1
|
Chatterjee A, Khan R, Mukherjee T, Sahoo PP, Tiwari LN, Singh BN, Kumari R, Kumari A, Rai A, Ray S. Harnessing bacterial metabolites for enhanced cancer chemotherapy: unveiling unique therapeutic potentials. Arch Microbiol 2024; 206:449. [PMID: 39472338 DOI: 10.1007/s00203-024-04179-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/10/2024]
Abstract
Cancer poses a serious threat to health globally, with millions diagnosed every year. According to Global Cancer Statistics 2024, about 20 million new cases were reported in 2022, and 9.7 million people worldwide died of this condition. Advanced therapies include combination of one or more treatment procedures, depending on the type, stage, and particular genetic constitution of the cancer, which may include surgery, radiotherapy, chemotherapy, immunotherapy, hormone therapy, targeted therapy, and stem cell transplant. Also, awareness about lifestyle changes, preventive measures and screening at early stages has reduced the incidence of the disease; still, there is a major failure in controlling the incidence of cancer because of its complex and multifaceted nature. With increasing interest in bacterial metabolites as possible novel and effective treatment options in cancer therapy, their main benefits include not only direct anticancer effects but also the modulation of the immune system and potential for targeted and combination therapies. They can therefore be used in combination with chemotherapy, radiotherapy, or immunotherapy to improve outcomes or reduce side effects. Furthermore, nanoparticle-based delivery systems have the potential to enhance the potency and safety of anticancer drugs by providing improved stability, targeted release, and controlled delivery.
Collapse
Affiliation(s)
- Aroni Chatterjee
- Department of Biotechnology, School of Biotechnology and Biosciences, Brainware University, Barasat, Kolkata, 700125, West Bengal, India
| | - Rajni Khan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hajipur, Vaishali, 844102, Bihar, India
| | - Triparna Mukherjee
- Department of Biotechnology, School of Biotechnology and Biosciences, Brainware University, Barasat, Kolkata, 700125, West Bengal, India
| | - Preity Pragnya Sahoo
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India
| | - Laxmi Narayan Tiwari
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India
| | - Basant Narain Singh
- Department of Botany, Pandit Deendayal Upadhyaya Shekhawati University, Sikar, Nawalgarh Road, Katrathal, Rajasthan, 332024, India
| | - Rashmi Kumari
- Department of Zoology, ZA Islamia College Siwan, Affiliated Unit of Jai Prakash University, Chapra, Bihar, 841226, India
| | - Anisha Kumari
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India
| | - Ankit Rai
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India.
| | - Shashikant Ray
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India.
| |
Collapse
|
2
|
Zhong Y, Shang C, Tao H, Hou J, Cui Z, Qi Q. Boosting succinic acid production of Yarrowia lipolytica at low pH through enhancing product tolerance and glucose metabolism. Microb Cell Fact 2024; 23:291. [PMID: 39443950 PMCID: PMC11515616 DOI: 10.1186/s12934-024-02565-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Succinic acid (SA) is an important bio-based C4 platform chemical with versatile applications, including the production of 1,4-butanediol, tetrahydrofuran, and γ-butyrolactone. The non-conventional yeast Yarrowia lipolytica has garnered substantial interest as a robust cell factory for SA production at low pH. However, the high concentrations of SA, especially under acidic conditions, can impose significant stress on microbial cells, leading to reduced glucose metabolism viability and compromised production performance. Therefore, it is important to develop Y. lipolytica strains with enhanced SA tolerance for industrial-scale SA production. RESULTS An SA-tolerant Y. lipolytica strain E501 with improved SA production was obtained through adaptive laboratory evolution (ALE). In a 5-L bioreactor, the evolved strain E501 produced 89.62 g/L SA, representing a 7.2% increase over the starting strain Hi-SA2. Genome resequencing and transcriptome analysis identified a mutation in the 26S proteasome regulatory subunit Rpn1, as well as genes involved in transmembrane transport, which may be associated with enhanced SA tolerance. By further fine-tuning the glycolytic pathway flux, the highest SA titer of 112.54 g/L to date at low pH was achieved, with a yield of 0.67 g/g glucose and a productivity of 2.08 g/L/h. CONCLUSION This study provided a robust engineered Y. lipolytica strain capable of efficiently producing SA at low pH, thereby reducing the cost of industrial SA fermentation.
Collapse
Affiliation(s)
- Yutao Zhong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Changyu Shang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Huilin Tao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Zhiyong Cui
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China.
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China.
| |
Collapse
|
3
|
Wang Y, Han Y, Liu C, Cao L, Ye Q, Ding C, Wang Y, Huang Q, Mao J, Zhang CY, Yu A. Engineering Yarrowia lipolytica to Produce l-Malic Acid from Glycerol. ACS Synth Biol 2024. [PMID: 39444231 DOI: 10.1021/acssynbio.4c00445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The declining availability of cheap fossil-based resources has sparked growing interest in the sustainable biosynthesis of organic acids. l-Malic acid, a crucial four-carbon dicarboxylic acid, finds extensive applications in the food, chemical, and pharmaceutical industries. Synthetic biology and metabolic engineering have enabled the efficient microbial production of l-malic acid, albeit not in Yarrowia lipolytica, an important industrial microorganism. The present study aimed to explore the potential of this fungal species for the production of l-malic acid. First, endogenous biosynthetic genes and heterologous transporter genes were overexpressed in Y. lipolytica to identify bottlenecks in the l-malic acid biosynthesis pathway grown on glycerol. Second, overexpression of isocitrate lyase, malate synthase, and malate dehydrogenase in the glyoxylate cycle pathway and introduction of a malate transporter from Schizosaccharomyces pombe significantly boosted l-malic acid production, which reached 27.0 g/L. A subsequent increase to 37.0 g/L was attained through shake flask medium optimization. Third, adaptive laboratory evolution allowed the engineered strain Po1g-CEE2+Sp to tolerate a lower pH and to accumulate a higher amount of l-malic acid (56.0 g/L). Finally, when scaling up to a 5 L bioreactor, a titer of 112.5 g/L was attained. In conclusion, this study demonstrates for the first time the successful production of l-malic acid in Y. lipolytica by combining metabolic engineering and laboratory evolution, paving the way for large-scale sustainable biosynthesis of this and other organic acids.
Collapse
Affiliation(s)
- Yaping Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Yuqing Han
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Chang Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Liyan Cao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Qingqing Ye
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Chen Ding
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Yuyang Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Qingeng Huang
- Qingyuan One Alive Institute of Biological Research Co., Ltd, Qingyuan 500112, PR China
| | - Jiwei Mao
- Department of Life Sciences, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
| | - Cui-Ying Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Aiqun Yu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin 300457, PR China
| |
Collapse
|
4
|
Park YK, Peng H, Hapeta P, Sellés Vidal L, Ledesma-Amaro R. Engineered cross-feeding creates inter- and intra-species synthetic yeast communities with enhanced bioproduction. Nat Commun 2024; 15:8924. [PMID: 39414777 PMCID: PMC11484764 DOI: 10.1038/s41467-024-53117-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/02/2024] [Indexed: 10/18/2024] Open
Abstract
Microorganisms can be engineered to sustainably produce a variety of products including fuels, pharmaceuticals, materials, and food. However, highly engineered strains often result in low production yield, due to undesired effects such as metabolic burden and the toxicity of intermediates. Drawing inspiration from natural ecosystems, the construction of a synthetic community with division of labor can offer advantages for bioproduction. This approach involves dividing specific tasks among community members, thereby enhancing the functionality of each member. In this study, we identify six pairs out of fifteen composed of six auxotrophs of Yarrowia lipolytica that spontaneously form robust syntrophic and synergistic communities. We characterize the stability and growth dynamics of these communities. Furthermore, we validate the existence of syntrophic interactions between two yeast species, Y. lipolytica and Saccharomyces cerevisiae, and find a strain combination, Δtrp2 and Δtrp4, forming a stable syntrophic community between two species. Subsequently, we introduce a 3-hydroxypropionic acid (3-HP) biosynthesis pathway into the syntrophic community by dividing the pathway among different strains. Our results demonstrate improved production of 3-HP in both intra- and interspecies communities compared to monocultures. Our results show the stable formation of synthetic syntrophic communities, and their potential in improving bioproduction processes.
Collapse
Affiliation(s)
- Young-Kyoung Park
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, London, UK
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Huadong Peng
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, London, UK
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Piotr Hapeta
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, London, UK
| | - Lara Sellés Vidal
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, London, UK
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, London, UK.
| |
Collapse
|
5
|
Yang K, Zhao G, Li H, Tian X, Xu L, Yan J, Xie X, Yan Y, Yang M. Modification of Yarrowia lipolytica via metabolic engineering for effective remediation of heavy metals from wastewater. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134954. [PMID: 38936184 DOI: 10.1016/j.jhazmat.2024.134954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/11/2024] [Accepted: 06/16/2024] [Indexed: 06/29/2024]
Abstract
With the increasing demand for heavy metals due to the advancement of industrial activities, large proportions of heavy metals have been discharged into aquatic ecosystems, causing serious harm to human health and the environment. Existing physical and chemical methods for recovering heavy metals from wastewater encounter challenges, such as low efficiency, high processing costs, and potential secondary pollution. In this study, we developed a novel approach by engineering the endogenous sulphur metabolic pathway of Yarrowia lipolytica, providing it with the ability to produce approximately 550 ppm of sulphide. Subsequently, sulphide-producing Y. lipolytica was used for the first time in heavy metal remediation. The engineered strain exhibited a high capacity to remove various heavy metals, especially achieving over 90 % for cadmium (Cd), copper (Cu) and lead (Pb). This capacity was consistent when applied to both synthetic and actual wastewater samples. Microscopic analyses revealed that sulphide-mediated biological precipitation of metal sulphides on the cell surface is responsible for their removal. Our findings demonstrate that sulphide-producing yeasts are a robust and effective bioremediation strategy for heavy metals, showing great potential for future heavy metal pollution remediation practices.
Collapse
Affiliation(s)
- Kaixin Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guowei Zhao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huanhuan Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaoke Tian
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Li Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jinyong Yan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaoman Xie
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Yunjun Yan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Min Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
6
|
Yang S, Li Y, Guo B, You J, Zhang X, Shao M, Rao Z. Comparative transcriptomics analysis-guided metabolic engineering of Yarrowia lipolytica for improved erythritol and fructooligosaccharides production. BIORESOURCE TECHNOLOGY 2024; 408:131188. [PMID: 39089656 DOI: 10.1016/j.biortech.2024.131188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Currently, fructooligosaccharides (FOS) are converted from sucrose by purified enzymes or fungal cells, but these methods are costly and time-consuming. Here, the optimal fermentation conditions for strain E326 were determined through fermentation optimization: initial glucose 200 g/L, NaCl 25 g/L, inoculum volume 20 %, dissolved oxygen 20-30 %, pH 3, and glucose feeding concentration 100 g/L, which increased erythritol titer by 1.5 times. The co-expression of HGT1 and APC11 genes alleviated the erythritol synthesis stagnation, shorten the fermentation time by 16.7 %, and increased the erythritol productivity by 17.2 %. The episomal plasmids based on yeast mitochondrial replication origins (mtORIs) were constructed to surface display fructosyltransferase, effectively utilizing waste yeast cells generated during erythritol fermentation. Under the conditions of 60℃ and pH 6, the FOS yield reached 65 %, which to our best of knowledge is so-far the highest yield of FOS obtained. These findings will contribute to the industrial production of erythritol and FOS.
Collapse
Affiliation(s)
- Shuling Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Yanan Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Baomin Guo
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jiajia You
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Minglong Shao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China.
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China.
| |
Collapse
|
7
|
Zhong Y, Gu J, Shang C, Deng J, Liu Y, Cui Z, Lu X, Qi Q. Sustainable succinic acid production from lignocellulosic hydrolysates by engineered strains of Yarrowia lipolytica at low pH. BIORESOURCE TECHNOLOGY 2024; 408:131166. [PMID: 39067709 DOI: 10.1016/j.biortech.2024.131166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/17/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Succinic acid (SA) is a valuable C4 platform chemical with diverse applications. Lignocellulosic biomass represents an abundant and renewable carbon resource for microbial production of SA. However, the presence of toxic compounds in pretreated lignocellulosic hydrolysates poses challenges to cell metabolism, leading to inefficient SA production. Here, engineered Yarrowia lipolytica Hi-SA2 was shown to utilize glucose and xylose from corncob hydrolysate to produce 32.6 g/L SA in shaking flasks. The high concentration of undetoxified hydrolysates significantly inhibited yeast growth and SA biosynthesis, with furfural identified as the key inhibitor. Through overexpressing glutathione synthetase encoding gene YlGsh2, the tolerance of engineered strain to furfural and toxic hydrolysate was significantly improved. In a 5-L bioreactor, Hi-SA2-YlGsh2 strain produced 45.34 g/L SA within 32 h, with a final pH of 3.28. This study provides a sustainable process for bio-based SA production, highlighting the efficient SA synthesis from lignocellulosic biomass through low pH fermentation.
Collapse
Affiliation(s)
- Yutao Zhong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Jinhong Gu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Changyu Shang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Jingyu Deng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Yuhang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Zhiyong Cui
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| | - Xuemei Lu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
8
|
Park YK, Sellés Vidal L, Bell D, Zabret J, Soldat M, Kavšček M, Ledesma-Amaro R. Efficient synthesis of limonene production in Yarrowia lipolytica by combinatorial engineering strategies. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:94. [PMID: 38961416 PMCID: PMC11223395 DOI: 10.1186/s13068-024-02535-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Limonene has a variety of applications in the foods, cosmetics, pharmaceuticals, biomaterials, and biofuels industries. In order to meet the growing demand for sustainable production of limonene at industry scale, it is essential to find an alternative production system to traditional plant extraction. A promising and eco-friendly alternative is the use of microbes as cell factories for the synthesis of limonene. RESULTS In this study, the oleaginous yeast Yarrowia lipolytica has been engineered to produce D- and L-limonene. Four target genes, l- or d-LS (limonene synthase), HMG (HMG-CoA reductase), ERG20 (geranyl diphosphate synthase), and NDPS1 (neryl diphosphate) were expressed individually or fused together to find the optimal combination for higher limonene production. The strain expressing HMGR and the fusion protein ERG20-LS was the best limonene producer and, therefore, selected for further improvement. By increasing the expression of target genes and optimizing initial OD, 29.4 mg/L of L-limonene and 24.8 mg/L of D-limonene were obtained. We also studied whether peroxisomal compartmentalization of the synthesis pathway was beneficial for limonene production. The introduction of D-LS and ERG20 within the peroxisome improved limonene titers over cytosolic expression. Then, the entire MVA pathway was targeted to the peroxisome to improve precursor supply, which increased D-limonene production to 47.8 mg/L. Finally, through the optimization of fermentation conditions, D-limonene production titer reached 69.3 mg/L. CONCLUSIONS In this work, Y. lipolytica was successfully engineered to produce limonene. Our results showed that higher production of limonene was achieved when the synthesis pathway was targeted to the peroxisome, which indicates that this organelle can favor the bioproduction of terpenes in yeasts. This study opens new avenues for the efficient synthesis of valuable monoterpenes in Y. lipolytica.
Collapse
Affiliation(s)
- Young-Kyoung Park
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, London, SW72AZ, UK
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Lara Sellés Vidal
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, London, SW72AZ, UK
| | - David Bell
- SynbiCITE Innovation and Knowledge Centre, Imperial College London, London, SW7 2AZ, UK
| | - Jure Zabret
- Acies Bio d.o.o., 1000, Tehnološki Park 21Ljubljana, Slovenia
| | - Mladen Soldat
- Acies Bio d.o.o., 1000, Tehnološki Park 21Ljubljana, Slovenia
| | - Martin Kavšček
- Acies Bio d.o.o., 1000, Tehnološki Park 21Ljubljana, Slovenia
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, London, SW72AZ, UK.
| |
Collapse
|
9
|
Li M, Ni Z, Li Z, Yin Y, Liu J, Wu D, Sun Z, Wang L. Research progress on biosynthesis of erythritol and multi-dimensional optimization of production strategies. World J Microbiol Biotechnol 2024; 40:240. [PMID: 38867081 DOI: 10.1007/s11274-024-04043-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024]
Abstract
Erythritol, as a new type of natural sweetener, has been widely used in food, medical, cosmetics, pharmaceutical and other fields due to its unique physical and chemical properties and physiological functions. In recent years, with the continuous development of strategies such as synthetic biology, metabolic engineering, omics-based systems biology and high-throughput screening technology, people's understanding of the erythritol biosynthesis pathway has gradually deepened, and microbial cell factories with independent modification capabilities have been successfully constructed. In this review, the cheap feedstocks for erythritol synthesis are introduced in detail, the environmental factors affecting the synthesis of erythritol and its regulatory mechanism are described, and the tools and strategies of metabolic engineering involved in erythritol synthesis are summarized. In addition, the study of erythritol derivatives is helpful in expanding its application field. Finally, the challenges that hinder the effective production of erythritol are discussed, which lay a foundation for the green, efficient and sustainable production of erythritol in the future and breaking through the bottleneck of production.
Collapse
Affiliation(s)
- Meng Li
- School of Biological Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou, 450001, China
| | - Zifu Ni
- School of Biological Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou, 450001, China.
| | - Zhongzeng Li
- School of Biological Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou, 450001, China
| | - Yanli Yin
- School of Biological Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou, 450001, China
| | - Jianguang Liu
- School of Biological Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou, 450001, China
| | - Dapeng Wu
- School of Environment, Henan Normal University, Xinxiang, 453001, China
| | - Zhongke Sun
- School of Biological Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou, 450001, China
| | - Le Wang
- School of Biological Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou, 450001, China.
| |
Collapse
|
10
|
Wu Y, Li S, Sun B, Guo J, Zheng M, Li A. Enhancing Gastrodin Production in Yarrowia lipolytica by Metabolic Engineering. ACS Synth Biol 2024; 13:1332-1342. [PMID: 38563122 DOI: 10.1021/acssynbio.4c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Gastrodin, 4-hydroxybenzyl alcohol-4-O-β-D-glucopyranoside, has been widely used in the treatment of neurogenic and cardiovascular diseases. Currently, gastrodin biosynthesis is being achieved in model microorganisms. However, the production levels are insufficient for industrial applications. In this study, we successfully engineered a Yarrowia lipolytica strain to overproduce gastrodin through metabolic engineering. Initially, the engineered strain expressing the heterologous gastrodin biosynthetic pathway, which comprises chorismate lyase, carboxylic acid reductase, phosphopantetheinyl transferase, endogenous alcohol dehydrogenases, and a UDP-glucosyltransferase, produced 1.05 g/L gastrodin from glucose in a shaking flask. Then, the production was further enhanced to 6.68 g/L with a productivity of 2.23 g/L/day by overexpressing the key node DAHP synthases of the shikimate pathway and alleviating the native tryptophan and phenylalanine biosynthetic pathways. Finally, the best strain, Gd07, produced 13.22 g/L gastrodin in a 5 L fermenter. This represents the highest reported production of gastrodin in an engineered microorganism to date, marking the first successful de novo production of gastrodin using Y. lipolytica.
Collapse
Affiliation(s)
- Yuanqing Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, #368 Youyi Road, Wuhan 430062, P. R. China
| | - Shuocheng Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, #368 Youyi Road, Wuhan 430062, P. R. China
| | - Baijian Sun
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, #368 Youyi Road, Wuhan 430062, P. R. China
| | - Jingyi Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, #368 Youyi Road, Wuhan 430062, P. R. China
| | - Meiyi Zheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, #368 Youyi Road, Wuhan 430062, P. R. China
| | - Aitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, #368 Youyi Road, Wuhan 430062, P. R. China
| |
Collapse
|
11
|
Li T, Liu X, Xiang H, Zhu H, Lu X, Feng B. Two-Phase Fermentation Systems for Microbial Production of Plant-Derived Terpenes. Molecules 2024; 29:1127. [PMID: 38474639 PMCID: PMC10934027 DOI: 10.3390/molecules29051127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Microbial cell factories, renowned for their economic and environmental benefits, have emerged as a key trend in academic and industrial areas, particularly in the fermentation of natural compounds. Among these, plant-derived terpenes stand out as a significant class of bioactive natural products. The large-scale production of such terpenes, exemplified by artemisinic acid-a crucial precursor to artemisinin-is now feasible through microbial cell factories. In the fermentation of terpenes, two-phase fermentation technology has been widely applied due to its unique advantages. It facilitates in situ product extraction or adsorption, effectively mitigating the detrimental impact of product accumulation on microbial cells, thereby significantly bolstering the efficiency of microbial production of plant-derived terpenes. This paper reviews the latest developments in two-phase fermentation system applications, focusing on microbial fermentation of plant-derived terpenes. It also discusses the mechanisms influencing microbial biosynthesis of terpenes. Moreover, we introduce some new two-phase fermentation techniques, currently unexplored in terpene fermentation, with the aim of providing more thoughts and explorations on the future applications of two-phase fermentation technology. Lastly, we discuss several challenges in the industrial application of two-phase fermentation systems, especially in downstream processing.
Collapse
Affiliation(s)
- Tuo Li
- Correspondence: (T.L.); (B.F.)
| | | | | | | | | | - Baomin Feng
- College of Life and Health, Dalian University, Dalian 116622, China; (X.L.); (H.X.); (H.Z.); (X.L.)
| |
Collapse
|
12
|
Sofeo N, Toi MG, Ee EQG, Ng JY, Busran CT, Lukito BR, Thong A, Hermansen C, Peterson EC, Glitsos R, Arumugam P. Sustainable production of lipids from cocoa fatty acid distillate fermentation driven by adaptive evolution in Yarrowia lipolytica. BIORESOURCE TECHNOLOGY 2024; 394:130302. [PMID: 38199440 DOI: 10.1016/j.biortech.2024.130302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/20/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024]
Abstract
Single cell oil production using oleaginous yeasts is a promising alternative to animal and plant-derived lipids. But substrate costs for microbial fermentation are a major bottleneck. Using side streams as alternative to substrates like glucose, for growing yeast, is a potential cost-effective solution. By combining a previously reported process of growing yeasts on a solid cocoa fatty acid distillate side stream with adaptive evolution techniques, the growth of oleaginous yeast Yarrowia lipolytica was improved by 2-fold. The lipid titre was also boosted by more than 3-fold. Using transcriptomics, key genes were identified that are possibly involved in tailoring of lipid composition, side stream utilisation and enhancement of lipid titres. Candidate genes were also identified that might enable efficient growth and utilization of fatty acids and triacylglycerides found in cocoa fatty acid distillate. In summary, this research has improved the understanding of side stream utilisation for lipid production in oleaginous yeast.
Collapse
Affiliation(s)
- Naazneen Sofeo
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore.
| | - Min Gin Toi
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore
| | - En Qi Grace Ee
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore
| | - Jing Yang Ng
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore
| | - Coleen Toledo Busran
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore
| | - Benedict Ryan Lukito
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore
| | - Aaron Thong
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore
| | - Christian Hermansen
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore
| | - Eric Charles Peterson
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore; Institut National de la Recherche Scientifique - Eau Terre Environnement (INRS-ETE), 490 Rue de la Couronne, Quebec City, QC G1K 9A9, Canada
| | - Renata Glitsos
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore
| | - Prakash Arumugam
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore
| |
Collapse
|
13
|
Yang S, Pan X, You J, Guo B, Liu Z, Cao Y, Li G, Shao M, Zhang X, Rao Z. Systematic metabolic engineering of Yarrowia lipolytica for the enhanced production of erythritol. BIORESOURCE TECHNOLOGY 2024; 391:129918. [PMID: 37884093 DOI: 10.1016/j.biortech.2023.129918] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
In recent times, there has been a growing interest in exploring microbial strains that exhibit enhanced erythritol productivity. Nonetheless, the lack of advanced synthetic biology tools has limited rapid strain development. In this study, the CRISPR/Cas9 system was employed to genetically modify Yarrowia lipolytica at the chromosomal level, which could improve the production of erythritol while saving the time required to markers recovery, and realizing the rapid construction of high-erythritol strains. Firstly, the basic strain E004 was generated by increasing the efficiency of homologous recombination and regulating the erythritol degradation pathway. Secondly, eleven key gene targets and a strong promoter 8UAS1BXPR2-PTEFin was obtained by target screening and promoter engineering. Finally, based on modular pathway engineering and morphological engineering, the high production of erythritol was achieved successfully. The best-engineered strain E326 produced 256 g/L erythritol in a 5-L bioreactor, which is the highest production level reported so far in Y. lipolytica.
Collapse
Affiliation(s)
- Shuling Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Xuewei Pan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Jiajia You
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Baomin Guo
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zuyi Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Ying Cao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Guomin Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Minglong Shao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China.
| |
Collapse
|
14
|
Walker C, Mortensen M, Poudel B, Cotter C, Myers R, Okekeogbu IO, Ryu S, Khomami B, Giannone RJ, Laursen S, Trinh CT. Proteomes reveal metabolic capabilities of Yarrowia lipolytica for biological upcycling of polyethylene into high-value chemicals. mSystems 2023; 8:e0074123. [PMID: 37882587 PMCID: PMC10734471 DOI: 10.1128/msystems.00741-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/18/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE Sustainable processes for biological upcycling of plastic wastes in a circular bioeconomy are needed to promote decarbonization and reduce environmental pollution due to increased plastic consumption, incineration, and landfill storage. Strain characterization and proteomic analysis revealed the robust metabolic capabilities of Yarrowia lipolytica to upcycle polyethylene into high-value chemicals. Significant proteome reallocation toward energy and lipid metabolisms was required for robust growth on hydrocarbons with n-hexadecane as the preferential substrate. However, an apparent over-investment in these same categories to utilize complex depolymerized plastic (DP) oil came at the expense of protein biosynthesis, limiting cell growth. Taken together, this study elucidates how Y. lipolytica activates its metabolism to utilize DP oil and establishes Y. lipolytica as a promising host for the upcycling of plastic wastes.
Collapse
Affiliation(s)
- Caleb Walker
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - Max Mortensen
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - Bindica Poudel
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - Christopher Cotter
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - Ryan Myers
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - Ikenna O. Okekeogbu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Seunghyun Ryu
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - Bamin Khomami
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - Richard J. Giannone
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Siris Laursen
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - Cong T. Trinh
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
15
|
Liu Q, Bi H, Wang K, Zhang Y, Chen B, Zhang H, Wang M, Fang Y. Revealing the Mechanisms of Enhanced β-Farnesene Production in Yarrowia lipolytica through Metabolomics Analysis. Int J Mol Sci 2023; 24:17366. [PMID: 38139198 PMCID: PMC10743872 DOI: 10.3390/ijms242417366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
β-Farnesene is an advanced molecule with promising applications in agriculture, the cosmetics industry, pharmaceuticals, and bioenergy. To supplement the shortcomings of rational design in the development of high-producing β-farnesene strains, a Metabolic Pathway Design-Fermentation Test-Metabolomic Analysis-Target Mining experimental cycle was designed. In this study, by over-adding 20 different amino acids/nucleobases to induce fluctuations in the production of β-farnesene, the changes in intracellular metabolites in the β-farnesene titer-increased group were analyzed using non-targeted metabolomics. Differential metabolites that were detected in each experimental group were selected, and their metabolic pathways were located. Based on these differential metabolites, targeted strain gene editing and culture medium optimization were performed. The overexpression of the coenzyme A synthesis-related gene pantothenate kinase (PanK) and the addition of four mixed water-soluble vitamins in the culture medium increased the β-farnesene titer in the shake flask to 1054.8 mg/L, a 48.5% increase from the initial strain. In the subsequent fed-batch fermentation, the β-farnesene titer further reached 24.6 g/L. This work demonstrates the tremendous application value of metabolomics analysis for the development of industrial recombinant strains and the optimization of fermentation conditions.
Collapse
Affiliation(s)
| | - Haoran Bi
- National Energy R&D Center of Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (Q.L.); (K.W.); (Y.Z.); (B.C.); (H.Z.); (Y.F.)
| | | | | | | | | | - Meng Wang
- National Energy R&D Center of Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (Q.L.); (K.W.); (Y.Z.); (B.C.); (H.Z.); (Y.F.)
| | | |
Collapse
|
16
|
Ouellet B, Morneau Z, Abdel-Mawgoud AM. Nile red-based lipid fluorometry protocol and its use for statistical optimization of lipids in oleaginous yeasts. Appl Microbiol Biotechnol 2023; 107:7313-7330. [PMID: 37741936 DOI: 10.1007/s00253-023-12786-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/25/2023]
Abstract
As lipogenic yeasts are becoming increasingly harnessed as biofactories of oleochemicals, the availability of efficient protocols for the determination and optimization of lipid titers in these organisms is necessary. In this study, we optimized a quick, reliable, and high-throughput Nile red-based lipid fluorometry protocol adapted for oleaginous yeasts and validated it using different approaches, the most important of which is using gas chromatography coupled to flame ionization detection and mass spectrometry. This protocol was applied in the optimization of the concentrations of ammonium chloride and glycerol for attaining highest lipid titers in Rhodotorula toruloides NRRL Y-6987 and Yarrowia lipolytica W29 using response surface central composite design (CCD). Results of this optimization showed that the optimal concentration of ammonium chloride and glycerol is 4 and 123 g/L achieving a C/N ratio of 57 for R. toruloides, whereas for Y. lipolytica, concentrations are 4 and 139 g/L with a C/N ratio of 61 for Y. lipolytica. Outside the C/N of 33 to 74 and 45 to 75, respectively, for R. toruloides and Y. lipolytica, lipid productions decrease by more than 10%. The developed regression models and response surface plots show the importance of the careful selection of C/N ratio to attain maximal lipid production. KEY POINTS: • Nile red (NR)-based lipid fluorometry is efficient, rapid, cheap, high-throughput. • NR-based lipid fluorometry can be well used for large-scale experiments like DoE. • Optimal molar C/N ratio for maximum lipid production in lipogenic yeasts is ~60.
Collapse
Affiliation(s)
- Benjamin Ouellet
- Institute of Integrative Biology and Systems, Laval University, Pavillon Charles-Eugène-Marchand, 1030 Ave. de la Médecine,, QC, QC, G1V 0A6, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Faculty of Science and Engineering, Laval University, 1045 Ave. de la Médecine, QC, Quebec, G1V 0A6, Canada
| | - Zacharie Morneau
- Institute of Integrative Biology and Systems, Laval University, Pavillon Charles-Eugène-Marchand, 1030 Ave. de la Médecine,, QC, QC, G1V 0A6, Canada
| | - Ahmad M Abdel-Mawgoud
- Institute of Integrative Biology and Systems, Laval University, Pavillon Charles-Eugène-Marchand, 1030 Ave. de la Médecine,, QC, QC, G1V 0A6, Canada.
- Department of Biochemistry, Microbiology and Bioinformatics, Faculty of Science and Engineering, Laval University, 1045 Ave. de la Médecine, QC, Quebec, G1V 0A6, Canada.
| |
Collapse
|
17
|
Su H, Shi P, Shen Z, Meng H, Meng Z, Han X, Chen Y, Fan W, Fa Y, Yang C, Li F, Wang S. High-level production of nervonic acid in the oleaginous yeast Yarrowia lipolytica by systematic metabolic engineering. Commun Biol 2023; 6:1125. [PMID: 37935958 PMCID: PMC10630375 DOI: 10.1038/s42003-023-05502-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/20/2023] [Indexed: 11/09/2023] Open
Abstract
Nervonic acid benefits the treatment of neurological diseases and the health of brain. In this study, we employed the oleaginous yeast Yarrowia lipolytica to overproduce nervonic acid oil by systematic metabolic engineering. First, the production of nervonic acid was dramatically improved by iterative expression of the genes ecoding β-ketoacyl-CoA synthase CgKCS, fatty acid elongase gELOVL6 and desaturase MaOLE2. Second, the biosynthesis of both nervonic acid and lipids were further enhanced by expression of glycerol-3-phosphate acyltransferases and diacylglycerol acyltransferases from Malania oleifera in endoplasmic reticulum (ER). Third, overexpression of a newly identified ER structure regulator gene YlINO2 led to a 39.3% increase in lipid production. Fourth, disruption of the AMP-activated S/T protein kinase gene SNF1 increased the ratio of nervonic acid to lignoceric acid by 61.6%. Next, pilot-scale fermentation using the strain YLNA9 exhibited a lipid titer of 96.7 g/L and a nervonic acid titer of 17.3 g/L (17.9% of total fatty acids), the highest reported titer to date. Finally, a proof-of-concept purification and separation of nervonic acid were performed and the purity of it reached 98.7%. This study suggested that oleaginous yeasts are attractive hosts for the cost-efficient production of nervonic acid and possibly other very long-chain fatty acids (VLCFAs).
Collapse
Affiliation(s)
- Hang Su
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Penghui Shi
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
| | - Zhaoshuang Shen
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
| | - Huimin Meng
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Qingdao Institute for Food and Drug Control, Qingdao, 266073, China
| | - Ziyue Meng
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xingfeng Han
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Yanna Chen
- Zhejiang Zhenyuan Biotech Co., LTD, Shaoxing, 312365, China
| | - Weiming Fan
- Zhejiang Zhenyuan Biotech Co., LTD, Shaoxing, 312365, China
| | - Yun Fa
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Chunyu Yang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Fuli Li
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
- Shandong Energy Institute, Qingdao, 266101, China.
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China.
| | - Shi'an Wang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
- Shandong Energy Institute, Qingdao, 266101, China.
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China.
| |
Collapse
|
18
|
Cai P, Liu S, Zhang D, Hu QN. MCF2Chem: A manually curated knowledge base of biosynthetic compound production. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:167. [PMID: 37925500 PMCID: PMC10625697 DOI: 10.1186/s13068-023-02419-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Microbes have been used as cell factories to synthesize various chemical compounds. Recent advances in synthetic biological technologies have accelerated the increase in the number and capacity of microbial cell factories; the variety and number of synthetic compounds produced via these cell factories have also grown substantially. However, no database is available that provides detailed information on the microbial cell factories and the synthesized compounds. RESULTS In this study, we established MCF2Chem, a manually curated knowledge base on the production of biosynthetic compounds using microbial cell factories. It contains 8888 items of production records related to 1231 compounds that were synthesizable by 590 microbial cell factories, including the production data of compounds (titer, yield, productivity, and content), strain culture information (culture medium, carbon source/precursor/substrate), fermentation information (mode, vessel, scale, and condition), and other information (e.g., strain modification method). The database contains statistical analyses data of compounds and microbial species. The data statistics of MCF2Chem showed that bacteria accounted for 60% of the species and that "fatty acids", "terpenoids", and "shikimates and phenylpropanoids" accounted for the top three chemical products. Escherichia coli, Saccharomyces cerevisiae, Yarrowia lipolytica, and Corynebacterium glutamicum synthesized 78% of these chemical compounds. Furthermore, we constructed a system to recommend microbial cell factories suitable for synthesizing target compounds and vice versa by combining MCF2Chem data, additional strain- and compound-related data, the phylogenetic relationships between strains, and compound similarities. CONCLUSIONS MCF2Chem provides a user-friendly interface for querying, browsing, and visualizing detailed statistical information on microbial cell factories and their synthesizable compounds. It is publicly available at https://mcf.lifesynther.com . This database may serve as a useful resource for synthetic biologists.
Collapse
Affiliation(s)
- Pengli Cai
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Sheng Liu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Dachuan Zhang
- Ecological Systems Design, Institute of Environmental Engineering, ETH Zurich, 8093, Zurich, Switzerland
| | - Qian-Nan Hu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
19
|
Chu LL, Hanh NTY, Quyen ML, Nguyen QH, Lien TTP, Do KV. Compound K Production: Achievements and Perspectives. Life (Basel) 2023; 13:1565. [PMID: 37511939 PMCID: PMC10381408 DOI: 10.3390/life13071565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Compound K (CK) is one of the major metabolites found in mammalian blood and organs following oral administration of Panax plants. CK, also known as minor ginsenoside, can be absorbed in the systemic circulation. It has garnered significant attention in healthcare and medical products due to its pharmacological activities, such as antioxidation, anticancer, antiproliferation, antidiabetics, neuroprotection, and anti-atherogenic activities. However, CK is not found in natural ginseng plants but in traditional chemical synthesis, which uses toxic solvents and leads to environmental pollution during the harvest process. Moreover, enzymatic reactions are impractical for industrial CK production due to low yield and high costs. Although CK could be generated from major ginsenosides, most ginsenosides, including protopanaxatriol-oleanane and ocotillol-type, are not converted into CK by catalyzing β-glucosidase. Therefore, microbial cell systems have been used as a promising solution, providing a safe and efficient approach to CK production. This review provides a summary of various approaches for the production of CK, including chemical and enzymatic reactions, biotransformation by the human intestinal bacteria and endophytes as well as engineered microbes. Moreover, the approaches for CK production have been discussed to improve the productivity of target compounds.
Collapse
Affiliation(s)
- Luan Luong Chu
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi 12116, Vietnam
| | - Nguyen Trinh Yen Hanh
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi 12116, Vietnam
| | - My Linh Quyen
- Faculty of Biology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi 10000, Vietnam
| | - Quang Huy Nguyen
- Faculty of Biology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi 10000, Vietnam
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi 10000, Vietnam
| | - Tran Thi Phuong Lien
- Faculty of Biology and Agricultural Engineering, Hanoi Pagadogical University 2, Vinh Yen City 283460, Vietnam
| | - Khanh Van Do
- Faculty of Biomedical Sciences, Phenikaa University, Hanoi 12116, Vietnam
| |
Collapse
|
20
|
Messina E, de Souza CP, Cappella C, Barile SN, Scarcia P, Pisano I, Palmieri L, Nicaud JM, Agrimi G. Genetic inactivation of the Carnitine/Acetyl-Carnitine mitochondrial carrier of Yarrowia lipolytica leads to enhanced odd-chain fatty acid production. Microb Cell Fact 2023; 22:128. [PMID: 37443049 DOI: 10.1186/s12934-023-02137-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Mitochondrial carriers (MCs) can deeply affect the intracellular flux distribution of metabolic pathways. The manipulation of their expression level, to redirect the flux toward the production of a molecule of interest, is an attractive target for the metabolic engineering of eukaryotic microorganisms. The non-conventional yeast Yarrowia lipolytica is able to use a wide range of substrates. As oleaginous yeast, it directs most of the acetyl-CoA therefrom generated towards the synthesis of lipids, which occurs in the cytoplasm. Among them, the odd-chain fatty acids (OCFAs) are promising microbial-based compounds with several applications in the medical, cosmetic, chemical and agricultural industries. RESULTS In this study, we have identified the MC involved in the Carnitine/Acetyl-Carnitine shuttle in Y. lipolytica, YlCrc1. The Y. lipolytica Ylcrc1 knock-out strain failed to grow on ethanol, acetate and oleic acid, demonstrating the fundamental role of this MC in the transport of acetyl-CoA from peroxisomes and cytoplasm into mitochondria. A metabolic engineering strategy involving the deletion of YlCRC1, and the recombinant expression of propionyl-CoA transferase from Ralstonia eutropha (RePCT), improved propionate utilization and its conversion into OCFAs. These genetic modifications and a lipogenic medium supplemented with glucose and propionate as the sole carbon sources, led to enhanced accumulation of OCFAs in Y. lipolytica. CONCLUSIONS The Carnitine/Acetyl-Carnitine shuttle of Y. lipolytica involving YlCrc1, is the sole pathway for transporting peroxisomal or cytosolic acetyl-CoA to mitochondria. Manipulation of this carrier can be a promising target for metabolic engineering approaches involving cytosolic acetyl-CoA, as demonstrated by the effect of YlCRC1 deletion on OCFAs synthesis.
Collapse
Affiliation(s)
- Eugenia Messina
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro", Campus Universitario, via Orabona 4, Bari, 70125, Italy
- Université Paris-Saclay, INRAE, Micalis Institute, Jouy-en-Josas, 78350, AgroParisTech, France
| | - Camilla Pires de Souza
- Université Paris-Saclay, INRAE, Micalis Institute, Jouy-en-Josas, 78350, AgroParisTech, France
| | - Claudia Cappella
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro", Campus Universitario, via Orabona 4, Bari, 70125, Italy
| | - Simona Nicole Barile
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro", Campus Universitario, via Orabona 4, Bari, 70125, Italy
| | - Pasquale Scarcia
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro", Campus Universitario, via Orabona 4, Bari, 70125, Italy
| | - Isabella Pisano
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro", Campus Universitario, via Orabona 4, Bari, 70125, Italy
| | - Luigi Palmieri
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro", Campus Universitario, via Orabona 4, Bari, 70125, Italy
- Bioenergetics and Molecular Biotechnologies (IBIOM), CNR Institute of Biomembranes, Campus Universitario, via Orabona 4, Bari, 70125, Italy
| | - Jean-Marc Nicaud
- Université Paris-Saclay, INRAE, Micalis Institute, Jouy-en-Josas, 78350, AgroParisTech, France.
| | - Gennaro Agrimi
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro", Campus Universitario, via Orabona 4, Bari, 70125, Italy.
| |
Collapse
|
21
|
Bi H, Xu C, Bao Y, Zhang C, Wang K, Zhang Y, Wang M, Chen B, Fang Y, Tan T. Enhancing precursor supply and modulating metabolism to achieve high-level production of β-farnesene in Yarrowia lipolytica. BIORESOURCE TECHNOLOGY 2023; 382:129171. [PMID: 37196740 DOI: 10.1016/j.biortech.2023.129171] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/19/2023]
Abstract
β-Farnesene is a sesquiterpene commonly found in essential oils of plants, with applications spanning from agricultural pest control and biofuels to industrial chemicals. The use of renewable substrates in microbial cell factories offers a sustainable approach to β-farnesene biosynthesis. In this study, malic enzyme from Mucor circinelloides was examined for NADPH regeneration, concomitant with the augmentation of cytosolic acetyl-CoA supply by expressing ATP-citrate lyase from Mus musculus and manipulating the citrate pathway via AMP deaminase and isocitrate dehydrogenase. Carbon flux was modulated through the elimination of native 6-phosphofructokinase, while the incorporation of an exogenous non-oxidative glycolysis pathway served to bridge the pentose phosphate pathway with the mevalonate pathway. The resulting orthogonal precursor supply pathway facilitated β-farnesene production, reaching 810 mg/L in shake-flask fermentation. Employing optimal fermentation conditions and feeding strategy, a titer of 28.9 g/L of β-farnesene was attained in a 2 L bioreactor.
Collapse
Affiliation(s)
- Haoran Bi
- National Energy R&D Center of Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Chenchen Xu
- National Energy R&D Center of Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Yufei Bao
- National Energy R&D Center of Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Changwei Zhang
- National Energy R&D Center of Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Kai Wang
- National Energy R&D Center of Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Yang Zhang
- National Energy R&D Center of Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Meng Wang
- National Energy R&D Center of Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China.
| | - Biqiang Chen
- National Energy R&D Center of Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Yunming Fang
- National Energy R&D Center of Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Tianwei Tan
- National Energy R&D Center of Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China.
| |
Collapse
|
22
|
Wang N, Peng H, Yang C, Guo W, Wang M, Li G, Liu D. Metabolic Engineering of Model Microorganisms for the Production of Xanthophyll. Microorganisms 2023; 11:1252. [PMID: 37317226 PMCID: PMC10223009 DOI: 10.3390/microorganisms11051252] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/19/2023] [Accepted: 05/06/2023] [Indexed: 06/16/2023] Open
Abstract
Xanthophyll is an oxidated version of carotenoid. It presents significant value to the pharmaceutical, food, and cosmetic industries due to its specific antioxidant activity and variety of colors. Chemical processing and conventional extraction from natural organisms are still the main sources of xanthophyll. However, the current industrial production model can no longer meet the demand for human health care, reducing petrochemical energy consumption and green sustainable development. With the swift development of genetic metabolic engineering, xanthophyll synthesis by the metabolic engineering of model microorganisms shows great application potential. At present, compared to carotenes such as lycopene and β-carotene, xanthophyll has a relatively low production in engineering microorganisms due to its stronger inherent antioxidation, relatively high polarity, and longer metabolic pathway. This review comprehensively summarized the progress in xanthophyll synthesis by the metabolic engineering of model microorganisms, described strategies to improve xanthophyll production in detail, and proposed the current challenges and future efforts needed to build commercialized xanthophyll-producing microorganisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dehu Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
23
|
Georgiadis I, Tsiligkaki C, Patavou V, Orfanidou M, Tsoureki A, Andreadelli A, Theodosiou E, Makris AM. Identification and Construction of Strong Promoters in Yarrowia lipolytica Suitable for Glycerol-Based Bioprocesses. Microorganisms 2023; 11:1152. [PMID: 37317126 DOI: 10.3390/microorganisms11051152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 06/16/2023] Open
Abstract
Yarrowia lipolytica is a non-pathogenic aerobic yeast with numerous industrial biotechnology applications. The organism grows in a wide variety of media, industrial byproducts, and wastes. A need exists for molecular tools to improve heterologous protein expression and pathway reconstitution. In an effort to identify strong native promoters in glycerol-based media, six highly expressed genes were mined from public data, analyzed, and validated. The promoters from the three most highly expressed (H3, ACBP, and TMAL) were cloned upstream of the reporter mCherry in episomal and integrative vectors. Fluorescence was quantified by flow cytometry and promoter strength was benchmarked with known strong promoters (pFBA1in, pEXP1, and pTEF1in) in cells growing in glucose, glycerol, and synthetic glycerol media. The results show that pH3 > pTMAL > pACBP are very strong promoters, with pH3 exceeding all other tested promoters. Hybrid promoters were also constructed, linking the Upstream Activating Sequence 1B (UAS1B8) with H3(260) or TMAL(250) minimal promoters, and compared to the UAS1B8-TEF1(136) promoter. The new hybrid promoters exhibited far superior strength. The novel promoters were utilized to overexpress the lipase LIP2, achieving very high secretion levels. In conclusion, our research identified and characterized several strong Y. lipolytica promoters that expand the capacity to engineer Yarrowia strains and valorize industrial byproducts.
Collapse
Affiliation(s)
- Ioannis Georgiadis
- Institute of Applied Biosciences, Centre for Research & Technology Hellas (CERTH), 57001 Thessaloniki, Greece
- School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Christina Tsiligkaki
- Institute of Applied Biosciences, Centre for Research & Technology Hellas (CERTH), 57001 Thessaloniki, Greece
- School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Victoria Patavou
- Institute of Applied Biosciences, Centre for Research & Technology Hellas (CERTH), 57001 Thessaloniki, Greece
- School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Maria Orfanidou
- Institute of Applied Biosciences, Centre for Research & Technology Hellas (CERTH), 57001 Thessaloniki, Greece
- Department of Chemical Engineering, School of Engineering, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Antiopi Tsoureki
- Institute of Applied Biosciences, Centre for Research & Technology Hellas (CERTH), 57001 Thessaloniki, Greece
| | - Aggeliki Andreadelli
- Institute of Applied Biosciences, Centre for Research & Technology Hellas (CERTH), 57001 Thessaloniki, Greece
| | - Eleni Theodosiou
- Institute of Applied Biosciences, Centre for Research & Technology Hellas (CERTH), 57001 Thessaloniki, Greece
| | - Antonios M Makris
- Institute of Applied Biosciences, Centre for Research & Technology Hellas (CERTH), 57001 Thessaloniki, Greece
| |
Collapse
|
24
|
Tsirigka A, Theodosiou E, Patsios SI, Tsoureki A, Andreadelli A, Papa E, Aggeli A, Karabelas AJ, Makris AM. Novel evolved Yarrowia lipolytica strains for enhanced growth and lipid content under high concentrations of crude glycerol. Microb Cell Fact 2023; 22:62. [PMID: 37004109 PMCID: PMC10067222 DOI: 10.1186/s12934-023-02072-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Yarrowia lipolytica is a well-studied oleaginous yeast known for its ability to accumulate and store intracellular lipids, while growing on diverse, non-conventional substrates. Amongst them, crude glycerol, a low-cost by-product of the biodiesel industry, appears to be an interesting option for scaling up a sustainable single-cell oil production process. Adaptive laboratory evolution (ALE) is a powerful tool to force metabolic adaptations endowing tolerance to stressful environmental conditions, generating superior phenotypes with industrial relevance. RESULTS Y. lipolytica MUCL 28849 underwent ALE in a synthetic medium with increasing concentration of pure or crude glycerol as a stressing factor (9-20% v/v) for 520 generations. In one case of pure glycerol, chemical mutagenesis with ethyl methanesulfonate (EMS) was applied prior to ALE. Growth profile, biomass production and lipid content of 660 evolved strains (EVS), revealed 5 superior isolates; exhibiting from 1.9 to 3.6-fold increase of dry biomass and from 1.1 to 1.6-fold increase of lipid concentration compared to the parental strain, when grown in 15% v/v crude glycerol. NGS for differential gene expression analysis, showed induced expression in all EVS affecting nucleosomal structure and regulation of transcription. As strains differentiated, further changes accumulated in membrane transport and protein transport processes. Genes involved in glycerol catabolism and triacylglycerol biosynthesis were overexpressed in two EVS. Mismatches and gaps in the expressed sequences identified altered splicing and mutations in the EVS, with most of them, affecting different components of septin ring formation in the budding process. The selected YLE155 EVS, used for scale-up cultivation in a 3L benchtop bioreactor with 20% v/v crude glycerol, achieved extended exponential phase, twofold increase of dry biomass and lipid yields at 48 h, while citric acid secretion and glycerol consumption rates were 40% and 50% lower, respectively, compared to the parental strain, after 24 h of cultivation. CONCLUSION ALE and EMS-ALE under increasing concentrations of pure or crude glycerol generated novel Y. lipolytica strains with enhanced biomass and lipid content. Differential gene expression analysis and scale-up of YLE155, illustrated the potential of the evolved strains to serve as suitable "chassis" for rational engineering approaches towards both increased lipid accumulation, and production of high-added value compounds, through efficient utilization of crude glycerol.
Collapse
Affiliation(s)
- Asimina Tsirigka
- Laboratory of Natural Resources and Renewable Energies, Chemical Process and Energy Resources Institute, Centre for Research and Technology - Hellas, Thermi, Thessaloniki, Greece
- Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Theodosiou
- Institute of Applied Biosciences, Centre for Research and Technology - Hellas, Thermi, Thessaloniki, Greece
| | - Sotiris I Patsios
- Laboratory of Natural Resources and Renewable Energies, Chemical Process and Energy Resources Institute, Centre for Research and Technology - Hellas, Thermi, Thessaloniki, Greece
| | - Antiopi Tsoureki
- Institute of Applied Biosciences, Centre for Research and Technology - Hellas, Thermi, Thessaloniki, Greece
| | - Aggeliki Andreadelli
- Institute of Applied Biosciences, Centre for Research and Technology - Hellas, Thermi, Thessaloniki, Greece
| | - Elisavet Papa
- Institute of Applied Biosciences, Centre for Research and Technology - Hellas, Thermi, Thessaloniki, Greece
- Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
| | - Amalia Aggeli
- Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anastasios J Karabelas
- Laboratory of Natural Resources and Renewable Energies, Chemical Process and Energy Resources Institute, Centre for Research and Technology - Hellas, Thermi, Thessaloniki, Greece
| | - Antonios M Makris
- Institute of Applied Biosciences, Centre for Research and Technology - Hellas, Thermi, Thessaloniki, Greece.
| |
Collapse
|
25
|
Theodosiou E. Engineering Strategies for Efficient Bioconversion of Glycerol to Value-Added Products by Yarrowia lipolytica. Catalysts 2023. [DOI: 10.3390/catal13040657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
Yarrowia lipolytica has been a valuable biotechnological workhorse for the production of commercially important biochemicals for over 70 years. The knowledge gained so far on the native biosynthetic pathways, as well as the availability of numerous systems and synthetic biology tools, enabled not only the regulation and the redesign of the existing metabolic pathways, but also the introduction of novel synthetic ones; further consolidating the position of the yeast in industrial biotechnology. However, for the development of competitive and sustainable biotechnological production processes, bioengineering should be reinforced by bioprocess optimization strategies. Although there are many published reviews on the bioconversion of various carbon sources to value-added products by Yarrowia lipolytica, fewer works have focused on reviewing up-to-date strain, medium, and process engineering strategies with an aim to emphasize the significance of integrated engineering approaches. The ultimate goal of this work is to summarize the necessary knowledge and inspire novel routes to manipulate at a systems level the yeast biosynthetic machineries by combining strain and bioprocess engineering. Due to the increasing surplus of biodiesel-derived waste glycerol and the favored glycerol-utilization metabolic pathways of Y. lipolytica over other carbon sources, the present review focuses on pure and crude glycerol-based biomanufacturing.
Collapse
|
26
|
Song Z, Lin W, Duan X, Song L, Wang C, Yang H, Lu X, Ji X, Tian Y, Liu H. Increased Cordycepin Production in Yarrowia lipolytica Using Combinatorial Metabolic Engineering Strategies. ACS Synth Biol 2023; 12:780-787. [PMID: 36791366 DOI: 10.1021/acssynbio.2c00570] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
As the first nucleoside antibiotic discovered in fungi, cordycepin, with its various biological activities, has wide applications. At present, cordycepin is mainly obtained from the natural fruiting bodies of Cordyceps militaris. However, due to long production periods, low yields, and low extraction efficiency, harvesting cordycepin from natural C. militaris is not ideal, making it difficult to meet market demands. In this study, an engineered Yarrowia lipolytica YlCor-18 strain, constructed by combining metabolic engineering strategies, achieved efficient de novo cordycepin production from glucose. First, the cordycepin biosynthetic pathway derived from C. militaris was introduced into Y. lipolytica. Furthermore, metabolic engineering strategies including promoter, protein, adenosine triphosphate, and precursor engineering were combined to enhance the synthetic ability of engineered strains of cordycepin. Fermentation conditions were also optimized, after which, the production titer and yields of cordycepin in the engineered strain YlCor-18 under fed-batch fermentation were improved to 4362.54 mg/L and 213.85 mg/g, respectively, after 168 h. This study demonstrates the potential of Y. lipolytica as a cell factory for cordycepin synthesis, which will serve as the model for the green biomanufacturing of other nucleoside antibiotics using artificial cell factories.
Collapse
Affiliation(s)
- Zeqi Song
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| | - Wenbo Lin
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| | - Xiyu Duan
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| | - Liping Song
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| | - Chong Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| | - Hui Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| | - Xiangyang Lu
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| | - Xiaojun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Yun Tian
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| | - Huhu Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| |
Collapse
|
27
|
Zhang TL, Yu HW, Ye LD. Metabolic Engineering of Yarrowia lipolytica for Terpenoid Production: Tools and Strategies. ACS Synth Biol 2023; 12:639-656. [PMID: 36867718 DOI: 10.1021/acssynbio.2c00569] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Terpenoids are a diverse group of compounds with isoprene units as basic building blocks. They are widely used in the food, feed, pharmaceutical, and cosmetic industries due to their diverse biological functions such as antioxidant, anticancer, and immune enhancement. With an increase in understanding the biosynthetic pathways of terpenoids and advances in synthetic biology techniques, microbial cell factories have been built for the heterologous production of terpenoids, with the oleaginous yeast Yarrowia lipolytica emerging as an outstanding chassis. In this paper, recent progress in the development of Y. lipolytica cell factories for terpenoid production with a focus on the advances in novel synbio tools and metabolic engineering strategies toward enhanced terpenoid biosynthesis is reviewed.
Collapse
Affiliation(s)
- Tang-Lei Zhang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, 310058 Hangzhou, China
| | - Hong-Wei Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, 310058 Hangzhou, China.,Zhejiang Key Laboratory of Smart Biomaterials, 310058 Hangzhou, China
| | - Li-Dan Ye
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, 310058 Hangzhou, China.,Zhejiang Key Laboratory of Smart Biomaterials, 310058 Hangzhou, China
| |
Collapse
|
28
|
Homologous High-Level Lipase and Single-Cell Protein Production with Engineered Yarrowia lipolytica via Scale-Up Fermentation for Industrial Applications. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Yarrowia lipolytica is a promising feed additives. Here, we aimed to produce extracellular lipases and single-cell proteins (SCPs) at high levels simultaneously through fed-batch fermentation of engineered Y. lipolytica. The parameters for 500 mL shake flask cultures were optimized with a single factorial design. The resultant activity of lipase reached 880.6 U/mL after 84 h of fermentation, and 32.0 g/L fermentation broth of dry SCP was obtained at 120 h. To attain high SCP and lipase productivity, the high-density fed-batch fermentation of Y. lipolytica was scaled up in 10 L, 30 L, and 100 L fermentors. Using glycerol as the sole carbon source, the lipase activity peaked to 8083.3 U/mL, and the final dry SCP weight was 183.1 g/L at 94.6 h in 10 L fermentors. The extracellular lipase activity and SCP weight reached 11,100.0 U/mL and 173.3 g of dry SCP/L at 136 h in 30 L fermentors, respectively. Following 136 h of fed-batch fermentation, the extracellular lipase activity and dry SCP weight reached 8532.0 U/mL and 170.3 g/L in 100 L fermentors, respectively. A balance between the lipase secretion and growth of Y. lipolytica recombinant strain was achieved, indicating that an efficient fermentation strategy could promote further scale-up for industrial SCP production from engineered Y. lipolytica.
Collapse
|
29
|
Park YK, Ledesma-Amaro R. What makes Yarrowia lipolytica well suited for industry? Trends Biotechnol 2023; 41:242-254. [PMID: 35940976 DOI: 10.1016/j.tibtech.2022.07.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/07/2022] [Accepted: 07/19/2022] [Indexed: 01/24/2023]
Abstract
Yarrowia lipolytica possesses natural and engineered traits that make it a good host for the industrial bioproduction of chemicals, fuels, foods, and pharmaceuticals. In recent years, academic and industrial researchers have assessed its potential, developed synthetic biology techniques, improved its features, scaled its processes, and identified its limitations. Both publications and patents related to Y. lipolytica have shown a drastic increase during the past decade. Here, we discuss the characteristics of this yeast that make it suitable for industry and the remaining challenges for its wider use at large scale. We present evidence herein that shows the importance and potential of Y. lipolytica in bioproduction such that it may soon be one of the preferred choices of industry.
Collapse
Affiliation(s)
- Young-Kyoung Park
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK; Department of Bioengineering, Imperial College London, London, UK
| | - Rodrigo Ledesma-Amaro
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK; Department of Bioengineering, Imperial College London, London, UK.
| |
Collapse
|
30
|
Zhu J, Gu Y, Yan Y, Ma J, Sun X, Xu P. Knocking out central metabolism genes to identify new targets and alternating substrates to improve lipid synthesis in Y. lipolytica. Front Bioeng Biotechnol 2023; 11:1098116. [PMID: 36714010 PMCID: PMC9880266 DOI: 10.3389/fbioe.2023.1098116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Introduction: Systematic gene knockout studies may offer us novel insights on cell metabolism and physiology. Specifically, the lipid accumulation mechanism at the molecular or cellular level is yet to be determined in the oleaginous yeast Y. lipolytica. Methods: Herein, we established ten engineered strains with the knockout of important genes involving in central carbon metabolism, NADPH generation, and fatty acid biosynthetic pathways. Results: Our result showed that NADPH sources for lipogenesis include the OxPP pathway, POM cycle, and a trans-mitochondrial isocitrate-α-oxoglutarate NADPH shuttle in Y. lipolytica. Moreover, we found that knockout of mitochondrial NAD+ isocitrate dehydrogenase IDH2 and overexpression of cytosolic NADP+ isocitrate dehydrogenase IDP2 could facilitate lipid synthesis. Besides, we also demonstrated that acetate is a more favorable carbon source for lipid synthesis when glycolysis step is impaired, indicating the evolutionary robustness of Y. lipolytica. Discussion: This systematic investigation of gene deletions and overexpression across various lipogenic pathways would help us better understand lipogenesis and engineer yeast factories to upgrade the lipid biomanufacturing platform.
Collapse
Affiliation(s)
- Jiang Zhu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Yang Gu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China,Department of Chemical, Biochemical and Environmental Engineering, University of MD, Baltimore County, Baltimore, MD, United States,*Correspondence: Yang Gu, ; Peng Xu,
| | - Yijing Yan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Jingbo Ma
- Department of Chemical, Biochemical and Environmental Engineering, University of MD, Baltimore County, Baltimore, MD, United States,College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, Anhui, China
| | - Xiaoman Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Peng Xu
- Department of Chemical, Biochemical and Environmental Engineering, University of MD, Baltimore County, Baltimore, MD, United States,Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong, China,The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, Israel,*Correspondence: Yang Gu, ; Peng Xu,
| |
Collapse
|
31
|
Optimization of Solvent Extraction of Lipids from Yarrowia lipolytica towards Industrial Applications. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation9010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Extraction of intracellular lipids of the oleaginous yeast Yarrowia lipolytica has been systematically studied aiming towards a sustainable extraction process for lipid recovery. Selection of suitable industrial (bulk) solvents and extraction parameters that lead to maximization of lipid recovery are significant issues to be addressed, with industrial applications motivating this study. Biomass from fermentation of Yarrowia lipolytica (MUCL 28849) was used in small laboratory tests to assess different solvent mixtures (i.e., methanol/hexane, isopropanol/hexane, and methanol/ethyl acetate), implementing a systematic design of experiments methodology to identify near-optimum values of key extraction variables (i.e., polar/non-polar ratio, vortex time, dry biomass/solvent ratio) in regard to lipid yield (g lipids/g dry biomass). The methanol/hexane mixture exhibited the highest extraction yield in a wide range of experimental conditions, resulting in the following optimum parameters: polar/non-polar ratio 3/5, vortex time 0.75 h, and dry biomass/solvent ratio 40. Extraction tests on a fifty-times-larger scale (in a Soxhlet apparatus employing the optimal extraction parameters) confirmed the optimization outcome by obtaining up to 27.6% lipids per dry biomass (L/DB), compared to 12.1% L/DB with the reference lipid extraction method employing chloroform/methanol. Assessment of lipid composition showed that unsaturated fatty acid recovery was favored by the methanol/hexane solvent. Fatty acid composition was not affected by the increase in Soxhlet reflux cycles, whilst the lipid yield was notably favored.
Collapse
|
32
|
Gordillo Sierra AR, Amador-Castro LF, Ramírez-Partida AE, García-Cayuela T, Carrillo-Nieves D, Alper HS. Valorization of Caribbean Sargassum biomass as a source of alginate and sugars for de novo biodiesel production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116364. [PMID: 36191503 DOI: 10.1016/j.jenvman.2022.116364] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Since 2011, a massive influx of pelagic brown algae Sargassum has invaded coastlines causing environmental and economic disaster. Valorizing this plentiful macroalgae can present much needed economic relief to the areas affected. Here the production of biodiesel and a high-value alginate stream using Sargassum biomass collected from the coast of Quintana Roo, Mexico is reported. Biomass was pretreated via AEA (Alginate Extraction Autohydrolysis) and enzymatic saccharification via fungal Solid State Fermentation, releasing 7 g/L total sugars. The sugar mixture was fermented using engineered Yarrowia lipolytica resulting in 0.35 g/L total lipid titer at the lab tube scale. Additionally, the capability of extracting 0.3875 g/g DW of a high-value, purified alginate stream from this material is demonstrated. The findings presented here are promising and suggest an opportunity for the optimization and scale up of a biodiesel production biorefinery for utilization of Sargassum seaweeds during seasons of high invasion.
Collapse
Affiliation(s)
- Angela R Gordillo Sierra
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, 78712, USA
| | - Luis Fernando Amador-Castro
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Carrillo Biorefinery Lab, Av. General Ramón Corona No. 2514, 45201, Zapopan, Jal., Mexico
| | - Andreé E Ramírez-Partida
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Carrillo Biorefinery Lab, Av. General Ramón Corona No. 2514, 45201, Zapopan, Jal., Mexico
| | - Tomás García-Cayuela
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Food and Biotech Lab, Av. General Ramón Corona No. 2514, 45201, Zapopan, Jal., Mexico
| | - Danay Carrillo-Nieves
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Carrillo Biorefinery Lab, Av. General Ramón Corona No. 2514, 45201, Zapopan, Jal., Mexico
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, 78712, USA; Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX, 78712, USA.
| |
Collapse
|
33
|
Lupish B, Hall J, Schwartz C, Ramesh A, Morrison C, Wheeldon I. Genome-wide CRISPR-Cas9 screen reveals a persistent null-hyphal phenotype that maintains high carotenoid production in Yarrowia lipolytica. Biotechnol Bioeng 2022; 119:3623-3631. [PMID: 36042688 PMCID: PMC9825908 DOI: 10.1002/bit.28219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 01/11/2023]
Abstract
Yarrowia lipolytica is a metabolic engineering host of growing industrial interest due to its ability to metabolize hydrocarbons, fatty acids, glycerol, and other renewable carbon sources. This dimorphic yeast undergoes a stress-induced transition to a multicellular hyphal state, which can negatively impact biosynthetic activity, reduce oxygen and nutrient mass transfer in cell cultures, and increase culture viscosity. Identifying mutations that prevent the formation of hyphae would help alleviate the bioprocess challenges that they create. To this end, we conducted a genome-wide CRISPR screen to identify genetic knockouts that prevent the transition to hyphal morphology. The screen identified five mutants with a null-hyphal phenotype-ΔRAS2, ΔRHO5, ΔSFL1, ΔSNF2, and ΔPAXIP1. Of these hits, only ΔRAS2 suppressed hyphal formation in an engineered lycopene production strain over a multiday culture. The RAS2 knockout was also the only genetic disruption characterized that did not affect lycopene production, producing more than 5 mg L-1 OD-1 from a heterologous pathway with enhanced carbon flux through the mevalonate pathway. These data suggest that a ΔRAS2 mutant of Y. lipolytica could prove useful in engineering a metabolic engineering host of the production of carotenoids and other biochemicals.
Collapse
Affiliation(s)
- Brian Lupish
- Department of BioengineeringUniversity of CaliforniaRiversideCaliforniaUSA
| | - Jordan Hall
- Department of Chemical and Environmental EngineeringUniversity of CaliforniaRiversideCaliforniaUSA
| | - Cory Schwartz
- Department of Chemical and Environmental EngineeringUniversity of CaliforniaRiversideCaliforniaUSA,Present address:
iBio Inc.San DiegoCaliforniaUSA
| | - Adithya Ramesh
- Department of Chemical and Environmental EngineeringUniversity of CaliforniaRiversideCaliforniaUSA
| | - Clifford Morrison
- Department of Chemical and Environmental EngineeringUniversity of CaliforniaRiversideCaliforniaUSA
| | - Ian Wheeldon
- Department of Chemical and Environmental EngineeringUniversity of CaliforniaRiversideCaliforniaUSA,Center for Industrial BiotechnologyUniversity of CaliforniaRiversideCaliforniaUSA
| |
Collapse
|
34
|
Characterization of the endogenous promoters in Yarrowia lipolytica for the biomanufacturing applications. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
35
|
Liu C, Li S. Engineered biosynthesis of plant polyketides by type III polyketide synthases in microorganisms. Front Bioeng Biotechnol 2022; 10:1017190. [PMID: 36312548 PMCID: PMC9614166 DOI: 10.3389/fbioe.2022.1017190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/04/2022] [Indexed: 11/28/2022] Open
Abstract
Plant specialized metabolites occupy unique therapeutic niches in human medicine. A large family of plant specialized metabolites, namely plant polyketides, exhibit diverse and remarkable pharmaceutical properties and thereby great biomanufacturing potential. A growing body of studies has focused on plant polyketide synthesis using plant type III polyketide synthases (PKSs), such as flavonoids, stilbenes, benzalacetones, curcuminoids, chromones, acridones, xanthones, and pyrones. Microbial expression of plant type III PKSs and related biosynthetic pathways in workhorse microorganisms, such as Saccharomyces cerevisiae, Escherichia coli, and Yarrowia lipolytica, have led to the complete biosynthesis of multiple plant polyketides, such as flavonoids and stilbenes, from simple carbohydrates using different metabolic engineering approaches. Additionally, advanced biosynthesis techniques led to the biosynthesis of novel and complex plant polyketides synthesized by diversified type III PKSs. This review will summarize efforts in the past 10 years in type III PKS-catalyzed natural product biosynthesis in microorganisms, especially the complete biosynthesis strategies and achievements.
Collapse
Affiliation(s)
| | - Sijin Li
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| |
Collapse
|
36
|
Yang R, Chen Z, Hu P, Zhang S, Luo G. Two-stage fermentation enhanced single-cell protein production by Yarrowia lipolytica from food waste. BIORESOURCE TECHNOLOGY 2022; 361:127677. [PMID: 35878768 DOI: 10.1016/j.biortech.2022.127677] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
The resource utilization of food waste is crucial, and single-cell protein (SCP) is attracting much attention due to its high value. This study aimed to convert food waste to SCP by Yarrowia lipolytica. It was found the chemical oxygen demand (COD) removal rate 77 ± 1.70% was achieved at 30 g COD/L with the protein content of biomass only 24.1 ± 0.4% w/w biomass dry weight (BDW) in one-stage fermentation system. However, the protein content was significantly increased to 38.8 ± 0.2% w/w BDW with the COD removal rate 85.5 ± 0.7% by a two-stage fermentation process, where the food waste was firstly anaerobically fermented to volatile fatty acids and then converted to SCP with Yarrowia lipolytica. Transcriptomic analysis showed that the expression of SCP-producing genes including ATP citrate (pro-S)-lyase and fumarate hydratase class II were up-regulated in the two-stage transformation, resulting in more organic degradation for SCP synthesis.
Collapse
Affiliation(s)
- Rui Yang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China
| | - Zheng Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China
| | - Peng Hu
- Shanghai GTL Biotech Co., Ltd., 1688 North Guoquan Road, Shanghai 200438, China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
37
|
Cho JS, Kim GB, Eun H, Moon CW, Lee SY. Designing Microbial Cell Factories for the Production of Chemicals. JACS AU 2022; 2:1781-1799. [PMID: 36032533 PMCID: PMC9400054 DOI: 10.1021/jacsau.2c00344] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 05/24/2023]
Abstract
The sustainable production of chemicals from renewable, nonedible biomass has emerged as an essential alternative to address pressing environmental issues arising from our heavy dependence on fossil resources. Microbial cell factories are engineered microorganisms harboring biosynthetic pathways streamlined to produce chemicals of interests from renewable carbon sources. The biosynthetic pathways for the production of chemicals can be defined into three categories with reference to the microbial host selected for engineering: native-existing pathways, nonnative-existing pathways, and nonnative-created pathways. Recent trends in leveraging native-existing pathways, discovering nonnative-existing pathways, and designing de novo pathways (as nonnative-created pathways) are discussed in this Perspective. We highlight key approaches and successful case studies that exemplify these concepts. Once these pathways are designed and constructed in the microbial cell factory, systems metabolic engineering strategies can be used to improve the performance of the strain to meet industrial production standards. In the second part of the Perspective, current trends in design tools and strategies for systems metabolic engineering are discussed with an eye toward the future. Finally, we survey current and future challenges that need to be addressed to advance microbial cell factories for the sustainable production of chemicals.
Collapse
Affiliation(s)
- Jae Sung Cho
- Metabolic
and Biomolecular Engineering National Research Laboratory and Systems
Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative
Laboratory, Department of Chemical and Biomolecular Engineering (BK21
four), Korea Advanced Institute of Science
and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST
Institute for the BioCentury and KAIST Institute for Artificial Intelligence, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 34141, Republic of Korea
- BioProcess
Engineering Research Center and BioInformatics Research Center, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 34141, Republic of Korea
| | - Gi Bae Kim
- Metabolic
and Biomolecular Engineering National Research Laboratory and Systems
Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative
Laboratory, Department of Chemical and Biomolecular Engineering (BK21
four), Korea Advanced Institute of Science
and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST
Institute for the BioCentury and KAIST Institute for Artificial Intelligence, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 34141, Republic of Korea
| | - Hyunmin Eun
- Metabolic
and Biomolecular Engineering National Research Laboratory and Systems
Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative
Laboratory, Department of Chemical and Biomolecular Engineering (BK21
four), Korea Advanced Institute of Science
and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST
Institute for the BioCentury and KAIST Institute for Artificial Intelligence, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 34141, Republic of Korea
| | - Cheon Woo Moon
- Metabolic
and Biomolecular Engineering National Research Laboratory and Systems
Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative
Laboratory, Department of Chemical and Biomolecular Engineering (BK21
four), Korea Advanced Institute of Science
and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST
Institute for the BioCentury and KAIST Institute for Artificial Intelligence, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 34141, Republic of Korea
| | - Sang Yup Lee
- Metabolic
and Biomolecular Engineering National Research Laboratory and Systems
Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative
Laboratory, Department of Chemical and Biomolecular Engineering (BK21
four), Korea Advanced Institute of Science
and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST
Institute for the BioCentury and KAIST Institute for Artificial Intelligence, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 34141, Republic of Korea
- BioProcess
Engineering Research Center and BioInformatics Research Center, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
38
|
Dobrowolski A, Nawijn W, Mirończuk AM. Brown seaweed hydrolysate as a promising growth substrate for biomass and lipid synthesis of the yeast yarrowia lipolytica. Front Bioeng Biotechnol 2022; 10:944228. [PMID: 36061426 PMCID: PMC9428158 DOI: 10.3389/fbioe.2022.944228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/29/2022] [Indexed: 11/21/2022] Open
Abstract
Biomass of the brown algae Fucus vesiculosus and Saccharina latissima is a promising, renewable feedstock because of the high growth rate, accessibility and content of glucose and mannitol. Saccharification of seaweeds is a simple process due to the lack of lignocellulose in the cell wall. The high content of glucose and mannitol makes these seaweeds an attractive feedstock for lipid production in the yeast Yarrowia lipolytica. This study demonstrated that hydrolysates of brown algae biomass can be applied as a substrate for synthesis of yeast biomass and lipids without any supplementation. To increase the lipid titer in yeast biomass, we employed an engineered strain of Y. lipolytica overexpressing DGA1/DGA2. In consequence, the C/N ratio has a lower impact on lipid synthesis. Moreover, the applied substrates allowed for high synthesis of unsaturated fatty acids (UFA); the level exceeded 90% in the fatty acid pool. Oleic (C18:1) and linoleic acids (C18:2) achieved the highest content. The study showed that Y. lipolytica is able to grow on the seaweed hydrolysate and produces a high content of UFA in the biomass.
Collapse
|
39
|
Malcı K, Watts E, Roberts TM, Auxillos JY, Nowrouzi B, Boll HO, Nascimento CZSD, Andreou A, Vegh P, Donovan S, Fragkoudis R, Panke S, Wallace E, Elfick A, Rios-Solis L. Standardization of Synthetic Biology Tools and Assembly Methods for Saccharomyces cerevisiae and Emerging Yeast Species. ACS Synth Biol 2022; 11:2527-2547. [PMID: 35939789 PMCID: PMC9396660 DOI: 10.1021/acssynbio.1c00442] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
As redesigning organisms using engineering principles
is one of
the purposes of synthetic biology (SynBio), the standardization of
experimental methods and DNA parts is becoming increasingly a necessity.
The synthetic biology community focusing on the engineering of Saccharomyces cerevisiae has been in the foreground in this
area, conceiving several well-characterized SynBio toolkits widely
adopted by the community. In this review, the molecular methods and
toolkits developed for S. cerevisiae are discussed
in terms of their contributions to the required standardization efforts.
In addition, the toolkits designed for emerging nonconventional yeast
species including Yarrowia lipolytica, Komagataella
phaffii, and Kluyveromyces marxianus are
also reviewed. Without a doubt, the characterized DNA parts combined
with the standardized assembly strategies highlighted in these toolkits
have greatly contributed to the rapid development of many metabolic
engineering and diagnostics applications among others. Despite the
growing capacity in deploying synthetic biology for common yeast genome
engineering works, the yeast community has a long journey to go to
exploit it in more sophisticated and delicate applications like bioautomation.
Collapse
Affiliation(s)
- Koray Malcı
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Kings Buildings, EH9 3BF Edinburgh, United Kingdom.,Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Kings Buildings, EH9 3BD Edinburgh, United Kingdom
| | - Emma Watts
- School of Biological Sciences, University of Edinburgh, Kings Buildings, EH9 3JW Edinburgh, United Kingdom
| | | | - Jamie Yam Auxillos
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Kings Buildings, EH9 3BD Edinburgh, United Kingdom.,Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Kings Buildings, EH9 3FF Edinburgh, United Kingdom
| | - Behnaz Nowrouzi
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Kings Buildings, EH9 3BF Edinburgh, United Kingdom.,Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Kings Buildings, EH9 3BD Edinburgh, United Kingdom
| | - Heloísa Oss Boll
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília, Federal District 70910-900, Brazil
| | | | - Andreas Andreou
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Kings Buildings, EH9 3BD Edinburgh, United Kingdom
| | - Peter Vegh
- Edinburgh Genome Foundry, University of Edinburgh, Kings Buildings, Edinburgh EH9 3BF, United Kingdom
| | - Sophie Donovan
- Edinburgh Genome Foundry, University of Edinburgh, Kings Buildings, Edinburgh EH9 3BF, United Kingdom
| | - Rennos Fragkoudis
- Edinburgh Genome Foundry, University of Edinburgh, Kings Buildings, Edinburgh EH9 3BF, United Kingdom
| | - Sven Panke
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Edward Wallace
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Kings Buildings, EH9 3BD Edinburgh, United Kingdom.,Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Kings Buildings, EH9 3FF Edinburgh, United Kingdom
| | - Alistair Elfick
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Kings Buildings, EH9 3BF Edinburgh, United Kingdom.,Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Kings Buildings, EH9 3BD Edinburgh, United Kingdom
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Kings Buildings, EH9 3BF Edinburgh, United Kingdom.,Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Kings Buildings, EH9 3BD Edinburgh, United Kingdom.,School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|
40
|
Li W, Cui L, Mai J, Shi TQ, Lin L, Zhang ZG, Ledesma-Amaro R, Dong W, Ji XJ. Advances in Metabolic Engineering Paving the Way for the Efficient Biosynthesis of Terpenes in Yeasts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9246-9261. [PMID: 35854404 DOI: 10.1021/acs.jafc.2c03917] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Terpenes are a large class of secondary metabolites with diverse structures and functions that are commonly used as valuable raw materials in food, cosmetics, and medicine. With the development of metabolic engineering and emerging synthetic biology tools, these important terpene compounds can be sustainably produced using different microbial chassis. Currently, yeasts such as Saccharomyces cerevisiae and Yarrowia lipolytica have received extensive attention as potential hosts for the production of terpenes due to their clear genetic background and endogenous mevalonate pathway. In this review, we summarize the natural terpene biosynthesis pathways and various engineering strategies, including enzyme engineering, pathway engineering, and cellular engineering, to further improve the terpene productivity and strain stability in these two widely used yeasts. In addition, the future prospects of yeast-based terpene production are discussed in light of the current progress, challenges, and trends in this field. Finally, guidelines for future studies are also emphasized.
Collapse
Affiliation(s)
- Wenjuan Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Liuwei Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Jie Mai
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210046, People's Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Zhi-Gang Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| |
Collapse
|
41
|
Saravanan A, Kumar PS, Ramesh B, Srinivasan S. Removal of toxic heavy metals using genetically engineered microbes: Molecular tools, risk assessment and management strategies. CHEMOSPHERE 2022; 298:134341. [PMID: 35307383 DOI: 10.1016/j.chemosphere.2022.134341] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/03/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
The direct release of industrial effluent into the water and other anthropogenic activities causes water pollution. Heavy metal ions are the primary contaminant in the industrial effluents which are exceptionally toxic at low concentrations, terribly disturb the endurance equilibrium of activities in the eco-system and be remarkably hazardous to human health. Different conventional treatment methodologies were utilized for the removal of toxic pollutants from the contaminated water which has several drawbacks such as cost-ineffective and lower efficiency. Recently, genetically modified micro-organisms (GMMs) stand-out for the removal of toxic heavy metals are viewed as an economically plausible and environmentally safe technique. GMMs are microorganisms whose genetic material has been changed utilizing genetic engineering techniques that exhibit enhanced removal efficiency in comparison with the other treatment methodologies. The present review comments the GMMs such as bacteria, algae and fungi and their potential for the removal of toxic heavy metals. This review provides current aspects of different advanced molecular tools which have been used to manipulate micro-organisms through genetic expression for the breakdown of metal compounds in polluted areas. The strategies, major limitations and challenges for genetic engineering of micro-organisms have been reviewed. The current review investigates the approaches working on utilizing genetically modified micro-organisms and effective removal techniques.
Collapse
Affiliation(s)
- A Saravanan
- Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - B Ramesh
- Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - S Srinivasan
- Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| |
Collapse
|
42
|
Cao M, Tran VG, Qin J, Olson A, Mishra S, Schultz JC, Huang C, Xie D, Zhao H. Metabolic engineering of oleaginous yeast Rhodotorula toruloides for overproduction of triacetic acid lactone. Biotechnol Bioeng 2022; 119:2529-2540. [PMID: 35701887 PMCID: PMC9540541 DOI: 10.1002/bit.28159] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/16/2022] [Accepted: 06/12/2022] [Indexed: 12/19/2022]
Abstract
The plant‐sourced polyketide triacetic acid lactone (TAL) has been recognized as a promising platform chemical for the biorefinery industry. However, its practical application was rather limited due to low natural abundance and inefficient cell factories for biosynthesis. Here, we report the metabolic engineering of oleaginous yeast Rhodotorula toruloides for TAL overproduction. We first introduced a 2‐pyrone synthase gene from Gerbera hybrida (GhPS) into R. toruloides and investigated the effects of different carbon sources on TAL production. We then systematically employed a variety of metabolic engineering strategies to increase the flux of acetyl‐CoA by enhancing its biosynthetic pathways and disrupting its competing pathways. We found that overexpression of ATP‐citrate lyase (ACL1) improved TAL production by 45% compared to the GhPS overexpressing strain, and additional overexpression of acetyl‐CoA carboxylase (ACC1) further increased TAL production by 29%. Finally, we characterized the resulting strain I12‐ACL1‐ACC1 using fed‐batch bioreactor fermentation in glucose or oilcane juice medium with acetate supplementation and achieved a titer of 28 or 23 g/L TAL, respectively. This study demonstrates that R. toruloides is a promising host for the production of TAL and other acetyl‐CoA‐derived polyketides from low‐cost carbon sources.
Collapse
Affiliation(s)
- Mingfeng Cao
- Department of Chemical and Biomolecular Engineering, US Department of Energy Center for Bioenergy and Bioproducts Innovation (CABBI), Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Vinh G Tran
- Department of Chemical and Biomolecular Engineering, US Department of Energy Center for Bioenergy and Bioproducts Innovation (CABBI), Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jiansong Qin
- Department of Chemical Engineering, University of Massachusetts-Lowell, Lowell, Massachusetts, USA
| | - Andrew Olson
- Department of Chemical Engineering, University of Massachusetts-Lowell, Lowell, Massachusetts, USA
| | - Shekhar Mishra
- Department of Chemical and Biomolecular Engineering, US Department of Energy Center for Bioenergy and Bioproducts Innovation (CABBI), Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - John C Schultz
- Department of Chemical and Biomolecular Engineering, US Department of Energy Center for Bioenergy and Bioproducts Innovation (CABBI), Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Chunshuai Huang
- Department of Chemical and Biomolecular Engineering, US Department of Energy Center for Bioenergy and Bioproducts Innovation (CABBI), Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Dongming Xie
- Department of Chemical Engineering, University of Massachusetts-Lowell, Lowell, Massachusetts, USA
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, US Department of Energy Center for Bioenergy and Bioproducts Innovation (CABBI), Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Departments of Chemistry, Biochemistry, and Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
43
|
Zhang XY, Li B, Huang BC, Wang FB, Zhang YQ, Zhao SG, Li M, Wang HY, Yu XJ, Liu XY, Jiang J, Wang ZP. Production, Biosynthesis, and Commercial Applications of Fatty Acids From Oleaginous Fungi. Front Nutr 2022; 9:873657. [PMID: 35694158 PMCID: PMC9176664 DOI: 10.3389/fnut.2022.873657] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/31/2022] [Indexed: 12/18/2022] Open
Abstract
Oleaginous fungi (including fungus-like protists) are attractive in lipid production due to their short growth cycle, large biomass and high yield of lipids. Some typical oleaginous fungi including Galactomyces geotrichum, Thraustochytrids, Mortierella isabellina, and Mucor circinelloides, have been well studied for the ability to accumulate fatty acids with commercial application. Here, we review recent progress toward fermentation, extraction, of fungal fatty acids. To reduce cost of the fatty acids, fatty acid productions from raw materials were also summarized. Then, the synthesis mechanism of fatty acids was introduced. We also review recent studies of the metabolic engineering strategies have been developed as efficient tools in oleaginous fungi to overcome the biochemical limit and to improve production efficiency of the special fatty acids. It also can be predictable that metabolic engineering can further enhance biosynthesis of fatty acids and change the storage mode of fatty acids.
Collapse
Affiliation(s)
- Xin-Yue Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Bing Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Bei-Chen Huang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Feng-Biao Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Yue-Qi Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Shao-Geng Zhao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Min Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Hai-Ying Wang
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Xin-Jun Yu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Xiao-Yan Liu
- Jiangsu Key Laboratory for Biomass-Based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, China
| | - Jing Jiang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Zhi-Peng Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
44
|
Wang Z, Yan Y, Zhang H. A Single-Component Blue Light-Induced System Based on EL222 in Yarrowia lipolytica. Int J Mol Sci 2022; 23:ijms23116344. [PMID: 35683022 PMCID: PMC9181742 DOI: 10.3390/ijms23116344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/20/2022] [Accepted: 06/02/2022] [Indexed: 01/27/2023] Open
Abstract
Optogenetics has the advantages of a fast response time, reversibility, and high spatial and temporal resolution, which make it desirable in the metabolic engineering of chassis cells. In this study, a light-induced expression system of Yarrowia lipolytica was constructed, which successfully achieved the synthesis and functional verification of Bleomycin resistance protein (BleoR). The core of the blue light-induced system, the light-responsive element (TF), is constructed based on the blue photosensitive protein EL222 and the transcription activator VP16. The results show that the light-induced sensor based on TF, upstream activation sequence (C120)5, and minimal promoter CYC102 can respond to blue light and initiate the expression of GFPMut3 report gene. With four copies of the responsive promoter and reporter gene assembled, they can produce a 128.5-fold higher fluorescent signal than that under dark conditions after 8 h of induction. The effects of light dose and periodicity on this system were investigated, which proved that the system has good spatial and temporal controllability. On this basis, the light-controlled system was used for the synthesis of BleoR to realize the expression and verification of functional protein. These results demonstrated that this system has the potential for the transcriptional regulation of target genes, construction of large-scale synthetic networks, and overproduction of the desired product.
Collapse
|
45
|
Park H, Lee D, Kim JE, Park S, Park JH, Ha CW, Baek M, Yoon SH, Park KH, Lee P, Hahn JS. Efficient production of retinol in Yarrowia lipolytica by increasing stability using antioxidant and detergent extraction. Metab Eng 2022; 73:26-37. [PMID: 35671979 DOI: 10.1016/j.ymben.2022.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/28/2022]
Abstract
The demand for bio-based retinol (vitamin A) is currently increasing, however its instability represents a major bottleneck in microbial production. Here, we developed an efficient method to selectively produce retinol in Yarrowia lipolytica. The β-carotene 15,15'-dioxygenase (BCO) cleaves β-carotene into retinal, which is reduced to retinol by retinol dehydrogenase (RDH). Therefore, to produce retinol, we first generated β-carotene-producing strain based on a high-lipid-producer via overexpressing genes including heterologous β-carotene biosynthetic genes, GGS1F43I mutant of endogenous geranylgeranyl pyrophosphate synthase isolated by directed evolution, and FAD1 encoding flavin adenine dinucleotide synthetase, while deleting several genes previously known to be beneficial for carotenoid production. To produce retinol, 11 copies of BCO gene from marine bacterium 66A03 (Mb.Blh) were integrated into the rDNA sites of the β-carotene overproducer. The resulting strain produced more retinol than retinal, suggesting strong endogenous promiscuous RDH activity in Y. lipolytica. The introduction of Mb.BCO led to a considerable reduction in β-carotene level, but less than 5% of the consumed β-carotene could be detected in the form of retinal or retinol, implying severe degradation of the produced retinoids. However, addition of the antioxidant butylated hydroxytoluene (BHT) led to a >20-fold increase in retinol production, suggesting oxidative damage is the main cause of intracellular retinol degradation. Overexpression of GSH2 encoding glutathione synthetase further improved retinol production. Raman imaging revealed co-localization of retinol with lipid droplets, and extraction of retinol using Tween 80 was effective in improving retinol production. By combining BHT treatment and extraction using Tween 80, the final strain CJ2104 produced 4.86 g/L retinol and 0.26 g/L retinal in fed-batch fermentation in a 5-L bioreactor, which is the highest retinol production titer ever reported. This study demonstrates that Y. lipolytica is a suitable host for the industrial production of bio-based retinol.
Collapse
Affiliation(s)
- Hyemin Park
- Bio Research Institutes, CJ CheilJedang, Suwon, 16495, South Korea
| | - Dongpil Lee
- Bio Research Institutes, CJ CheilJedang, Suwon, 16495, South Korea
| | - Jae-Eung Kim
- Bio Research Institutes, CJ CheilJedang, Suwon, 16495, South Korea
| | - Seonmi Park
- Bio Research Institutes, CJ CheilJedang, Suwon, 16495, South Korea
| | - Joo Hyun Park
- Bio Research Institutes, CJ CheilJedang, Suwon, 16495, South Korea
| | - Cheol Woong Ha
- Bio Research Institutes, CJ CheilJedang, Suwon, 16495, South Korea
| | - Minji Baek
- Bio Research Institutes, CJ CheilJedang, Suwon, 16495, South Korea
| | - Seok-Hwan Yoon
- Bio Research Institutes, CJ CheilJedang, Suwon, 16495, South Korea
| | - Kwang Hyun Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Peter Lee
- Bio Research Institutes, CJ CheilJedang, Suwon, 16495, South Korea.
| | - Ji-Sook Hahn
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
46
|
Wang Y, Liu X, Chen B, Liu W, Guo Z, Liu X, Zhu X, Liu J, Zhang J, Li J, Zhang L, Gao Y, Zhang G, Wang Y, Choudhary MI, Yang S, Jiang H. Metabolic engineering of Yarrowia lipolytica for scutellarin production. Synth Syst Biotechnol 2022; 7:958-964. [PMID: 35756963 PMCID: PMC9184295 DOI: 10.1016/j.synbio.2022.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/07/2023] Open
Abstract
Scutellarin related drugs have superior therapeutic effects on cerebrovascular and cardiovascular diseases. Here, an optimal biosynthetic pathway for scutellarin was constructed in Yarrowia lipolytica platform due to its excellent metabolic potential. By integrating multi-copies of core genes from different species, the production of scutellarin was increased from 15.11 mg/L to 94.79 mg/L and the ratio of scutellarin to the main by-product was improved about 110-fold in flask condition. Finally, the production of scutellarin was improved 23-fold and reached to 346 mg/L in fed-batch bioreactor, which was the highest reported titer for de novo production of scutellarin in microbes. Our results represent a solid basis for further production of natural products on unconventional yeasts and have a potential of industrial implementation.
Collapse
Affiliation(s)
- Yina Wang
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Yunnan, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Yunnan, Kunming, 650201, China
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Xiaonan Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- Corresponding author. Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| | - Bihuan Chen
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Yunnan, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Yunnan, Kunming, 650201, China
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Wei Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei, 430023, China
| | - Zhaokuan Guo
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Yunnan, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Yunnan, Kunming, 650201, China
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Xiangyu Liu
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Yunnan, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Yunnan, Kunming, 650201, China
| | - Xiaoxi Zhu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Jiayu Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Jin Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Jing Li
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Lei Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei, 430023, China
| | - Yadi Gao
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Guanghui Zhang
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Yunnan, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Yunnan, Kunming, 650201, China
| | - Yan Wang
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - M. Iqbal Choudhary
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Shengchao Yang
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Yunnan, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Yunnan, Kunming, 650201, China
- Corresponding author. National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Yunnan, Kunming, 650201, China.
| | - Huifeng Jiang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- Corresponding author. Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| |
Collapse
|
47
|
Wang K, Shi TQ, Wang J, Wei P, Ledesma-Amaro R, Ji XJ. Engineering the Lipid and Fatty Acid Metabolism in Yarrowia lipolytica for Sustainable Production of High Oleic Oils. ACS Synth Biol 2022; 11:1542-1554. [PMID: 35311250 DOI: 10.1021/acssynbio.1c00613] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Oleic acid is widely applied in the chemical, material, nutritional, and pharmaceutical industries. However, the current production of oleic acid via high oleic plant oils is limited by the long growth cycle and climatic constraints. Moreover, the global demand for high oleic plant oils, especially the palm oil, has emerged as the driver of tropical deforestation causing tropical rainforest destruction, climate change, and biodiversity loss. In the present study, an alternative and sustainable strategy for high oleic oil production was established by reprogramming the metabolism of the oleaginous yeast Yarrowia lipolytica using a two-layer "push-pull-block" strategy. Specifically, the fatty acid synthesis pathway was first engineered to increase oleic acid proportion by altering the fatty acid profiles. Then, the content of storage oils containing oleic acid was boosted by engineering the synthesis and degradation pathways of triacylglycerides. The strain resulting from this two-layer engineering strategy produced the highest titer of high oleic microbial oil reaching 56 g/L with 84% oleic acid in fed-batch fermentation, representing a remarkable improvement of a 110-fold oil titer and 2.24-fold oleic acid proportion compared with the starting strain. This alternative and sustainable method for high oleic oil production shows the potential of substitute planting.
Collapse
Affiliation(s)
- Kaifeng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210046, People’s Republic of China
| | - Jinpeng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
| | - Ping Wei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, U.K
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
| |
Collapse
|
48
|
Amaradio MN, Ojha V, Jansen G, Gulisano M, Costanza J, Nicosia G. Pareto Optimal Metabolic Engineering for the Growth-coupled Overproduction of Sustainable Chemicals. Biotechnol Bioeng 2022; 119:1890-1902. [PMID: 35419827 PMCID: PMC9321710 DOI: 10.1002/bit.28103] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022]
Abstract
Our research aims to help industrial biotechnology develop a sustainable economy using green technology based on microorganisms and synthetic biology through two case studies that improve metabolic capacity in yeast models Yarrowia lipolytica (Y. lipolytica) and Saccharomyces cerevisiae (S. cerevisiae). We aim to increase the production capacity of beta‐carotene (β‐carotene) and succinic acid, which are among the highest market demands due to their versatile use in numerous consumer products. We performed simulations to identify in silico ranking of strains based on multiple objectives: the growth rate of yeast microorganisms, the number of used chromosomes, and the production capability of β‐carotene (for Y. lipolytica) and succinate (for S. cerevisiae). Our multiobjective optimization methodology identified notable gene deletions by searching a vast solution space to highlight near‐optimal strains on Pareto Fronts, balancing the above‐cited three objectives. Moreover, preserving the metabolic constraints and the essential genes, this study produced robust results: seven significant strains of Y. lipolytica and seven strains of S. cerevisiae. We examined gene knockout to study the function of genes and pathways. In fact, by studying the frequently silenced genes, we found that when the GPH1 gene is knocked out in S. cerevisiae, the isocitrate lyase enzyme is activated, which converts the isocitrate into succinate. Our goals are to simplify and facilitate the in vitro processes. Hence, we present strains with the least possible number of knockout genes and solutions in which the genes are turned off on the same chromosome. Therefore, we present results where the constraints mentioned above are met, like the strains where only two genes are switched off and other strains where half of the knockout genes are on the same chromosome. This study offers solutions for developing an efficient in vitro mutagenesis for microorganisms and demonstrates the efficiency of multiobjective optimization in automatizing metabolic engineering processes.
Collapse
Affiliation(s)
- Matteo N Amaradio
- Department of Biomedical & Biotechnological Sciences, University of Catania, Catania, Italy
| | - Varun Ojha
- Department of Computer Science, University of Reading, Reading, United Kingdom
| | - Giorgio Jansen
- Department of Biomedical & Biotechnological Sciences, University of Catania, Catania, Italy.,Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Massimo Gulisano
- Department of Drug Science, University of Catania, Catania, Italy
| | - Jole Costanza
- National Institute of Molecular Genetics, Milan, Italy
| | - Giuseppe Nicosia
- Department of Biomedical & Biotechnological Sciences, University of Catania, Catania, Italy.,Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
49
|
Carotenoids and Their Biosynthesis in Fungi. Molecules 2022; 27:molecules27041431. [PMID: 35209220 PMCID: PMC8879039 DOI: 10.3390/molecules27041431] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 12/04/2022] Open
Abstract
Carotenoids represent a class of pigmented terpenoids. They are distributed in all taxonomic groups of fungi. Most of the fungal carotenoids differ in their chemical structures to those from other organisms. The general function of carotenoids in heterotrophic organisms is protection as antioxidants against reactive oxygen species generated by photosensitized reactions. Furthermore, carotenoids are metabolized to apocarotenoids by oxidative cleavage. This review presents the current knowledge on fungal-specific carotenoids, their occurrence in different taxonomic groups, and their biosynthesis and conversion into trisporic acids. The outline of the different pathways was focused on the reactions and genes involved in not only the known pathways, but also suggested the possible mechanisms of reactions, which may occur in several non-characterized pathways in different fungi. Finally, efforts and strategies for genetic engineering to enhance or establish pathways for the production of various carotenoids in carotenogenic or non-carotenogenic yeasts were highlighted, addressing the most-advanced producers of each engineered yeast, which offered the highest biotechnological potentials as production systems.
Collapse
|
50
|
Cui X, Ma X, Prather K, Zhou K. Controlling protein expression by using intron-aided promoters in Saccharomyces cerevisiae. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|