1
|
Nowrouzi B, Torres-Montero P, Kerkhoven EJ, Martínez JL, Rios-Solis L. Rewiring Saccharomyces cerevisiae metabolism for optimised Taxol® precursors production. Metab Eng Commun 2024; 18:e00229. [PMID: 38098801 PMCID: PMC10716015 DOI: 10.1016/j.mec.2023.e00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/09/2023] [Accepted: 11/04/2023] [Indexed: 12/17/2023] Open
Abstract
Saccharomyces cerevisiae has been conveniently used to produce Taxol® anticancer drug early precursors. However, the harmful impact of oxidative stress by the first cytochrome P450-reductase enzymes (CYP725A4-POR) of Taxol® pathway has hampered sufficient progress in yeast. Here, we evolved an oxidative stress-resistant yeast strain with three-fold higher titre of their substrate, taxadiene. The performance of the evolved and parent strains were then evaluated in galactose-limited chemostats before and under the oxidative stress by an oxidising agent. The interaction of evolution and oxidative stress was comprehensively evaluated through transcriptomics and metabolite profiles integration in yeast enzyme-constrained genome scale model. Overall, the evolved strain showed improved respiration, reduced overflow metabolites production and oxidative stress re-induction tolerance. The cross-protection mechanism also potentially contributed to better heme, flavin and NADPH availability, essential for CYP725A4 and POR optimal activity in yeast. The results imply that the evolved strain is a robust cell factory for future efforts towards Taxol© production.
Collapse
Affiliation(s)
- Behnaz Nowrouzi
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom
- Centre for Engineering Biology, The University of Edinburgh, Edinburgh, EH9 3BD, United Kingdom
- Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Building 223, Kgs. Lyngby, 2800, Denmark
| | - Pablo Torres-Montero
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Building 223, Kgs. Lyngby, 2800, Denmark
| | - Eduard J. Kerkhoven
- Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
- SciLifeLab, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - José L. Martínez
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Building 223, Kgs. Lyngby, 2800, Denmark
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom
- Centre for Engineering Biology, The University of Edinburgh, Edinburgh, EH9 3BD, United Kingdom
- School of Natural and Environmental Sciences, Molecular Biology and Biotechnology Division, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
- Department of Biochemical Engineering, The Advanced Centre for Biochemical Engineering, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| |
Collapse
|
2
|
Zhou L, Wang Q, Shen J, Li Y, Zhang H, Zhang X, Yang S, Jiang Z, Wang M, Li J, Wang Y, Liu H, Zhou Z. Metabolic engineering of glycolysis in Escherichia coli for efficient production of patchoulol and τ-cadinol. BIORESOURCE TECHNOLOGY 2024; 391:130004. [PMID: 37952591 DOI: 10.1016/j.biortech.2023.130004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Glucose metabolism suppresses the microbial synthesis of sesquiterpenes with a syndrome of "too much of a good thing can be bad". Here, patchoulol production in Escherichia coli was increased 2.02 times by engineering patchoulol synthase to obtain an initial strain. Knocking out the synthetic pathway for cyclic adenosine monophosphate relieved glucose repression and improved patchoulol titer and yield by 27.7 % and 43.1 %, respectively. A glycolysis regulation device mediated by pyruvate sensing was constructed which effectively alleviated overflow metabolism in a high-glucose environment with 10.2 % greater patchoulol titer in strain 070QA. Without fine-tuning the glucose-feeding rate, patchoulol titer further increased to 1675.1 mg/L in a 5-L bioreactor experiment, which was the highest level reported in E. coli. Using strain 070QA as a chassis, the τ-cadinol titer reached 15.2 g/L, representing the first report for microbial production of τ-cadinol. These findings will aid in the industrial production of sesquiterpene.
Collapse
Affiliation(s)
- Li Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Qin Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Jiawen Shen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Yunyan Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Hui Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Xinrui Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Shiyi Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Ziyi Jiang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Mengxuan Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Jun Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Yuxi Wang
- Food Micro-manufacturing Engineering and Safety Research Laboratory, Department of Food Science and Nutrition, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, People's Republic of China
| | - Haili Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China.
| |
Collapse
|
3
|
Liu Q, Zhu J, Liu N, Sun W, Yu B, Niu H, Liu D, Ouyang P, Ying H, Chen Y, Zhao G, Chen T. Type I fimbriae subunit fimA enhances Escherichia coli biofilm formation but affects L-threonine carbon distribution. Front Bioeng Biotechnol 2022; 10:904636. [PMID: 36338119 PMCID: PMC9633679 DOI: 10.3389/fbioe.2022.904636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/03/2022] [Indexed: 11/22/2022] Open
Abstract
The biofilm (BF) provides favorable growth conditions to cells, which has been exploited in the field of industrial biotechnology. Based on our previous research works on type I fimbriae for the biosynthesis of L-threonine (LT) in Escherichia coli, in this study, a fimA-overexpressing strain was engineered, which improved BF formation under industrial fermentation conditions. The morphological observation and characterization of BF formation were conducted to verify the function of the subunit FimA. However, it was not suitable for repeated-batch immobilized fermentation as the LT titer was not elevated significantly. The underlying molecular mechanisms of BF formation and the LT carbon flux were explored by transcriptomic analysis. The results showed that fimA regulated E. coli BF formation but affected LT carbon distribution. This study will stimulate thoughts about how the fimbriae gene regulated biofilms and amino acid excretion and will bring some consideration and provide a reference for the development of BF-based biomanufacturing processes in E. coli.
Collapse
Affiliation(s)
- Qingguo Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- Nanjing Hi-Tech Biological Technology Research Institute Co., Ltd., Nanjing, China
| | - Jiaqing Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Na Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Wenjun Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Bin Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Huanqing Niu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Dong Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Pingkai Ouyang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Hanjie Ying
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Yong Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Gulin Zhao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- *Correspondence: Tianpeng Chen, ; Gulin Zhao,
| | - Tianpeng Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- *Correspondence: Tianpeng Chen, ; Gulin Zhao,
| |
Collapse
|
4
|
Nowrouzi B, Lungang L, Rios-Solis L. Exploring optimal Taxol® CYP725A4 activity in Saccharomyces cerevisiae. Microb Cell Fact 2022; 21:197. [PMID: 36123694 PMCID: PMC9484169 DOI: 10.1186/s12934-022-01922-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
Background CYP725A4 catalyses the conversion of the first Taxol® precursor, taxadiene, to taxadiene-5α-ol (T5α-ol) and a range of other mono- and di-hydroxylated side products (oxygenated taxanes). Initially known to undergo a radical rebound mechanism, the recent studies have revealed that an intermediate epoxide mediates the formation of the main characterised products of the enzyme, being T5α-ol, 5(12)-oxa-3(11)-cyclotaxane (OCT) and its isomer, 5(11)-oxa-3(11)-cyclotaxane (iso-OCT) as well as taxadienediols. Besides the high side product: main product ratio and the low main product titre, CYP725A4 is also known for its slow enzymatic activity, massively hindering further progress in heterologous production of Taxol® precursors. Therefore, this study aimed to systematically explore the key parameters for improving the regioselectivity and activity of eukaryotic CYP725A4 enzyme in a whole-cell eukaryotic biocatalyst, Saccharomyces cerevisiae. Results Investigating the impact of CYP725A4 and reductase gene dosages along with construction of self-sufficient proteins with strong prokaryotic reductases showed that a potential uncoupling event accelerates the formation of oxygenated taxane products of this enzyme, particularly the side products OCT and iso-OCT. Due to the harmful effect of uncoupling products and the reactive metabolites on the enzyme, the impact of flavins and irons, existing as prosthetic groups in CYP725A4 and reductase, were examined in both their precursor and ready forms, and to investigate the changes in product distribution. We observed that the flavin adenine dinucleotide improved the diterpenoids titres and biomass accumulation. Hemin was found to decrease the titre of iso-OCT and T5α-ol, without impacting the side product OCT, suggesting the latter being the major product of CYP725A4. The interaction between this iron and the iron precursor, δ-Aminolevulinic acid, seemed to improve the production of these diterpenoids, further denoting that iso-OCT and T5α-ol were the later products. While no direct correlation between cellular-level oxidative stress and oxygenated taxanes was observed, investigating the impact of salt and antioxidant on CYP725A4 further showed the significant drop in OCT titre, highlighting the possibility of enzymatic-level uncoupling event and reactivity as the major mechanism behind the enzyme activity. To characterise the product spectrum and production capacity of CYP725A4 in the absence of cell growth, resting cell assays with optimal neutral pH revealed an array of novel diterpenoids along with higher quantities of characterised diterpenoids and independence of the oxygenated product spectra from the acidity effect. Besides reporting on the full product ranges of CYP725A4 in yeast for the first time, the highest total taxanes of around 361.4 ± 52.4 mg/L including 38.1 ± 8.4 mg/L of T5α-ol was produced herein at a small, 10-mL scale by resting cell assay, where the formation of some novel diterpenoids relied on the prior existence of other diterpenes/diterpenoids as shown by statistical analyses. Conclusions This study shows how rational strain engineering combined with an efficient design of experiment approach systematically uncovered the promoting effect of uncoupling for optimising the formation of the early oxygenated taxane precursors of Taxol®. The provided strategies can effectively accelerate the design of more efficient Taxol®-producing yeast strains. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01922-1.
Collapse
Affiliation(s)
- Behnaz Nowrouzi
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, UK.,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, EH9 3BD, UK
| | - Liang Lungang
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, UK.,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, EH9 3BD, UK
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, UK. .,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, EH9 3BD, UK. .,School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| |
Collapse
|
5
|
Rodríguez-Valverde D, León-Montes N, Soria-Bustos J, Martínez-Cruz J, González-Ugalde R, Rivera-Gutiérrez S, González-y-Merchand JA, Rosales-Reyes R, García-Morales L, Hirakawa H, Fox JG, Girón JA, De la Cruz MA, Ares MA. cAMP Receptor Protein Positively Regulates the Expression of Genes Involved in the Biosynthesis of Klebsiella oxytoca Tilivalline Cytotoxin. Front Microbiol 2021; 12:743594. [PMID: 34659176 PMCID: PMC8515920 DOI: 10.3389/fmicb.2021.743594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 08/31/2021] [Indexed: 01/09/2023] Open
Abstract
Klebsiella oxytoca is a resident of the human gut. However, certain K. oxytoca toxigenic strains exist that secrete the nonribosomal peptide tilivalline (TV) cytotoxin. TV is a pyrrolobenzodiazepine that causes antibiotic-associated hemorrhagic colitis (AAHC). The biosynthesis of TV is driven by enzymes encoded by the aroX and NRPS operons. In this study, we determined the effect of environmental signals such as carbon sources, osmolarity, and divalent cations on the transcription of both TV biosynthetic operons. Gene expression was enhanced when bacteria were cultivated in tryptone lactose broth. Glucose, high osmolarity, and depletion of calcium and magnesium diminished gene expression, whereas glycerol increased transcription of both TV biosynthetic operons. The cAMP receptor protein (CRP) is a major transcriptional regulator in bacteria that plays a key role in metabolic regulation. To investigate the role of CRP on the cytotoxicity of K. oxytoca, we compared levels of expression of TV biosynthetic operons and synthesis of TV in wild-type strain MIT 09-7231 and a Δcrp isogenic mutant. In summary, we found that CRP directly activates the transcription of the aroX and NRPS operons and that the absence of CRP reduced cytotoxicity of K. oxytoca on HeLa cells, due to a significant reduction in TV production. This study highlights the importance of the CRP protein in the regulation of virulence genes in enteric bacteria and broadens our knowledge on the regulatory mechanisms of the TV cytotoxin.
Collapse
Affiliation(s)
- Diana Rodríguez-Valverde
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Nancy León-Montes
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Jorge Soria-Bustos
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Jessica Martínez-Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Ricardo González-Ugalde
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Sandra Rivera-Gutiérrez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Jorge A. González-y-Merchand
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Roberto Rosales-Reyes
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lázaro García-Morales
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Hidetada Hirakawa
- Department of Bacteriology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - James G. Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Jorge A. Girón
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Miguel A. De la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Miguel A. Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
6
|
Liang Z, Zhi H, Fang Z, Zhang P. Genetic engineering of yeast, filamentous fungi and bacteria for terpene production and applications in food industry. Food Res Int 2021; 147:110487. [PMID: 34399483 DOI: 10.1016/j.foodres.2021.110487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 01/05/2023]
Abstract
Terpenes are a major class of natural aromatic compounds in grapes and wines to offer the characteristic flavor and aroma, serving as important quality traits of wine products. Saccharomyces cerevisiae represents an excellent cell factory platform for large-scale bio-based terpene production. This review describes the biosynthetic pathways of terpenes in different organisms. The metabolic engineering of S. cerevisiae for promoting terpene biosynthesis and the alternative microbial engineering platforms including filamentous fungi and Escherichia coli are also elaborated. Additionally, the potential applications of the terpene products from engineered microorganisms in food and beverage industries are also discussed. This review provides comprehensive information for an innovative supply way of terpene via microbial cell factory, which could facilitate the development and application of this technique at the industrial scale.
Collapse
Affiliation(s)
- Zijian Liang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Hang Zhi
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Zhongxiang Fang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Pangzhen Zhang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|