1
|
Heilig M, Barbier E, Johnstone AL, Tapocik J, Meinhardt MW, Pfarr S, Wahlestedt C, Sommer WH. Reprogramming of mPFC transcriptome and function in alcohol dependence. GENES, BRAIN, AND BEHAVIOR 2017; 16:86-100. [PMID: 27657733 PMCID: PMC5555395 DOI: 10.1111/gbb.12344] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/30/2016] [Accepted: 09/19/2016] [Indexed: 01/07/2023]
Abstract
Despite its limited immediate reinforcement value, alcohol has a potent ability to induce neuroadaptations that promote its incentive salience, escalation of voluntary alcohol intake and aversion-resistant alcohol seeking. A constellation of these traits, collectively called 'post-dependent', emerges following brain exposure to repeated cycles of intoxication and withdrawal. The medial prefrontal cortex (mPFC) and its subdivisions exert top-down regulation of approach and avoidance behaviors, including those that lead to alcohol intake. Here, we review an emerging literature which indicates that a reprogramming of mPFC function occurs with prolonged exposure of the brain to cycles of alcohol intoxication and withdrawal. This reprogramming results in molecular dysregulations that contribute to the post-dependent syndrome. Convergent evidence has identified neuroadaptations resulting in altered glutamatergic and BDNF-mediated signaling, and for these pathways, direct evidence for a mechanistic role has been obtained. Additional evidence points to a dysregulation of pathways involving calcium homeostasis and neurotransmitter release. Recent findings indicate that global DNA hypermethylation is a key factor in reprogramming the mPFC genome after a history of dependence. As one of the results of this epigenetic remodeling, several histone modifying epigenetic enzymes are repressed. Among these, PR-domain zinc-finger protein 2, a methyltransferase that selectively mono-methylates histone H3 at lysine 9 has been functionally validated to drive several of the molecular and behavioral long-term consequences of alcohol dependence. Information processing within the mPFC involves formation of dynamic neuronal networks, or functional ensembles that are shaped by transcriptional responses. The epigenetic dysregulations identified by our molecular studies are likely to alter this dynamic processing in multiple ways. In summary, epigenetic molecular switches in the mPFC appear to be turned on as alcoholism develops. Strategies to reverse these processes may offer targets for disease-modifying treatments.
Collapse
Affiliation(s)
- M. Heilig
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - E. Barbier
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - A. L. Johnstone
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - J. Tapocik
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - M. W. Meinhardt
- Department of Psychopharmacology, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - S. Pfarr
- Department of Psychopharmacology, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - C. Wahlestedt
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - W. H. Sommer
- Department of Psychopharmacology, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
- Department of Addiction Medicine, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
2
|
The neurometabolic fingerprint of excessive alcohol drinking. Neuropsychopharmacology 2015; 40:1259-68. [PMID: 25418809 PMCID: PMC4367471 DOI: 10.1038/npp.2014.312] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/28/2014] [Accepted: 11/13/2014] [Indexed: 01/03/2023]
Abstract
'Omics' techniques are widely used to identify novel mechanisms underlying brain function and pathology. Here we applied a novel metabolomics approach to further ascertain the role of frontostriatal brain regions for the expression of addiction-like behaviors in rat models of alcoholism. Rats were made alcohol dependent via chronic intermittent alcohol vapor exposure. Following a 3-week abstinence period, rats had continuous access to alcohol in a two-bottle, free-choice paradigm for 7 weeks. Nontargeted flow injection time-of-flight mass spectrometry was used to assess global metabolic profiles of two cortical (prelimbic and infralimbic) and two striatal (accumbens core and shell) brain regions. Alcohol consumption produces pronounced global effects on neurometabolomic profiles leading to a clear separation of metabolic phenotypes between treatment groups, particularly. Further comparisons of regional tissue levels of various metabolites, most notably dopamine and Met-enkephalin, allow the extrapolation of alcohol consumption history. Finally, a high-drinking metabolic fingerprint was identified indicating a distinct alteration of central energy metabolism in the accumbens shell of excessively drinking rats that could indicate a so far unrecognized pathophysiological mechanism in alcohol addiction. In conclusion, global metabolic profiling from distinct brain regions by mass spectrometry identifies profiles reflective of an animal's drinking history and provides a versatile tool to further investigate pathophysiological mechanisms in alcohol dependence.
Collapse
|
3
|
Witt SH, Sommer WH, Hansson AC, Sticht C, Rietschel M, Witt CC. Comparison of gene expression profiles in the blood, hippocampus and prefrontal cortex of rats. In Silico Pharmacol 2013; 1:15. [PMID: 25505659 PMCID: PMC4230692 DOI: 10.1186/2193-9616-1-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/08/2013] [Indexed: 11/10/2022] Open
Abstract
Background The comparability of gene expression between blood and brain tissues is a central issue in neuropsychiatric research where the analysis of molecular mechanisms in the brain is of high importance for the understanding of the diseases and the discovery of biomarkers. However, the accessibility of brain tissue is limited. Therefore, knowledge about how easily accessible peripheral tissue, e. g. blood, is comparable to and reflects gene expression of brain regions will help to advance neuropsychiatric research. Description Gene expression in the blood, hippocampus (HC) and prefrontal cortex (PFC) of genetically identical rats was compared using a genome-wide Affymetrix gene expression microarray covering 29,215 expressed genes. A total of 56.8% of 15,717 expressed genes were co-expressed in blood and at least one brain tissue, while 55.3% of all genes were co-expressed in all three tissues simultaneously. The overlapping genes included a set of genes of relevance to neuropsychiatric diseases, in particular bipolar disorder, schizophrenia and alcohol addiction. These genes included CLOCK, COMT, FAAH, NPY, NR3C1, NRGN, PBRM1, TCF4, and SYNE. Conclusions This study provides baseline data on absolute gene expression and differences between gene expression in the blood, HC and PFC brain tissue of genetically identical rats. The present data represents a valuable resource for future studies as it might be used for first information on gene expression levels of genes of interest in blood and brain under baseline conditions. Limitations of our study comprise possible contamination of brain tissue with blood and the non-detection of genes with very low expression levels. Genes that are more highly expressed in the brain than in the blood are of particular interest since changes in their expression, e.g. due to disease status, or treatment, are likely to be detected in an experiment. In contrast, genes with higher expression in the blood than in the brain are less informative since their higher baseline levels could superimpose variation in brain.
Collapse
Affiliation(s)
- Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, J5, 68159 Mannheim, Germany
| | - Wolfgang H Sommer
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, J5, 68159 Mannheim, Germany
| | - Anita C Hansson
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, J5, 68159 Mannheim, Germany
| | - Carsten Sticht
- Medical Research Center, University Hospital Mannheim, Medical Faculty Mannheim/Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, J5, 68159 Mannheim, Germany
| | - Christian C Witt
- Department of Anaesthesiology and Operative Intensive Care, University Hospital Mannheim, Medical Faculty Mannheim/Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| |
Collapse
|
4
|
Benner MJ, Settles ML, Murdoch GK, Hardy RW, Robison BD. Sex-specific transcriptional responses of the zebrafish (Danio rerio) brain selenoproteome to acute sodium selenite supplementation. Physiol Genomics 2013; 45:653-66. [PMID: 23737534 DOI: 10.1152/physiolgenomics.00030.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The potential benefits of selenium (Se) supplementation are currently under investigation for prevention of certain cancers and treatment of neurological disorders. However, little is known concerning the response of the brain to increased dietary Se under conditions of Se sufficiency, despite the majority of Se supplementation trials occurring in healthy, Se sufficient subjects. We evaluated the transcriptional response of Se-dependent genes, selenoproteins and the genes necessary for their synthesis (the selenoproteome), in the zebrafish (Danio rerio) brain to supplementation with nutritionally relevant levels of dietary Se (sodium selenite) during conditions of assumed Se sufficiency. We first used a microarray approach to analyze the response of the brain selenoproteome to dietary Se supplementation for 14 days and then assessed the immediacy and time-scale transcriptional response of the brain selenoproteome to 1, 7, and 14 days of Se supplementation by quantitative real-time PCR (qRT-PCR). The microarray approach did not indicate large-scale influences of Se on the brain transcriptome as a whole or the selenoproteome specifically; only one nonselenoproteome gene (si:ch73-44m9.2) was significantly differentially expressed. Our qRT-PCR results, however, indicate that increases of dietary Se cause small, but significant transcriptional changes within the brain selenoproteome, even after only 1 day of supplementation. These responses were dynamic over a short period of supplementation in a manner highly dependent on sex and the duration of Se supplementation. In nutritional intervention studies, it may be necessary to utilize methods such as qRT-PCR, which allow larger sample sizes, for detecting subtle transcriptional changes in the brain.
Collapse
Affiliation(s)
- Maia J Benner
- Department of Biological Sciences, University of Idaho, Moscow, Idaho83844-3051, USA
| | | | | | | | | |
Collapse
|
5
|
Meinhardt MW, Hansson AC, Perreau-Lenz S, Bauder-Wenz C, Stählin O, Heilig M, Harper C, Drescher KU, Spanagel R, Sommer WH. Rescue of infralimbic mGluR2 deficit restores control over drug-seeking behavior in alcohol dependence. J Neurosci 2013; 33:2794-806. [PMID: 23407939 PMCID: PMC3711176 DOI: 10.1523/jneurosci.4062-12.2013] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 10/19/2012] [Accepted: 10/29/2012] [Indexed: 12/25/2022] Open
Abstract
A key deficit in alcohol dependence is disrupted prefrontal function leading to excessive alcohol seeking, but the molecular events underlying the emergence of addictive responses remain unknown. Here we show by convergent transcriptome analysis that the pyramidal neurons of the infralimbic cortex are particularly vulnerable for the long-term effects of chronic intermittent ethanol intoxication. These neurons exhibit a pronounced deficit in metabotropic glutamate receptor subtype 2 (mGluR(2)). Also, alcohol-dependent rats do not respond to mGluR(2/3) agonist treatment with reducing extracellular glutamate levels in the nucleus accumbens. Together these data imply a loss of autoreceptor feedback control. Alcohol-dependent rats show escalation of ethanol seeking, which was abolished by restoring mGluR(2) expression in the infralimbic cortex via viral-mediated gene transfer. Human anterior cingulate cortex from alcoholic patients shows a significant reduction in mGluR(2) transcripts compared to control subjects, suggesting that mGluR(2) loss in the rodent and human corticoaccumbal neurocircuitry may be a major consequence of alcohol dependence and a key pathophysiological mechanism mediating increased propensity to relapse. Normalization of mGluR(2) function within this brain circuit may be of therapeutic value.
Collapse
Affiliation(s)
- Marcus W. Meinhardt
- Institute of Psychopharmacology at Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| | - Anita C. Hansson
- Institute of Psychopharmacology at Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| | - Stephanie Perreau-Lenz
- Institute of Psychopharmacology at Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| | - Christina Bauder-Wenz
- Institute of Psychopharmacology at Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| | - Oliver Stählin
- Institute of Psychopharmacology at Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| | - Markus Heilig
- Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892
| | - Clive Harper
- New South Wales Tissue Resource Centre, University of Sydney, 2006 Sydney, Australia, and
| | | | - Rainer Spanagel
- Institute of Psychopharmacology at Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| | - Wolfgang H. Sommer
- Institute of Psychopharmacology at Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| |
Collapse
|
6
|
Drew RE, Settles ML, Churchill EJ, Williams SM, Balli S, Robison BD. Brain transcriptome variation among behaviorally distinct strains of zebrafish (Danio rerio). BMC Genomics 2012; 13:323. [PMID: 22817472 PMCID: PMC3434030 DOI: 10.1186/1471-2164-13-323] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 06/28/2012] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Domesticated animal populations often show profound reductions in predator avoidance and fear-related behavior compared to wild populations. These reductions are remarkably consistent and have been observed in a diverse array of taxa including fish, birds, and mammals. Experiments conducted in common environments indicate that these behavioral differences have a genetic basis. In this study, we quantified differences in fear-related behavior between wild and domesticated zebrafish strains and used microarray analysis to identify genes that may be associated with this variation. RESULTS Compared to wild zebrafish, domesticated zebrafish spent more time near the water surface and were more likely to occupy the front of the aquarium nearest a human observer. Microarray analysis of the brain transcriptome identified high levels of population variation in gene expression, with 1,749 genes significantly differentially expressed among populations. Genes that varied among populations belonged to functional categories that included DNA repair, DNA photolyase activity, response to light stimulus, neuron development and axon guidance, cell death, iron-binding, chromatin reorganization, and homeobox genes. Comparatively fewer genes (112) differed between domesticated and wild strains with notable genes including gpr177 (wntless), selenoprotein P1a, synaptophysin and synaptoporin, and acyl-CoA binding domain containing proteins (acbd3 and acbd4). CONCLUSIONS Microarray analysis identified a large number of genes that differed among zebrafish populations and may underlie behavioral domestication. Comparisons with similar microarray studies of domestication in rainbow trout and canids identified sixteen evolutionarily or functionally related genes that may represent components of shared molecular mechanisms underlying convergent behavioral evolution during vertebrate domestication. However, this conclusion must be tempered by limitations associated with comparisons among microarray studies and the low level of population-level replication inherent to these studies.
Collapse
Affiliation(s)
- Robert E Drew
- Department of Biological Sciences and Program in Bioinformatics and Computational Biology, University of Idaho, Moscow, ID 83844, USA
| | | | | | | | | | | |
Collapse
|
7
|
Tapocik JD, Solomon M, Flanigan M, Meinhardt M, Barbier E, Schank JR, Schwandt M, Sommer WH, Heilig M. Coordinated dysregulation of mRNAs and microRNAs in the rat medial prefrontal cortex following a history of alcohol dependence. THE PHARMACOGENOMICS JOURNAL 2012; 13:286-96. [PMID: 22614244 DOI: 10.1038/tpj.2012.17] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Long-term changes in brain gene expression have been identified in alcohol dependence, but underlying mechanisms remain unknown. Here, we examined the potential role of microRNAs (miRNAs) for persistent gene expression changes in the rat medial prefrontal cortex (mPFC) after a history of alcohol dependence. Two-bottle free-choice alcohol consumption increased following 7-week exposure to intermittent alcohol intoxication. A bioinformatic approach using microarray analysis, quantitative PCR (qPCR), bioinformatic analysis and microRNA-messenger RNA (mRNA) integrative analysis identified expression patterns indicative of a disruption in synaptic processes and neuroplasticity. About 41 rat miRNAs and 165 mRNAs in the mPFC were significantly altered after chronic alcohol exposure. A subset of the miRNAs and mRNAs was confirmed by qPCR. Gene ontology categories of differential expression pointed to functional processes commonly associated with neurotransmission, neuroadaptation and synaptic plasticity. microRNA-mRNA expression pairing identified 33 miRNAs putatively targeting 89 mRNAs suggesting transcriptional networks involved in axonal guidance and neurotransmitter signaling. Our results demonstrate a significant shift in microRNA expression patterns in the mPFC following a history of dependence. Owing to their global regulation of multiple downstream target transcripts, miRNAs may have a pivotal role in the reorganization of synaptic connections and long-term neuroadaptations in alcohol dependence. MicroRNA-mediated alterations of transcriptional networks may be involved in disrupted prefrontal control over alcohol drinking observed in alcoholic patients.
Collapse
Affiliation(s)
- J D Tapocik
- Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Treutlein J, Cichon S, Ridinger M, Wodarz N, Soyka M, Zill P, Maier W, Moessner R, Gaebel W, Dahmen N, Fehr C, Scherbaum N, Steffens M, Ludwig KU, Frank J, Wichmann HE, Schreiber S, Dragano N, Sommer WH, Leonardi-Essmann F, Lourdusamy A, Gebicke-Haerter P, Wienker TF, Sullivan PF, Nöthen MM, Kiefer F, Spanagel R, Mann K, Rietschel M. Genome-wide association study of alcohol dependence. ACTA ACUST UNITED AC 2009; 66:773-84. [PMID: 19581569 DOI: 10.1001/archgenpsychiatry.2009.83] [Citation(s) in RCA: 292] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CONTEXT Alcohol dependence is a serious and common public health problem. It is well established that genetic factors play a major role in the development of this disorder. Identification of genes that contribute to alcohol dependence will improve our understanding of the mechanisms that underlie this disorder. OBJECTIVE To identify susceptibility genes for alcohol dependence through a genome-wide association study (GWAS) and a follow-up study in a population of German male inpatients with an early age at onset. DESIGN The GWAS tested 524,396 single-nucleotide polymorphisms (SNPs). All SNPs with P < 10(-4) were subjected to the follow-up study. In addition, nominally significant SNPs from genes that had also shown expression changes in rat brains after long-term alcohol consumption were selected for the follow-up step. SETTING Five university hospitals in southern and central Germany. PARTICIPANTS The GWAS included 487 male inpatients with alcohol dependence as defined by the DSM-IV and an age at onset younger than 28 years and 1358 population-based control individuals. The follow-up study included 1024 male inpatients and 996 age-matched male controls. All the participants were of German descent. MAIN OUTCOME MEASURES Significant association findings in the GWAS and follow-up study with the same alleles. RESULTS The GWAS produced 121 SNPs with nominal P < 10(-4). These, together with 19 additional SNPs from homologues of rat genes showing differential expression, were genotyped in the follow-up sample. Fifteen SNPs showed significant association with the same allele as in the GWAS. In the combined analysis, 2 closely linked intergenic SNPs met genome-wide significance (rs7590720, P = 9.72 x 10(-9); rs1344694, P = 1.69 x 10(-8)). They are located on chromosome region 2q35, which has been implicated in linkage studies for alcohol phenotypes. Nine SNPs were located in genes, including the CDH13 and ADH1C genes, that have been reported to be associated with alcohol dependence. CONCLUSIONS This is the first GWAS and follow-up study to identify a genome-wide significant association in alcohol dependence. Further independent studies are required to confirm these findings.
Collapse
Affiliation(s)
- Jens Treutlein
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Mannheim, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
|
10
|
Abstract
Cell cycle transitions are often accompanied by the degradation of regulatory molecules. Targeting proteins to the proteasome for degradation is accomplished by the covalent addition of ubiquitin chains. The specificity of this pathway is largely dictated by a set of enzymes called ubiquitin ligases (or E3s). The anaphase-promoting complex (or APC) is a ubiquitin ligase that has a particularly prominent role in regulating cell cycle progression. To date, the APC is the most complicated member of the RING/cullin family of multisubunit E3s. It includes at least 13 core subunits and three related adaptors. A combination of biochemical, genetic, and structural approaches are now shedding light on the enzymology of the APC. This review will focus on these data, drawing parallels with related ubiquitin ligases.
Collapse
Affiliation(s)
- Brian R Thornton
- Department of Biochemistry and Biophysics, Cancer Research Institute, University of California at San Francisco, San Francisco, California 94115, USA
| | | |
Collapse
|
11
|
Heber S, Sick B. Quality assessment of Affymetrix GeneChip data. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2006; 10:358-68. [PMID: 17069513 DOI: 10.1089/omi.2006.10.358] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Affymetrix GeneChips are one of the best established microarray platforms. This powerful technique allows users to measure the expression of thousands of genes simultaneously. However, a microarray experiment is a sophisticated and time consuming endeavor with many potential sources of unwanted variation that could compromise the results if left uncontrolled. Increasing data volume and data complexity have triggered growing concern and awareness of the importance of assessing the quality of generated microarray data. In this review, we give an overview of current methods and software tools for quality assessment of Affymetrix GeneChip data. We focus on quality metrics, diagnostic plots, probe-level methods, pseudo-images, and classification methods to identify corrupted chips. We also describe RNA quality assessment methods which play an important role in challenging RNA sources like formalin embedded biopsies, laser-micro dissected samples, or single cells. No wet-lab methods are discussed in this paper.
Collapse
Affiliation(s)
- Steffen Heber
- Department of Computer Science, North Carolina State University, Raleigh, North Carolina, USA
| | | |
Collapse
|
12
|
Corsi AK. A biochemist's guide to Caenorhabditis elegans. Anal Biochem 2006; 359:1-17. [PMID: 16942745 PMCID: PMC1855192 DOI: 10.1016/j.ab.2006.07.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 07/11/2006] [Accepted: 07/17/2006] [Indexed: 10/24/2022]
Affiliation(s)
- Ann K Corsi
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA.
| |
Collapse
|
13
|
Björk K, Saarikoski ST, Arlinde C, Kovanen L, Osei-Hyiaman D, Ubaldi M, Reimers M, Hyytiä P, Heilig M, Sommer WH. Glutathione-S-transferase expression in the brain: possible role in ethanol preference and longevity. FASEB J 2006; 20:1826-35. [PMID: 16940154 DOI: 10.1096/fj.06-5896com] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Identification of genes that are differentially expressed in rats bidirectionally selected for alcohol preference might reveal biological mechanisms underlying alcoholism or related phenotypes. Microarray analysis from medial prefrontal cortex (mPFC), a key brain region for drug reward, indicated increased expression of glutathione-S-transferases of the alpha (Gsta4) and mu (Gstm1-5) classes in ethanol-preferring AA rats compared with nonpreferring ANA rats. Real-time RT polymerase chain reaction (RT-PCR) analysis demonstrated approximately 2-fold higher Gsta4 transcript levels in several brain regions of ethanol-naive AA compared with ANA rats. Differences in mRNA levels were accompanied by differential levels of GSTA4 protein. We identified a novel haplotype variant in the rat Gsta4 gene, defined here as var3. Allele frequencies of var3 were markedly different between AA and ANA rats, 52% and 100%, respectively. Gsta4 expression was strongly correlated with the gene dose of var3, with approximately 60% of the variance in expression accounted for by genotype at this locus. The contribution of glutathione S-transferase expression to the ethanol-preferring phenotype is presently unclear. It could, however, underlie observed differences in life span between AA and ANA lines, prompting a utility of this animal model in aging research.
Collapse
Affiliation(s)
- K Björk
- Laboratory of Clinical and Translational Studies, NCI, National Institutes of Health, Bethesda, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Sommer W, Hyytiä P, Kiianmaa K. The alcohol-preferring AA and alcohol-avoiding ANA rats: neurobiology of the regulation of alcohol drinking. Addict Biol 2006; 11:289-309. [PMID: 16961760 DOI: 10.1111/j.1369-1600.2006.00037.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The AA (alko, alcohol) and ANA (alko, non-alcohol) rat lines were among the earliest rodent lines produced by bidirectional selection for ethanol preference. The purpose of this review is to highlight the strategies for understanding the neurobiological factors underlying differential alcohol-drinking behavior in these lines. Most early work evaluated functioning of the major neurotransmitter systems implicated in drug reward in the lines. No consistent line differences were found in the dopaminergic system either under baseline conditions or after ethanol challenges. However, increased opioidergic tone in the ventral striatum and a deficiency in endocannabinoid signaling in the prefrontal cortex of AA rats may comprise mechanisms leading to increased ethanol consumption. Because complex behaviors, such as ethanol drinking, are not likely to be controlled by single factors, system-oriented molecular-profiling strategies have been used recently. Microarray based expression analysis of AA and ANA brains and novel data-mining strategies provide a system biological view that allows us to formulate a hypothesis on the mechanism underlying selection for ethanol preference. Two main factors appear active in the selection: a recruitment of signal transduction networks, including mitogen-activated protein kinases and calcium pathways and involving transcription factors such as Creb, Myc and Max, to mediate ethanol reinforcement and plasticity. The second factor acts on the mitochondrion and most likely provides metabolic flexibility for alternative substrate utilization in the presence of low amounts of ethanol.
Collapse
Affiliation(s)
- Wolfgang Sommer
- Laboratory of Clinical and Translational Studies, NIAAA, National Institutes of Health, USA
| | | | | |
Collapse
|
15
|
Abstract
Despite advances in microarray technology that have led to increased reproducibility and substantial reductions in the cost of microarrays, the successful use of this technology is still elusive for many researchers, and microarray data analysis in particular presents a substantial bottleneck for many biomedical researchers. There are many reasons for this, including the expense of and a lack of adequate training in the use of analysis software. An additional reason is that microarray data analysis has largely been treated in the past as a set of separate steps, with the majority of emphasis being placed on statistical analysis and visualization of the data. For many biomedical researchers determining the biological significance of the data has been the greatest challenge and in the last several years more emphasis has been placed on this aspect of the analysis process. Despite this broadening of the scope of analysis there are still several aspects of the process that continue to be neglected, including additional related and interdependent aspects, such as experimental design, data accessibility, and platform selection. Though not traditionally thought of as integral to the data analysis process, these factors have profound effects on the analysis process. This article will discuss the importance of these additional aspects, as well as statistical analysis and determination of biological significance of microarray data. A summary of currently available software options will also be presented with a focus on the aspects discussed.
Collapse
|
16
|
Thornton BR, Ng TM, Matyskiela ME, Carroll CW, Morgan DO, Toczyski DP. An architectural map of the anaphase-promoting complex. Genes Dev 2006; 20:449-60. [PMID: 16481473 PMCID: PMC1369047 DOI: 10.1101/gad.1396906] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The anaphase-promoting complex or cyclosome (APC) is an unusually complicated ubiquitin ligase, composed of 13 core subunits and either of two loosely associated regulatory subunits, Cdc20 and Cdh1. We analyzed the architecture of the APC using a recently constructed budding yeast strain that is viable in the absence of normally essential APC subunits. We found that the largest subunit, Apc1, serves as a scaffold that associates independently with two separable subcomplexes, one that contains Apc2 (Cullin), Apc11 (RING), and Doc1/Apc10, and another that contains the three TPR subunits (Cdc27, Cdc16, and Cdc23). We found that the three TPR subunits display a sequential binding dependency, with Cdc27 the most peripheral, Cdc23 the most internal, and Cdc16 between. Apc4, Apc5, Cdc23, and Apc1 associate interdependently, such that loss of any one subunit greatly reduces binding between the remaining three. Intriguingly, the cullin and TPR subunits both contribute to the binding of Cdh1 to the APC. Enzymatic assays performed with APC purified from strains lacking each of the essential subunits revealed that only cdc27Delta complexes retain detectable activity in the presence of Cdh1. This residual activity depends on the C-box domain of Cdh1, but not on the C-terminal IR domain, suggesting that the C-box mediates a productive interaction with an APC subunit other than Cdc27. We have also found that the IR domain of Cdc20 is dispensable for viability, suggesting that Cdc20 can activate the APC through another domain. We have provided an updated model for the subunit architecture of the APC.
Collapse
Affiliation(s)
- Brian R Thornton
- Cancer Research Institute, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94115, USA
| | | | | | | | | | | |
Collapse
|