1
|
Gu S, Wu T, Zhao J, Sun T, Zhao Z, Zhang L, Li J, Tian C. Rewiring metabolic flux to simultaneously improve malate production and eliminate by-product succinate accumulation by Myceliophthora thermophila. Microb Biotechnol 2024; 17:e14410. [PMID: 38298109 PMCID: PMC10884987 DOI: 10.1111/1751-7915.14410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/07/2023] [Accepted: 01/05/2024] [Indexed: 02/02/2024] Open
Abstract
Although a high titre of malic acid is achieved by filamentous fungi, by-product succinic acid accumulation leads to a low yield of malic acid and is unfavourable for downstream processing. Herein, we conducted a series of metabolic rewiring strategies in a previously constructed Myceliophthora thermophila to successfully improve malate production and abolish succinic acid accumulation. First, a pyruvate carboxylase CgPYC variant with increased activity was obtained using a high-throughput system and introduced to improve malic acid synthesis. Subsequently, shifting metabolic flux to malate synthesis from mitochondrial metabolism by deleing mitochondrial carriers of pyruvate and malate, led to a 53.7% reduction in succinic acid accumulation. The acceleration of importing cytosolic succinic acid into the mitochondria for consumption further decreased succinic acid formation by 53.3%, to 2.12 g/L. Finally, the importer of succinic acid was discovered and used to eliminate by-product accumulation. In total, malic acid production was increased by 26.5%, relative to the start strain JG424, to 85.23 g/L and 89.02 g/L on glucose and Avicel, respectively, in the flasks. In a 5-L fermenter, the titre of malic acid reached 182.7 g/L using glucose and 115.8 g/L using raw corncob, without any by-product accumulation. This study would accelerate the industrial production of biobased malic acid from renewable plant biomass.
Collapse
Affiliation(s)
- Shuying Gu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of SciencesTianjinChina
- National Technology Innovation Center of Synthetic BiologyTianjinChina
| | - Taju Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of SciencesTianjinChina
- National Technology Innovation Center of Synthetic BiologyTianjinChina
- School of Life Science, Bengbu Medical CollegeBengbuChina
| | - Junqi Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of SciencesTianjinChina
- National Technology Innovation Center of Synthetic BiologyTianjinChina
| | - Tao Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of SciencesTianjinChina
- National Technology Innovation Center of Synthetic BiologyTianjinChina
| | - Zhen Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of SciencesTianjinChina
- National Technology Innovation Center of Synthetic BiologyTianjinChina
| | - Lu Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of SciencesTianjinChina
- National Technology Innovation Center of Synthetic BiologyTianjinChina
| | - Jingen Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of SciencesTianjinChina
- National Technology Innovation Center of Synthetic BiologyTianjinChina
| | - Chaoguang Tian
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of SciencesTianjinChina
- National Technology Innovation Center of Synthetic BiologyTianjinChina
| |
Collapse
|
2
|
Tong S, Chen W, Hong R, Chai M, Sun Y, Wang Q, Li D. Efficient Mycoprotein Production with Low CO 2 Emissions through Metabolic Engineering and Fermentation Optimization of Fusarium venenatum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:604-612. [PMID: 38153978 DOI: 10.1021/acs.jafc.3c08509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
The global protein shortage is intensifying, and promising means to ensure daily protein supply are desperately needed. The mycoprotein produced by Fusarium venenatum is a good alternative to animal/plant-derived protein. To comprehensively improve the mycoprotein synthesis, a stepwise strategy by blocking the byproduct ethanol synthesis and the gluconeogenesis pathway and by optimizing the fermentation medium was herein employed. Ultimately, compared to the wild-type strain, the synthesis rate, carbon conversion ratio, and protein content of mycoprotein produced from the engineered strain were increased by 57% (0.212 vs 0.135 g/L·h), 62% (0.351 vs 0.217 g/g), and 57% (61.9 vs 39.4%), respectively, accompanied by significant reductions in CO2 emissions. These results provide a referential strategy that could be useful for improving mycoprotein synthesis in other fungi; more importantly, the obtained high-mycoprotein-producing strain has the potential to promote the development of the edible protein industry and compensate for the gap in protein resources.
Collapse
Affiliation(s)
- Sheng Tong
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Innovation Centre for Synthetic Biology, Tianjin 300308, China
| | - Wuxi Chen
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Innovation Centre for Synthetic Biology, Tianjin 300308, China
| | - Ruru Hong
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Innovation Centre for Synthetic Biology, Tianjin 300308, China
| | - Mengdan Chai
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Innovation Centre for Synthetic Biology, Tianjin 300308, China
| | - Yuanxia Sun
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Innovation Centre for Synthetic Biology, Tianjin 300308, China
| | - Qinhong Wang
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Innovation Centre for Synthetic Biology, Tianjin 300308, China
| | - Demao Li
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Innovation Centre for Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
3
|
Wang Z, Chen J, Ding J, Han J, Shi L. GlMPC activated by GCN4 regulates secondary metabolism under nitrogen limitation conditions in Ganoderma lucidum. mBio 2023; 14:e0135623. [PMID: 37732773 PMCID: PMC10653791 DOI: 10.1128/mbio.01356-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/26/2023] [Indexed: 09/22/2023] Open
Abstract
IMPORTANCE Mitochondrial pyruvate carrier (MPC) is a pyruvate transporter that plays a crucial role in regulating the carbon metabolic flow and is considered an essential mechanism for microorganisms to adapt to environmental changes. However, it remains unclear how MPC responds to environmental stress in organisms. General control non-derepressible 4 (GCN4), a key regulator of nitrogen metabolism, plays a pivotal role in the growth and development of fungi. In this study, we report that GCN4 can directly bind to the promoter region and activate the expression of GlMPC, thereby regulating the tricarboxylic acid cycle and secondary metabolism under nitrogen limitation conditions in Ganoderma lucidum. These findings provide significant insights into the regulation of carbon and nitrogen metabolism in fungi, highlighting the critical role of GCN4 in coordinating metabolic adaptation to environmental stresses.
Collapse
Affiliation(s)
- Zi Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Juhong Chen
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Juan Ding
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jing Han
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Liang Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Wang S, Fang J, Li J, Wang S, Su P, Wan Y, Tao F, Sun Y. Identification of urine biomarkers associated with early puberty in children: An untargeted metabolomics analysis. Physiol Behav 2023; 270:114305. [PMID: 37507079 DOI: 10.1016/j.physbeh.2023.114305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/07/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
A trend toward earlier pubertal maturation in both sexes has been shown in many countries. Early puberty affects an increasing proportion of children for reasons that remain obscure. Novel candidate biomarkers are strongly needed. We sought to apply untargeted metabolomic profiling to identify triggering mechanisms and candidate biomarkers in children with early puberty. Participants aged 7 - 12 years old were recruited directly from two elementary schools of Bengbu, Anhui Province, China, from Feb 2021 to May 2021. Early puberty was determined by breast and testicular development at baseline (May 2021) and 6-month later. Ultra-high-performance liquid chromatography-based untargeted metabolomic profiling was performed on urine samples of children with early puberty and control subjects. Metabolomic profiling for early puberty in a sex dependent manner. For boys, we identified several perturbed pathways, including histidine metabolism, glycine, serine and threonine metabolism, and selenoamino acid metabolism, associated with early puberty. In contrast, there were differences in pyruvate metabolism, one carbon pool by folate, and D-glutamine and D-glutamate metabolism pathways in girls with early puberty compared with controls. In addition, 4-hydroxyhippuric acid and 5-methoxytryptophol were shown as potential independent diagnostic biomarker for early puberty in boys, 3-hydroxybenzoic acid and glutaminylproline were shown as early biomarker for early puberty in girls, achieving area under the ROC curve of 0.71 and 0.72 in discriminating early puberty boys, and 0.70 and 0.74 in discriminating early puberty girls from controls. Through metabolomic analysis, we have identified metabolic perturbations and potential biomarkers of early puberty.
Collapse
Affiliation(s)
- Shanshan Wang
- Department of Maternal, Child and Adolescent Health, Anhui Medical University School of Public Health, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Jiao Fang
- Department of Maternal, Child and Adolescent Health, Anhui Medical University School of Public Health, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Jing Li
- Department of Maternal, Child and Adolescent Health, Anhui Medical University School of Public Health, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Shihong Wang
- Department of Maternal, Child and Adolescent Health, Anhui Medical University School of Public Health, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Puyu Su
- Department of Maternal, Child and Adolescent Health, Anhui Medical University School of Public Health, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Yuhui Wan
- Department of Maternal, Child and Adolescent Health, Anhui Medical University School of Public Health, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, Anhui Medical University School of Public Health, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Ying Sun
- Department of Maternal, Child and Adolescent Health, Anhui Medical University School of Public Health, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
5
|
Zhang C, Ding D, Wang B, Wang Y, Li N, Li R, Yan Y, He J. Effect of Potato Glycoside Alkaloids on Energy Metabolism of Fusarium solani. J Fungi (Basel) 2023; 9:777. [PMID: 37504765 PMCID: PMC10381234 DOI: 10.3390/jof9070777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/17/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023] Open
Abstract
Fusarium solani is one of the primary pathogens causing root rot of wolfberry. The aims of this study were to investigate the inhibitory effect of potato glycoside alkaloids (PGA) on F. solani and its energy metabolism. In this study, the effects of PGA treatment on the growth and development of F. solani were investigated and the changes in the glycolytic pathway (EMP), ATPase activity, mitochondrial complex activity, mitochondrial structure, and energy charge level were analyzed to elucidate the possible antifungal mechanism of PGA on F. solani. The results showed that PGA treatment inhibited the colony growth, biomass, and spore germination of F. solani. PGA treatment reduced the glucose content and Hexokinase (HK) activity of F. solani, but increased the activity of Fructose-6-Phosphate Kinase (PFK) and Pyruvate Kinase (PK) and promoted the accumulation of pyruvic acid. In addition, PGA treatment inhibited the activities of H+-ATPase, Ca2+-ATPase, and mitochondrial complex IV, increased the mitochondrial inner membrane Ca2+ content and mitochondrial membrane permeability transition pore, and decreased the contents of ATP, ADP, and AMP as well as the energy charge. These results indicate that PGA treatment inhibits the growth and development of F. solani, activates the glycolysis pathway, inhibits ATPase activity and mitochondrial complex activity, and destroys the structure and function of mitochondrial membrane, resulting in a lower energy charge level.
Collapse
Affiliation(s)
- Chongqing Zhang
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China
| | - Dedong Ding
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China
| | - Bin Wang
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China
| | - Yupeng Wang
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China
| | - Nan Li
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China
| | - Ruiyun Li
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuke Yan
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China
| | - Jing He
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China
- Wolfberry Harmless Cultivation Engineering Research Center of Gansu Province, Lanzhou 730070, China
| |
Collapse
|
6
|
Xun W, Gong B, Liu X, Yang X, Zhou X, Jin L. Antifungal Mechanism of Phenazine-1-Carboxylic Acid against Pestalotiopsis kenyana. Int J Mol Sci 2023; 24:11274. [PMID: 37511033 PMCID: PMC10379350 DOI: 10.3390/ijms241411274] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/30/2023] Open
Abstract
Pestalotiopsis sp. is an important class of plant pathogenic fungi that can infect a variety of crops. We have proved the pathogenicity of P. kenyana on bayberry leaves and caused bayberry blight. Phenazine-1-carboxylic acid (PCA) has the characteristics of high efficiency, low toxicity, and environmental friendliness, which can prevent fungal diseases on a variety of crops. In this study, the effect of PCA on the morphological, physiological, and molecular characteristics of P. kenyana has been investigated, and the potential antifungal mechanism of PCA against P. kenyana was also explored. We applied PCA on P. kenyana in vitro and in vivo to determine its inhibitory effect on PCA. It was found that PCA was highly efficient against P. kenyana, with EC50 around 2.32 μg/mL, and the in vivo effect was 57% at 14 μg/mL. The mechanism of PCA was preliminarily explored by transcriptomics technology. The results showed that after the treatment of PCA, 3613 differential genes were found, focusing on redox processes and various metabolic pathways. In addition, it can also cause mycelial development malformation, damage cell membranes, reduce mitochondrial membrane potential, and increase ROS levels. This result expanded the potential agricultural application of PCA and revealed the possible mechanism against P. kenyana.
Collapse
Affiliation(s)
- Weizhi Xun
- Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Bing Gong
- Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Xingxin Liu
- Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Xiuju Yang
- Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
- College of Tea, Guizhou University, Guiyang 550025, China
| | - Xia Zhou
- Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Linhong Jin
- Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
7
|
Novel insight into the evolution of volatile compounds during dynamic freeze-drying of Ziziphus jujuba cv. Huizao based on GC-MS combined with multivariate data analysis. Food Chem 2023; 410:135368. [PMID: 36608556 DOI: 10.1016/j.foodchem.2022.135368] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
To understand the evolution of aroma in jujubes during dynamic freeze drying (FD), the relationship between aroma compounds, precursors, and related enzyme activities were analyzed. Fifty-three volatiles were identified during FD processing. After FD, the total aroma contents were increased from 11,004 to 14,603 μg/kg, ketones content was significantly decreased by 54.11 %, resulted in the loss of creamy note in freeze-dried jujube (FDJ). Through the network analysis, serine, glycine, proline, valine, cysteine, arginine, glutamic acid, lysine and leucine had the significant correlation with pyrazines, dominated the roasty note of FDJ. Linoleic acid, α-linolenic acid and oleic acid with lipoxygenase had important effects on the increase of esters (from 412 to 9,486 μg/kg), contributed fruity and sweet notes of FDJ. Besides, through the Mantel test, the influence degree of factors on the formation of FDJ aroma was ranked as temperature > enzyme activity > fatty acids > amino acids.
Collapse
|
8
|
Liu J, Zhang H, Xu Y, Meng H, Zeng AP. Turn air-captured CO 2 with methanol into amino acid and pyruvate in an ATP/NAD(P)H-free chemoenzymatic system. Nat Commun 2023; 14:2772. [PMID: 37188719 DOI: 10.1038/s41467-023-38490-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/27/2023] [Indexed: 05/17/2023] Open
Abstract
The use of gaseous and air-captured CO2 for technical biosynthesis is highly desired, but elusive so far due to several obstacles including high energy (ATP, NADPH) demand, low thermodynamic driving force and limited biosynthesis rate. Here, we present an ATP and NAD(P)H-free chemoenzymatic system for amino acid and pyruvate biosynthesis by coupling methanol with CO2. It relies on a re-engineered glycine cleavage system with the NAD(P)H-dependent L protein replaced by biocompatible chemical reduction of protein H with dithiothreitol. The latter provides a higher thermodynamic driving force, determines the reaction direction, and avoids protein polymerization of the rate-limiting enzyme carboxylase. Engineering of H protein to effectively release the lipoamide arm from a protected state further enhanced the system performance, achieving the synthesis of glycine, serine and pyruvate at g/L level from methanol and air-captured CO2. This work opens up the door for biosynthesis of amino acids and derived products from air.
Collapse
Affiliation(s)
- Jianming Liu
- Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou, 310024, Zhejiang Province, China
| | - Han Zhang
- Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou, 310024, Zhejiang Province, China
| | - Yingying Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Hao Meng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - An-Ping Zeng
- Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou, 310024, Zhejiang Province, China.
| |
Collapse
|
9
|
Papadopoulou EA, Angelis A, Skaltsounis AL, Aliferis KA. GC/EI/MS and 1H NMR Metabolomics Reveal the Effect of an Olive Tree Endophytic Bacillus sp. Lipopeptide Extract on the Metabolism of Colletotrichum acutatum. Metabolites 2023; 13:metabo13040462. [PMID: 37110121 PMCID: PMC10142168 DOI: 10.3390/metabo13040462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 04/29/2023] Open
Abstract
The transition to the Green Deal era requires the discovery of alternative sources of bioactivity and an in-depth understanding of their toxicity to target and non-target organisms. Endophytes have recently emerged as a source of bioactivity of high potential for applications in plant protection, used either per se as biological control agents or their metabolites as bioactive compounds. The olive tree endophytic isolate Bacillus sp. PTA13 produces an array of bioactive lipopeptides (LPs), which additionally exhibit reduced phytotoxicity, features that make them candidates for further research focusing on olive tree plant protection. Here, GC/EI/MS and 1H NMR metabolomics were employed to study the toxicity of a Bacillus sp. PTA13 LP extract on the olive tree pathogen Colletotrichum acutatum, which causes the devastating disease olive anthracnose. The discovery of resistant isolates of the pathogen to the applied fungicides makes the research on the development of improved sources of bioactivity of paramount importance. Analyses revealed that the applied extract affects the metabolism of the fungus by interfering with the biosynthesis of various metabolites and its energy production. LPs had a great impact on the aromatic amino acid metabolism, the energy equilibrium of the fungus and its fatty acid content. Additionally, the applied LPs affected the levels of pathogenesis-related metabolites, a finding that supports their potential for further research as plant protection agents.
Collapse
Affiliation(s)
- Evgenia-Anna Papadopoulou
- Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, 118 55 Athens, Greece
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, 157 71 Athens, Greece
| | - Apostolis Angelis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, 157 71 Athens, Greece
| | - Alexios-Leandros Skaltsounis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, 157 71 Athens, Greece
| | - Konstantinos A Aliferis
- Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, 118 55 Athens, Greece
- Department of Plant Science, Macdonald Campus, McGill University, Montreal, QC H9X 3V9, Canada
| |
Collapse
|
10
|
Gou M, Chen Q, Qiao Y, Jin X, Zhang J, Yang H, Fauconnier ML, Bi J. Key aroma-active compounds identification of Ziziphus jujuba cv. Huizao: Effect of pilot scale freeze-drying. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.105072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
11
|
Loss of a Functional Mitochondrial Pyruvate Carrier in Komagataella phaffii Does Not Improve Lactic Acid Production from Glycerol in Aerobic Cultivation. Microorganisms 2023; 11:microorganisms11020483. [PMID: 36838448 PMCID: PMC9967928 DOI: 10.3390/microorganisms11020483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Cytosolic pyruvate is an essential metabolite in lactic acid production during microbial fermentation. However, under aerobiosis, pyruvate is transported to the mitochondrial matrix by the mitochondrial pyruvate carrier (MPC) and oxidized in cell respiration. Previous reports using Saccharomyces cerevisiae or Aspergillus oryzae have shown that the production of pyruvate-derived chemicals is improved by deleting the MPC1 gene. A previous lactate-producing K. phaffii strain engineered by our group was used as a host for the deletion of the MPC1 gene. In addition, the expression of a bacterial hemoglobin gene under the alcohol dehydrogenase 2 promoter from Scheffersomyces stipitis, known to work as a hypoxia sensor, was used to evaluate whether aeration would supply enough oxygen to meet the metabolic needs during lactic acid production. However, unlike S. cerevisiae and A. oryzae, the deletion of Mpc1 had no significant impact on lactic acid production but negatively affected cell growth in K. phaffii strains. Furthermore, the relative quantification of the VHb gene revealed that the expression of hemoglobin was detected even in aerobic cultivation, which indicates that the demand for oxygen in the bioreactor could result in functional hypoxia. Overall, the results add to our previously published ones and show that blocking cell respiration using hypoxia is more suitable than deleting Mpc for producing lactic acid in K. phaffii.
Collapse
|
12
|
Tong S, An K, Chen W, Chai M, Sun Y, Wang Q, Li D. Identification of neutral genome integration sites with high expression and high integration efficiency in Fusarium venenatum TB01. Synth Syst Biotechnol 2022; 8:141-147. [PMID: 36687472 PMCID: PMC9830034 DOI: 10.1016/j.synbio.2022.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
CRISPR/Cas9-mediated homology-directed recombination is an efficient method to express target genes. Based on the above method, providing ideal neutral integration sites can ensure the reliable, stable, and high expression of target genes. In this study, we obtained a fluorescent transformant with neutral integration and high expression of the GFP expression cassette from the constructed GFP expression library and named strain FS. The integration site mapped at 4886 bp upstream of the gene FVRRES_00686 was identified in strain FS based on a Y-shaped adaptor-dependent extension, and the sequence containing 600 bp upstream and downstream of this site was selected as the candidate region for designing sgRNAs (Sites) for CRISPR/Cas9-mediated homology-directed recombination. PCR analysis showed that the integration efficiency of CRISPR/Cas9-mediated integration of target genes in designed sites reached 100%. Further expression stability and applicability analysis revealed that the integration of the target gene into the above designed sites can be stably inherited and expressed and has no negative effect on the growth of F. venenatum TB01. These results indicate the above designed neutral sites have the potential to accelerate the development of F. venenatum TB01 through overexpression of target genes in metabolic engineering.
Collapse
Affiliation(s)
- Sheng Tong
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Innovation Centre for Synthetic Biology, Tianjin, 300308, China
- Corresponding author. Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| | - Kexin An
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Innovation Centre for Synthetic Biology, Tianjin, 300308, China
| | - Wuxi Chen
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Innovation Centre for Synthetic Biology, Tianjin, 300308, China
| | - Mengdan Chai
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Innovation Centre for Synthetic Biology, Tianjin, 300308, China
| | - Yuanxia Sun
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Innovation Centre for Synthetic Biology, Tianjin, 300308, China
| | - Qinhong Wang
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Innovation Centre for Synthetic Biology, Tianjin, 300308, China
| | - Demao Li
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Innovation Centre for Synthetic Biology, Tianjin, 300308, China
- Corresponding author. Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| |
Collapse
|
13
|
Liu D, Zhao L, Jiang Y, Li L, Guo M, Mu Y, Zhu H. Integrated analysis of plasma and urine reveals unique metabolomic profiles in idiopathic inflammatory myopathies subtypes. J Cachexia Sarcopenia Muscle 2022; 13:2456-2472. [PMID: 35860906 PMCID: PMC9530549 DOI: 10.1002/jcsm.13045] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES Idiopathic inflammatory myopathies (IIM) are a class of autoimmune diseases with high heterogeneity that can be divided into different subtypes based on clinical manifestations and myositis-specific autoantibodies (MSAs). However, even in each IIM subtype, the clinical symptoms and prognoses of patients are very different. Thus, the identification of more potential biomarkers associated with IIM classification, clinical symptoms, and prognosis is urgently needed. METHODS Plasma and urine samples from 79 newly diagnosed IIM patients (mean disease duration 4 months) and 52 normal control (NC) samples were analysed by high-performance liquid chromatography of quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF-MS)/MS-based untargeted metabolomics. Orthogonal partial least-squares discriminate analysis (OPLS-DA) were performed to measure the significance of metabolites. Pathway enrichment analysis was conducted based on the KEGG human metabolic pathways. Ten machine learning (ML) algorithms [linear support vector machine (SVM), radial basis function SVM, random forest, nearest neighbour, Gaussian processes, decision trees, neural networks, adaptive boosting (AdaBoost), Gaussian naive Bayes and quadratic discriminant analysis] were used to classify each IIM subtype and select the most important metabolites as potential biomarkers. RESULTS OPLS-DA showed a clear separation between NC and IIM subtypes in plasma and urine metabolic profiles. KEGG pathway enrichment analysis revealed multiple unique and shared disturbed metabolic pathways in IIM main [dermatomyositis (DM), anti-synthetase syndrome (ASS), and immune-mediated necrotizing myopathy (IMNM)] and MSA-defined subtypes (anti-Mi2+, anti-MDA5+, anti-TIF1γ+, anti-Jo1+, anti-PL7+, anti-PL12+, anti-EJ+, and anti-SRP+), such that fatty acid biosynthesis was significantly altered in both plasma and urine in all main IIM subtypes (enrichment ratio > 1). Random forest and AdaBoost performed best in classifying each IIM subtype among the 10 ML models. Using the feature selection methods in ML models, we identified 9 plasma and 10 urine metabolites that contributed most to separate IIM main subtypes and MSA-defined subtypes, such as plasma creatine (fold change = 3.344, P = 0.024) in IMNM subtype and urine tiglylcarnitine (fold change = 0.351, P = 0.037) in anti-EJ+ ASS subtype. Sixteen common metabolites were found in both the plasma and urine samples of IIM subtypes. Among them, some were correlated with clinical features, such as plasma hypogeic acid (r = -0.416, P = 0.005) and urine malonyl carnitine (r = -0.374, P = 0.042), which were negatively correlated with the prevalence of interstitial lung disease. CONCLUSIONS In both plasma and urine samples, IIM main and MSA-defined subtypes have specific metabolic signatures and pathways. This study provides useful clues for understanding the molecular mechanisms, searching potential diagnosis biomarkers and therapeutic targets for IIM.
Collapse
Affiliation(s)
- Di Liu
- Department of Rheumatology and Immunology, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Department of Rheumatology and Clinical Immunology, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Lijuan Zhao
- Department of Rheumatology and Immunology, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Yu Jiang
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Institute of Emergency MedicineHunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal UniversityChangshaHunanChina
| | - Liya Li
- Department of Rheumatology and Immunology, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Muyao Guo
- Department of Rheumatology and Immunology, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Yibing Mu
- Department of NutritionHunan Provincial Maternal and Child Health Care HospitalChangshaHunanChina
| | - Honglin Zhu
- Department of Rheumatology and Immunology, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
14
|
Evasion of Cas9 toxicity to develop an efficient genome editing system and its application to increase ethanol yield in Fusarium venenatum TB01. Appl Microbiol Biotechnol 2022; 106:6583-6593. [DOI: 10.1007/s00253-022-12178-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/30/2022] [Accepted: 09/03/2022] [Indexed: 11/27/2022]
|
15
|
Sun P, Ma Q, Zhang L. Comprehensive acetyl-proteomic analysis of Cytospora mali provides insight into its response to the biocontrol agent Bacillus velezensis L-1. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.999510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cytospora mali is an important factor for apple valsa canker, and Bacillus veleznesis L-1 is an effective biocontrol agent against apple valsa canker. Quantitative acetyl-proteomics is known to regulate transcriptional activity in different organisms; limited knowledge is available for acetylation modification in C. mali, and its response to biocontrol agents. In this study, using Tandem Mass tag proteomic strategies, we identified 733 modification sites on 416 proteins in C. mali, functions of these proteins were analyzed using GO enrichment and KEGG pathway. Some lysine acetylated proteins are found to be important to the fungal pathogenicity of C. mali, and also the response of fungi to biostress. B. velezensis L-1 suppressed the C. mali QH2 by causing the energy shortage and reduced virulence. Correspondingly, the C. mali QH2 could alleviate the suppression of biostress by upregulation of autophagy, peroxidase, cytochrome P450, ABC transporter and Heat shock protein 70. In summary, our results provided the first lysine acetylome of C. mali and its response to B. velezensis L-1.
Collapse
|
16
|
Duan Y, Du Y, Yi Z, Wang Z, Pei X, Wei X, Li M. Systematic Metabolic Engineering for the Production of Azaphilones in Monascus purpureus HJ11. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1589-1600. [PMID: 35085438 DOI: 10.1021/acs.jafc.1c07588] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fungal azaphilones have attracted considerable interest as they exhibit great potential in food and pharmacological industries. However, there is a severe bottleneck in the low production in wild strains and the ability to genetically engineer azaphilone-producing fungi. Using Monascus azaphilones (MAs) as an example, we demonstrate a systematic metabolic engineering strategy for improving the production of MAs. In this study, Monascus purpureus HJ11 was systematically engineered through a combination of promoter engineering, gene knockout, rate-limiting enzyme overexpression, repression of the competing pathway, enzyme engineering, and metabolic rebalance. The maximum yield and titer of MAs successfully increased to 906 mg/g dry cell weight (DCW) and 14.6 g/L, respectively, 2.6 and 3.7 times higher than those reported in the literature. Our successful model not only offers a practical and efficient way to improve the azaphilone production but also sheds light on the potential of systematic metabolic engineering in nonmodel fungi as a chassis for the production of high-value chemicals.
Collapse
Affiliation(s)
- Yali Duan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Yun Du
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Zhiqiang Yi
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Zhe Wang
- Polytechnic Institute, Zhejiang University, Hangzhou 310015, China
| | - Xiaolin Pei
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310012, China
| | - Xuetuan Wei
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Mu Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| |
Collapse
|
17
|
Accelerated glucose metabolism in hyphae-dispersed Aspergillus oryzae is suitable for biological production. J Biosci Bioeng 2021; 132:140-147. [PMID: 33896702 DOI: 10.1016/j.jbiosc.2021.03.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/28/2021] [Accepted: 03/28/2021] [Indexed: 11/23/2022]
Abstract
Recently, a hyphae-dispersed type of filamentous fungus Aspergillus oryzae was constructed via genetic engineering, and industrial applications are expected due to the ease of handling and to the level of protein production properties. In this study, we constructed cellulase-expressing strains using wild-type and hyphae-dispersed strains to investigate the correlation between protein productivity and metabolism. Compared with the original strain, the hyphae-dispersed cellulase-expressing strain showed elevated cellulase activity, rapid glucose consumption, increased mycelial dry weight, an increased expression of cellulase genes, and activated respiration activity. Comparative metabolomic analysis showed fewer metabolites in the glycolysis and TCA cycles in the dispersed strains than in the original strains. These results indicate that the flux of carbohydrate metabolism in the hyphae-dispersed strains is smoother than that in the original strains. Such efficient metabolic flux would contribute to efficient energy conversion and to sufficient energy supply to anabolisms, such as mycelial growth and protein production. Our findings suggest that the hyphae-dispersed strains could be a useful host not only for protein production but also for the biological production of various chemicals such as organic acids.
Collapse
|
18
|
Mitochondrial Pyruvate Carrier Subunits Are Essential for Pyruvate-Driven Respiration, Infectivity, and Intracellular Replication of Trypanosoma cruzi. mBio 2021; 12:mBio.00540-21. [PMID: 33824204 PMCID: PMC8092248 DOI: 10.1128/mbio.00540-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Trypanosoma cruzi is the causative agent of Chagas disease. Pyruvate is the end product of glycolysis, and its transport into the mitochondrion is mediated by the mitochondrial pyruvate carrier (MPC) subunits. Pyruvate is the final metabolite of glycolysis and can be converted into acetyl coenzyme A (acetyl-CoA) in mitochondria, where it is used as the substrate for the tricarboxylic acid cycle. Pyruvate availability in mitochondria depends on its active transport through the heterocomplex formed by the mitochondrial pyruvate carriers 1 and 2 (MPC1/MPC2). We report here studies on MPC1/MPC2 of Trypanosoma cruzi, the etiologic agent of Chagas disease. Endogenous tagging of T. cruziMPC1 (TcMPC1) and TcMPC2 with 3×c-Myc showed that both encoded proteins colocalize with MitoTracker to the mitochondria of epimastigotes. Individual knockout (KO) of TcMPC1 and TcMPC2 genes using CRISPR/Cas9 was confirmed by PCR and Southern blot analyses. Digitonin-permeabilized TcMPC1-KO and TcMPC2-KO epimastigotes showed reduced O2 consumption rates when pyruvate, but not succinate, was used as the mitochondrial substrate, while α-ketoglutarate increased their O2 consumption rates due to an increase in α-ketoglutarate dehydrogenase activity. Defective mitochondrial pyruvate import resulted in decreased Ca2+ uptake. The inhibitors UK5099 and malonate impaired pyruvate-driven oxygen consumption in permeabilized control cells. Inhibition of succinate dehydrogenase by malonate indicated that pyruvate needs to be converted into succinate to increase respiration. TcMPC1-KO and TcMPC2-KO epimastigotes showed little growth differences in standard or low-glucose culture medium. However, the ability of trypomastigotes to infect tissue culture cells and replicate as intracellular amastigotes was decreased in TcMPC-KOs. Overall, T. cruzi MPC1 and MPC2 are essential for cellular respiration in the presence of pyruvate, invasion of host cells, and replication of amastigotes.
Collapse
|