conditions and that the abundance of more hydrophobic monomers increased in more diluted reactions. While the high-molecular-weight (heavy) bio-oil generated at 350 °C, 90 min, and 1:50 m.v-1 failed to support bacterial growth, the corresponding light bio-oil rich in aromatic monomers promoted the growth of bacteria from 9 distinct species. The isolates Pseudomonas sp. LIM05 and Burkholderia sp. LIM09 showed the best growth performance and tolerance to lignin-derived aromatics, being the most promising for the future development of biological upgrading strategies tailored for this lignin stream.
Collapse
Affiliation(s)
- Fabrícia Farias de Menezes
- Brazilian Biorenewable National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, SP, Brazil
| | - Damaris Batistão Martim
- Brazilian Biorenewable National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, SP, Brazil; Graduate Program in Genetics and Molecular Biology, Biology Institute, State University of Campinas, 13083-970 Campinas, SP, Brazil
| | - Liu Yi Ling
- Brazilian Biorenewable National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, SP, Brazil
| | - Aline Tieppo Nogueira Mulato
- Brazilian Biorenewable National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, SP, Brazil
| | - Elaine Crespim
- Laboratory of Regulatory Systems Biology, Center for Nuclear Energy in Agriculture at the University of São Paulo (CENA/USP), 13416-000 Piracibaba, SP, Brazil
| | - Juliana Velasco de Castro Oliveira
- Brazilian Biorenewable National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, SP, Brazil
| | - Carlos Eduardo Driemeier
- Brazilian Biorenewable National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, SP, Brazil
| | - Priscila Oliveira de Giuseppe
- Brazilian Biorenewable National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, SP, Brazil.
| | - George Jackson de Moraes Rocha
- Brazilian Biorenewable National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, SP, Brazil.
| |
Collapse
|